高中数学知识点题库 101基本事件和基本事件空间
概率的基本性质
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
基本事件及基本事件空间6.7
2
长海高中高二数学备课组
2010 年 6 月 7 日 第 87 个
正)(正、反)(反、正)(反、反),它有四个基本事件: 、 、 、 } (正、正) 代表第一次和第二次都出现正面, (正、反)代表第一次出现正面,第 二次出现反面, (反、正)代表第一次出现反面,第二次出现正面。 (反、 反)代表两次都是反面。 基本事件 及基本事 件空间的 概念要说 明白
课时 课型
1 新授
教 学 目 标
过程方法与能力:从生活入手,会区分随机现象与随机事件,基本事件与基本事 件空间。 情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知 识与现实世界及各学科知识之间的联系,认识数学的重要性。 。
重点 分析 难点 分析
基本事件和基本事件空间的概念 正确地求出某试验中事件 A 包含的基本事件的个数和基本事件空间中的基本事 件的总数
1. 对内容的挖掘 2. 课后题的选择 3. 《红对勾》中题目的选取 4. 练习中题目的选取 5. 对学生能力的判定
课程资源 开 发 及课前准 备
1
长海高中高二数学备课组
2010 年 6 月 7 日 第 87 个
教 学 过 程 与 内 容
课后反思
1.复习回顾:
初中知识复习
2.讲授新课:
1.概念:不可能事件、必然事件、随机事件 当我们在同样的条件下重复进行试验时, 有的结果始终不会发生, 它称为不 可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能 发生,也可能不发生的结果称为随机事件。 例: “导体通电发热”“抛一块石头,石头落地”“太阳东升西落”„„必然事 , , 件 “在标准大气压下低于 0 度时冰融化”“李华投篮 5 次,投进 6 次”„„ , 不可能事件。 “投掷一次硬币,出现正面”“一堆产品中,有 3 个次品,抽一次,抽到 , 次品”„„是随机事件。 及时鼓励 学生 对于学生 已学过的 内容,要给 学生充足 的展示空 间
事件与基本事件空间
注意点: 1.随机事件A的概率范围 必然事件与不可能事件可看作随机事 件的两种特殊情况. 因此,随机事件发生的概率都满足: 0≤P(A)≤1
2.频率与概率的关系 (1)联系: 随着试验次数的增加, 频率会在 概率的附近摆动,并趋于稳定. 在实际问题中,若事件的概率未知, 常用 频率作为它的估计值. (2)区别: 频率本身是随机的,在试验前不能 确定, 做同样次数或不同次数的重复试验得 到的事件的频率都可能不同. 而概率是一个确定数,是客观存在的,与每 次试验无关.
(2)求这个试验基本事件的总数; (3)“恰有两枚正面向上”这一事件包 含哪几个基本事件。
解:(1)Ω ={(正,正,正),(正,正,反), (正,反,正),(正,反,反),(反,正,正),(反, 正,反),(反,反,正),(反,反,反)}; (2)基本事件总数是8;
(3)“恰有两枚正面向上”包含3个基
抛硬币试验
实验者 棣莫佛 蒲 丰 出现正面的 试验次数(n) 次数(m) 2048 4040 1061 2048 出现正面的 频率(m/n) 0.5181 0.5069
费
勒
10000
12000 24000
4979
6019 12012
0.4979
0.5016 0.5005
皮尔逊 皮尔逊
我们可以设想有1000人投掷硬币,如 果每人投5次,计算每个人投出正面的频 率,在这1000个频率中,一般说,0, 0.2,0.4,0.6,0.8,1 都会有。而且会 有不少是0或1;
例2.某市统计近几年新生儿出生数及其中男婴数(单位:人) 如下: 时间 1999年 21840 11453 2000年 23070 12031 2001年 20094 10297 2002年 19982 10242
高中数学必修三 第三章 概率 第1节 事件与概率
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.
象
在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D
概率_随机事件的概率.板块一.事件及样本空间.学生版
版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合. 5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+ 若事件12nA A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率. 随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =;②()15|11P B A =;③事件B 与事件1A 相互独立; ④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”; ⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
概率_随机事件的概率.板块一.事件及样本空间.学生版 普通高中数学复习讲义Word版
版块一:事件及样本空间 1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ;2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.<教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立;④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数;其中属于随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”;⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件;⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
高中数学人教B版必修三课件:第三单元3-1-1随机现象-3-1-2事件与基本事件空间课件
现象
条件
特征
必然现象
在一定条件下 必然某发种生结果的现象
随机现象
在一定条 当在相同的条件下多次观察同一现象,每 件下 次观察到的结果 不一,定事相先同很难预料哪
一种结果会出现
知识点二 事件与基本事件空间
思考
事件的分类是确定的吗?
答案
事件的分类是相对于条件来讲的,在不同的条件下,必然事 件、随机事件、不可能事件可以相互转化.
在同样的条件下重复进行试验时, 随机事件
可能发生 ,也 可能的不结发果生
3.基本事件、基本事件空间
名称
定义
基本 试验中不能再分的 最简单的随机事件,其他事件可以用 事件 它们来描绘
基本事 所有基本事件构成的集合称为基本事件空间.基本事件空 件空间 间常用大写希腊字母 Ω 表示.
3.基本事件、基本事件空间
跟踪训练2 1个盒子中装有5个完全相同的球,分别标有号码1,2,3,4,5, 从中一次任取两球. (1)写出这个试验的基本事件空间; 解答
Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)};
(2)求这个试验的基本事件总数; 解答
12345
3.下列现象中,是随机现象的是__②__④__. 答案 解析 ①长度为3、4、5的三条线段可以构成一个直角三角形; ②打开电视机,正好在播新闻;③从装有3个黄球、5个红球的袋子中任 摸4个,全部都是黄球;④下周六是晴天. ①是必然现象,③是不可能现象,②④是随机现象.
3.1.1 随机现象 3.1.2 事件与基本事件空间
学习目标
1.了解随机现象、基本事件和基本事件空间的概念. 2.在实际问题中,能正确的求出事件包含的基本事件的个数和
随机事件及其概率(知识点总结)
随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n=为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件 B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋂(或A B⋅).5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++.【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01之间,即对于任一事件A,都有0()1≤≤.P A2、必然事件的概率为1,不可能事件的概率为0.3、若事件A与事件B互斥,则()()()⋃=+.P A B P A P B4、两个对立事件的概率之和为1,即若事件A与事件B对立,则()()1+=.P A P B。
10.5 古典概型
§10.5 古典概型1.基本事件和基本事件空间的概念(1)在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为____________.(2)所有基本事件构成的集合称为______________,常用大写希腊字母________表示.2.基本事件的特点(1)任何两个基本事件是____________的.(2)任何事件(除不可能事件)都可以表示成____________的和.3.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型:(1)试验中所有可能出现的基本事件只有__________个.(2)每个基本事件出现的可能性____________. 4.古典概型的概率公式在古典概型中,一次试验可能出现的结果有n 个,如果某个事件A 包含的结果有m 个,那么事件A 的概率为P (A )=________.自查自纠:1.(1)基本事件 (2)基本事件空间 Ω2.(1)互斥 (2)基本事件3.(1)有限 (2)相等4.m n某班级有正、副两位班长,则其性别的基本事件空间为( )A.{男男,女女}B.{男女,女男}C.{男男,女男,女女}D.{男男,女男,男女,女女}解:每位班长性别有2种可能性,正、副两位班长有4种等可能情形.故选D.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y.则事件“x +y ≤3”的概率为( )A.112B.19C.13D.115解:满足条件的数对(x ,y )为(1,2),(1,1),(2,1)共3种,则P =336=112.故选A.(2014·陕西)从正方形四个顶及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45解:依题意,在5个点中任取2个点有C 25种取法,由于正方形的中心到4个顶点的距离小于边长,所以这2个点的距离小于该正方形边长的有4种,故所求概率为P =C 25-4C 25=10-410=35,故选C.有6位身高全不相等的同学拍照留念,摄影师要求前后两排各3个,则后排每人均比前排所有同学高的概率为______.解:因后排每人均比前排同学高,所以6人中较高的3人站在后排,其余3个站前排,∴P =A 33A 33A 66=120.故填120.(2014·广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.解:从十个数中任取七个不同的数有C 710种情况,这七个数的中位数是6的有C 36种情况,所求概率P =C 36C 710=16.故填16.类型一 基本事件与基本事件空间的概念将一枚均匀硬币抛掷三次,观察向上一面的正反.(1)试用列举法写出该试验所包含的基本事件; (2)事件A :“恰有两次正面向上”包含几个基本事件;(3)事件B :“三次都正面向上”包含几个基本事件.解:(1)试验的所有基本事件有:(正,正,反),(正,反,正),(正,反,反),(正,正,正),(反,反,反),(反,反,正),(反,正,反),(反,正,正),共8种等可能结果.(2)事件A 包含的基本事件有三个:(正,正,反),(正,反,正),(反,正,正).(3)事件B 包含的基本事件只有一个:(正,正,正).点拨:基本事件是试验中不能再分解的事件,是“最小”的“事件单位”.任何基本事件都是互斥的,任何复杂事件都可以分解为基本事件,所有基本事件的全体组成基本事件空间.做抛掷两颗骰子的试验,用(x ,y )表示结果,其中x 表示第一颗骰子出现的点数,y 表示第二颗骰子出现的点数,写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”; (3)事件“出现点数相等”;(4)事件“出现点数之和大于10”. 解:(1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). (2)“出现点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6).(3)“出现点数相等”包含以下6个基本事件:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).(4)“出现点数之和大于10”包含以下3个基本事件:(5,6),(6,5),(6,6).类型二 列举基本事件求概率(2013·江西)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解:(1)X 的所有可能取值为-2,-1,0,1.(2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种;数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种;数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种.故所有可能的情况共有15种.∴小波去下棋的概率为P 1=715;小波去唱歌的概率为P =415,∴小波不去唱歌的概率为P 2=1-P =1-415=1115.点拨:本题将平面向量与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件规律性不强,不易计数,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用.(2013·湖南十二校第一次联考)甲口袋中装有大小相同的标号分别为1,2,3,4的4个小球,乙口袋中装有大小相同的标号分别为2,3,4,5的4个小球.现从甲、乙口袋中各取一个小球.(1)求两球标号之积为偶数的概率;(2)设ξ为取出的两球的标号之差的绝对值,求ξ≥2的概率.解:(1)设两球标号之积为偶数为事件A ,则其对立事件为两球标号之积为奇数,因此P (A )=1-P (A )=1-C 12C 12C 14C 14=34.(2)由于ξ∈N ,若ξ≥2,则ξ=2,3,4.当ξ=2时,甲取1乙取3,甲取2乙取4,甲取3乙取5,甲取4乙取2;当ξ=3时,甲取1乙取4,甲取2乙取5; 当ξ=4时,甲取1乙取5.故所求概率为P =4+2+1C 14C 14=716.类型三 无放回抽样问题有10件产品,其中有2件次品,每次抽取1件检验,抽检后不放回,共抽2次.求下列事件的概率:(1)两次抽取的都是正品; (2)抽到的恰有一件为次品;(3)第1次抽到正品,第2次抽到次品.解:记Ω={从10件产品中任抽2件},则n =card (Ω)=C 210.(1)记A ={从10件产品中抽2件,都是正品},则m 1=card (A )=C 28.∴P (A )=C 28C 210=2845.(2)记B ={从10件产品中抽2件,一件为正品,一件为次品},则m 2=card (B )=C 12C 18.∴P (B )=C 12C 18C 210=1645.(3)解法一:由于事件B 中包含“第1次为正品,第2次为次品”和“第1次为次品,第2次为正品”两种等可能的情况.∴所求事件的概率P =12C 12C18C 210=845.解法二:记Ω′={从10件产品中,任取一件(放入甲袋中),再从剩下9件产品中任取一件(放入乙袋中)},记C ={第1次取出的是正品,第2次取出的是次品}={甲袋中为正品,乙袋中为次品},∴card (Ω′)=A 210,card (C )=C 18C 12.∴P (C )=C 18C 12A 210=845.点拨:请注意题(3)的两种解法,一种是将试验(抽取2件产品)看作是组合(无序的),一种是将试验看作是排列(有序的),值得注意的是两种解法的样本空间不同,事件C 不属于样本空间Ω(C ∉Ω),因此不能用card (Ω)进行计算.样本空间的选取会影响到解答的过程,因此解等可能概型时,建议遵循以下步骤:①判断该问题是等可能概型;②确定样本空间(即试验的方法,因为试验的方法影响样本空间);③用排列组合方法确定card (Ω)与card(A),得到P(A)=card (A )card (Ω).某种饮料每箱装6听,其中有2听不合格,质检人员从中随机抽出2听,求下列事件的概率:(1)A :抽出的两听都是合格品;(2)B :抽出的两听中1听合格,1听不合格; (3)C :抽出的两听中有不合格产品.解:记Ω={从6听饮料中随机抽出2听},则card (Ω)=C 26=15.(1)记A ={从6听饮料中抽出2听,都是合格品},则card (A )=C 24=6.∴P (A )=card (A )card (Ω)=25.(2)记B ={从6听饮料中抽出2听,1听合格,1听不合格},则card (B )=C 12C 14=8.∴P (B )=card (B )card (Ω)=815.(3)记C ={从6听饮料中抽出2听,有不合格产品},事件C 包含“抽出2听都是不合格品”和“1听合格,1听不合格”两种情况.则card (C )=C 22+C 12C 14=9.∴P (C )=card (C )card (Ω)=915=35.类型四 有放回抽样10个球,其中3个白球7个黑球,某人有放回地进行抽球,求下列事件的概率:(1)第3次抽到白球; (2)第3次才抽到白球. 解:(1)记Ω={第3次抽球},则n =10,A ={第3次抽到白球},m =3.∴P (A )=310=0.3.(2)记Ω′={连续从10个球中有放回地抽3次球},则n =103,B ={第3次才抽到白球},则m =7×7×3.∴P (B )=7×7×3103=0.147.点拨:①第一问中的样本空间也可以扩大为(2)中的Ω′,此时(1)中的m 有变化,但结果为10×10×3103=0.3不变;②运用独立性概念也可以计算(2)的概率,即P =710×710×310=0.147;③注意7×7×3103=0.147与7×6×310×9×8=0.175的区别.(2013·成都模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球,那么取球次数恰为3次的概率是( )A.8125B.36125C.44125D.81125解:“取球次数恰为3次”意味着第3次取到红球且前两次取到1红1白,故所求概率为3×2×A 22×353=36125,故选B.类型五 间接计算某班有N (N ∈N *,N <365)名同学,求至少2人在同一天过生日的概率(一年按365天计).解:Ω={N 名同学过生日},A ={至少有2名同学同一天过生日}.则n =365N ,对于A ,其m =card (A )=A N 365.∴P (A )=1-A N 365365N .点拨:间接计算是计算概率十分常用的方式,是“正难则反”策略的体现,对于含“至多”“至少”等词句的概率问题,一般情况下应首先考虑利用这一策略.高考概率大题对间接计算的考查也比较常见,尤其是计算含个别比较复杂概率的分布列或期望问题.应用时应注意相关概率的计算应准确无误.(2014·新课标Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78解:4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六或周日参加公益活动的情况各有1种,∴所求概率为1-1+116=78.故选D.1.古典概型是概率论中最简单而又直观的模型,在概率论的发展初期曾是主要研究对象,许多概率的运算法则都是在古典概型中得到证明的(遂谓之“古典”).要判断一个试验是否为古典概型,只需要判断这个试验是否具有古典概型的两个特征——有限性和等可能性.2.求古典概型的概率(1)对于事件A 的概率的计算,关键是要分清基本事件总数n 与事件A 包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A 是什么,它包含的基本事件有多少个.(2)如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式P (A )=mn求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.(3)如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n ,再运用公式P (A )=mn求概率.(4)较为简单的问题可以直接使用古典概型概率公式计算,较为复杂的概率问题的处理方法有:①转化为几个互斥事件的和,利用互斥事件的加法公式求解;②采用间接法,先求事件A 的对立事件A 的概率,再由P (A )=1-P (A )求事件A 的概率.1.从集合A ={2,3,-4}中随机选取一个数记为k ,则函数y =kx 单调递增的概率为( )A.29B.13C.49D.23 解:k >0时符合要求.故选D.2.甲、乙、丙三人随意坐在一条长凳上,乙正好坐中间的概率为( )A.12B.13C.14D.16解:P =A 22A 33=13.故选B.3.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解:所求概率P =C 12C 13C 26=25.故选B.4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.19解:将符合条件“个位数与十位数之和为奇数”的两位数分成两种类型:一是十位数是奇数,个位数是偶数,共有5×5=25个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有4×5=20个.所以P =525+20=19.故选D. 5.(2013·浙江宁波十校联考)将一颗骰子向上抛掷两次,所得点数分别为m 和n ,则n ≤2m 的概率是( )A.12B.23C.34D.56解:满足n >2m 的数对(n ,m )为(6,2),(6,1),(5,2),(5,1),(4,1),(3,1)共6种,所以所求概率为1-636=56.故选D.6.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机并排摆放到书架的同一层上,则同一科目的书都不相邻的概率为( )A.15B.25C.35D.45解:同一科目的书相邻的情况有:2A 44A 22-A 33A 22A 22=72种,故所求事件的概率为P =1-72120=25.故选B.7.(2014·上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是____________(结果用最简分数表示).解:在未来的连续10天中随机选择3天共有C 310=120种情况,其中选择的3天恰好为连续3天的情况有8种,故所求概率为8120=115.故填115.8.(2013·全国课标Ⅱ卷)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =__________.解:依题意有2C 2n =114(显然n ≥7),∴C 2n =28得n 2-n -56=0,∴n =8或n =-7,又∵n ∈N *,∴n =8.故填8.9.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x ,y )在圆x 2+y 2=15内部的概率.解:将一颗骰子先后抛掷2次,此问题中含有36个等可能性基本事件.(1)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”互为对立事件,所以P (B )=1-936=34,即两数中至少有一个奇数的概率为34.(2)基本事件总数为36,点(x ,y )在圆x 2+y 2=15的内部记为事件C ,而满足条件x 2+y 2<15的点(x ,y )为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),则C 包含8个事件,所以P (C )=836=29,即点(x ,y )在圆x 2+y 2=15内部的概率为29. 10.甲、乙、丙、丁4名同学被随机地分到A ,B ,C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率.解:(1)记甲、乙两人同时被分到A 社区为事件E A ,那么P (E A )=A 22C 24A 33=118.即甲、乙两人同时被分到A 社区的概率是118.(2)记甲、乙两人在同一社区为事件E ,那么P (E )=A 33C 24A 33=16,所以,甲、乙两人不在同一社区的概率是P (E )=1-P (E )=56.11.袋中装有黑球和白球共7个,从中任取两个球,都是白球的概率为17.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解:(1)设袋中有n 个白球,从袋中任取2个球是白球的结果是n (n -1)2.从袋中任取2个球的所有可能的结果数为6×72=21.由题意知17=n (n -1)221=n (n -1)42,∴n (n -1)=6,解得n =3(舍去n =-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=4×37×6=27. (3)记“甲取到白球”的事件为B ,“第i 次取到白球”为A i ,i =1,2,3,4,5, 因为甲先取,所以甲只有可能在第1次,第3次和第5次取球.所以P (B )=P (A 1+A 3+A 5).而A 1,A 3,A 5两两互斥.∴P (B )=P (A 1)+P (A 3)+P (A 5)=37+4×3×37×6×5+4×3×2×1×37×6×5×4×3=37+635+135=2235.(2013·武汉二模)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买5袋该食品,则获奖的概率为________.解法一:“获奖”即每种卡片至少一张,而5=1+1+3=1+2+2.有3种卡片,购买了5袋该食品,则基本事件总数为35.故所求概率为3C 15C 14C 33+3C 15C 24C 2235=5081. 解法二:若5袋食品均装入的是这3种卡片中的1种或2种则不获奖,即不获奖的概率为C 23·25-335=3181,从而获奖的概率为1-3181=5081.故填5081.。
基本事件空间与事件
复合事件
(两个或一些基本事件并在一 起,就 构成一个复合事件)
事件 B={掷出奇数点}
例1:如果试验是将一枚硬币抛掷两 次,则样本空间由如下四个样本点组成:
S={(H,H), (H,T), (T,H), (T,T)} 其中 第1次 第2次
(H,H): H
H
(H,T): H
T
(T,H): T
H
(T,T): T
从观察试验开始
研究随机现象,首先要对研究对 象进行观察试验. 这里的试验,指的 是随机试验.
1、随机试验定义:
如果每次试验的可能结果不止一个,且 事先不能肯定会出现哪一个结果,这样的试 验称为随机试验.
出掷掷的例一一测灯如枚颗试泡,硬骰在的币掷掷子同寿寿,硬骰,一命命观币子观工.试察试试察艺验出验验出条正现件还的下是点生反数产.
B = {1,3,5}
事件B就是S的一个子集
B发生当且仅当B中的样本点 1,3,5中的某一个出现.
6、事件的概率 研究随机现象,不仅关心试验中会出
现哪些事件,更重要的是想知道事件出现 的可能性大小,也就是事件的概率.
定义:概率是随 机事件发生可能 性大小的度量
事件发生的可能性 越大,概率就 越大!
我们用P(A)表示事件A发生的概率,则
0≤P(A)≤1
事件发生的可能性 最小是零,此时
概率为0.
事可能性即概率的 大小,对人们的生活有什么意义呢?
我先给大家举几个例子,也希望你 们再补充几个例子.
例如,了解发生意外人身事故的 可能性大小,确定保险金额.
T
例2:如果试验是测试某灯泡的寿命:
则样本点是一非负数,由于不能确知寿 命的上界,所以可以认为任一非负实数都是 一个可能结果, 故样本空间
第三章学案1 随机现象 事件与基本事件空间
返回目录
• 一样的软件 • 不一样的感觉 • 一样的教室 • 不一样的心情 • 一样的知识 • 不一样的收获 •
解:(1)(2)是必然事件;(3)(4)是随机事件; (5)(6)是不可能事件.
返回目录
学点四
基本事件与基本事件空间
同时投掷两枚骰子,并记录骰子的点数.
(1)写出这个试验可能发生的所有结果; (2)写出下列事件是由哪些基本事件构成的:
①点数之和为7;
②至少出现一个6点. 【分析】考查基本事件与基本事件空间的写法. 【解析】(1)同时投掷两枚骰子,可能结果如下表:
学案1
随机现象 事件与 基本事件空间
开始
学点一 学点二
学点三 学点四
1.必然现象是在一定条件下 必然发生某种结果 的现 象. 多次观察同一现象 2.随机现象是在相同的条件下 , 不一定相同 每次观察到的结果 ,事先很难预料哪一种结 果会出现的现象. 3.试验 某种目的 把观察随机现象或为了 而进行的实验统称 为试验,把观察结果或实验结果称为试验的结果. 4.在同样的条件下重复进行试验时,有的结果始终不 不可能事件 会发生,它称为 . 5.有的结果在每次试验中一定会发生,它称为 必然事件 . 返回目录
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)
6 (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
(2)①事件“点数之和为7”包含了6个基本事件分 别是:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6). ②事件“至少出现了一个6点”包含了11个基本事件 分别是:(6,1),(6,2),(6,3),(6,4),(6,5),(6,6), (5,6),(4,6),(3,6),(2,6),(1,6). 【评析】准确地写出试验所包含的基本事件数是下一 步解决概率问题的基础和前提,而将所有结果列出是避免 重复和遗漏的有效方法. 返回目录
事件与基本事件空间解析
基本事件与事件及基本事件空间的关系
基本事件空间
●● ●
事件A
●●
基本事件 基本事件是基本事件空间中最小元素 随机事件是基本事件空间的子集。
巩固延伸
在两件正品a,a
1
2
和一件次品b 1
的3件产品中每
次任取一件,每
次取出后放回,
连续取两次
在一次试验中,不不能能再再分分解解的最简单 的随机事件,其他事件可以用它们来 描绘,这样的事件称为基本事件。
基本事件空间
所有基本事件构成的集合称为基本事件 空间,用 表示
掷一枚硬币,观察硬币落地哪一面向上, 这个试验中基本事件空间
先后抛两枚硬币,观察硬币落地后哪一面向 上,这个试验中基本事件空间
(1)概率的范围是 [0,1] ,不可能事件的概率为 0 ,必然事件 为 1 ,随机事件的概率(0,1);
(2)概率从数量上反映了一个事件发生的可能性的大小.
思考 : 频率是否等同于概率呢?
☆频率与概率的区别:
1. 事件A发生的频率fn(A)是(不变,变化)的; 事件A发生的概率P(A)是(不变,变化)的;
定义
不可能事件: 当我们在同样的条件下重复进行试验时,有的 结果始终不会发生,它称为不可能事件.
必然事件: 有的结果在每次试验中一定发生,它称为必然 事件
随机事件: 在试验中可能发生,也可能不发生称为随机事 件.
随机事件简称为事件。通常用大写字母 A,B,C 来表示。
(1)在标准大气压下,温度低于0℃时,冰 融化; 不可能事件
概率是一个确定的常数,是客观存在的,与每次试验 结果无关,与试验次数无关,甚至与做不做试验无关.
随机事件、事件与事件基本空间
例如,在掷骰子试验中,观察掷出的点数。 例如,在掷骰子试验中,观察掷出的点数。 元素 基本事件
Ai ={掷出i点} i=1,2,3,4,5,6, ={掷出 =1,2,3,4,5,6,
集合 基本事件空间 Ω={1,2,3,4,5,6} 子集 随机事件 B={掷出奇数点} {掷出奇数点} B={1,3,5} {1,3,5}
判断下列现象是随机现象还是必然现象: 判断下列现象是随机现象还是必然现象
(1)掷一枚质地均匀的硬币的结果 掷一枚质地均匀的硬币的结果; 掷一枚质地均匀的硬币的结果 (2)行人在十字路口看到的交通信号灯的颜色 行人在十字路口看到的交通信号灯的颜色; 行人在十字路口看到的交通信号灯的颜色 (3)在10个同类产品中有 个正品 两个次品 在 个同类产品中有 个正品,两个次品 个同类产品中有8个正品 两个次品, 从中任意抽出3个检验的结果 个检验的结果; 从中任意抽出 个检验的结果 (4)在10个同类产品中 有8个正品 个次品 在 个同类产品中 个同类产品中,有 个正品 个次品, 个正品,2个次品 从中任意抽出3个且至少有一个正品的结果 个且至少有一个正品的结果; 从中任意抽出 个且至少有一个正品的结果 (5)三角形的三个内角和是 180度. 三角形的三个内角和是 度
1.一个盒子中装有10个完全相同的小球 一个盒子中装有10个完全相同的小球, 例1.一个盒子中装有10个完全相同的小球,分 别编以号码1,2, 别编以号码1,2,……,10,从中任取一球, ,10,从中任取一球, 1,2, 观察球的号码, 观察球的号码,写出这个试验的基本事件和 基本事件空间。 基本事件空间。 连续掷三枚硬币, 例2、连续掷三枚硬币,观察落地后这三枚硬 币出现正面还是反面。 币出现正面还是反面。 (1)写出这个试验的基本事件空间 (2)求这个试验的基本事件的总数 恰有两枚正面朝上” (3)“恰有两枚正面朝上”这一事件包含哪 几个基本事件? 几个基本事件?
第一讲 事件与基本事件空间
第一讲随机现象事件与基本事件空间[新知初探]1.随机现象与随机事件(1)必然现象与随机现象:现象条件特征必然现象在一定条件下必然发生某种结果的现象随机现象多次观察同一现象,每次观察到的结果不一定相同,事先很难预料哪一种结果会出现注意事项判断是必然现象还是随机现象关键点是看给定条件下的结果是否一定发生,若一定发生,则为必然现象,若不确定,则其为随机现象,即随机现象事先难以预料,而必然现象事先就能知道结果.(2)事件:①不可能事件:在同样的条件下重复进行试验时,始终不会发生的结果.②必然事件:在同样的条件下重复进行试验时,每次试验中一定会发生的结果.③随机事件:在同样的条件下重复进行试验时,可能发生,也可能不发生的结果.对事件分类的两个关键点(1)条件:在条件S下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;(2)结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.2.基本事件与基本事件空间(1)基本事件:试验中不能再分的最简单的,且其他事件可以用它们来描绘的随机事件.(2)基本事件空间:①定义:所有基本事件构成的集合称为基本事件空间.②表示:基本事件空间常用大写希腊字母Ω表示.确定基本事件空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.[小试身手]1.下列现象是必然现象的是( )A.一天中进入某超市的顾客人数B.一顾客在超市中购买的商品数C.一颗麦穗上长着的麦粒数D.早晨太阳从东方升起答案:D2.下列事件:①长度为3,4,5的三条线段可以构成一个直角三角形;②经过有信号灯的路口,遇上红灯;③下周六是晴天.其中,是随机事件的是( )A.①②B.②③C.③①D.②解析:选B ①为必然事件;②③为随机事件.3.“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是( )A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件解析:选D 掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.4.先后抛掷两枚质地均匀的硬币,所有可能的结果为________.答案:(正,正)、(正,反)、(反,正)、(反,反)典型例题[典例] 判断下列现象是必然现象还是随机现象.(1)将三个小球全部放入两个盒子中,其中有一个盒子里有一个以上的球;(2)一个射击运动员每次射击命中的环数;(3)三角形的内角和为180°;(4)二次函数y=ax2+bx+c(a≠0)的开口方向.[解] (1)三个小球全部放入两个盒子,其中有一个盒子里有一个以上的球,这个结果一定发生,故为必然现象;(2)射击运动员每次射击命中的环数可能为1环,2环等,因此是随机现象;(3)三角形的内角和一定是180°,是确定的,故为必然现象;(4)二次函数y=ax2+bx+c(a≠0)的开口方向与a的取值有关,当a>0时,开口向上,当a<0时,开口向下,故在a≠0的条件下开口可能向上也可能向下,故是随机现象.[活学活用]判断下列现象是必然现象还是随机现象.(1)在一个装有1个白球,9个黄球的不透明袋子中,任意摸出两球,至少有一个黄球;(2)一个不透明的袋子中装有5个白球,2个黑球,3个红球,大小形状完全相同,搅拌均匀后,从中任取一球为红球.解:(1)袋中装有1个白球、9个黄球,从中任取2个,一定至少有一个黄球,故是必然现象.(2)袋中有5个白球,2个黑球,3个红球,从中任取一个,可能是白球,可能是黑球,也可能是红球,故是随机现象.[典例] 指出下列事件是必然事件、不可能事件还是随机事件:(1)某人购买福利彩票一注,中奖500万元;(2)三角形的两边之和大于第三边;(3)没有空气和水,人类可以生存下去;(4)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;(5)科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解] (1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.(2)所有三角形的两边之和都大于第三边,所以是必然事件.(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.(4)任意抽取,可能得到1,2,3,4号标签中的任一张,所以是随机事件.(5)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.[活学活用]指出下列事件是必然事件、不可能事件,还是随机事件.(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标;(4)没有水分,种子发芽.解:(1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.(4)没有水分,种子不可能发芽,是不可能事件.[典例] 同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“x+y=5”这一事件包含哪几个基本事件?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个基本事件?“x=y”呢?[解] (1)Ω={(1,1),(1,2),(1, 3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)基本事件的总数为16.(3)“x+y=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1);“x<3且y>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个基本事件:(1,4),(2,2),(4,1);“x=y”包括以下4个基本事件:(1,1),(2,2),(3,3),(4,4).[活学活用]甲、乙两人做出拳游戏(锤、剪、布).(1)写出基本事件空间;(2)写出事件“甲赢”;(3)写出事件“平局”.解:(1)Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤)(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.(2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.(3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.[层级一学业水平达标]1.同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件的个数是( )A.3 B.4C.5 D.6解析:选D 有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个基本事件.2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品解析:选C 25件产品中只有2件次品,所以不可能取出3件都是次品.3.写出下列试验的基本事件空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.解析:(1)对于甲队来说,有胜、平、负三种结果;(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不能再有其他结果.答案:(1)Ω={胜,平,负} (2)Ω={0,1,2,3,4}4.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个数字,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的基本事件空间;(2)求这个试验基本事件的总数;(3)写出“第1次取出的数字是2”这一事件.解:(1)这个试验的基本事件空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)易知这个试验的基本事件的总数是6.(3)记“第1次取出的数字是2”这一事件为A,则A={(2,0),(2,1)}.[层级二应试能力达标]1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( )A.①B.②C.③D.④解析:选D 三角形的三条边必须满足两边之和大于第三边.2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( )A.必然事件B.不可能事件C.随机事件D.以上选项均不正确解析:选C 若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.3.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中任取不相同的两个数作为点P的坐标,则事件“点P落在x轴上”包含的基本事件共有( )A.7个B.8个C.9个D.10个解析:选C “点P落在x轴上”包含的基本事件的特征是纵坐标为0,横坐标不为0,因A中有9个非零数,故选C.4.已知集合A是集合B的真子集,下列关于非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确的命题有( )A.1个B.2个C.3个D.4个解析:选C ∵集合A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.5.下列给出五个事件:①某地2月3日下雪;②函数y=a x(a>0,且a≠1)在定义域上是增函数;③实数的绝对值不小于0;④在标准大气压下,水在1 ℃结冰;⑤a,b∈R,则ab=ba.其中必然事件是________;不可能事件是________;随机事件是________.解析:由必然事件、不可能事件、随机事件的定义即可得到答案.答案:③⑤④①②6.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的基本事件数为________.解析:从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数.答案:47.设集合A={x|x2≤4,x∈Z},a,b∈A,设直线3x+4y=0与圆(x-a)2+(y-b)2=1相切为事件M,用(a,b)表示每一个基本事件,则事件M所包含的基本事件为___________.解析:A={-2,-1,0,1,2},由直线与圆相切知,|3a+4b|5=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧ a =-1,b =2,⎩⎨⎧ a =1,b =-2满足等式.答案:(-1,2),(1,-2)8.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y .用(x ,y )表示一个基本事件.(1)请写出所有的基本事件.(2)满足条件“x y为整数”这一事件包含哪几个基本事件? 解:(1)先后抛掷两次正四面体的基本事件:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).共16个基本事件.(2)用A 表示满足条件“x y为整数”的事件,则A 包含的基本事件有:(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),共8个基本事件.9.设有一列北上的火车,已知停靠的站由南至北分别为S 1,S 2,…,S 10站.若甲在S 3站买票,乙在S 6站买票,设基本事件空间Ω表示火车所有可能停靠的站,令A 表示甲可能到达的站的集合,B 表示乙可能到达的站的集合.(1)写出该事件的基本事件空间Ω;(2)写出事件A 、事件B 包含的基本事件;(3)铁路局需为该列车准备多少种北上的车票?解:(1)Ω={S 1,S 2,S 3,S 4,S 5,S 6,S 7,S 8,S 9,S 10};(2)A ={S 4,S 5,S 6,S 7,S 8,S 9,S 10};B={S,S8,S9,S10}.7(3)铁路局需要准备从S1站发车的车票共计9种,从S2站发车的车票共计8种,……,从S9站发车的车票1种,合计共9+8+…+2+1=45(种).。
事件与基本事件空间
教学目标:理解事件与基本事件空间的概念
教学重点:理解事件与基本事件空间的概念
教学过程:
1.概念:对随机现象的观测称作随机试验。
种类:随机试验有可重复随机试验和不可重复随机试验两种。
前者是指可以在相同条件下重复进行的随机试验;后者是指不能在相同条件下重复进行的随机试验。
要注意,随机现象或随机试验的概念都是同给定的一组条件联系在一起的。
给定的一组条件发生了改变,就变成了另外的随机现象和另外的随机试验。
2.基本概念:
(1)必然事件:必然事件是每次试验都一定出现的事件,记作。
不可能事件:任何一次试验都不可能出现的事件称为不可能事件
(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,
简称为事件
(3)基本事件:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件。
(4)基本事件空间:一项随机试验的所有基本事件的集合,称作该随机试验的基本事件
空间。
3.集合来解释上述概念
a)基本事件----元素
b)基本事件空间----全集
c)随机事件----全集的子集
4.通过例1、例2学会写出基本事件空间、事件
课堂练习:第101页,练习a,练习b
小结:通过本节课的学习我们理解事件与基本事件空间的概念
课后作业:略。
2017-2018学年高中数学人教B版 必修3第3章 3-1-1 随机现象 3-1-2 事件与基本事件空间 含解析 精品
3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间1.了解必然现象和随机现象,了解不可能事件、必然事件及随机事件.(重点)2.理解事件与基本事件的定义,会求试验中的基本事件空间以及事件A包含的基本事件的个数.(重点))3.利用恰当的方法计算事件包含的基本事件的个数.(难点[基础·初探]教材整理1随机现象阅读教材P91,完成下列问题.1.常见现象的特点及分类把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验结果称为试验的结果.教材整理2 事件与基本事件的空间阅读教材P 92~P 93例1以上部分,完成下列问题.1.不可能事件、必然事件、随机事件(1)基本事件:试验中不能再分的最简单的,且其他事件可以用它们来描绘的随机事件称为基本事件.(2)基本事件空间:①定义:所有基本事件构成的集合称为基本事件空间.②表示:基本事件空间常用大写希腊字母Ω表示.判断(正确的打“√”,错误的打“×”)(1)三角形的内角和为180°是必然事件.( )(2)“抛掷硬币三次,三次正面向上”是不可能事件.( )(3)“下次李欢的数学成绩在130分以上”是随机事件.( )【答案】 (1)√ (2)× (3)√[小组合作型](1)小明在校学生会主席竞选中成功;(2)掷一枚质地均匀的硬币出现的结果;(3)某人购买的彩票号码恰好是中奖号码;(4)标准大气压下,把水加热至100 ℃沸腾.【精彩点拨】利用必然现象与随机现象的定义去判断【尝试解答】(1)随机现象.因为竞选能否成功是不可预知与确定的;(2)随机现象.因为出现的结果可能是正面,也可能是反面,结果并不确定.(3)随机现象.因为彩票号码是否为中奖号码,本身无法预测,是不可知的.(4)必然现象.因为标准大气压下,水加热至100 ℃时沸腾这个结果一定会发生,是确定的.判断某一现象是随机现象还是必然现象的关键是看在一定条件下,现象的结果是否可以预知、确定,若在一定条件下,出现的结果是可以预知的,这类现象为必然现象;若在一定条件下,出现哪种结果是无法预知、无法事先确定的,这类现象为随机现象.[再练一题]1.判断下列现象是必然现象还是随机现象:(1)掷一枚质地均匀的骰子出现的点数;(2)行人在十字路口看到的交通信号灯的颜色;(3)在10个同类产品中,有8个正品、2个次品,从中任意抽出2个检验的结果.【解】(1)掷一枚质地均匀的骰子其点数有可能出现1~6点,不能确定,因此是随机现象.(2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有可能是绿色,故是随机现象.(3)抽出的2个产品中有可能全部是正品,也有可能是一个正品一个次品,还有可能是两个次品,故此现象为随机现象.件.(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0 ℃时,冰融化”;(3)“某人射击一次,中靶”;(4)“如果a>b,那么a-b>0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水分,种子能发芽”;(10)“在常温下,焊锡熔化”.【精彩点拨】根据时间的概念判断:必然事件必然发生;不可能事件不可能发生;随机事件可能发生也可能不发生.【尝试解答】事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;事件(3)(5)(7)(8)是随机事件.要判定某事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的.其次再看它是一定发生,还是不一定发生,还是一定不发生.一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.[再练一题]2.下列事件中的随机事件为()A.若a,b,c都是实数,则a(bc)=(ab)cB.没有水和空气,人也可以生存下去C.抛掷一枚硬币,反面向上D.在标准大气压下,温度达到60 ℃时水沸腾【解析】A中的等式是实数乘法的结合律,对任意实数a,b,c是恒成立的,故A是必然事件.在没有空气和水的条件下,人是绝对不能生存下去的,故B是不可能事件.抛掷一枚硬币时,在没得到结果之前,并不知道会是正面向上还是反面向上,故C是随机事件.在标准大气压的条件下,只有温度达到100 ℃,水才会沸腾,当温度是60 ℃时,水是绝对不会沸腾的,故D是不可能事件.【答案】 C[探究共研型]探究16次”,“他投进的次数比6小”,“他投进3次”分别是什么事件?【提示】“他投进6次”是不可能事件;“他投进的次数比6小”是必然事件;“他投进3次”是随机事件.探究2举例说明随机现象与随机事件的区别.【提示】行人在十字路口看到的交通信号灯颜色是一种随机现象,看到的是红色是随机事件,看到的是黄色或者是绿色都是一个随机事件.因此随机事件是在同样的条件下重复进行试验时,可能出现的结果都是随机事件,随机现象指的是一个现象在相同的条件下多次观察它,每次观察到的结果不一定相同.探究3先后掷两枚硬币试验的基本事件空间Ω是怎样的?设事件A=“至少有一次出现正面”,则A怎样表示,A与Ω的关系怎样?如何表示?【提示】Ω={(正,正),(正,反),(反,正),(反,反)},A={(正,正),(正,反),(反,正)},A是Ω的一个子集,可表示为A⊆Ω.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?【导学号:00732073】【精彩点拨】根据题意可用列举法按照顺序列举出所要求的基本事件.【尝试解答】(1)试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8;(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).随机事件的结果是相对于条件而言的.要弄清某一随机事件的所有结果,必须首先明确事件发生的条件,根据题意,按一定的次序列出问题的答案.在写基本事件空间时,要注意做到既不重复也不遗漏.[再练一题]3.1个盒子中装有5个完全相同的球,分别标有号码1,2,3,4,5,从中一次任取两球.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件总数;(3)写出“取出的两球上的数字之和是6”的这一事件中所包含的基本事件.【解】(1)Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)};(2)基本事件总数为10;(3)“取出的两球上的数字之和是6”这一事件所包含的基本事件为(1,5),(2,4).1. 下列现象:①当x是实数时,x-|x|=2;②某班一次数学测试,及格率低于75%;③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;④体育彩票某期的特等奖号码.其中是随机现象的是()A.①②③B.①③④C.②③④D.①②④【解析】由随机现象的定义知②③④正确.【答案】 C2.下列事件中,是不可能事件的是()A.三角形的内角和为180°B.三角形中大角对大边,小角对小边C.锐角三角形中两内角和小于90°D.三角形中任意两边之和大于第三边【解析】锐角三角形中两内角和大于90°.【答案】C3.下列事件中,是随机事件的有________.(填序号)①早晨,太阳从东方升起;②某电话交换台在单位时间内收到用户呼唤的次数;③检查流水线上一件产品,是合格产品还是不合格产品;④一个盒子中有十个完全相同的小球,搅匀后从中任意摸取一球.【答案】②③4.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.【导学号:00732074】【解析】从100个产品(其中2个次品)中取3个可能结果是:“三个全是正品”“两个正品一个次品”“一个正品二个次品”.【答案】⑥④①②③⑤5.做试验“从一个装有标号为1,2,3,4的小球的盒子中,不放回地取两次小球,每次取一个,构成有序数对(x,y),x为第一次取到的小球上的数字,y为第二次取到的小球上的数字”.(1)求这个试验结果的个数;(2)写出“第一次取出的小球上的数字是2”这一事件.【解】(1)当x=1时,y=2,3,4;当x=2时,y=1,3,4;同理当x=3,4时,也各有3个不同的有序数对,所以共有12个不同的有序数对.故这个试验结果的个数为12.(2)记“第一次取出的小球上的数字是2”为事件A,则A={(2,1),(2,3),(2,4)}.。
高中数学 事件与基本事件空间课件 北师大版必修3
我的作业
必做:课本94页练习 B:1; 选做:下面思考题
21
我会思考
袋中有标号为1,2,3,4的四个大 小相同小球,写出下列试验的基本 事件空间:
(1)从袋中一次性任取两球; (2)从袋中不放回地先后各取一球 (3)从袋中有放回地先后各取一球.
22
23
…来表示,随机事件可以简称为事件。
7
练习:在10个同类产品中,有8 个正品,2个次品,从中任意抽 取3个检验, (1)抽到的次品数是多少?能 否抽到3个次品? (2)李华说一定会抽到正品, 你认为这种说法对吗?
8
问题2:观察下列试验,每一个试 验可能出现的结果有哪些?
试验1:掷一颗骰子,观察掷出的点 数?
5
问题1:小明、小麦、小米三人每次 都能摸到红球吗?
6
我会区分 1
1、不可能事件:当我们在同样的条件下 重复进行试验时,有的结果始终不会发
生,它称为不可能事件;
2、必然事件:有的结果在每次试验中 一定会发生,它称为必然事件;
3、随机事件:在试验中可能发生,也 可能不发生的结果称为随机事件。
随机事件通常用大写英文字母A、B、C、
1
问题 情境
观察下列现象:
(1)在标准大气压下水加热到
100OC,沸腾;
必然发生
(2)导体通电,发热;
(3)买一张福利彩票,中奖; 可能发生也可能 (4)掷一枚硬币,正面向上. 不发生
这些现象各有什么特点?
2
自然界的现象可以分为如下两 种:
1. 必然现象:在一定条件下必然发生某 种结果的现象。
2. 随机现象:当在相同的条件下多次观 察同一现象,每次观察到的结果不一 定相同,事先很难预料哪一种结果会 出现,这种现象称为随机现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:基本事件空间为Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}。基本事件总数为8,事件A=“至少出现一次正面”包含7个基本事件,所以 。
解析:当事件A包含的基本事件较复杂时,可考虑其对立事件.
解析:
题干评注:基本事件和基本事件空间
问题评注:
10.
答案:
解析:
题干评注:基本事件和基本事件空间
问题评注:
(2)因为恰有两名男生时“至少有一名男生”与“全是男生”同时发生,所以它们不是互斥事件。
(3)因为“至少有一名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们对立。
(4)由于选出的是一名男生一名女生时“至少有一名男生”与“至少有一名女生”同时发生,所以它们不是互斥事件。
(4)当直接求某一事件的概率较为复杂或根本无法求时,可先转化为求其对立事件的概率。
题干评注:基本事件和基本事件空间
问题评注:在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示.我们可以把随机事件理解为基本事件空间的子集。
2.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)不够7环的概率。
答案:(l)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击中,A与B不可能同时发生.故A与B是互斥事件。“射中10环或7环”的事件为AUB,故 ,所以射中10环或7环的概率为0.49。
题干评注:基本事件和基本事件空间
问题评注:在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示.我们可以把随机事件理解为基本事件空间的子集。
4.
答案:
解析:
题干评注:基本事件和基本事件空间
问题评评注:基本事件和基本事件空间
问题评注:
6.
答案:
解析:
题干评注:基本事件和基本事件空间
问题评注:
7.
答案:
解析:
题干评注:基本事件和基本事件空间
问题评注:
8.
答案:
解析:
题干评注:基本事件和基本事件空间
问题评注:
9.
答案:
解析:(1)互斥事件是对两个事件而言的。若有A、B两个事件,当事件A发生时,事件B就不发生;当事件B发生时,事件A就不发生(即事件A、B不可能同时发生),我们就把这种不可能同对发生的两个事件叫做互斥事件,否则就不是互斥事件。
(2)对互斥事件的理解,也可以从集合的角度去加以认识。如果A、B是两个互斥事件,反映在集合上,是表示A、B这两个事件所含结果组成的集合彼此互不相交。
1.某小组有3名男生和两名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰有一名男生与恰有2名男生;
(2)至少有1名男生与全是男生;
(3)至少有1名男生与全是女生;
(4)至少有1名男生与至少有l名女生。
答案:(1)因为“恰有l名男生”与“恰有两名男生”不可能同时发生,所以它们是互斥事件;当恰有两名女生时它们都不发生,所以它们不是对立事件。
所以P( )=0.21 + 0.23 + 0.25 + 0.28=0.97,从而P(E)=1-P( )=1-0.97=0.03
所以,射不够7环的概率为0.03。
解析:(l)必须分析清楚事件A、B互斥的原因,只有互斥事件才可考虑用概率的和公式。
(2)所求的事件,必须是几个互斥事件的和。
(3)满足上述两点才可用公式P(AUB)=P(A)+P(B)。
(2)不够7环从正面考虑有以下几种情况:射中6环、5环、4环、3环、2环、1环、0环,但由于这些概率都未知,故不能直接求解,可考虑从反面入手,不够7环的反面是大于等于7环,即7环、8环、9环、10环,由于此两事件必有一个发生,另一个不发生,故是对立事件,可用对立事件的方法处理.设“不够7环”为事件E,则事件 为“射中7环或8环或9环或10环”,由(1)可知“射中7环”、“射中8环”等是彼此互斥的事件。
题干评注:基本事件和基本事件空间
问题评注:在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母Ω表示.我们可以把随机事件理解为基本事件空间的子集。