上海七年级第二学期数学期末数学考试试卷 (1)

合集下载

上海七年级第二学期数学期末数学考试试卷(答案)

上海七年级第二学期数学期末数学考试试卷(答案)

第二学期初中七年级数学期末质量调研1参考答案与评分意见一、填空题(本大题共有14题,每题2分,满分28分)1.4±;2.34;3.0.79;4.>;5.20;6.235-;7.50 ;8.70 ;9.()5,3-;10.10>c >6;11.54 ;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ;13.130 ;14.60 或120 ;二、单项选择题(本大题共有4题,每题3分,满分共12分)15.B;16.D;17.B;18.A.三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式(25255⎡=-⎢⎣……………………………………………………1分2555⎡⎤=-⨯⎢⎥⎣⎦…………………………………………………1分25555=……………………………………………1分52=-…………………………………………………………………2分【说明】没有过程,直接得结论扣2分.20.解法一:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分4562⎛⎫= ⎪⎝⎭……………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分3102不扣分.解法二:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分42322=⨯…………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分;(2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分(2)()5,3-,等腰直角三角形;…………………………………………(1+1)分(3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠、B ∠、C ∠的度数分别为3x 、4x 、5x .……1分因为A ∠、B ∠、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠= (三角形的内角和等于180 ),……………1分即345180x x x ++=.…………………………………………………1分解得15x =.……………………………………………………………2分所以45A ∠= ,60B ∠= ,75C ∠= .………………………………1分24.解:(1)因为AB AC =(已知),所以△ABC 是等腰三角形.由AD BC ⊥(已知),得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分由110BAC ∠= (已知),得11110552∠=⨯= .……………………………………………………2分(2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解:两直线平行,内错角相等…………………………………………………1分EBA FCD ∠=∠…………………………………………………………1分等角的补角相等……………………………………………………………1分AB CD =.………………………………………………………………1分在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等), (1)分所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠= (等边三角形的每个内角等于60 ).因为FDE B ∠=∠(已知),所以60FDE ∠= (等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60 的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1P AB 的面积为a;()22,0P a -,△2P AB 的面积为a ;()32,0P ,△3P AB 的面积为4;()40,0P ,△4P AB 的面积为2.(每个结论各1分)。

沪科版七年级下册数学期末考试试卷含答案

沪科版七年级下册数学期末考试试卷含答案

沪科版七年级下册数学期末考试试卷含答案本文是根据题目《沪科版七年级下册数学期末考试试卷含答案》要求,按照试卷的格式来书写。

以下是试卷内容:第一部分:选择题(共40分)一、单项选择题(每小题2分,共20分)1. 在数轴上,点B在点A的左边5个单位,点C在点B的右边3个单位,点A在点C的 _____。

A. 右边B. 左边C. 上边D.下边2. 如果a : a = 5︰4,且a :a = 2︰3,那么(a + a)︰(a + a)= _____。

A. 10︰7B. 14︰20C. 7︰10D. 20︰143. 分数 18/11 的小数形式是 _____。

A. 1.9B. 1.18C. 1.63D. 1.724. 若 $5x + 3 = 8x - 9$,则 $x$ 的值是 _____。

A. 12B. 4C. -12D. -45. 若 $\frac{x}{3} - \frac{5}{2} = \frac{7}{6} - \frac{2}{3}$,则$x$ 的值是 _____。

A. 2B. 3C. 4D. 56. 已知 $\triangle ABC$ 是直角三角形,且边长满足 $AB:BC:AC = 3:4:5$,则 $\sin B = ______$。

A. $\frac{3}{5}$B. $\frac{3}{4}$C. $\frac{4}{5}$D.$\frac{4}{3}$7. 当横向缩小图形 $x$ 倍时,纵向缩小图形 $y$ 倍,图形的面积被缩小了 _____ 倍。

A. $xy$B. $xy^2$C. $x^2y$D. $\frac{1}{xy}$8. 下列图中,不是四边形的是 _____。

A. 正方形B. 长方形C. 梯形D. 圆形9. 把一个四位数的末尾两位数去掉,所得的差是9705。

这个四位数是 _____。

A. 10234B. 10345C. 98345D. 9834510. $\frac{3}{5}$ 和 $\frac{1}{2}$ 的和的化简分数形式是 _____。

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

(完整版)沪科版七年级(下)期末数学试卷含答案.doc

七年级期末数学试卷题号一二三总分得分姓名一选择题 (每小题 3 分)1. 已知,如右图 AB∥CD,可以得到A()A. ∠1=∠ 2B. ∠2=∠ 3 2 D14C. ∠1=∠ 4D.∠3=∠ 4B3C2.223, 16, 这五个数中,无理数的个数是()在 3.14, ,7A. 1 个B. 2 个C. 3 个D. 4 个3. 已知 a b 则下列各式正确的是()A. a bB. a 3 b 3C. a 2 b2D. 3a 3b班 4. 下列计算中,正确的个数是()级① x3 x4 x7 ② y 2 y 3 y ③ a2 3 a5 ④ (ab) 2 a2 b2A. 1 个B.2 个C.3 个D. 4 个5. 2 3与 23 的关系是()A. 互为倒数B. 绝对值相等C. 互为相反数D. 和为零考6. 下列各式中,正确的是()号 2 2 2 2A. a b a bB. a b 1C. a b 1D. a b a ba b a b a b a b7. 下列多项式能用完全平方公式分解因式的有()A.x2 2x y2 B. 4x2 9 C. x2 y2 D. a2 2ab b28.如图,下列不能判定 a ∥ b 条件是()1 2aA. ∠1=∠3B.∠ 2+∠3=180°C. ∠ 2=∠ 3D.∠2=∠ 4 4 b39.为了考察某班学生的身高情况,从中抽出 20 名学生进行身高测量,下列说法中正确的是()1A. 这个班级的学生是总体B. 抽取的 20 名学生是样本C. 抽取的每一名学生是个体D.样本容量是 2010. 下列图形中,是由①仅通过平移得到的是 ( )①A. B. C. D.二 填空题(每题 3 分,共 27 分)11.16 的平方根是.12. 一种病毒的直径是 0.00 12m , 用科学计数法表示为 m.13. 比较大小: 12 0 .14. 关于 x 的某个不等式组的解集在数轴上表示为: (如下图)则原不等式组的解集是.-2-1 01234x 1 0.15. 不等式组2 的整数解是x 316. 若∠ 1 和∠ 2 是对顶角,∠ 1=25°, 则∠ 2 是 ° .17. 分解因式: 4m 3 m =.18. 如右下图,直线 a 、b 被直线 c 所截,且 a ∥ b ,若∠ 2=38°,则∠ 1的度数是°.c1xa19. 当 x时,分式有意义 .24x 2b三 解答题( 43 分)20. 计算2x 1 (6 分)x 12x 2221.先化解,再求值( 8 分)( 1 x 3 ) 1 ,其中 x 1x 1 x2 1 x 122.已知,AB//CD, B 360 , D 240 , 求BED.(8分)23. 推理填空:(8分)如图, EF∥AD,∠ 1=∠ 2, ∠BAC=70° . 将求∠ AGD的过程填写完整 .因为 EF∥ AD,C 所以∠ 2=____(____________________________)又因为∠ 1=∠ 2D 1所以∠ 1=∠ 3(______________) G 所以 AB∥ _____(_____________________________) F所以∠ BAC+______=180° 2 3 (___________________________) B E A 因为∠ BAC=70°所以∠ AGD=_______。

上海七年级第二学期期末复习数学试卷

上海七年级第二学期期末复习数学试卷

上海市第二学期期末复习七年级数学试卷一、填空题〔本大题共18题,每题2分,总分值36分〕 1、2(8)-=. 2、计算:1355⨯÷=. 3、点A 〔2-,4〕,那么点A 关于y 轴对称的点的坐标为.4、在△中,1123A B C ∠=∠=∠,那么△是三角形. 5、点P 〔x ,1y +〕在第二象限,那么点Q 〔2x -+,23y +〕在第象限.6、,在Rt △中,90A ∠=︒,AB AC =,10BC =,那么△的面积为.7、如图,在Rt 中,90ACB ∠=︒,2BC =,⊥,在上取一点E ,使EC BC =,过点E 作⊥交的延长线于点F ,假设5EF =,那么AE =.〔第7题〕 〔第8题〕〔第9题〕8、如图,在等腰直角△中,AC BC =,点D 在上,如果AD AC =,⊥及相交于点E ,那么.〔填“>〞、“=〞或“<〞〕9、如图,在△中,AB AC =,点D 在上,且BD BC AD ==,那么A∠等于.10、一个三角形的三个内角的度数比是2:3:4,这个三角形是三角形.〔按角分类〕11、如下图,△中,90=,30∠=︒,AD AEBAD∠=︒,AB ACBAC=,那么EDC∠的度数为.12、如图是一个围棋棋盘〔局部〕,把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是〔2-,1-〕白棋③的坐标是〔1-,3-〕,那么黑棋②的坐标是.〔第11题〕〔第12题〕〔第13题〕13、如图,是ABCAB=,∠的平分线,⊥于E,△的面积是60,18 BC=,那么DE=.1214、△,ACB=,∠的平分线交于点D,∥交于点E.如果2EC AEAC=,那么DE=.515、等腰三角形有一个内角是80︒,那么这个等腰三角形的顶角是.16、如图,在△中,⊥,⊥,垂足分别为D、E,、交于点H,请你添加一个适当的条件:,使△≌△.〔第16题〕〔第18题〕17、直角三角形两锐角的平分线相交所成的角的度数是.18、如图,在△中,30A∠=︒,E是边上的一点,现将△沿翻折,翻折后的△的边交于点D,又将△沿翻折,点C恰好落在上,此时82CDB∠=︒,那么原△的B∠=.二、选择题〔本大题共5题,每题3分,总分值15分〕19、19的算术平方根是〔〕A.13; B.13-; C.181; D.181±.20、如图,在△中,90E∠=︒,∥,30ABE∠=︒,那么EDC∠的度数是〔〕A.30︒; B.50︒; C.60︒; D.70︒.21、如图,MB ND=,MBA NDC∠=∠,以下哪个条件不能判定△≌△〔〕A.M N∠=∠; B.AB CD=;C.∥; D.AM CN=.22、以下关于等腰三角形的性质表达错误的选项是〔〕A .等腰三角形两底角相等;B .等腰三角形底边上的高、底边上的中线、顶角的平分线重合;C .等腰三角形是中心对称图形;D .等腰三角形是轴对称图形.23、点P 〔5m -,1m -〕在直角坐标系的轴上,那么点P 的坐标为〔 〕A .〔0,4-〕;B .〔4-,0〕;C .〔0,4〕;D .〔8,0〕.三、简答题〔第24-26题每题5分,第27题8分,总分值23分〕24、计算:1-; 25、计算:(3-26、如图,在△中,80B ∠=︒,∠27、,如图,⊥,AGF ABC∠=︒,试判断及的∠=∠,120∠=︒,2160位置关系,并说明理由.四、解答题〔第28-29题每题8分,第30题每题10分〕28、如图,点A、B、C、D在同一直线上,如果CE BF=,=,AB CD 且⊥,⊥,垂足为B、C.问∥吗?为什么?29、如图,点C是线段上一点,DCE A B=,判断∠=∠=∠,CD CE线段、、之间的数量关系,并说明理由.30、如图,在平面直角坐标系中,点A的坐标为〔4-,0〕,点B 的坐标为〔0,n〕,以点B为直角顶点,点C在第二象限内,作等腰直角△.〔1〕求点C的坐标;〔用字母n表示〕〔提示:过点C作y轴的垂线〕〔2〕如果△的面积为,求n的值;〔3〕在〔2〕的条件下,坐标平面内是否存在一点M,使以点M、A、B为顶点组成的三角形及△全等?如果存在画出符合要求的图形,并直接写出点M的坐标.。

沪教版七年级第二学期数学期末试题精选全文完整版

沪教版七年级第二学期数学期末试题精选全文完整版

可编辑修改精选全文完整版七年级 其次学期 期末检测一、 填空题1. 计算:=⋅a a 2 .2. 计算:=-23 .3. 计算:()=-÷xy y x 15332 .4. 分解因式: =-222x .5. 假如二次三项式1522-+kx x 〔k 是整数〕能在整数范围内因式分解,请写出k 可能的取值是 _〔只要写出一个即可〕. 6. 要使分式115-+x x 有意义,那么x 的取值范围是 . 7.xy 34和221xy 的最简公分母是 . 8. 一个最简分式减去a 1的差是abb a -,那么这个最简分式是: . 9. 计算:()=-⋅-y y x y x xy 242. 10. l 、确定∠a 的对顶角是58°,那么∠a=______。

11. 2、在同一平面内,假设直线a∥c,b∥c,那么a_____b 。

12. 3、经过一点________一条直线垂直于确定直线。

13. 4、平移不变更图形的_______ 和______ ,只变更图形的_______。

14. 5、把命题“等角的补角相等”改写成“假如…,那么…”的形式是: 15. ______________________________________二、选择题〔每题只有一个选项正确〕16. 用分组分解法分解多项式1222-+-y y x 时,以下分组方法正确的选项是……………〔 〕〔A 〕()()y y x 2122---; 〔B 〕()()1222-+-y y x ; 〔C 〕()1222+--y y x ; 〔D 〕()()1222+-+y y x .17. 假设将分式yx y x +-22中的x 和y 都扩大到原来的2倍,那么分式的值…………………〔 〕〔A 〕扩大到原来的2倍;〔B 〕扩大到原来的4倍;〔C 〕缩小到原来的12;〔D 〕不变. .三、计算题18. 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-22212221x y y x19. 分解因式:()()1272+---b a b a .20. 约分:22222n m n m mn ---.21. 计算:xx x x -÷⎪⎭⎫ ⎝⎛++-121111.22. 先化简,再求值:44212122---++-a aa a a ,其中3-=a .23、(6分)如图(1),在以下括号中填写推理理由 ∵∠l=135°(确定)∴∠3=∠135°( ) 又∵∠2=45°(确定) ∴∠2+∠3=45°+135°=180°∴a∥b( )。

上海市七年级第二学期期末考试数学练习试卷1

上海市七年级第二学期期末考试数学练习试卷1

七年级第二学期期末考试数学练习试卷(1)班级 姓名 学号 成绩一、选择题:(本大题共4题,每题2分,满分8分)1.下列各组长度的线段中,不能够组成三角形的是……………………………………( ) (A )1cm,2cm,3cm ; (B )3cm,4cm,5cm ; (C )5cm,6cm,7cm ; (D )7cm,8cm,9cm . 2.在直角坐标平面中,如果点A 在第四象限内,且到x 轴的距离为3,到y 轴的距离为4,那么点A 的坐标是…………………………………………………………………………( ) (A )(3,-4);(B )(-3,4);(C )(4,-3);(D )(-4,3).3.下列语句错误的是………………………………………………………………………( ) (A )实数可分为有理数和无理数; (B )无理数可分为正无理数和负无理数; (C )无理数都是无限小数;(D )无限小数都是无理数.4.已知a 、b 、c 是同一平面内不重合的三条直线,那么下列语句中正确的个数有…( ) ①如果a ∥b ,b ∥c ,那么a ∥c ;②如果a ⊥b ,b ⊥c ,那么a ⊥c ; ③如果a ∥b ,b ⊥c ,那么a ⊥c ;④如果a ∥b ,b ⊥c ,那么a ∥c .(A )1个;(B )2个;(C )3个;(D )4个.二、填空题:(本大题共16题,每题2分,满分32分) 5.25的平方根为 . 6.计算:3164-= .7.在数轴上表示6-的点到原点的距离等于 .8.地球与太阳的最近距离约为147 100 000千米,如果这个数要求保留三个有效数字,那么应该是 千米.9.过线段AB 上一点P 作射线PC ,如果∠APC 比∠BPC 大50°,那么∠APC 的度数是 度. 10.如图,已知AB ∥CD ,点P 在直线CD 上,∠APB =100°,∠A =(2x +12)°,∠BPD =(4x +8)°,那么x = .11.已知在△ABC 中,∠A =∠B =30°,D 是边AB 的中点,那么∠ACD = 度. 12.已知:如图,∠ACB =∠DBC ,如果要说明△AOB ≌△DOC ,那么还需要添加一个条件,这个条件可以是 .A B CDP(第10题图)(第13题图)ABCD O(第12题图)13.如图,已知船C 在观测站A 的北偏东35°方向上,且在观测站B 的北偏西20°方向上,那么∠ACB = 度.14.点M (5,-7)关于原点的对称点坐标为 .15.如果点P (x -3,y )在第一象限,那么点Q (2-x ,y +2)在第 象限. 16.已知△ABC 的三个顶点坐标分别为A (5,0)、B (0,4)、C (3,4),那么这个三角形的面积等于 .17.已知在平面直角坐标系xOy 中,点A 的坐标为(1,3),那么将点A 绕原点O 逆时针旋转90°后的坐标是 .18.如图,已知∠A =30°,∠B =40°,∠C =50º,那么∠AOB = 度.19.如图,在△ABC 中,AB =BC ,BO 、CO 分别平分∠ABC 和∠ACB ,过点O 作DE ∥BC ,分别交边AB 、AC 于点D 和点E ,如果△ABC 的周长等于14,△ADE 的周长等于9,那么AC = .20.如图,在△ABC 中,D 、E 分别是边AB 和AC 上的点,将这个△ABC 纸片沿DE 折叠,点A 落到点F 的位置.如果DF ∥BC ,∠B =60°,∠CEF =20°,那么∠A = 度. 三、简答题:(本大题满分34分) 21.计算:(每题各6分,满分12分)(1)231362)()(-++;(2)314323497⎪⎪⎭⎫ ⎝⎛⨯-.22.(本题满分6分)已知:如图,直线AB 与直线DE 相交于点C ,CF ⊥DE ,∠ACD =25°,求∠BCE 和∠BCF 的度数.ABCDE O(第19题图)ACBO(第18题图)ABCDEF (第20题图)ABDACEF(第22题图)(第24题图)AB CED(第25题图)23.(本题满分8分)已知在等腰△ABC 中,AB =AC ,对称轴为x 轴,点A 的坐标为(-3,0),点B 的坐标为(1,3).(1)请画出△ABC ;(2)如果△ABC 关于y 轴对称的三角形为△A 1B 1C 1,请写出△A 1B 1C 1三个顶点的坐标:点A 的对称点A 1的坐标是 ,点B 的对称点B 1的坐标是 ,点C 的对称点C 1的坐标是 ;(3)如果点D 的坐标为(5,-3),将△ABC 左右平移,使点C 与点D 重合,那么点A 平移的方向是 ,距离是 个单位.24.(本题满分8分)已知:如图,AD =BD ,CD =ED ,∠1=∠2,试说明∠3=∠1的理由. 解:因为∠1=∠2(已知),所以∠1+∠BDE =∠2+∠BDE (等式性质), 即∠ =∠ . 在△ADE 和△BDC 中,⎪⎩⎪⎨⎧=∠=∠=,(已知),(已知)CD ED BD AD , 所以△ADE ≌△BDC ( ).所以∠ =∠ ( ). 又因为∠BED =∠2+∠C ( ), 即∠3+∠AED =∠2+∠C ,所以∠3=∠2( ). 因为∠1=∠2(已知),所以∠3=∠1( ). 四、解答题(本大题满分26分)25.(本题满分8分)如图,已知在等边三角形ABC 中,AD ⊥BC ,AD =AC ,联结CD 并延长,交AB 的延长线于点E ,求∠E 的度数.26.(本题满分8分)如图,已知在△ABC 中,AB =AC ,∠MAC 和∠ABC 的平分线AD 、BD 相交于点D ,试说明△ABD 是等腰三角形的理由.27.(本题满分10分)已知:AB 是圆O 的直径,取一把直角三角尺,按下图位置摆放,其中直角顶点放在圆心O 上,两条直角边与圆O 相交于点M 和点N ,作ME ⊥AB ,垂足为点E ,NF ⊥AB ,垂足为点F ,(1)试说明EF =ME +NF 的理由;(2)如果将这把直角三角尺绕圆心O 旋转(点M 、N 与点A 、B 都不重合),那么EF 与ME 、NF 之间的数量关系是否会发生变化?如果发生变化,请写出它们的数量关系;如果不发生变化,请说明理由.ABCDM(第26题图)B(备用图)(第27题图)。

上海市(沪教版)七年级数学下学期期末测试卷

上海市(沪教版)七年级数学下学期期末测试卷

上海市七下期末数学测试卷一、单项选择题(本大题共有6题,每题2分,满分12分)1.下列计算中正确的是()=1 D.√125÷√5=5A.√+√=3B.4√5−2√5=2C.√5+√52.关于√2,下列说法中不正确的是()A.√2是无理数:B.√2的平方是2C.2的平方根是√D.面积为2的正为形的边长可表示为√3.如图1,在下列条件中,能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠ABC=∠ADCD.∠ABC+∠BCD=180°4.如图2 ,已知∠1=∠2,AC=AD,从○1AB=AE,○2BC=ED,○3∠B=∠E,○4∠C=∠D这四个条件中再选一个,能使△ABC≌△AED,这样的条件有()A.1个B.2个C.3个D.4个图1 图2 图35.在平面直角出标系中,如果A(a,b)在第二象,那么点B(-b,-a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.如图3.已如△ABC中、BD,CE分别是AC,AB上的高,BD与CE交于点O,如果使∠BAC=n°,那么用含n 的代数式表示∠BOC的度数是()A..45°+n°B.90°-n°C.90°+n°D.180°-n°二、填空题(本大题共有12题,每题3分,满分36分)7、-8的立方根=__________8、比较大小:−3√2__________−2√5(填“>“,“小于”或”=”)4=________________9、用幂的形式表示:√7310.近似数0.0730的有效数字有__________个11、如图4,在△ABC中,AD⊥BC,垂足为点D,那么点B到直线AD的距离是线段__________的长度12.如图5,直线l1∥l2,把三角板的直角顶点放在l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=____________度图4 图5 图613、如图6,用两根钢条AB 、CD 、在中点O 处以小转轴连在一起做成工具(卡钳)。

2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市长宁区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市长宁区七年级(下)期末数学试卷一、选择题(本大题共6小题,每题2分,满分12分)1.(2分)下列各数中,是无理数的是()A.B.C.D.2.(2分)下列运算正确的是()A.B.C.D.3.(2分)下列图中,∠1、∠2是对顶角的是()A.B.C.D.4.(2分)已知a为实数,那么在平面直角坐标系中,下列各点中一定位于第四象限的点是()A.(4,﹣a2)B.(a+1,﹣4)C.(a2+1,﹣4)D.(a2,﹣4)5.(2分)已知等腰三角形的周长为16,其底边长为a,那么a的取值范围是()A.a>0B.0<a<8C.0<a<16D.a<166.(2分)如图,直线a⊥b,在平面直角坐标系中,x轴∥a,y轴∥b,已知点A(﹣1,4)、点B(2,﹣1),那么坐标原点是点()A.O1B.O2C.O3D.O4二、填空题(本大题共12小题,每空3分,满分36分)7.(3分)49的平方根是.8.(3分)比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).9.(3分)计算:=.10.(3分)近似数﹣0.040有个有效数字.11.(3分)把表示成幂的形式是.12.(3分)在△ABC中,已知∠A:∠B:∠C=1:2:1,那么△ABC是三角形.13.(3分)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=34°,则∠A的度数是.14.(3分)在梯形ABCD中,AD∥BC,联结AC、BD,已知梯形ABCD的面积为16,△BDC的面积为12,那么△ADC的面积.15.(3分)一个三角形的三边长为x,5,7,另一个与它全等的三角形的三边长为3,y,5,那么以x、y 为腰长和底边长的等腰三角形的周长等于.16.(3分)平面直角坐标系中有点P、Q(2,﹣3)、M(﹣1,2).如果PQ∥x轴,PM∥y轴,那么点P 关于原点O对称的点的坐标是.17.(3分)如图,E、B、C三点在一条直线上,AD∥BC,AD=BC,点F是AE的中点,如果BD=EC,那么∠BFD=度.18.(3分)如图,在长方形ABCD中,AB=12厘米,AD=16厘米,点E为AD中点,已知点P在线段AB上以2厘米/秒的速度由点A向点B运动,同时点Q在线段BC上由点C向点B运动,如果△AEP 与△BPQ恰好全等,那么点Q的运动速度是厘米/秒.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.(6分)计算:.20.(6分)利用幂的运算性质计算:.21.(7分)如图,已知AB∥CD,BE∥DF,∠B=30°,试求∠CDH的度数.22.(7分)如图,已知AC∥DE,AC=DE,BD=FC,说明△ABC≌△EFD.请填写说理过程或理由.解:因为AC∥DE(已知),所以∠ACB=∠EDF().因为BD=FC(已知),所以﹣BD=﹣FC(),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD().四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.(6分)如图,直角坐标平面上有边长为1的正方形网格,已知点A的坐标为(3,4),点B的坐标为(4,1),点C的坐标为(﹣2,4).(1)平移线段AB得到线段CD,此时点A与点C重合,点B与点D重合,直接写出点D的坐标是;(2)顺次连接点A、B、D、C,那么四边形ABDC的面积是;(3)再次平移线段CD,使得其两个端点都落在坐标轴上,此时点C与点P重合,那么点P与坐标原点O的距离=.24.(10分)如图,△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,点D在AB上,点M(1)联结DM,延长DM与AC相交于点F,请根据要求画出图形,并说明AE=CF.(2)再联结BF,已知BF=12,求CM的长.25.(10分)在锐角三角形ABC中,点D、E分别在边AB、AC上,联结DE,将△ADE沿DE翻折后,点A落在BC边上的点P,当△BDP和△CEP都为等腰三角形时,我们把线段DE称为△ABC的完美翻折线,P为完美点.(1)如图1,在等边三角形ABC中,边BC的中点P是它的完美点,已知其完美翻折线DE的长为4,那么等边三角形ABC的周长=.(2)如图2,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠C恰为等腰三角形的顶角时,求此时∠A的度数.(3)如图3,已知DE为△ABC的完美翻折线,P为完美点,当∠B、∠EPC恰为等腰三角形的顶角时,请判断点P到边AB、AC的距离是否相等?并说明你的判断理由.2023-2024学年上海市长宁区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题2分,满分12分)1.【分析】无理数即无限不循环小数,据此即可求得答案.【解答】解:是无限不循环小数,它是无理数;=4,﹣=﹣3是整数,是分数,它们不是无理数;故选:A.【点评】本题考查无理数的识别,熟练掌握其定义是解题的关键.2.【分析】根据算术平方根的定义依次计算即可求解.【解答】解:A、无意义,故错误,不符合题意;B、﹣=﹣5,故错误,不符合题意;C、=9,故错误,不符合题意;D、=3,故正确,符合题意.故选:D.【点评】本题考查了算术平方根,解题的关键是熟练运用算术平方根的定义,本题属于基础题型.3.【分析】根据对顶角的定义逐项判断即可.【解答】解:由一个公共端点,并且一个角的两边分别与另一个角的两边互为反向延长线,具有这种位置关系的两个角即为对顶角,则A,B,C中的图形不符合此定义;D中的图形符合此定义;故选:D.【点评】本题考查对顶角的识别,熟练掌握其定义是解题的关键.4.【分析】A.先判断a2的大小,从而判断﹣a2的大小,最后根据点的坐标判断其所在位置即可;B.先根据a的大小,从而判断a+1的大小,最后根据点的坐标判断其所在位置即可;C.先判断a2的大小,从而判断a2+1大小,后根据点的坐标判断其所在位置即可;D.先判断a2的大小,然后根据点的坐标判断其所在位置即可.【解答】解:A.∵a2≥0,∴﹣a2≤0,∴(4,﹣a2)在第四象限或x轴的正半轴上,故此选项不符合题意;B.∵a为实数,∴a+1>0或a+1≤0,∴(a+1,﹣4)可能在第四象限,也可能在第三象限,也可能在y轴的负半轴上,故此选项不符合题意;C.∵a2≥0,∴a2+1>0,∴(a2+1,﹣4)一定在第四象限.故此选项符合题意;D.a2≥0,∴(a2,﹣4)在第四象限或y轴的负半轴上,故此选项不符合题意,故选:C.【点评】本题主要考查了点的坐标,解题关键是熟练掌握各个象限和坐标轴上点的坐标特征.5.【分析】根据已知易得:腰长为,然后根据三角形的三边关系可得,从而进行计算即可解答.【解答】解:∵等腰三角形的周长为16,其底边长为a,∴腰长为,由题意得:,解得:0<a<8,故选:B.【点评】本题考查了等腰三角形的性质,解一元一次不等式组,三角形的三边关系,准确熟练地进行计算是解题的关键.6.【分析】根据题意和点A和点B的坐标,可以画出相应的坐标系,然后即可得哪个点为原点.【解答】解:由题意可得,平面直角坐标系如图所示,故坐标原点是点O2,故选:B.【点评】本题考查坐标与图形的性质,解答本题的关键是明确题意,画出相应的平面直角坐标系.二、填空题(本大题共12小题,每空3分,满分36分)7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.9.【分析】根据分数指数幂的定义和运算性质计算即可.【解答】解:原式====8,故答案为:8.【点评】本题考查的是分数指数幂,熟练掌握分数指数幂的定义和运算性质是解题的关键.10.【分析】根据有效数字的定义即一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字,即可得出答案.【解答】解:近似数﹣0.040有4,0两个有效数字.故答案为:2.【点评】此题考查近似数和有效数字,注意有效数字即从左边不是0的数字起所有的数字.中间的0和末尾的0都是有效数字.11.【分析】根据分数指数幂的定义即可求出答案.【解答】解:=.故答案为:.【点评】本题考查分数指数幂的公式,=.12.【分析】根据三角形内角和、三个内角比计算出每个内角度数即可判断.【解答】解:设∠A=x,则∠B=2x,∠C=x,∵∠A+∠B+∠C=180°,∴x+2x+x=180°,∴x=45°,∴∠A=45°,∠B=90°,∠C=45°,所以△ABC是等腰直角三角形.故答案为:等腰直角.【点评】本题考查了三角形内角和定理,运用方程思想是解本题的关键.13.【分析】先根据垂直的定义得到∠AEF=90°,进而求出∠AEC=56°,再由两直线平行,内错角相等可得∠A=∠AEC=56°.【解答】解:∵AE⊥BF,∴∠AEF=90°,∵∠CEF=34°,∴∠AEC=∠AEF﹣∠CEF=56°,∵AB∥CD,∴∠A=∠AEC=56°,故答案为:56°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.14.【分析】根据题意求出△BDA的面积,再根据三角形的面积公式求出△ADC的面积.【解答】解:∵梯形ABCD的面积为16,△BDC的面积为12,∴△BDA的面积为:16﹣12=4,∵AD∥BC,∴△ADC的面积=△BDA的面积=4,故答案为:4.【点评】本题考查的是梯形的性质、三角形的面积计算,掌握三角形的面积公式是解题的关键.15.【分析】根据全等三角形的对应边相等可得x=3,y=7,根据三角形的三边关系求出等腰三角形的三边,即可求得答案.【解答】解:∵三角形的三边长为x,5,7的三角形,与另一个三边长为3,y,5的三角形全等,∴x=3,y=7,当以x为腰时,∴三角形的三边为3,3,7,∵3+3<7,∴不能够组成三角形,当以y为腰时,∴三角形的三边为7,7,3,∵3+7>7,∴能组成三角形,∴三角形的周长=3+7+7=17,故答案为:17.【点评】此题考查全等三角形的性质、等腰三角形的性质,三角形的三边关系,熟记性质准确找出对应边得到x、y的值是解题的关键.16.【分析】根据关于原点对称的点的坐标:横纵坐标互为相反数解答即可.【解答】解:由题意得:Q(2,﹣3)、M(﹣1,2),PQ∥x轴,PM∥y轴,∴P(﹣1,﹣3),∴点P关于原点O对称的点的坐标是(1,3).故答案为:(1,3).【点评】本题主要考查了关于原点对称的点的坐标特点,熟练掌握关于原点对称的点的坐标:横纵坐标互为相反数是解题关键.17.【分析】延长BF、DA交于点G,可证明△AFG≌△EFB,得AG=EB,GF=BF,而AD=BC,可推导出GD=EC,因为BD=EC,所以GD=BD,即可根据等腰三角形的“三线合一”证明DF⊥BG,则∠BFD=90°,于是得到问题的答案.【解答】解:延长BF、DA交于点G,∵AD∥BC,∴∠G=∠EBF,∵点F是AE的中点,∴AF=EF,在△AFG和△EFB中,,∴AG=EB,GF=BF,∵AD=BC,∴AG+AD=EB+BC,∴GD=EC,∵BD=EC,∴GD=BD,∴DF⊥BG,∴∠BFD=90°,故答案为:90.【点评】此题重点考查平行线的性质、线段的中点的定义、全等三角形的判定与性质、等腰三角形的“三线合一”等知识,正确地作出辅助线是解题的关键.18.【分析】根据△AEP与△BPQ全等,得到AE=PB,可计算出运动时间,再根据BQ=AP,即可计算出点Q的运动速度.【解答】解:设运动时间为t s,Q的运动速度x cm/s,由题意得AP=2t cm,QC=xt cm,∴BQ=(16﹣xt)cm,PB=(12﹣2t)cm,∵△AEP与△BPQ全等,∴BQ=AP,AE=PB或BP=AP,AE=BQ,当BQ=AP,AE=PB时,∵AE=8cm,∴12﹣2t=8cm,∴t=2,∴AP=2t=4cm,∴16﹣xt=4,∴x=6;当BP=AP,AE=BQ时,,解方程组得t=3,x=,故点Q的运动速度是6cm/s或cm/s.故答案为:6或.【点评】本题考查矩形的性质和全等三角形的性质,根据三角形全等对应的边相等建立等式是解本题的关键.三、简答题(本大题共4题,第19、20题每题6分,第21、22题每题7分,满分26分)19.【分析】根据立方根、平方根以及零次幂、负整数指数幂的意义计算.【解答】解:原式=+2﹣1+=3.【点评】本题考查了二次根式的混合运算及立方根、平方根以及零次幂、负整数指数幂的运算,正确理解平方根与立方根的意义是解题的关键.20.【分析】直接利用分数指数幂的性质分别化简得出答案.【解答】解:原式====22=4.【点评】本题考查分数指数幂、实数的运算,熟练掌握运算法则是解题的关键.21.【分析】先根据BE∥DF,∠B=30°得出∠FMA=∠B=30°,再由AB∥CD即可得出∠CDM的度数,再由平角的定义即可得出结论.【解答】解:∵BE∥DF,∠B=30°,∴∠FMA=∠B=30°,∵AB∥CD,∴∠CDM=∠FMA=30°,∴∠CDH=180°﹣∠CDM=180°﹣30°=150°.【点评】本题考查的是平行线的性质,熟知两直线平行,同位角相等是解题的关键.22.【分析】根据平行线的性质及线段的和差求出∠ACB=∠EDF,BC=FD,利用SAS证明△ABC≌△EFD 即可.【解答】解:因为AC∥DE(已知),所以∠ACB=∠EDF(两直线平行,内错角相等),因为BD=FC(已知),所以BF﹣BD=BF﹣FC(等式性质),即BC=FD.在△ABC与△EFD中,,所以△ABC≌△EFD(SAS).故答案为:两直线平行,内错角相等;BF;BF;等式性质;SAS.【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.四、解答题(本大题共3题,第23题6分,第24题10分,第25题10分,满分26分)23.【分析】(1)根据点A和点C的坐标得出平移的方向和距离,再结合点B的坐标即可解决问题.(2)画出示意图,结合所画图形即可解决问题.(3)根据题意,画出示意图,结合图形平移的性质即可解决问题.【解答】解:(1)因为点A坐标为(3,4),点C坐标为(﹣2,4),且平移后点A与点C重合,所以3﹣(﹣2)=5,4﹣4=0,又因为点B的坐标为(4,1),所以4﹣5=﹣1,1﹣0=1,则点D的坐标为(﹣1,1).故答案为:(﹣1,1).(2)如图所示,连接AD,则,同理可得,,∴.故答案为:15.(3)如图所示,当点C在x轴上,点D在y轴上时,点P的坐标为(﹣1,0),所以点P与坐标原点的距离为1.当点C在y轴上,点D在x轴上时,点P′的坐标为(0,3),所以点P′与坐标原点的距离为3.故答案为:1或3.【点评】本题主要考查了坐标与图形变化﹣平移及三角形的面积,熟知图形平移的性质及三角形的面积公式是解题的关键.24.【分析】(1)由△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,得AC=CB,AE=ED,则∠CAB=∠EDA=45°,所以AC∥DE,则∠FCM=∠DEM,而∠FMC=∠DME,CM=EM,即可证明△FCM≌△DEM,得CF=ED,则AE=CF;(2)由∠CAB=∠EAD=45°,得∠EAC=90°,则∠EAC=∠FCB,即可证明△EAC≌△FCB,得CE=BF=12,则CM=CE=6.【解答】解:(1)联结DM,延长DM与AC相交于点F,∵△ABC和△AED都是等腰直角三角形,∠ACB=∠AED=90°,∴AC=CB,AE=ED,∴∠CAB=∠CBA=45°,∠EDA=∠EAD=45°,∴∠CAB=∠EDA,∴AC∥DE,∴∠FCM=∠DEM,∵点M为CE的中点,∴CM=EM,在△FCM和△DEM中,,∴△FCM≌△DEM(AAS),∴CF=ED,∴AE=CF.(2)联结BF,∵∠CAB=∠EAD=45°,∴∠EAC=2×45°=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,,∴△EAC≌△FCB(SAS),∴CE=BF=12,∴CM=EM=CE=×12=6,∴CM的长为6.【点评】此题重点考查等腰直角三角形的判定与性质、平行线的判定与性质、线段的中点的定义、全等三角形的判定与性质等知识,证明△FCM≌△DEM是解题的关键.25.【分析】(1)根据翻折的性质可得△ADE≌△PDE,根据等边三角形的性质可得∠B=∠C=60°,则△BDP和△PEC是等边三角形,最后证明△ADE是等边三角形即可求解;(2)连接AP,设∠DAP=α,∠EAP=β,根据三角形的外角定理和等腰三角形的性质可得∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,最后根据∠BPD+∠DPE+∠CPE=180°即可求解;(3)连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,设∠DAP=α,∠EAP=β,根据∠BPD+∠DPE+∠CPE=180°可得α=β,则AP为∠BAC的平分线,PH=PN,即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC,∵P为△ABC的完美点,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,∵∠B=∠C=60°,∴△BDP和△PEC是等边三角形,∴BD=DP,PE=CE,又∵AD=DP,AE=PE,∴,,∴AD=AE,∴△ADE是等边三角形,∵DE=4,∴AD=AE=4,∴AB=AC=BC=8,∴等边三角形ABC的周长=8+8+8=24,故答案为:24;(2)连接AP,如图2,设∠DAP=α,∠EAP=β,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,∴AD=DP,AE=PE,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵△BDP和△PEC是等腰三角形,且∠B,∠C都为顶角,∴BD=BP,CP=CE,∴∠BPD=∠BDP=2α,∠CPE=∠PEC=2β,∵∠BPD+∠DPE+∠CPE=180°,∴3α+3β=180°,∴α+β=60°,即∠BAC=60°;(3)点P到边AB、AC的距离相等;理由如下:连接AP,过P作PH⊥AB于点H,PN⊥AC于点N,如图3,∵DE为△ABC的完美翻折线,∴△ADE≌△PDE,△BDP和△PEC是等腰三角形,设∠DAP=α,∠EAP=β,∴∠DPA=∠DAP=α,∠EPA=∠EAP=β,∴∠BDP=2α,∠PEC=2β,∵∠B,∠EPC为顶角,∴BD=BP,PE=PC,∴∠BPD=∠BDP=2α,∠PEC=∠PCE=2β,∴∠EPC=180°﹣4β,∵∠BPD+∠DPE+∠EPC=180°,∴2α+α+β+180°﹣4β=180°,∴α=β,AP为∠BAC的平分线,∴PH=PN,.【点评】本题主要考查了三角形的折叠问题,等腰三角形的性质,等边三角形的性质,角平分线的性质定理,解题的关键是掌握相关内容,根据三角形的内角和定理和外角定理构造等量关系求解。

七年级下册上海数学期末试卷测试卷(解析版)

七年级下册上海数学期末试卷测试卷(解析版)

七年级下册上海数学期末试卷测试卷(解析版)一、选择题1.下列图形中,有关角的说法正确的是( )A .∠1与∠2是同位角B .∠3与∠4是内错角C .∠3与∠5是对顶角D .∠4与∠5相等 2.下列现象中是平移的是( )A .翻开书中的每一页纸张B .飞碟的快速转动C .将一张纸沿它的中线折叠D .电梯的上下移动 3.在平面直角坐标系中,点(﹣3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .两直线平行,同位角互补C .在同一平面内,经过一点有且只有一条直线与已知直线垂直D .平行于同一直线的两条直线平行5.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 6.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38- 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 4的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( ) A .(-3,3) B .(-2,2) C .(3,-1) D .(2,4)二、填空题9.若x =x ,则x 的值为______.10.若点A(5,b)与点B(a+1,3)关于x 轴对称,则(a+b )2017=______11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.如图,在平面直角坐标系中:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A →B →C →D →A →……的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是________.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021; (2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=.19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD .解:∵EF //AD∴∠2= ( )又∵∠1=∠2( )∴∠1=∠3( )∴AB // ( )∴∠BAC + =180°( )∵∠BAC =70°∴∠AGD = .20.已知()0,1A ,()2,0B ,()4,3C .(1)在如图所示的直角坐标系中描上各点,画出三角形ABC;A B C,画出(2)将ABC向下平移2个单位长度,再向左平移2个单位长度得到三角形111平移后的图形并写出1A、1B、1C的坐标.21.阅读下面的文字,解答问题:2是一个无理数,而无理数是无限不循环小数,因此<<即2的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为124<<,所以2的整数部分为1,将2减去其整数部分后,得到的差就是小数部分,122于是2的小数部分为21-(1)求出6的整数部分和小数部分;(2)求出13+的整数部分和小数部分;a b的值.(3)如果25+的整数部分是a,小数部分是b,求出-二十二、解答题22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm,宽为2dm,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm和23dm,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸≈3 1.732)2 1.414二十三、解答题PQ MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.23.如图,直线//(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .25.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)【参考答案】一、选择题1.C解析:C【分析】根据同位角、内错角、对顶角的定义判断即可求解.【详解】A、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D、∠4与∠5不相等,原说法错误,故此选项不符合题意;故选:C.【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.2.D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(3,2)P -在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可.【详解】解:A 、对顶角相等,是真命题;B 、两直线平行,同位角相等,故原命题是假命题;C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D 、平行于同一直线的两条直线互相平行,是真命题,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 6.C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D2,2=--故选:C.【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒60OAB AOC∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A2021的坐标与A1的坐标相同,为(2,4).故选:D.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.【详解】解:∵点A(5,b)与点B(a+1,3)关于x轴对称,∴5=a+1,b=-3,∴a=4,∴(a+b解析:1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值.【详解】解:∵点A(5,b)与点B(a+1,3)关于x轴对称,∴5=a+1,b=-3,∴a=4,∴(a+b)2017=(4-3)2017=1.故答案为:1.本题考查了关于坐标轴对称的两点的坐标关系.关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数.11.【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.∠=︒⊥30B DE AB12.30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠BCF=∠ABC,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠BCF=∠ABC=70°,∠DCF=180°-∠CDE=40°,∴∠BCD=∠BCF-∠DCF=70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.101【分析】根据“”的定义进行运算即可求解.【详解】解:=== =101.故答案为:101.本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“⊗”的定义进行运算即可求解.【详解】解:(3)m m ⊗⊗=2(31)m ⊗+=10m ⊗=2101+ =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】 解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)-- 故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式= =3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.19.∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB //DG ,根据平行线的性质推出∠BAC +∠AGD =180°,代入求出即可求得∠AGD .【详解】解:∵EF //AD ,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB //DG ,(内错角相等,两直线平行)∴∠BAC +∠AGD =180°,(两直线平行,同旁内角互补)∵∠BAC =70°,∴∠AGD =110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG ,内错角相等,两直线平行,∠AGD ,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)见解析;(2)见解析,,,【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A1B1C1,进解析:(1)见解析;(2)见解析,()12,1A --,()10,2B -,()12,1C【分析】(1)依据A (0,1),B (2,0),C (4,3),即可画出△ABC ;(2)依据△ABC 向左平移2个单位后再向下平移2个单位,即可得到△A 1B 1C 1,进而得到点A 1,B 1,C 1的坐标.【详解】解:(1)如图,三角形ABC 即为所画,(2)如图, 111A B C ∆即为所画,1A 、1B 、1C 的坐标 :()12,1A --,()10,2B -,()12,1C【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a 、b ,解析:(1)262;(2)231;(3)65【分析】(16的整数部分和小数部分;(2313+13数部分;(3)根据题例,先确定a 、b ,再计算a-b 即可.【详解】解:(1)∵23<. ∴22;(2)∵ ,即 12<<, ∴1,∴12,∴1121=.(3)∵,即23<<, ∴2,24,即a =4,所以2242=,即2,∴)a b 426-=-= 【点睛】本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =.(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.二十三、解答题23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.25.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥ 90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析.【解析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P 作PH ∥DF∵DF ∥CE ,∴∠PCE =∠1=α, ∠PDF =∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2) (2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β。

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷及答案

沪科版数学七年级下册期末考试试卷评卷人得分一、单选题1.已知a b >,则下列不等式一定成立的是()A .23a b +>+B .22a b ->-C .22a b ->-D .22ab<2.如图所示:若m ∥n ,∠1=105°,则∠2=()A .55°B .60°C .65°D .75°3.下列从左到右的运算,哪一个是正确的分解因式()A .2(2)(3)56x x x x ++=++B .268(6)8x x x x ++=++C .2222()x xy y x y ++=+D .2224(2)x y x y +=+4.如果一个数的平方为64,则这个数的立方根是()A .2B .-2C .4D .±25.下列各式中,哪项可以使用平方差公式分解因式()A .22a b --B .2(2)9a -++C .22()p q --D .23a b -6.当2x =时,下列各项中哪个无意义()A .214x -B .1x x +C .2224x x ++D .24x x -+7.下列现象中不属于平移的是()A .飞机起飞时在跑道上滑行B .拧开水龙头的过程C .运输带运输货物的过程D .电梯上下运动8.下列各项是分式方程213933xx x x =--+-的解的是()A .6x =-B .3x =C .无解D .4x =-9.如图,已知两条直线被第三条直线所截,则下列说法正确的是()A .∠1与∠2是对顶角B .∠2与∠5是内错角C .∠3与∠6是同位角D .∠3与∠6是同旁内角10.在0.1、π、117数中,有理数的个数是()A .4B .5C .3D .2评卷人得分二、填空题11.因式分解481x -=_________________.12.如果a 的平方根是±16____________.13.不等式135x x +>-的解集是____________.14.当x _________时,分式236xx -无意义15.比较722-__________1216.0.0000000202-用科学记数法表示为___________.17.已知∠1与∠2是对顶角,且∠1=40 ,则∠2的补角为___________.18.满足不等式组2153142x x x +≤⎧⎨+<+⎩的正整数解有____________.19.如图,已知直线a 、b 被直线c 所截,且a ∥b ,∠1=60 ,则∠2=__________.20.有一组数据如下:10、12、11、12、10、14、10、11、11、10.则10的频数为____________频率为___________.评卷人得分三、解答题21.先化简,再求值。

上海七年级第二学期数学期末数学考试试卷.doc

上海七年级第二学期数学期末数学考试试卷.doc

上海七年级第二学期数学期末数学考试试卷 (1)一、填空题1.25 的平方根是________________. 2=________________. 3.计算:2)3(=_______________.4.比较大小: 3________10(填“>”,“=”,“<” ).5=______________.6.计算:5253-=______________.7.三峡三期围堰于今年6月6日成功爆破.围堰的混凝土总量约186000立方米.保留两个有效数字,近似数186000用科学记数法可表示为______________. 8.点(2P -在第___________象限.9.在△ABC 中,30B ∠=︒,50C ∠=︒,那么根据三角形按角分类,可知△ABC 是_________三角形(按角分类).10.如图,已知:AB // CD ,∠A =58°,那么∠BCD =________度. 11.已知等腰三角形的底角为65°,那么这个等腰三角形的顶角等于___________度.12.如图,在△ABC 中,∠BAC =80°,∠C = 45°,AD 是△ABC的角平分线,那么∠ADB =__________度.13.在直角坐标平面内,将点(3,2)A -向下平移4个单位后,所得的点的坐标是________________.13.在△ABC 中,AB = AC ,要使△ABC 是等边三角形需添加一个条件,这个条件可以是________________(只需写出一种情况).ABCD(第12题图)AC D BE (第10题图)14.在等腰三角形ABC 中,AB = 6cm ,BC = 10cm ,那么AC =_________cm . 二、选择题15.下列说法正确的是………………………………………………………………( )(A )41的平方根是12; (B )41的平方根是12-;(C )18的立方根是12; (D )18的立方根是12-.16.下列长度的三根木棒,不能构成三角形框架的是……………………………( )(A )5cm 、7cm 、10cm ; (B )5cm 、7cm 、13cm ; (C )7cm 、10cm 、13cm ; (D )5cm 、10cm 、13cm .17.下列语句中,错误的语句是………………………………………………………( )(A )有两个角及它们的夹边对应相等的两个三角形全等; (B )有两个角及其中一个角的对边对应相等的两个三角形全等; (C )有两条边及它们的夹角对应相等的两个三角形全等; (D )有两条边及其中一条边的对角对应相等的两个三角形全等.18.如图,在△ABC 中,已知AB = AC ,∠ABC 的平分线BE 交AC 于点E ,DE ∥BC ,点D 在AB 上,那么图中等腰三角形的个数是…………………………………( )(A )2; (B )3; (C )4; (D )5. 三、计算题AB(第18题图)EDC19.计算:2(+. 662284÷⨯(利用幂的性质进行计算)21.在△ABC 中,已知∠A ∶∠B ∶∠C = 2∶3∶5,求∠A 、∠B 、∠C 的度数.四、操作题22.画图(不要求写画法):(1)画△ABC ,使∠A=60°,AB=2cm ,AC=3cm ; (2)画出△ABC 边AC 上的高.23.已知△ABC 的顶点坐标是A (-1,5)、B (-5,5)、C (-6,2).(1)分别写出与点A 、B 、C 关于原点O 对称的点A ' 、B '、C '的坐标; A '____________, B '____________, C ' ____________;(2)在坐标平面内画出△C B A ''';(3)△C B A '''的面积的值等于____________.五、解答题 24.阅读并理解:如图,在△ABC 和△A B C '''中,已知AB A B ''=,A A '∠=∠,AC A C ''=,那么△ABC ≌△A B C '''.说理过程如下:把△ABC 放到△A B C '''上,使点A 与点A '重合, 由于AB=__________,因此点B 与点__________重合.又因为∠A=__________,所以射线AC 能落在射线__________上. 因为__________=____________,所以点________与___________重合. 这样△ABC 和△A B C '''重合,即△ABC ≌△A B C '''. 25.阅读并填空:如图:在△ABC 中,已知AB =AC ,AD BC ⊥,垂足为点D ,点E 在AD 上,点F 在AD 的延长线上,且CE // BF ,试说明DE =DF 的理由. 解:因为AB = AC ,AD BC ⊥(已知),所以BD = __________ ( ) . 因为CE // BF (已知),所以∠CED = ( ) . 在△CED 和△BFD 中,EDC BDF∠=∠⎧⎪⎨⎪⎩(对顶角相等), = , = , 所以△CED ≌△BFD ( ) .因此DE =DF ( ) .ABCA 'B 'C 'ABCD E F26.如图,在△ABC 中,已知AB = AC ,∠BAD =∠CAE ,点D 、E 在BC 上,试说明△ADE 是等腰三角形的理由.27.如图,在△ABC 中,已知AB = AC = 2,点A 的坐标是(1,0),点B 、C 在y 轴上.试判断在x 轴上是否存在点P ,使△PAB 、△PAC 和△PBC 都是等腰三角形.如果存在这样的点P 有几个?写出点P 的坐标;如果不存在,请说明理由.ABCD E。

2023-2024学年上海市嘉定区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市嘉定区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市嘉定区七年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,共18分)1.(3分)下列说法正确的是()A.2的平方根是4B.0的任何次方根都是0C.﹣3没有五次方根D.1的立方根是±12.(3分)如图,下列说法中错误的是()A.∠GBD和∠HCE是同位角B.∠ABD和∠ACH是同位角C.∠FBC和∠ACE是内错角D.∠GBC和∠BCE是同旁内角3.(3分)下列说法中,正确的是()A.两条直线被第三条直线所截,同位角相等B.联结直线外一点到直线上各点的所有线段中,垂线最短C.经过一点,有且只有一条直线与已知直线平行D.在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只可以作一条4.(3分)已知等腰三角形的周长为10,一边长为2,那么它的一条腰长是()A.2B.2或10C.4D.2或45.(3分)如图,在△ABC中,AB=AC,点D在边AC上,如果AD=BD=BC,那么∠A的大小是…()A.42°B.40°C.36°D.30°6.(3分)如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°二、填空题(本大题共12题,每题2分,共24分)7.(2分)的平方根是.8.(2分)计算:=.9.(2分)用科学记数法表示,并保留三个有效数字:﹣0.0002024≈.10.(2分)点A和点B是数轴上的两点,点A表示的数为,点B表示的数为,那么A、B两点间的距离为.11.(2分)如果点P(x﹣4,y+1)在第一象限,那么点Q(3﹣x,y+2)在第象限.12.(2分)在△ABC中,如果∠B=30°,∠C=55°,那么按角分类,△ABC是三角形.13.(2分)已知:如图,a∥b,三角尺的直角顶点在直线b上,∠1=49°,∠2的度数为.14.(2分)已知:如图,∠ACB=∠DBC,如果要说明△AOB≌△DOC,那么还需要添加一个条件,这个条件可以是.15.(2分)我们规定车辆在转弯时的转弯角是车辆原行驶路线与转弯后路线所成的角的外角.如图:一辆车在一段绕山公路行驶(沿箭头方向)时,在点B、C和D处的转弯角分别是α、β和θ,且AB∥DE,则α、β和θ之间的数量关系是.16.(2分)如图是由6个边长相等的正方形组合的图形,则∠1+∠2+∠3=.17.(2分)等腰三角形一腰上的中线把这个三角形的周长分别为15cm和18cm两部分,这个等腰三角形底边的长为.18.(2分)如图,在△ABC中,AB=AC,E是BC边上一点,将△ABE沿AE翻折,点B落到点D的位置,AD边与BC边交于点F,如果AE=AF=DE,那么∠BAC=度.三、简答题(本大题共5题,第19,21,23题每题5分;第20题8分,第22题6分,共29分)19.(5分)计算:.20.(8分)利用分数指数幂的运算性质进行计算:.21.(5分)如图,已知在△ABC中,AB=AC,点D、E在边BC上,且AD=AE.试说明BE=CD的理由.解:因为AC=AB(已知),所以∠B=∠C(),同理:=,在△ABE与△ACD中,,所以△ABE≌△ACD(),所以BE=CD().22.(6分)如图,在△ABE中,∠EAC=∠B,点C在BE上,AD平分∠BAC,交BC于点D,点F是线段AD的中点,联结EF,∠AEF与∠DEF相等吗?请说明理由.解:结论:.理由:因为AD平分∠BAC(已知),所以(角的平分线的意义).因为∠B=∠EAC,(已知),所以∠EAD=∠2+∠EAC.(等式性质)而∠EDA=+.(三角形一个外角等于与它不相邻的两个内角的和)所以∠EDA=∠EAD(等量代换).请完成以下说理过程:23.(5分)如图,已知在三角形ABC中,AC=AB,过点C作AB的平行线DE,证明:BC平分∠ACE.四、解答题(本大题共3题,第24题12分;第25题6分,第26题11分,共29分)24.(12分)如图,已知△ABC是等边三角形,D为边BC上一点,以CD为边向形外作等边三角形CDE,联结AD、BE.(1)试说明AD=BE的理由;(2)如果∠CBE=30°,试说明BD=CD的理由.25.(6分)如图,在直角坐标平面内,已知点A的坐标(﹣3,0).(1)图中B点的坐标是;(2)点B关于原点对称的点C的坐标是;点B关于y轴对称的点D的坐标是;(3)△ABC的面积是;=S△ABC,那么点F的所有可能位置是.(用坐(4)在x轴上找一点F,使S△ADF标表示)26.(11分)阅读理解概念:如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“奇妙互余三角形”.完成以下问题:(1)填空:①若△ABC是“奇妙互余三角形”,∠C>90°,∠A=60°,则∠B=;②若△ABC是“奇妙互余三角形”,∠C>90°,∠A=40°,则∠C=;(2)如图,在△ABC中,∠C=90°,BD是△ABC的角平分线,请说明△ABD是“奇妙互余三角形”的理由.(3)在△ABC中,∠C=90°,∠ABC=42°,点P是射线CB上的一点,且△ABP是“奇妙互余三角形”,请直接写出∠APC的度数.2023-2024学年上海市嘉定区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,共18分)1.【分析】分别根据平方根、立方根和n次方根的定义进行判断即可.【解答】解:2的平方根是±,故A不符合题意;0的任何次方根是0,故B符合题意;﹣3有五次方根,故C不符合题意;1的立方根是1,故D符合题意;故选:B.【点评】本题考查平方根、立方根和n次方根的定义,此为基础且重要知识点,必须熟练掌握.2.【分析】根据同位角、同旁内角、内错角的定义结合图形判断.【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;B、∠ABD和∠ACH是同位角,故本选项错误;C、∠FBC和∠ACE是内错角,故本选项错误;D、∠GBC和∠BCE是同旁内角故本选项错误;故选:A.【点评】本题考查了同位角、同旁内角、内错角的定义,属于基础题,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.3.【分析】根据平行线的性质、平行公理及推论、垂线的性质判断即可.【解答】解:两条平行直线被第三条直线所截,同位角相等,故A错误,不符合题意;联结直线外一点到直线上各点的所有线段中,垂线段最短,故B错误,不符合题意;经过直线外一点,有且只有一条直线与已知直线平行,故C错误,不符合题意;在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只可以作一条,故D正确,符合题意;故选:D.【点评】此题考查了平行线的性质、平行公理及推论,熟记平行线的性质、平行公理及推论是解题的关键.4.【分析】分两种情况:当等腰三角形的底边长为2时;当等腰三角形的一腰长为2时;然后分别进行计算即可解答.【解答】解:分两种情况:当等腰三角形的底边长为2时,∵等腰三角形的周长为10,∴它的一条腰长==4,∵2+4=6>4,∴能组成三角形;当等腰三角形的一腰长为2时,∵等腰三角形的周长为10,∴它的底边长=10﹣2﹣2=6,∵2+2=4<6,∴不能组成三角形;综上所述:它的一条腰长是4,故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况讨论是解题的关键.5.【分析】由AD=BD,BC=DC可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠CDB=∠CBD=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=3x,在△ABC中,用内角和定理列方程求解.【解答】解:∵AD=BD=BC,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠CDB=∠CBD=2x,又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,故选:C.【点评】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.6.【分析】根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.【点评】本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.二、填空题(本大题共12题,每题2分,共24分)7.【分析】根据平方根、算术平方根的定义进行解答即可.【解答】解:﹣5=6﹣5=1,∵1的平方根为=±1,∴﹣5的平方根为±1,故答案为:±1.【点评】本题考查平方根,算术平方根,理解平方根、算术平方根的定义是正确解答的关键.8.【分析】先计算括号里,再算括号外,即可解答.【解答】解:=﹣÷=﹣,故答案为:﹣.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.9.【分析】用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【解答】解:﹣0.0002024≈﹣2.02×10﹣4.故答案为:﹣2.02×10﹣4.【点评】本题考查科学记数法与有效数字,熟练掌握相关的知识点是解题的关键.10.【分析】根据数轴上两点间的距离公式AB=|a﹣b|,代入A点和B点表示的数,求解即可.【解答】解:∵点A表示的数为,点B表示的数为,∴.故答案为:.【点评】此题主要是考查了数轴上两点间的距离,能够熟练运用公式是解答此题的关键.11.【分析】根据第一象限内的点横坐标大于零、纵坐标大于零,可得x、y的取值范围,根据不等式的性质,可得(2﹣x),(y+2)的范围,再根据点的横坐标的取值范围、纵坐标的取值范围,可得答案.【解答】解:因为点P(x﹣4,y+1)在第一象限,所以,解得x>4,y>﹣1,所以3﹣x<0,y+2>0,所以点Q(3﹣x,y+2)在第二象限.故答案为:二.【点评】本题考查了点的坐标,利用第一象限内的点横坐标大于零、纵坐标大于零,得出x、y的取值范围,再利用不等式的性质得出Q点的横坐标的取值范围,纵坐标的取值范围.12.【分析】根据三角形的内角和定理,求出∠A,再判断三角形的形状.【解答】解:∵在△ABC中,∠B=30°,∠C=55°,∴∠A=180°﹣30°﹣55°=95°,则三角形是钝角三角形.故答案为:钝角.【点评】考查了三角形的内角和定理以及钝角三角形的定义,解题的关键是掌握三角形的分类.13.【分析】由a∥b,得到∠3=∠1=49°,由平角定义得到∠2=180°﹣90°﹣49°=41°.【解答】解:∵a∥b,∴∠3=∠1=49°,∴∠2=180°﹣90°﹣49°=41°.故答案为:41°.【点评】本题考查平行线的性质,关键是由平行线的性质得到∠3=∠1=49°.14.【分析】添加∠A=∠D,根据∠ACB=∠DBC,可得BO=CO,再利用AAS定理证明△AOB≌△DOC.【解答】解:添加∠A=∠D;∵∠ACB=∠DBC,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),故答案为:∠A=∠D.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.【分析】根据题意画出图形,然后根据平行线的性质证得∠DFC=α,再根据三角形外角的性质解答即可.【解答】解:如图,∵AB∥DE,∴∠DFC=α,∵θ=∠DFC+β,故答案为:θ=α+β.【点评】本题考查的是平行线的性质以及三角形外角的性质,解题的关键是熟练掌握平行线的性质并灵活运用;平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.16.【分析】利用三角形全等得到∠1+∠3=90°,再加上∠2=45°即可.【解答】解:利用三角形全等可知,∠1+∠3=90°,又因为∠2=45°,所以∠1+∠2+∠3=90°+45°=135°.故答案为:135°.【点评】本题考查的是正方形对角线的问题,解题的关键是找到全等三角形.17.【分析】根据等腰三角形的性质和已知条件求出腰长和底边长,然后根据三边关系进行讨论,即可得出结论.【解答】解:设等腰三角形的腰长是x cm,底边是y cm.根据题意,得:或,解得:或根据三角形的三边关系,两组值都能组成三角形.故答案为:13cm或9cm.【点评】本题考查了等腰三角形的性质;解题中,因为两部分的周长没有明确,所以首先要分两种情况考虑.最后一定要注意检查是否符合三角形的三边关系.分类讨论是解题的关键.18.【分析】由等腰三角形的性质可得∠B=∠C,令∠B=∠C=x,根据折叠的性质以及等腰三角形的性质分别用含有x的代数式表示出∠D,∠EFD,∠FED,再根据三角形的内角和定理求解即可.【解答】解:∵AB=AC,∴∠B=∠C,令∠B=∠C=x,由折叠的性质可得∠D=∠B=x,∴∠EAD=∠D,∵AE=AF,∴∠AEF=∠AFE=,∵∠AEF+∠AEB=180°,∠AFE+∠EFD=180°,∴∠AEB+∠EFD=90°+,∵∠AEB=∠AED,∴∠AED=90°+,∴∠FED=x,在△EFD中,∠FED+∠EFD+∠D=180°,即x+(90°+)+x=180°,解得x=36°,∴∠B=36°,∴∠BAC=180°﹣2∠B=108°.故答案为:108.【点评】此题主要考查了翻折变换的性质以及等腰三角形的性质,能用含有x的代数式表示出∠D,∠EFD,∠FED是解答本题的关键.三、简答题(本大题共5题,第19,21,23题每题5分;第20题8分,第22题6分,共29分)19.【分析】先计算二次根式的除法,零指数幂,然后再算加减,即可解答.【解答】解:=3÷﹣2÷﹣1=﹣2﹣1=﹣3.【点评】本题考查了二次根式的混合运算,零指数幂,准确熟练地进行计算是解题的关键.20.【分析】首先把每个式子化成以2为底数的幂的形式,然后利用同底数的幂的乘法、除法法则即可求解.【解答】解:原式====22=4.【点评】本题考查了分数指数幂,实数的运算,根据幂的意义转化为同底数的幂的乘法、除法是解题的关键.21.【分析】有AB=AC,AD=AE,根据等腰三角形的性质得∠B=∠C,∠ADE=∠AED,再根据全等三角形的判定方法易证△ABE≌△ACD,根据全等的性质得BE=CD.【解答】解:∵AB=AC,∴∠B=∠C(等边对等角),∵AD=AE,∴∠ADE=∠AED,在△ABE与△ACD中,∵,∴△ABE≌△ACD(AAS),∴BE=CD,∴BE﹣DE=CD﹣DE,即BD=CE.故答案为:等边对等角;AD=AE;∠ADE,∠AED;AB=AC;全等三角形的对应边相等.【点评】本题考查了全等三角形的判定与性质:有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰三角形的性质.22.【分析】直接利用角的平分线的意义,结合三角形的外角的性质以及等腰三角形的性质分析得出答案.【解答】解:结论:∠AEF=∠DEF.因为AD平分∠BAC(已知),所以∠1=∠2(角的平分线的意义).因为∠B=∠EAC,(已知),所以∠1+∠B=∠2+∠EAC.(等式性质)而∠EDA=∠1+∠B(三角形的一个外角等于与它不相邻的两个内角和),∠EAD=∠2+∠EAC,所以∠EDA=∠EAD(等量代换).所以EA=ED(等角对等边).又因为AF=DF(线段中点的意义)所以∠AEF=∠DEF(等腰三角形的三线合一).故答案为:∠AEF=∠DEF,∠1=∠2,∠1+∠B.【点评】此题考查了角平分线的定义及等腰三角形的判定与性质以及三角形的外角,正确得出EA=ED 是解题关键.23.【分析】根据等腰三角形的性质和平行线的性质即可得到结论.【解答】证明:∵AC=AB,∴∠B=∠ACB,∵AB∥DE,∴∠B=∠BCE,∴∠ACB=∠BCE,∴BC平分∠ACE.【点评】本题考查了等腰三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.四、解答题(本大题共3题,第24题12分;第25题6分,第26题11分,共29分)24.【分析】(1)利用等边三角形的性质证明△ADC≌△BEC即可;(2)由(1)的结论,再结合条件可证明AD平分∠BAC,根据等边三角形的性质可证得BD=CD.【解答】证明:(1)∵△ABC和△CDE为等边三角形,∴BC=AC,CD=EC,∠ACB=∠BCE=60°,在△ADC和△BEC中∴△ADC≌△BCE(SAS),∴AD=BE;(2)由(1)可知△ADC≌△BCE,∴∠CAD=∠CBE=30°,∴∠BAD=∠BAC﹣∠CAD=60°﹣30°=30°,∴∠CAD=∠BAD,即AD平分∠BAC,∵△ABC为等边三角形,∴BD=CD.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.25.【分析】(1)根据坐标的意义即可得出点B的坐标;(2)根据关于原点对称的两个点坐标之间的关系可得出点B关于原点对称的点C的坐标,同理根据关于y轴对称的两个点坐标之间的关系得出点B关于y对称点D的坐标;(3)三角形ABC的面积等于三角形ABO面积的2倍即可,根据坐标可求出三角形ABC的面积;(4)三角形ABC的面积等于15,根据面积公式求出AF的长在计算F点坐标即可.【解答】解:如图,(1)过点B作x轴的垂线,垂足所对应的数为﹣4,因此点B的横坐标为﹣4,过点B作y轴的垂线,垂足所对应的数为5,因此点B的纵坐标为5,所以点B(﹣4,5);故答案为:(﹣4,5);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣4,5)关于原点对称点C(4,﹣5),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点B(﹣4,5)关于y轴对称点D(4,5),故答案为:(4,﹣5),(4,5);(3)S△ABC=2S△ABO=2××3×5=15,故答案为:15;=15,(4)因为S△ABC所以AF•5=15,∴AF=6,又∵点F在x轴上,A(﹣3,0)∴点F(﹣9,0)或(3,0),故答案为:(﹣9,0)或(3,0).【点评】本题考查点的坐标,关于x轴、y轴、原点对称的点坐标的关系,以及利用坐标求相应图形的面积,将坐标转化为线段的长是解决问题的关键.26.【分析】(1)①根据“奇妙互余三角形”的定义,列出含有α,β的方程,求出α,β,从而求出∠B;②根据“奇妙互余三角形”的定义,列出含有α,β的方程,求出α,β,从而求出∠B,再根据三角形内角和定理求出∠C即可;(2)根据直角三角形的性质证明∠ABC+∠A=90°,再根据BD是△ABC的角平分线,证明∠ABC与∠ABD的数量关系,根据“奇妙互余三角形”的定义可得答案;(3)分两种情况讨论:当点P在线段BC上时和点P在线段CB的延长线上时,分别画出图形,根据“奇妙互余三角形”的定义求出答案即可.【解答】解:(1)①∵△ABC是“奇妙互余三角形”,∠C>90°,∴α,β只能是∠A和∠B,∵2α+β=90°,∠A=60°,∴2α+60°=90°或2×60°+β=90°,解得:α=15°,β=﹣30(不合题意舍去),∴∠B=15°,故答案为:15°;②∵△ABC是“奇妙互余三角形”,∠C>90°,∴α,β只能是∠A和∠B,∵2α+β=90°,∠A=40°,∴2α+40°=90°或2×40°+β=90°,解得:α=25°,β=10°(不合题意舍去),∴∠B=25°或10°,∴∠C=180°﹣∠A﹣∠B=115°或130°,故答案为:115°或130°;(2)△ABD是“奇妙互余三角形”的理由如下:∵在△ABC中,∠C=90°,∴∠ABC+∠A=90°,∵BD是△ABC的角平分线,∴∠ABC=2∠ABD,∴2∠ABD+∠A=90°,∴△ABD是“奇妙互余三角形”;(3)如图,当点P在线段BC上时,此时∠APB>90°,∵△ABP是“奇妙互余三角形”,∴2∠BAP+∠ABP=90°或∠BAP+2∠ABP=90°,即2∠BAP+42°=90°或∠BAP+2×42°=90°,解得:∠BAP=24°或6°,∴∠APC=∠BAP+∠ABP=66°或48°;当点P在线段CB的延长线上时,∠APB<90°,如图所示:,此时∠ABC=∠BAP+∠APC=42°,∵△ABP是“奇妙互余三角形”,∴2∠BAP+∠APB=90°或∠BAP+2∠APB=90°,解得:∠BAP=48°或﹣6°(不合题意舍去),∴∠APC=∠ABC﹣∠BAP=﹣6°(不符合题意舍去);综上可知:∠APC的度数为66°或48°.【点评】本题主要考查了三角形内角和定理和互为余角的定义,解题关键是理解已知条件中的新定义和正确识别图形,理解角与角之间的关系。

沪科版七年级下册数学期末试卷 (1)

沪科版七年级下册数学期末试卷 (1)

沪科版七年级下册数学期末试卷一.选择题(本大题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1.(4分)下列各式中,是分式的是()A.B.C.D.2.(4分)下列运算中,正确的是()A.a2•a4=a8B.(ab2)2=a2b4C.a2+a2=2a4D.a6÷a3=a23.(4分)若将分式中的x与y的值都扩大为原来的2倍,则这个分式的值将()A.扩大为原来的2倍B.不变C.扩大为原来的4倍D.无法确定4.(4分)将军要从村庄A去村外的河边饮马,有三条路可走AB、AC、AD,将军沿着AB 路线到的河边,他这样做的道理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短5.(4分)下列说法不一定成立的是()A.若a<b,则a+c<b+c B.若a+c<b+c,则a<bC.若a<b,则ac2<bc2D.若ac2<bc2,则a<b6.(4分)若分式的值是负数,则x的取值范围是()A.B.C.D.7.(4分)两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,DE与AC交于点M.若BC∥EF,则∠DMC的大小为()A.95°B.105°C.115°D.125°8.(4分)如图,直线AB与CD相交于点O,∠DOE=80°,∠DOF:∠AOD=2:3,射线OE平分∠BOF,则∠BOC的度数为()A.50°B.60°C.70°D.80°9.(4分)如图,将直角三角形ABC沿AB方向平移4个单位长度得到三角形DEF,CG=3,EF=8,则图中阴影部分的面积为()A.24B.26C.27D.2810.(4分)已知关于x的分式+=2的解为非负数,则a的范围为()A.a≤且a≠B.a≥且a≠C.a≤﹣且a≠﹣D.a≥且a≠二.填空题(共4小题,每题5分,共20分。

2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市杨浦区七年级(下)期末数学试卷及答案解析

2023-2024学年上海市杨浦区七年级(下)期末数学试卷一、填空题(本大题共14题,每小题2分,满分28分)1.(2分)16的平方根是.2.(2分)计算:=.3.(2分)写出在与之间的一个有理数,这个数可以是(只需填写一个).4.(2分)在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)5.(2分)今年春节黄金周上海共接待游客约16750000人,将16750000这个数保留三个有效数字并用科学记数法表示是.6.(2分)经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线.7.(2分)在平面直角坐标系中,点M(a+2,a﹣2)在x轴上,那么点M的坐标是.8.(2分)已知直线AB和直线CD相交于点O,∠AOC=2∠AOD,那么这两条直线的夹角等于度.9.(2分)如图,将一块直角三角板的直角顶点放在一个长方形纸片的一边上,那么∠1+∠2=度.10.(2分)如果一个三角形的两条边长分别为3和8,且第三边的长为整数,那么第三边的长的最小值是.11.(2分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、点E,AD与BE交于点F,要使△BDF≌△ADC,还需添加一个条件,这个条件可以是(只需填写一个).12.(2分)如图,在△ABC中,AB=AC,∠A=50°,点D、E、F分别在边BC、AB、AC上,如果BD =CF,BE=CD,那么∠EDF=度.13.(2分)如图,已知∠AOB=30°,点P在∠AOB的内部,点P1与点P关于OB对称,点P2与点P 关于OA对称,联结P1P2、OP1、OP2,如果△OP1P2的周长是18,那么OP=.14.(2分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,点O在直线AD上,且OA=OB=OC,如果点B绕点O旋转60°后恰好与点C重合,那么∠BAC=度.二、选择题(本大题共6题,每小题2分,满分12分)15.(2分)下列实数中,是无理数的是()A.B.0.C.0.010010001D.16.(2分)下列计算正确的是()A.B.C.D.17.(2分)如图,下列说法中,错误的是()A.∠EAD与∠EBD是同位角B.∠EAD与∠DBC是同位角C.∠EAD与∠ADC是内错角D.∠EAD与∠ADB是内错角18.(2分)只给定三角形的两个元素,画出的三角形的形状和大小是不确定的.在下列给定的两个条件的基础上,增加一个AB=4cm的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A.∠A=60°,∠B=30°B.BC=6cm,∠B=30°C.BC=3cm,∠A=30°D.BC=5cm,AC=6cm19.(2分)从1、﹣3、4这三个数中,随意取两个数组成一个点的坐标,这个点恰好落在第二象限的可能性大小是()A.B.C.D.20.(2分)如图,在△ABC中,D是边BC的中点,将△ABD沿AD翻折,点B落在点E处,AE交CD 于点F,△ADF的面积恰好是△ABC面积的.小丽在研究这个图形时得到以下两个结论:①∠B=∠CAE;②AC=CD.那么下列说法中,正确的是()A.①正确②错误B.①错误②正确C.①、②皆正确D.①、②皆错误三、简答题(本大题共5题,每小题6分,满分30分)21.(6分)计算:.22.(6分)计算:.23.(6分)用幂的运算性质计算:(结果表示为含幂的形式).24.(6分)如图,已知∠1+∠2=180°,∠3=∠B,请填写理由,说明AD∥BC.解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(),所以∠2=∠AED().所以AB∥DE().所以∠3+=180°().又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC().25.(6分)如图,在△ABC中,E是AD上一点,AB=AC,∠ABE=∠ACE,请填写理由,说明AD⊥BC.解:因为AB=AC(已知),所以∠ABC=∠ACB().又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质).即∠EBC=∠ECB.所以EB=EC().在△ABE与△ACE中,,所以△ABE≌△ACE().所以∠BAE=().又因为AB=AC(已知),所以AD⊥BC().四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.(6分)对于如图给定的图形(不再添线),从①∠1=∠2;②∠3=∠4;③AD∥BC;④AB∥CD 中选取两个作为已知条件,通过说理能得到AE∥CF.(1)你选择的两个条件是(填序号);(2)根据你选择的两个条件,说明AE∥CF的理由.27.(6分)在平面直角坐标系中,点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,点B关于原点对称的点记为点C.(1)分别写出点B、C的坐标:B()、C();(2)△ABC的面积是;(3)点D是直线x=3上的一点,如果△OAD的面积等于△ABC的面积,那么点D的坐标是.28.(8分)如图,已知等腰△ABC,AB=AC,D是边AB上一点(不与点A、B重合),E是线段CD延长线上一点,∠BEC=∠BAC.(1)说明∠EBA=∠DCA的理由;(2)小华在研究这个问题时,提出了一个新的猜想:点D在运动的过程中(不与点A、B重合),∠AEC 与∠ABC是否会相等?,小丽思考片刻后,提出了自己的想法:可以在线段CE上取一点H,使得CH =BE,联结AH,然后通过学过的知识就能得到∠AEC与∠ABC相等.你能否根据小丽同学的想法,说明∠AEC=∠ABC的理由.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.(10分)上海教育出版社七年级第二学期《练习部分》第60页习题14.6(2)第5题及参考答案.5.过下面三角形的一个顶点画一条直线,把这个三角形分割成两个等腰三角形:参考答案:小华在完成了以上解答后,对分割三角形的问题产生了兴趣,并提出了以下三个问题,请你解答:【问题1】如图1,△ABC中,∠A=120°,∠B=40°,∠C=20°,请设计一个方案把△ABC分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形的三个内角的度数分别相等,另一个小三角形是等腰三角形.请直接画出示意图并标出等腰三角形顶角的度数(示意图画在答题卡上);【问题2】如果有一个内角为26°的三角形被分割成两个小三角形,其中一个小三角形三个内角的度数与原三角形三个内角的度数分别相等,另一个小三角形是等腰三角形,那么原三角形最大内角的度数所有可能的值为;【问题3】如图2,在△ABC中,∠A=60°,∠B=70°,∠C=50°,在△DEF中,∠D=60°,∠E =85°,∠F=35°,分别用一条直线分割这两个三角形,使△ABC分割成的两个小三角形三个内角的度数与△DEF分割成的两个小三角形三个内角的度数分别相等,请设计两种不同的分割方案,直接画出示意图并标出相应的角的度数(示意图画在答题卡上).2023-2024学年上海市杨浦区七年级(下)期末数学试卷参考答案与试题解析一、填空题(本大题共14题,每小题2分,满分28分)1.【分析】一个数x的平方等于a,则这个数x即为a的平方根,据此即可得出答案.【解答】解:∵42=16,(﹣4)2=16,∴16的平方根为±4,故答案为:±4.【点评】本题考查平方根的定义,此为基础且重要知识点,必须熟练掌握.2.【分析】合并同类二次根式即可.【解答】解:=(2﹣3+4)=,故答案为:.【点评】本题考查了二次根式的加减,熟练掌握其运算法则是解题的关键.3.【分析】运用算术平方根知识进行估算、求解.【解答】解:∵<<,∴在与之间的一个有理数可以是3,故答案为:3(答案不唯一).【点评】此题考查了对无理数大小的估算能力,关键是能准确理解并运用算术平方根知识.4.【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.5.【分析】运用科学记数法和有效数字的定义进行求解.【解答】解:16750000≈16800000,16800000=1.68×107,∴16750000≈1.68×107,故答案为:1.68×107.【点评】此题考查了运用科学记数法表示较小数字的能力,关键是能准确理解并运用该知识.6.【分析】根据点的坐标特点解答即可.【解答】解:经过点P(﹣2,5)且垂直于x轴的直线可以表示为直线x=﹣2.故答案为:x=﹣2.【点评】本题考查的是点的坐标,熟知坐标系内点的坐标特点是解题的关键.7.【分析】根据x轴上点的坐标特点解答即可.【解答】解:∵点M(a+2,a﹣2)在x轴上,∴a﹣2=0,解得a=2,∴a+2=2+2=4,∴M(4,0),故答案为:(4,0).【点评】本题考查的是点的坐标,熟知x轴上点的纵坐标为0是解题的关键.8.【分析】由两条直线相交得出∠AOC+∠AOD=180°,再根据已知∠AOC=2∠AOD,即可求出这两个角的度数,从而得出这两条直线的夹角的度数.【解答】解:由题意得∠AOC+∠AOD=180°,又∵∠AOC=2∠AOD,∴2∠AOD+∠AOD=180°,∴∠AOD=60°,∴∠AOC=120°,∴这两条直线的夹角等于60°或120°,故答案为:60或120.【点评】本题考查了对顶角、邻补角,熟知邻补角的定义是解题的关键.9.【分析】根据平行线的性质求出∠1=∠3,再结合平角的定义求解即可.【解答】解:如图,∵m∥n,∴∠1=∠3,∵∠3+90°+∠2=180°,∴∠1+90°+∠2=180°,∴∠1+∠2=90°,故答案为:90.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.10.【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析求解.【解答】解:设第三边的长为x,满足8﹣3<x<8+3,即5<x<11.而第三边的长为整数,所以符合条件的x值为:6、7、8、9、10,所以第三边的长的最小值是6.故答案为:6.【点评】本题主要考查三角形三边关系,要注意三角形“任意两边之和>第三边”这一定理.11.【分析】根据全等三角形的判定定理求解即可.【解答】解:添加AD=BD,理由如下:∵AD⊥BC,BE⊥AC,∴∠ADB=∠ADC=∠BEC=90°,∴∠CBE+∠BFD=90°,∠C+∠CBE=90°,∴∠BFD=∠C,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),故答案为:AD=BD(答案不唯一).【点评】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.12.【分析】由AB=AC,得∠B=∠C,由∠B+∠C=2∠B=180°﹣∠A=130°,求得∠B=65°,再证明△EBD≌△DCF,得∠BED=∠CDF,可推导出∠EDF=∠B=65°,于是得到问题的答案.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=50°,∴∠B+∠C=2∠B=180°﹣∠A=130°,∴∠B=65°,在△EBD和△DCF中,∴△EBD≌△DCF(SAS),∴∠BED=∠CDF,∴∠EDF=180°﹣∠BDE﹣∠CDF=180°﹣∠BDE﹣∠BED=∠B=65°,故答案为:65.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理等知识,证明△EBD≌△DCF是解题的关键.13.【分析】根据轴对称的性质得出△OP1P2为等边三角形,据此可解决问题.【解答】解:如图所示,∵点P1与点P关于OB对称,点P2与点P关于OA对称,∴OP=OP1,OP=OP2,∠POA=∠P2OA,∠POB=∠P1OB,∴∠P1OP2=2(∠POA+∠POB)=2∠AOB=60°,∴△OP1P2是等边三角形.∵△OP1P2的周长是18,∴OP1=18÷3=6,∴OP=6.故答案为:6.【点评】本题主要考查了轴对称的性质,熟知图形对称的性质是解题的关键.14.【分析】点O的位置有两种可能①O在△ABC内部.②O在△ABC外部.分别求出∠BAC的度数即可.【解答】解:点O的位置有两种可能:①如图①O在△ABC内部.∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠BAC=30°.②∵点B绕点O旋转60°后恰好与点C重合,∴∠BOC=60°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=30°,∵OA=OB,∴∠OAB=∠OBA=75°,∵OA=OC,∴∠OAC=∠OCA=75°,∴∠BAC=150°.∴∠BAC=30或150度.故答案为:30或150.【点评】本题考查了图形的旋转,等腰三角形的性质.关键是分类讨论点O的位置有两种可能.二、选择题(本大题共6题,每小题2分,满分12分)15.【分析】根据有理数和无理数的概念解答:无限不循环小数是无理数.【解答】解:A.,是整数,属于有理数,不符合题意;B.0.是循环小数,属于有理数,不符合题意;C.0.010010001是有限小数,属于有理数,不符合题意;D.,是无理数,符合题意.故选:D.【点评】此题主要考查了无理数的定义,熟知其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是解题的关键.16.【分析】AB选项均根据二次根式的性质进行计算,然后判断即可;C.根据算术平方根的定义进行计算,然后判断即可;D.先把带分数化成假分数,然后进行化简判断即可.【解答】解:A.∵,∴此选项的计算正确,故此选项符合题意;B.∵,∴此选项的计算错误,故此选项不符合题意;C.∵,∴此选项的计算错误,故此选项不符合题意;D.∵,∴此选项的计算错误,故此选项不符合题意;故选:A.【点评】本题主要考查了二次根式的计算和化简,解题关键是熟练掌握二次根式的性质和如何把二次根式化成最简二次根式.17.【分析】根据同位角和内错角的定义解答即可.【解答】解:∠EAD与∠EBD是同位角,故正确,A不符合题意;∠EAD与∠DBC不是同位角,故错误,B符合题意;∠EAD与∠ADC是内错角,故正确,C不符合题意;∠EAD与∠ADB是内错角,故正确,不符合题意.故选:B.【点评】本题考查了同位角和内错角的定义,关键是同位角和内错角定义的熟练掌握.18.【分析】根据选项中所给条件,结合题中的AB=4cm,依次进行判断三角形的形状和大小是否确定即可解决问题.【解答】解:∵∠A=60°,∠B=30°,∴∠C=90°,则三角形的形状确定.再根据∠A的正弦值和余弦值,可求出BC及AC的长,所以三角形的大小也确定.故A选项不符合题意.因为AB=6cm,AB=4cm,且它们的夹角为∠B=30°,所以依据全等三角形的判定定理“SAS”可知,此三角形的形状和大小都确定.故B选项不符合题意.因为∠A=30°,BC=3cm,AB=4cm,所以此时△ABC的两边和一边的对角确定,则△ABC的形状和大小都不确定.故C选项符合题意.因为AB=4cm,BC=5cm,AC=6cm,所以依据全等三角形的判定定理“SSS”可知,此三角形的形状和大小都确定.故D选项不符合题意.故选:C.【点评】本题主要考查了解直角三角形及全等三角形的判定,熟知全等三角形的判定定理是解题的关键.19.【分析】列举出所有点的坐标,找出第二象限内点的坐标,利用概率公式解答即可.【解答】解:∵1、﹣3、4这三个数随意取两个数组成一个点的坐标为(1,﹣3),(﹣3,1),(1,4),(4,1),(﹣3,4),(4,﹣3)共6种,第二象限内的点为(﹣3,1),(﹣3,4),∴这个点恰好落在第二象限的可能性为=.故选:C.【点评】本题考查的是点的坐标和可能性的大小,熟知第二象限内点的横坐标小于0,纵坐标大于0是解题的关键.20.【分析】根据折叠的性质、三角形的面积公式、中线的性质求解.【解答】解:∵D是边CB的中点,∴BD=CD,=S△ACD=S△ADE=S△ABC,∴S△ABD=S△ABC,∵S△ADF=S△EDF=S△ABC,∴S△ACF∴DF=CF,AF=EF,∴四边形ACED为平行四边形,∴AC∥DE,AC=DE,∴∠E=∠EAC,∵∠E=∠B,∴∠EAC=∠B,故①是正确的;由折叠的性质得:BD=DE,∴AC=CD,故②谁正确的,故选:C.【点评】本题考查了翻折变换,掌握折叠的性质、三角形的面积公式、中线的性质是解题的关键.三、简答题(本大题共5题,每小题6分,满分30分)21.【分析】根据分数指数幂法则、实数的运算法则、零指数幂法则、负整数指数幂法则进行解题即可.【解答】解:原式=﹣2+2﹣1+=﹣.【点评】本题考查分数指数幂、实数的运算、零指数幂、负整数指数幂,熟练掌握相关的运算法则是解题的关键.22.【分析】先算括号内的和完全平方,再算除法,最后算加减.【解答】解:原式=2﹣2+1+(﹣2)÷=2﹣2+1+﹣2=1﹣.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关运算的法则.23.【分析】先将该算式变形为同底数幂乘除混合运算,再运用同底数幂相乘除运算法则进行求解.【解答】解:=÷×=÷×==.【点评】此题考查了分数指数幂的运算能力,关键是能准确理解并运用该知识进行正确地计算.24.【分析】根据平行线的判定与性质求解即可.【解答】解:因为∠1+∠2=180°(已知),∠1+∠AED=180°(邻补角定义),所以∠2=∠AED(同角的补角相等).所以AB∥DE(内错角相等,两直线平行).所以∠3+∠BAD=180°(两直线平行,同旁内角互补).又因为∠3=∠B(已知).所以∠B+=180°(等量代换).所以AD∥BC(同旁内角互补,两直线平行).故答案为:邻补角定义;同角的补角相等;内错角相等,两直线平行;∠BAD;两直线平行,同旁内角互补;∠BAD;同旁内角互补,两直线平行.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.25.【分析】由AB=AC,根据“等边对等角”得∠ABC=∠ACB,所以∠ABC﹣∠ABE=∠ACB﹣∠ACE,则∠EBC=∠ECB,由“等角对等边”证明EB=EC,进而根据“SSS“证明△ABE≌△ACE,再根据全等三角形的对应角相等推导出∠BAE=∠CAE,即可根据等腰三角形的“三线合一”证明AD⊥BC,于是得到问题的答案.【解答】解:因为AB=AC(已知),所以∠ABC=∠ACB(“等边对等角”),又因为∠ABE=∠ACE(已知),所以∠ABC﹣∠ABE=∠ACB﹣∠ACE(等式性质),即∠EBC=∠ECB,所以EB=EC(“等角对等边”),在△ABE与△ACE中,,所以△ABE≌△ACE(SSS),所以∠BAE=∠CAE(全等三角形的对应角相等),又因为AB=AC(已知),所以AD⊥BC(等腰三角形的“三线合一”).故答案为:“等边对等角”,“等角对等边”,SSS,∠CAE,全等三角形的对应角相等,等腰三角形的“三线合一”.【点评】此题重点考查等腰三角形的性质、全等三角形的判定与性质等知识,适当选择全等三角形的判定定理证明△ABE≌△ACE是解题的关键.四、解答题(本大题共3小题,第1题6分,第2题6分,第3题8分,满分20分)26.【分析】(1)选择的两个条件是①④,根据平行线的性质求出∠ABD=∠CDB,根据三角形外角性质求出∠AED=∠CFB,再根据“内错角相等,两直线平行”即可得解;(2)结合三角形外角性质、平行线的判定与性质求解即可.【解答】解:(1)选择的两个条件是①④,理由如下:∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF,故答案为:①④(答案不唯一);(2)∵AB∥CD,∴∠ABD=∠CDB,∵∠1=∠2,∠AED=∠1+∠ABD,∠CFB=∠2+∠CDB,∴∠AED=∠CFB,∴AE∥CF.【点评】此题考查了平行线的判定与性质,熟记平行线的判定与性质是解题的关键.27.【分析】(1)根据关于原点对称的点的坐标特点和平移的规律即可得出答案;(2)根据三角形的面积公式计算即可;(3)根据三角形的面积公式计算即可.【解答】解:(1)∵点A(﹣3,0),将点A先向右平移1个单位,再向下平移2个单位得点B,∴点B的坐标是(﹣3+1,0﹣2),即(﹣2,﹣2),∵点B关于原点对称的点记为点C,∴点C的坐标是(2,2);故答案为:(﹣2,﹣2),(2,2);(2)△ABC的面积等于×3×2+×3×2=6;故答案为:6;(3)∵△OAD的面积等于△ABC的面积,OA=3,∴点D到x的距离为4,∵点D是直线x=3上,∴点D的坐标是:(3,4)或(3,﹣4).故答案为:(3,4)或(3,﹣4).【点评】本题考查关于坐标与图形变化﹣平移,坐标与图形变化﹣对称和三角形的面积等知识,解题的关键是掌握关于原点对称的点的坐标特点和平移的规律.28.【分析】(1)由三角形的内角和定理得∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,则∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,再根据∠BEC=∠BAC,∠BDE=∠ADC即可得出结论;(2)在线段CE上取一点H,使得CH=BE,连接AH,根据AB=AC及三角形内角和定理得∠ABC=∠ACB=(180°﹣∠BAC),再依据“SAS”判定△ABE和△ACH全等得AE=AH,∠BAE=∠CAH,进而得∠EAH=∠BAC,然后根据AE=AH及三角形内角和定理得∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),由此即可得出结论.【解答】(1)证明:∵∠BEC+∠BDE+∠EBA=180°,∠BAC+∠ADC+∠DCA=180°,∴∠BEC+∠BDE+∠EBA=∠BAC+∠ADC+∠DCA,又∵∠BEC=∠BAC,∠BDE=∠ADC,∴∠EBA=∠DCA;(2)解:在线段CE上取一点H,使得CH=BE,连接AH,如图所示:∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),由(1)可知:∠EBA=∠DCA,在△ABE和△ACH中,,∴△ABE≌△ACH(SAS),∴AE=AH,∠BAE=∠CAH,∴∠BAE+∠DAH=∠CAH+∠DAH,即∠EAH=∠BAC,∵AE=AH,∴∠AEC=∠AHD=(180°﹣∠EAH)=(180°﹣∠BAC),∴∠AEC=∠ABC.【点评】此题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质,三角形的内角和定理,全等三角形的判定和性质是解决问题的关键.五、探究题(本大题共1小题,第1小题2分,第2小题4分,第3小题4分,满分10分)29.【分析】(1)依据题意,作∠ABC的平分线,交AC于点D,故∠ABD=∠CBD=∠C=20°,∠ADB =40°.则DB=DC.进而可以计算得解;(2)依据题意,根据(1)作较大内角的平分线,交AC于点D,从而∠ABD=∠CBD=∠C,则DB=DC,从而△DBC是等腰三角形,进而可以得解;(3)依据题意,分别进行设计画图可以得解.【解答】解:(1)如图,作∠ABC的平分线,交AC于点D,∴∠ABD=∠CBD=∠C=20°,∠ADB=40°.∴DB=DC.∴△DBC是等腰三角形.∴∠BDC=140°.(2)由题意,根据(1)作较大内角的平分线,交AC于点D,∴∠ABD=∠CBD=∠C.∴DB=DC.∴△DBC是等腰三角形.∴当,最大180﹣(26°+13°)=141°.故答案为:141°.(3)由题意,设计如下:方案1:作∠ABC的平分线,交AC于点M,根据题意,得∠A=60°,,∠C=50°,∠AMB=85°,∠BMC=95°;作∠DEN=35°,交DF于点N,根据题意,得∠D=60°.∠DNE=85°,∠NEF=50°,∠F=35°,∠ENF=95°.方案2:作∠ACQ=15°交AB于点Q,根据题意,得∠A=60°,∠AQC=105°,∠BCQ=35°,∠BQC=75°,∠B=70°;作∠DEO=15°,交DF于点O,根据题意,得∠D=60°,∠DOE=105°,∠EOF=75°,∠F=35°,∠OEF=70°.【点评】本题主要考查了等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角,三角形内角和定理,熟练掌握等腰三角形的判定和性质,角的平分线的作图,作一个角等于定角是关键。

【3套打包】上海市最新七年级下册数学期末考试试题(含答案)(1)

【3套打包】上海市最新七年级下册数学期末考试试题(含答案)(1)

新人教版七年级第二学期下册期末模拟数学试卷及答案一、选择题:(每小题4分,共48分)1.4的平方根是()A.2 B.﹣2 C.±2 D.±42.在0,,0.1,π,这些数中,无理数的个数为()A.1个B.2个C.3个D.4个3.点P(﹣3,4)到x轴的距离是()A.﹣3 B.3 C.4 D.54.图中∠1的对顶角是()A.∠2 B.∠3 C.∠4 D.∠55.已知a<b,则下列不等式中不正确的是()A.5a<5b B.a+5<b+5 C.a﹣5<b﹣5 D.﹣5a<﹣5b 6.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测7.下列命题是真命题的个数是()①两点确定一条直线②两点之间,线段最短③对顶角相等④内错角相等A.1 B.2 C.3 D.48. +1在下列哪两个连续自然数之间()A.5 和6 B.4 和5 C.3 和4 D.2和39.如图,直线AB∥CD,EF⊥AB,垂足为O,FG与CD相交于点M,若∠DMG=43°,则∠EFG 为()A .133°B .137°C .143°D .147°10.綦江区某学校25位同学在植树节这天共种了50棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意.列方程组正确的是( ) A . B . C .D .11.若方程组的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定12.若关于x 的不等式组有且仅有2个整数解,则a 的取值范围是( )A .3≤a ≤4B .3≤a <4C .3<a ≤4D .2≤a <4二、填空题:(每小题4分,共24分) 13.= .14.在平面直角坐标系中,点(3,﹣5)在第 象限.15.把命题“同角的余角相等”改写成“如果…那么…”的形式 . 16.一个正数的平方根为3x +3与x ﹣7,则这个数是 . 17.若不等式组解集为1<x <2,则(a +2)(b ﹣1)值为 .18.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得点A 1,A 2,A 3…,A n ,…若点A 1的坐标为(3,1),则点A 2019的坐标为 .三、解答题:(本大题2个小题,每小题10分,共20分)19.(10分)(1)解方程组(2)解不等式20.(10分)如图,把△ABC向右平移2个单位长度,再向上平移3个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)求△A′B′C′面积.四、解答题(本大题共5个小题,每小题10分,共50分)21.(10分)解不等式组,并把解集在数轴上表示出来.22.(10分)如图:已知AB∥CD,∠1=∠2,∠DFE=105°.求∠DBC的度数.23.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m,n的值;(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?24.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=,b=;(2)如果,其中a、b为有理数,求a+2b的值.25.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?五、解答题:(本大题1个小题,共8分)26.(8分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.参考答案一、选择题1.4的平方根是()A.2 B.﹣2 C.±2 D.±4解:∵(±2)2=4∴4的平方根是:±2.故选:C.2.在0,,0.1,π,这些数中,无理数的个数为()A.1个B.2个C.3个D.4个解:0,,0.1是有理数,π,是无理数.所以无理数的个数为2个.故选:B.3.点P(﹣3,4)到x轴的距离是()A.﹣3 B.3 C.4 D.5解:∵|4|=4,∴点P(﹣3,4)到x轴距离为4.故选:C.4.图中∠1的对顶角是()A.∠2 B.∠3 C.∠4 D.∠5解:由图形可知,∠1的对顶角是∠3.故选:B.5.已知a<b,则下列不等式中不正确的是()A.5a<5b B.a+5<b+5 C.a﹣5<b﹣5 D.﹣5a<﹣5b解:∵a<b,∴5a<5b,故选项A不合题意;a+5<b+5,故选项B不合题意;a﹣5<b﹣5,故选项C不合题意;﹣5a>﹣5b,故选项D符合题意.故选:D.6.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测解:A、选项样本容量不够大,5天太少,故A选项错误.B、选项的时间没有代表性,集中一个月没有普遍性,故B选项错误;C、选项的时间没有代表性,集中春节7天没有普遍性选项一年四季各随机选中一个星期也是样本容量不够大,故C选项错误.D、样本正好合适,故D选项正确.故选:D.7.下列命题是真命题的个数是()①两点确定一条直线②两点之间,线段最短③对顶角相等④内错角相等A.1 B.2 C.3 D.4解:①两点确定一条直线,正确,是真命题;②两点之间,线段最短,正确,是真命题;③对顶角相等,正确,是真命题;④两直线平行,内错角相等,故错误,是假命题,真命题有3个,故选:C.8. +1在下列哪两个连续自然数之间()A.5 和6 B.4 和5 C.3 和4 D.2和3解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.9.如图,直线AB∥CD,EF⊥AB,垂足为O,FG与CD相交于点M,若∠DMG=43°,则∠EFG 为()A.133°B.137°C.143°D.147°解:过点F作FH∥AB,∵AB∥CD,∴AB∥FH∥CD,∴∠EFH=∠EOB,∠DMG=∠HFG,∵EF⊥AB,∠DMG=43°,∴∠EFG=∠EFH+∠MFH=∠EOB+∠DMG=90°+43°=133°.故选:A.10.綦江区某学校25位同学在植树节这天共种了50棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意.列方程组正确的是()A.B.C.D.解:设男生有x人,女生有y人,根据题意得,.故选:D.11.若方程组的解满足x+y=0,则a的值为()A.﹣1 B.1 C.0 D.无法确定解:方程组两方程相加得:4(x+y)=2+2a,即x+y=(1+a),由x+y=0,得到(1+a)=0,解得:a=﹣1.故选:A.12.若关于x的不等式组有且仅有2个整数解,则a的取值范围是()A.3≤a≤4 B.3≤a<4 C.3<a≤4 D.2≤a<4解:解不等式6x+2>3x+5得:x>1,解不等式x﹣a≤0得:x≤a,∵不等式组有且仅有2个整数解,∴不等式组的解为:1<x≤a,且两个整数解为:2,3,∴3≤a<4,即a的取值范围为:3≤a<4,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.= 1 .解:原式=3﹣2=1.故答案为:1.14.在平面直角坐标系中,点(3,﹣5)在第四象限.解:∵点P(3,﹣5)的横坐标是正数,纵坐标是负数,∴点P在平面直角坐标系的第四象限.故答案填:四.15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等. 16.一个正数的平方根为3x +3与x ﹣7,则这个数是 36 . 解:根据题意得:3x +3+x ﹣7=0, 解得:x =1,即3x +3=6, 则这个正数为62=36, 故答案为:36 17.若不等式组解集为1<x <2,则(a +2)(b ﹣1)值为 6 .解:,解①得:x >﹣2a +3, 解②得:x <b +,则不等式组的解集是:﹣2a +3<x <b +, 根据题意得:﹣2a +3=1且b +=2, 解得:a =1,b =3, 则原式=6. 故答案为:6.18.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得点A 1,A 2,A 3…,A n ,…若点A 1的坐标为(3,1),则点A 2019的坐标为 (﹣3,1) . 解:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(﹣3,1),A 4(0,﹣2),A 5(3,1), …,依此类推,每4个点为一个循环组依次循环, ∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(﹣3,1). 故答案为:(﹣3,1).三、解答题:(本大题2个小题,每小题10分,共20分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡中对应的位置上.19.(10分)(1)解方程组(2)解不等式解:(1)由①+②,得5x=5,解得x=1,把x=1代入方程①解得y=1,∴该方程组的解为:;(2)去分母,得2(x+4)﹣3(3x﹣1)>6,去括号,得2x+8﹣9x+3>6,移项、合并同类项,得﹣7x>﹣5,化系数为1,得x<,∴该不等式的解集为:x<20.(10分)如图,把△ABC向右平移2个单位长度,再向上平移3个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)求△A′B′C′面积.【解答】解:(1)如图所示:△A′B′C′即为所求;点A′、B′、C′的坐标分别是:(0,4)(﹣1,1)(3,1);(2)△A′B′C′的面积为6.四、解答题(本大题共5个小题,每小题10分,共50分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡中对应的位置上.21.(10分)解不等式组,并把解集在数轴上表示出来.【解答】解:,由不等式①,得x>1,由不等式②,得x≤2,解集在数轴上表示为:故原不等式组的解集为:1<x≤2.22.(10分)如图:已知AB∥CD,∠1=∠2,∠DFE=105°.求∠DBC的度数.解:∵AB∥CD,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴FE∥BC,∴∠DBC=∠DFE=105°.23.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m,n的值;(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?解:(1)由题意可得,本次调查的学生有:70÷35%=200(名),答:一共调查了200名学生;(2)n=200×30%=60,m=200﹣70﹣60﹣30=40,即m的值是40,n的值是60;(3)由题意可得,艺术类读物所在扇形的圆心角的度数是:360°×=72°,答:艺术类读物所在扇形的圆心角的度数是72°;(4)由题意可得,学校应购买其他类读物:6000×=900(册),答:学校应购买其他类读物900册.24.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a= 2 ,b=﹣3 ;(2)如果,其中a、b为有理数,求a+2b的值.解:(1)2,﹣3;(2)整理,得(a+b)+(2a﹣b﹣5)=0.∵a、b为有理数,∴解得∴a+2b=﹣.25.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?解:(1)设甲种机器每台x万元,乙种机器每台y万元.由题意,解得,答:甲种机器每台7万元,乙种机器每台5万元.(2)设购买甲种机器a台,乙种机器(6﹣a)台.由题意7a+5(6﹣a)≤34,解得a≤2,∵a是整数,a≥0∴a=0或1或2,∴有三种购买方案,①购买甲种机器0台,乙种机器6台,②购买甲种机器1台,乙种机器5台,③购买甲种机器2台,乙种机器4台,(3)①费用6×5=30万元,日产量能力360个,②费用7+5×5=32万元,日产量能力406个,③费用为2×7+4×5=34万元,日产量能力452个,综上所述,购买甲种机器1台,乙种机器5台满足条件.五、解答题:(本大题1个小题,共8分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡对应的位置上.26.(8分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.解:(1)如图1所示:∵直线PQ ∥MN ,∠ADC =30°, ∴∠ADC =∠QAD =30°, ∴∠PAD =150°,∵∠PAC =50°,AE 平分∠PAD , ∴∠PAE =75°, ∴∠CAE =25°,可得∠PAC =∠ACN =50°, ∵CE 平分∠ACD , ∴∠ECA =25°,∴∠AEC =180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A 1D 1C =30°,线段AD 沿MN 向右平移到A 1D 1,PQ ∥MN , ∴∠QA 1D 1=30°, ∴∠PA 1D 1=150°, ∵A 1E 平分∠AA 1D 1, ∴∠PA 1E =∠EA 1D 1=75°, ∵∠PAC =50°,PQ ∥MN , ∴∠CAQ =130°,∠ACN =50°, ∵CE 平分∠ACD 1, ∴∠ACE =25°,∴∠CEA 1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E 作FE ∥PQ ,∵∠A 1D 1C =30°,线段AD 沿MN 向左平移到A 1D 1,PQ ∥MN , ∴∠QA 1D 1=30°, ∵A 1E 平分∠AA 1D 1, ∴∠QA 1E =∠2=15°, ∵∠PAC =50°,PQ ∥MN , ∴∠ACN =50°, ∵CE 平分∠ACD 1,∴∠ACE =∠ECN =∠1=25°,∴∠CEA 1=∠1+∠2=15°+25°=40°.最新七年级(下)数学期末考试试题【含答案】一、选择题(每小题3分,共30分)1.如图,将等腰直角三角板的一个顶点放在直尺的一边上,若∠BAF =55°,则∠BDE 的度数为( ) A .80°B .75°C .70°D .65°第1题图 第2题图2.有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是( )A.9 B.3 C D.32的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.不等式组x ax b>⎧⎨<⎩无解..,那么a、b的关系满足()A.a>b B.a<b C.a≥b D.a≤b5.如图,点E在AC的延长线上,下列条件中不能判断AB∥CD的是()A.∠A=∠DCE B.∠1=∠2C.∠A+∠ACD=180°D.∠3=∠4 第5题图6.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.46383548x yx y+=⎧⎨+=⎩B.46483538y xy x+=⎧⎨+=⎩C.46485338x yx y+=⎧⎨+=⎩D.46483538x yx y+=⎧⎨+=⎩7.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为()A.20 B.35 C.30 D.408.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98% 第8题图9.开学后,书店向学校推销两种素质类教育书籍,若按原价买这两种书共需880元,书店推销时第一种书打了八折,第二种书打了七五折,结果两种书共少用了200元,则原来这两种书需要的钱数分别是( ) A .400元,480元 B .480元,400元C .320元,360元D .360元,320元10.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从 原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→ (1,0)→(1,1)→(0,1)→(0,2)→……,且每秒移动一个单位,那么第2018秒时,点所在位置的坐标是( ) 第10题图 A .(6,44)B .(38,44)C .(44,38)D .(44,6)二、填空题(每小题3分,共30分)11.已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标______. 12.若方程1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为______. 13.命题:如果a =b ,那么|a |=|b |,其逆命题是______.14.某班为了奖励进步学生,购买笔记本和笔袋两种文具共10个,已知笔记本每本12元,笔袋每个7元,总费用不超过100元.则班级最多能买_____个笔记本.15.数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为____(用“<”号连接).16.如图,AB ∥EF ∥CD ,点G 在线段CB 的延长线上,∠ABG =134°,∠CEF =154°,则∠BCE =_____.17.如图,CB =1,OC =2,且OA =OB ,BC ⊥OC ,则点A 在数轴上表示的实数是_____. 18.某校九年级有560名学生参加了市教育局举行的读书活动,现随机调查了70名学生读书的数量,根据所得数据绘制了如图的条形统计图,请估计该校九年级学生在此次读书活动中共读书________本.第16题图 第17题图 第18题图19.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对_____道题.20.某中学刘老师在一家超市购买30个甲型笔记薄,20个乙型笔记簿,10个丙型笔记簿,共用去150元;他第二次仍去这家超市,均以相同价格购回甲型笔记簿6本,乙型笔记簿3本,丙型笔记簿9本,这次共用去54元.若他第三次再次去该超市以相同价格购买甲型笔记簿8本,乙型笔记簿5本,丙型笔记簿5本,则刘老师第三次应付__________元.三、解答题(共60分)21.(6分)计算:(1(22)(2)2212()22-⨯-22.(8分)(1)解方程组31232(1)133x yyx-+⎧=⎪⎪⎨⎪-+=⎪⎩①②;(2)求不等式组43(2)1213x xxx①②-≤-⎧⎪⎨++>⎪⎩的整数解.23.(6分)在平面直角坐标系中,已知三角形ABC中A(0,2),B(﹣1,﹣1),C(1,0).(1)将三角形ABC向右平移1个单位,再向上平移2个单位得到三角形A'B′C′,画出三角形A′B′C′(点A对应点A′,点B对应点B′,点C对应点C′);(2)直接写出三角形ABC的面积.24.(6分)为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)在条形图中,将表示“一般了解”的部分补充完整;(2)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数为______;(3)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.25.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容。

沪科版七年级下册数学期末考试试卷带答案

沪科版七年级下册数学期末考试试卷带答案

沪科版七年级下册数学期末考试试题一、单选题1.下列实数中,无理数是()A B C .17D .3.141592.若x y >,则下列式子中正确的是()A .33x y->-B .33x y ->-C .33x y ->-D .33x y->-3.下列各式计算的结果为5的是()A .3+2B .10÷2C .⋅4D .−324.下列多项式在实数范围内不能因式分解的是()A .x 3+2xB .a 2+b 2C .y 2+y +14D .m 2-4n 25.若分式23x x -+有意义,则x 的取值范围是()A .x≠﹣3B .x≥﹣3C .x≠﹣3且x≠2D .x≠26.如图,将周长为8的△ABC 沿BC 方向平移1个单位长度得到DEF ∆,则四边形ABFD 的周长为()A .8B .10C .12D .167.如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠= ,则下列结论正确的是()A .342∠=B .4138∠=C .542∠=D .258∠=8.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是()A .pB .qC .mD .n9.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为()A .3x +5(30﹣x )≤100B .3(30﹣x )+5≤100C .5(30﹣x )≤100+3xD .5x ≤100﹣3(30+x )10.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为A .-4B .16C .4或16D .-4或-16二、填空题11.49的平方根是_____.12.因式分解:23m n n -=__________.13.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)14.式子“1 23 4... 100+++++”表示从1开始的100个连续自然数的和,由于式子比较长,100书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,如422221123430n =+++=∑,通过对以上材料的阅读,计算()2019111n n n ==+∑__________.三、解答题15.若1+1=3,则r2KB+2的值为_____.16.(1)()10312753π-⎛⎫+-+- ⎪⎝⎭;(2)计算:()()()252x x x x -+--;17.(1)先化简:244411x x x x x x --+⎛⎫-÷⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值;(2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;18.如图,已知,A AGE D DGC ∠=∠∠=∠.(1)试说明://AB CD ;(2)若21180∠+∠= ,且230BEC B ∠=∠+ ,求B Ð的度数.19.某商场计划购进A 、B 两种新型节能台灯,已知B 型节能台灯每盏进价比A 型的多40元,且用3000元购进的A 型节能台灯与用5000元购进的B 型节能台灯的数量相同.(1)求每盏A 型节能台灯的进价是多少元?(2)商场将购进A 、B 两型节能台灯100盏进行销售,A 型节能台灯每盏的售价为90元,B 型节能台灯每盏的售价为140元,且B 型节能台灯的进货数量不超过A 型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?20.数学活动课上,老师准备了若千个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:,方法2:_;(2)观察图2,请你写出代数式:()222,,a b a b ab ++之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,13a b a b +=+=,求ab 的值;②已知()()22201920185a a -+-=,求()()20192018a a --的值.21.淮河汛期即将来临,防汛指挥部在一危险地带两岸各安置了-探照灯,便于夜间查看河面及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a o /秒,灯B 转动的速度是b o /秒,且,a b 满足:a 1的整数部分,b 是不等式()213x +>的最小整数解.假定这--带淮河两岸河堤是平行的,即//PQ MN ,且45BAN ∠= .(1)如图1,a=_____,b=;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光東互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海七年级第二学期数学期末数学考试试卷 (1)
一、填空题
1.25 的平方根是________________. 2
=________________. 3.计算:2)3(
=_______________.
4.比较大小: 3________10(填“>”,“=”,“<” ).
5
=______________.
6.计算:5253
-=______________.
7.三峡三期围堰于今年6月6日成功爆破.围堰的混凝土总量约186000立方米.保留两个有效数字,近似数186000用科学记数法可表示为______________. 8
.点(2P -在第___________象限.
9.在△ABC 中,30B ∠=︒,50C ∠=︒,那么根据三角形按角分类,可知△ABC 是_________三角形(按角分类).
10.如图,已知:AB // CD ,∠A =58°,那么∠BCD =________度. 11.已知等腰三角形的底角为65°,那么这个等腰三角形的顶角等于___________度.
12.如图,在△ABC 中,∠BAC =80°,∠C = 45°,AD 是△ABC
的角平分线,那么∠ADB =__________度.
13.在直角坐标平面内,将点(3,2)A -向下平移4个单位后,所
得的点的坐标是________________.
13.在△ABC 中,AB = AC ,要使△ABC 是等边三角形需添加一个条件,这个条件
可以是________________(只需写出一种情况).
A
B
C
D
(第12题图)
A
C D B
E (第10题图)
14.在等腰三角形ABC 中,AB = 6cm ,BC = 10cm ,那么AC =_________cm . 二、选择题
15.下列说法正确的是………………………………………………………………( )
(A )41的平方根是12
; (B )41的平方根是12-;
(C )18的立方根是12
; (D )18的立方根是12-.
16.下列长度的三根木棒,不能构成三角形框架的是……………………………( )
(A )5cm 、7cm 、10cm ; (B )5cm 、7cm 、13cm ; (C )7cm 、10cm 、13cm ; (D )5cm 、10cm 、13cm .
17.下列语句中,错误的语句是………………………………………………………( )
(A )有两个角及它们的夹边对应相等的两个三角形全等; (B )有两个角及其中一个角的对边对应相等的两个三角形全等; (C )有两条边及它们的夹角对应相等的两个三角形全等; (D )有两条边及其中一条边的对角对应相等的两个三角形全等.
18.如图,在△ABC 中,已知AB = AC ,∠ABC 的平分线BE 交AC 于点E ,DE ∥BC ,
点D 在AB 上,那么图中等腰三角形的个数是…………………………………( )
(A )2; (B )3; (C )4; (D )5. 三、计算题
A
B
(第18题图)
E
D
C
19
.计算:2(+. 662284÷⨯(利用幂的性质进行计算)
21.在△ABC 中,已知∠A ∶∠B ∶∠C = 2∶3∶5,求∠A 、∠B 、∠C 的度数.
四、操作题
22.画图(不要求写画法):
(1)画△ABC ,使∠A=60°,AB=2cm ,AC=3cm ; (2)画出△ABC 边AC 上的高.
23.已知△ABC 的顶点坐标是A (-1,5)、B (-5,5)、C (-6,2).
(1)分别写出与点A 、B 、C 关于原点O 对称的点
A ' 、
B '、
C '的坐标; A '____________, B '____________, C ' ____________;
(2)在坐标平面内画出△C B A ''';(3)△C B A '''的面积的值等于____________.
五、解答题 24.阅读并理解:
如图,在△ABC 和△A B C '''中,已知AB A B ''=,A A '∠=∠,AC A C ''=,
那么△ABC ≌△A B C '''.
说理过程如下:
把△ABC 放到△A B C '''上,使点A 与点A '重合, 由于AB=__________,因此点B 与点__________重合.
又因为∠A=__________,所以射线AC 能落在射线__________上. 因为__________=____________,所以点________与___________重合. 这样△ABC 和△A B C '''重合,即△ABC ≌△A B C '''. 25.阅读并填空:
如图:在△ABC 中,已知AB =AC ,AD BC ⊥,垂足为点D ,点E 在AD 上,点F 在AD 的延长线上,且CE // BF ,试说明DE =DF 的理由. 解:因为AB = AC ,AD BC ⊥(已知),
所以BD = __________ ( ) . 因为CE // BF (已知),
所以∠CED = ( ) . 在△CED 和△BFD 中,
EDC BDF
∠=∠⎧⎪⎨⎪⎩
(对顶角相等), = , = , 所以△CED ≌△BFD ( ) .因此DE =DF ( ) .
A
B
C
A '
B '
C '
A
B
C
D E F
26.如图,在△ABC 中,已知AB = AC ,∠BAD =∠CAE ,点D 、E 在BC 上,试说明△ADE 是等腰三角形的理由.
27.如图,在△ABC 中,已知AB = AC = 2,点A 的坐标是(1,0),点B 、C 在y 轴上.试判断在x 轴上是否存在点P ,使△PAB 、△PAC 和△PBC 都是等腰三角形.如果存在这样的点P 有几个?写出点P 的坐标;如果不存在,请说明理由.
A
B
C
D E。

相关文档
最新文档