平面向量数量积及其几何意义
平面向量数量积的几何意义
00:58
19
练习:已知|a|=4,|b|=2,且a与b的夹角为120°.求 (1)|2a-b|; (2)(a-2b)·(a+b);(3)a与a+b的夹角; (4)若(a-b)⊥(λa+b),求λ的值.
(4)因为(a-b)⊥(λa+b),所以(a-b)·(λa+b)=0, 即λa2+(1-λ)a·b-b2=0,
(a b) c a (b c)成立吗?
(a b)c (b c)a成立吗?
注意: 4、 向量的数量积不满足于结合律。
00:58
13
例2 .已知 | a | 6,| b | 4, a与b的夹角为60,求(a 2b)( a 3b)
解:(a 2b)(a 3b)
小结:知三求一,注意公式变形
00:58
12
类比于实数乘法的运算 律,向量的数量积满足哪些 运算律呢?
平面向量数量积的运算律:
(1)交换律:a b b a
(2)数乘结合律:(a)b (a b) a (b)
(3)分配律:(a b)c ac bc
向量的数量积满足结合律吗?
(向量 b 在 a 方向上)的投影.
00:58
22
向量 b 在方向 a 上的投影是数量,不是向量,
什么时候为正,什么时候为负? b cos
B
b
O
a B1 A
b cos 0
B b
B1 O a A
b cos 0
B b
O(B1 ) a A
b cos 0
a
Ob B
A
b
a
B
O
A
b cos b
指出下列图中两向量的夹角
平面向量的数量积和向量积的几何意义
平面向量的数量积和向量积的几何意义在数学中,平面向量是一个具有大小和方向的量,通常用箭头表示。
平面向量的数量积和向量积是两个重要的运算,在几何上有着具体的意义和应用。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,是两个向量的乘积与夹角余弦的乘积。
设有两个平面向量A和B,它们的数量积表示为A·B。
平面向量的数量积的几何意义是通过夹角的余弦值来衡量两个向量的相关性。
当夹角为零度时,夹角的余弦值为1,表示两个向量共线且方向相同;当夹角为90度时,夹角的余弦值为0,表示两个向量垂直;当夹角为180度时,夹角的余弦值为-1,表示两个向量共线但方向相反。
通过数量积,我们可以计算向量的模长、夹角以及判断两个向量之间的关系。
具体应用包括求解两个向量的夹角、判断两个向量是否垂直、计算向量的投影等。
二、平面向量的向量积平面向量的向量积,也称为叉积或矢积,是两个向量的乘积与夹角的正弦的乘积。
设有两个平面向量A和B,它们的向量积表示为A×B。
平面向量的向量积的几何意义是通过夹角的正弦值来衡量两个向量构成的平行四边形的面积。
向量积的大小等于该平行四边形的面积,方向垂直于该平行四边形所在的平面,并符合右手规则。
通过向量积,我们可以计算向量的模长、夹角以及求解与平面相关的问题。
具体应用包括求解三角形的面积、判断三个向量是否共面、求解平行四边形的对角线等。
三、数量积与向量积的关系数量积和向量积都是平面向量的运算,它们之间有着一定的关系。
首先,根据数量积和向量积定义的公式,可以得到以下关系:A·B = |A||B|cosθA×B = |A||B|sinθn其中,|A|和|B|分别表示向量A和向量B的模长,θ表示向量A 和向量B之间的夹角,n表示单位法向量。
其次,数量积和向量积之间还存在一个重要的关系——勾股定理。
根据向量积的定义,可以得到:|A×B| = |A||B|sinθ = ABsinθ由此可以看出,向量A和向量B的模长和夹角的正弦值决定了向量积的大小,而根据勾股定理,向量A和向量B的数量积的平方也等于向量积的平方。
平面向量的数量积及运算律
平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。
平面向量数量积的概念及几何意义
平面向量数量积的概念及几何意义平面向量的数量积是指在平面上的两个向量之间进行的一种运算,也叫做点乘或内积。
数量积的结果是一个实数,表示两个向量之间的夹角的余弦值与两个向量长度的乘积。
平面向量的数量积可以通过向量的坐标表示进行计算,公式如下:将向量a的坐标表示为a=(a1,a2)将向量b的坐标表示为b=(b1,b2)则两个向量的数量积表示为a·b=a1*b1+a2*b2几何意义:1.夹角:数量积的大小与两个向量之间的夹角有关。
若两个向量夹角为锐角,则其数量积为正值;若夹角为钝角,则其数量积为负值;若夹角为直角,则其数量积为零。
这是因为余弦函数在0°~90°范围内是递增的,所以夹角越小,余弦值越大。
2.正交性:若两个向量的数量积为零,则它们相互垂直,即两个向量是正交的。
这表示两个向量的方向相互垂直,没有共线的分量。
这个性质在几何中非常重要,特别是在研究平面直角坐标系中的直线和曲线时。
3. 向量的投影:平面向量的数量积还可以用于计算向量在另一个向量上的投影。
两个非零向量a和b的数量积可以表示为a·b=,a,b,cosθ,其中,a,和,b,分别是向量a和b的长度,θ是a和b之间的夹角。
根据这个公式,可以得到向量a在向量b上的投影p的长度为p=,a,cosθ。
4.长度:向量本身的长度也可以通过数量积来计算。
一个非零向量a 的数量积a·a=,a,^2,其中,a,是向量a的长度。
这个公式也适用于负向量,只需要取绝对值即可。
所以,一个向量的长度等于它自身的数量积的平方根。
值得注意的是,数量积的结果是一个标量,而不是一个向量。
它只表示两个向量之间的关系,而不表示它们自身的性质。
数量积在解决几何问题、力学分析以及线性代数等领域中都有广泛的应用。
通过理解数量积的概念和几何意义,我们可以更好地应用向量进行问题的分析和解决。
平面向量数量积的概念及几何意义
平面向量数量积的概念及几何意义平面向量数量积是向量分析中一个重要的概念,也称为点乘或内积。
数量积是两个向量的乘积,其结果是一个标量数值。
本文将介绍平面向量数量积的概念及其几何意义。
平面向量数量积是指两个向量在共面情况下的乘积,也就是点乘运算。
若有两个向量,分别为a和b,则它们的数量积可以表示为a•b,其中a•b=|a|*|b|*cosθ,其中|a|和|b|分别为向量a和b的模长,θ为两个向量之间的夹角。
由此可以看出,数量积的结果是一个标量。
1.求夹角从数量积的定义式可以看出,两个向量的数量积是它们的模长和夹角的乘积。
由此,可以推导出两个向量之间的夹角θ=arccos(a•b/|a|*|b|)。
因此,通过数量积可以求出两个向量之间的夹角。
2.平面内向量正交当两个向量的数量积为0时,即a•b=0,此时两个向量互相垂直或正交。
这是因为cos90°=0,在这种情况下,数量积的结果是零,即两个向量之间的夹角为90°。
3.求投影设有向量a和向量b,向量a在向量b上的投影可以表示为|a|cosθ,其中θ为a和b两个向量之间的夹角。
因此,向量a在向量b上的投影可以表示为a•(b/|b|),这表明向量a在向量b上的投影等于向量a与向量b的单位向量的数量积。
4.求面积对于一个平面内的三角形ABC,如果AB和AC分别表示为向量a和向量b,则三角形ABC 的面积可以表示为S=1/2|a|*|b|sinθ,其中θ为向量a和向量b之间的夹角。
这表明,可以借助数量积来求平面内三角形的面积。
以上四种几何意义,展示了平面向量数量积在向量分析中的重要性。
数量积往往用于推导和计算向量之间的夹角、向量在平面内的正交关系、向量在平面内的投影以及平面内三角形的面积等。
并且,数量积的结果是一个标量,与向量的方向没有关系,因此常用于求解平面内的问题。
平面向量的数量积及其物理意义几何意义
平面向量的数量积及其物理意义几何意义数量积,也称为内积、点积或标量积,是平面向量的一种重要运算。
在数学上,给定两个平面向量a=(a1,a2)和b=(b1,b2),它们的数量积可以表示为a·b=a1b1+a2b2、在本文中,我将讨论平面向量数量积的物理意义和几何意义。
物理意义:数量积在物理学中扮演着重要的角色,它有许多实际的物理意义和应用。
以下是其中一些常见的物理意义:1. 力和位移之间的关系:数量积可以用于计算两个力之间的关系。
当一个物体受到力F作用时,它在位移s方向上的分量可以表示为向量F和向量s之间的数量积。
根据数量积的定义,F·s = Fscosθ,其中θ是F和s之间的夹角。
因此,数量积可以帮助我们计算出物体在特定方向上受到的力的大小。
2.功的计算:在物理学中,功是通过应用力在物体上产生的能量变化。
当一个力F作用于物体上时,物体在位移s方向上的功可以表示为F·s。
这是因为功是力与位移的数量积,能够给出在应用力的方向上所做的工作的大小。
3. 速度和加速度之间的关系:当一个物体被施加一个恒定的力F时,它的加速度a可以表示为F和物体质量m之间的比值,即a = F/m。
然而,我们也可以从另一个角度理解这个关系。
我们知道,加速度a等于速度v的变化率。
因此,v = at。
将F = ma和v = at相结合,我们可以得到v = (F/m)t = (F·t)/m,其中t是时间。
这表明速度v可以用力F和时间t的数量积来计算。
几何意义:数量积不仅在物理学中有实际应用,而且在几何学中也有重要的几何意义。
以下是其中一些常见的几何意义:1. 夹角的计算:由数量积的定义可知,a·b = ,a,b,cosθ,其中θ是a和b之间的夹角,a,和,b,分别是向量a和b的长度。
通过这个公式,我们可以得到夹角θ的值,从而计算向量之间的夹角。
2.正交性:如果两个向量的数量积为零,即a·b=0,那么这两个向量是相互正交的。
平面向量的数量积
三、平面向量数量积的几何意义:
B
b
O | b | cos
a • b a b cos
a
A
rr r
r rr
数量积a b等于a的长度 a 与b在a的
r
方向上的投影数量 b cos的乘积.
7
四、平面向量数量积的运算律:
(1)交换律:a • b b • a
(2)数乘结合律:(a) •b (a •b) a •(b) (3)分配律:(a b) •c a •c b•c
求向量模的依据
5cos a • b 00,180 0 a b 求向量夹角的依据
11
例1 已知 a 5, b 4,a与b的夹角 120o,求a b.
解:a b a b cos
5 4cos120o 510 ( 1)
2 10.
12
பைடு நூலகம்2:求证:
(1)(a b)2 a2 2a b b2; (2)(a b)(a b) a2 b2.
r r 2 r 2 r r r 2
4. a b a 2a • b b
9
五、平面向量数量积的重要性质:
设
是非零向量,
方向相同的
单位向量,
的夹角,则:
1a • e e • a a cos
2a b a •b 0 判断两个向量垂直的依据
a
•
b
10
五、平面向量数量积的重要性质:
4a• a a2 a2
1
一、平面向量的夹角:
2
二、平面向量数量积的定义:
已知两个非零向量
r a
和
r b
,它们的夹角为
rr
,
我们把数量 a b cos 叫做 a 与 b 的数量积
平面向量的数量积及其性质
平面向量的数量积及其性质平面向量是数学中的一个重要概念,数量积则是描述平面向量之间的一种运算。
本文将介绍平面向量的数量积以及它的性质。
1. 数量积的定义及计算方法数量积,也称为点乘或内积,是两个向量之间的一种运算。
对于平面上的向量A和B,它们的数量积记为A·B,计算方法如下:A·B = |A| |B| cosθ其中,|A|和|B|分别是向量A和B的模,θ是A和B之间的夹角。
2. 数量积的几何意义数量积具有几何意义,它表示一个向量在另一个向量上的投影长度乘以另一个向量的模。
具体来说,如果向量A的方向与向量B的夹角θ为锐角或直角,则A·B大于0;如果θ为钝角,则A·B小于0;如果θ为180度,则A·B等于0。
3. 数量积的性质(1)交换律:A·B = B·A数量积满足交换律,即向量的数量积与它们的顺序无关。
(2)分配律:(A + B)·C = A·C + B·C数量积满足分配律,即两个向量之和与另一个向量的数量积等于它们分别与该向量的数量积之和。
(3)数量积与夹角的关系:A·B = 0 当且仅当 A 和 B 垂直当两个向量的数量积为0时,它们相互垂直。
(4)数量积与向量模的关系:A·A = |A|^2向量A的数量积等于它的模的平方。
4. 应用举例(1)判断向量的大小关系根据向量的数量积性质,可以通过比较两个向量的数量积来判断它们的大小关系。
若A·B > 0,则表示向量A的模大于向量B的模;若A·B < 0,则表示向量A的模小于向量B的模。
(2)计算向量的夹角利用数量积的定义,可以通过求解方程cosθ = A·B / (|A| |B|)来计算两个向量的夹角θ。
(3)求解平面向量的模根据数量积的性质,可以利用向量的数量积来求解向量的模。
若已知向量A与另一个向量B垂直,且知道A·B的值,那么可以通过方程A·B = |A| |B| cos90° = 0求解出向量A的模。
平面向量数量积及其几何意义
平面向量数量积及其几何意义平面向量的数量积,也称为点积、内积,是向量运算中的一种运算,用于比较两个向量的方向以及大小关系。
平面向量的数量积定义为两个向量的模的乘积与两个向量夹角的余弦的乘积。
可以表示为:A ·B = ,A,,B,cosθ其中,A和B是平面上的两个向量,A·B表示它们的数量积,A,和,B,表示两个向量的模,θ表示两个向量之间的夹角。
数量积具有以下几何意义:1.比较两个向量的方向:数量积大于0时,表示两个向量的方向相近;数量积小于0时,表示两个向量的方向相反;数量积等于0时,表示两个向量垂直。
2.比较两个向量的大小关系:根据数量积公式,可以看出如果夹角θ固定,向量A、B的模越大,数量积就越大。
因此,数量积可以衡量两个向量的大小关系。
3.求角度:根据数量积公式,可以反推夹角θ的大小。
通过解反三角函数可以求得θ的值。
4.计算投影:根据数量积的几何意义,可以推导出计算一个向量在另一个向量上的投影的公式。
投影表示一个向量在另一个向量上的阴影长度,可以用于解决现实中的很多问题,如力的分解、力的合成等。
5.判断两条直线的关系:如果两条直线的法向量相同,那么它们是平行的;如果两条直线的法向量垂直,那么它们是垂直的。
6.判断图形的性质:根据向量的数量积可以判断图形的性质。
如两个向量垂直,则表示两个直线垂直;两个向量平行,则表示两个直线平行。
除了以上几何意义外,数量积还有一些其他重要的性质:1.交换律:A·B=B·A2.数量积为0时,向量垂直:如果两个向量的数量积为0,即A·B=0,那么向量A和向量B垂直。
3.数量积的性质:(aA)·B=a(A·B),(A+B)·C=A·C+B·C总结来说,平面向量的数量积可以用来比较两个向量的方向和大小关系,求解向量的夹角和投影,判断直线和图形的性质。
它在几何学中具有重要的应用,也是向量运算中的基础概念之一。
平面向量数量积的定义及几何意义
知识点——
平面向量数量积的定 义及几何意义
平面向量数量积的定义及几何意义
【定义】
已知两个非零向量 a与b ,它们的夹角为 α,我们
把数量 abcos叫 做 a 与 b的数量积(或内积),
记作:a b 即 : a b = ab c o s.
平面向量数量积的定义及几何意义
【几何意义】
b
2
b
1212cos604 3
| ab| 3
【解题后的思考】本例主要考查平面向量数量 积的定义等基础知识,对于这些基础知识的考 查主要以选择、填空题为主.
平面向量数量积的定义及几何意义
【变形训练】
1 .已 知 : |a | 1 ,a b 1 ,(a b )(a b ) 1
如图,我们把 bcos(acos)叫做向量
b 在 a 方 向 上 ( a 在 b 方 向 上 ) 的 投 影 ,
记做:OB1bcos
平面向量数量积的定义及几何意义
【典型例题】
1.在 R t A B C 中 , C90,A C = 4 , 则 A B A C_______. 2.已 知 向 量 a,b满 足 : |a|1,|b|2,a与 b的 夹 角 是 60,
平面向量数量积的定义及几何意义
【变形训练】 【思路分析】 1.(1)由已知可求 |b |, 再 利 用 c o s a ,b a b求 解 ;
平面向量的数量积的几何意义
平面向量的数量积的几何意义平面向量的数量积是向量代数中的一种运算,也被称为内积、点积或标量积。
它是两个向量之间的一种乘法运算,具有一定的几何意义。
在本文中,我们将探讨平面向量的数量积的几何意义。
数学上,平面向量可以由其坐标表示为一个有序实数对或有序复数对。
假设有两个平面向量a和a,它们的数量积记为a·a。
数量积的定义如下:a·a = |a| |a| cos(a)其中,|a|和|a|分别表示向量a和a的模,a表示向量a和a之间的夹角。
平面向量的数量积具有以下几何意义:1. 向量的投影:数量积可以用于计算一个向量在另一个向量的投影长度。
对于向量a和a,a·a/|a|表示向量a在向量a上的投影长度。
2. 判断垂直关系:通过数量积的值可以判断两个向量是否垂直。
如果a·a=0,则向量a和a垂直。
这是因为余弦函数值为0意味着夹角为90度,即两个向量垂直。
3. 判断夹角大小:根据数量积的值可以推导出夹角的大小关系。
由于a·a=|a| |a| cos(a),当a为锐角时,余弦值为正,a·a>0;当a为钝角时,余弦值为负,a·a<0。
因此,数量积正负可以用来判断夹角的锐钝程度。
4. 面积计算:数量积的绝对值等于平行四边形的面积。
设平行四边形的两条邻边为a和a,夹角为a,则面积为|a| |a| sin(a)。
由于a·a=|a| |a| cos(a),可以推导得到a·a=|a| |a| sin(a)。
因此,可以利用数量积来计算平行四边形的面积。
5. 判断共线:两个向量共线的充要条件是它们的数量积比值为常数。
如果a·a/|a| |a|=k,其中k为常数,则向量a和a共线。
平面向量的数量积是一种重要的运算,它不仅能够描述向量之间的一些重要关系,还能在几何中应用于诸多问题的求解。
通过数量积,我们可以更深入地理解和应用平面向量的性质,并进行准确的几何分析和计算。
平面向量的数量积
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)
专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。
平面向量的夹角与数量积的几何意义与计算
平面向量的夹角与数量积的几何意义与计算平面向量是解决平面几何问题的重要工具。
而夹角和数量积是平面向量中的两个重要概念,它们在几何意义和计算中起着至关重要的作用。
一、夹角的几何意义夹角是指两个向量之间的夹角,它的大小可以用弧度制或者度数制来表示。
夹角的大小直接影响着向量之间的相对方向。
具体来说,当夹角为零度时,表示两个向量重合;当夹角为非零度时,表示两个向量不重合,其相对方向由夹角的大小和方向来描述。
夹角的几何意义可以用以下两个定理来说明:1. 夹角的余弦定理:设有两个非零向量a和b,它们之间的夹角为θ,则有数量积公式|a·b| = |a|·|b|·cosθ。
其中,|a·b|表示a和b的数量积,|a|和|b|分别表示向量a和b的模,θ表示夹角的大小。
这个公式告诉我们,向量a和向量b的数量积的绝对值等于它们的模的乘积再乘以夹角的余弦值。
利用这个公式,我们可以计算夹角的大小。
2. 夹角的正弦定理:设有两个非零向量a和b,它们之间的夹角为θ,则有正弦定理|a×b| = |a|·|b|·sinθ。
其中,|a×b|表示a和b的叉积,|a|和|b|分别表示向量a和b的模,θ表示夹角的大小。
这个公式告诉我们,向量a和向量b的叉积的绝对值等于它们的模的乘积再乘以夹角的正弦值。
同样地,利用这个公式,我们也可以计算夹角的大小。
二、数量积的几何意义与计算数量积是指两个向量的积的数量,它的计算方法是将两个向量的对应坐标相乘再相加。
数量积的几何意义可以用以下两个定理来说明:1. 数量积与向量夹角的余弦:设有两个非零向量a和b,它们之间的夹角为θ,则有数量积公式a·b = |a|·|b|·cosθ。
其中,a·b表示a和b的数量积,|a|和|b|分别表示向量a和b的模,θ表示夹角的大小的余弦值。
这个公式告诉我们,向量a和向量b的数量积等于它们的模的乘积再乘以夹角的余弦值。
平面向量的数量积与向量积的几何解释
平面向量的数量积与向量积的几何解释引言在数学中,向量运算是一个重要的概念,而平面向量的数量积和向量积是其中的两个重要运算。
本文将讨论平面向量的数量积和向量积,并探讨它们在几何上的解释。
一、平面向量的数量积数量积也称为点积或内积,是两个向量的乘积的数量表示形式。
对于平面向量的数量积,可以用下列公式表示:A ·B = |A| × |B| × cosθ其中,A 和 B 是两个平面向量,|A| 和 |B| 分别表示向量 A 和向量 B 的模长,θ 表示 A 和 B 之间的夹角。
几何解释:平面向量的数量积可以用于计算两个向量之间的相似程度。
当两个向量的夹角为 0 度时,数量积最大,即向量的方向相同,模长相似;当两个向量的夹角为 90 度时,数量积为 0,即向量垂直或正交;当两个向量的夹角为180 度时,数量积最小,即向量方向相反,模长相似。
根据这个特性,数量积可以用于判断向量的方向和判定向量是否垂直或平行。
二、平面向量的向量积向量积也称为叉积或外积,是两个向量的乘积的向量表示形式。
对于平面向量的向量积,可以用下列公式表示:A ×B = |A| × |B| × sinθ × n其中,A 和 B 是两个平面向量,|A| 和 |B| 分别表示向量 A 和向量 B 的模长,θ 表示 A 和 B 之间的夹角,n 为垂直于平面的单位向量,确认向量积的方向。
几何解释:平面向量的向量积用于计算两个向量所构成平行四边形的面积和面的方向。
两个向量的向量积结果为一个新的向量,其模长表示两个向量构成的平行四边形的面积,而方向则垂直于所构成平行四边形的平面。
根据这个特性,向量积可以用于计算平行四边形面积、寻找垂直于两个向量所构成平面的法向量等。
三、平面向量的数量积与向量积的关系对于平面向量 A 和 B,它们的数量积与向量积之间存在关系:|A × B| = |A| × |B| × sinθ其中,|A × B| 表示向量积的模长。
平面向量的数量积与向量投影的几何意义
平面向量的数量积与向量投影的几何意义在数学中,平面向量的数量积和向量投影是两个重要的概念,它们在几何学中有着重要的应用。
本文将介绍平面向量的数量积和向量投影的概念以及它们在几何中的意义。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,是指两个向量之间的乘积。
假设有两个平面向量A和A,它们的数量积表示为A·A。
计算数量积的方法有两种:几何方法和代数方法。
几何方法:数量积的几何方法是通过向量的长度和夹角来计算。
设向量A和A的夹角为θ,则数量积的计算公式为:A·A = |A| × |A| × cosθ其中,|A|和|A|分别表示向量A和A的长度。
代数方法:数量积的代数方法是通过向量的坐标来计算。
假设向量A的坐标为(A₁, A₂) ,向量A的坐标为(A₁, A₂),则数量积的计算公式为:A·A = A₁A₁ + A₂A₂平面向量的数量积在几何中有着重要的意义。
首先,数量积可以用来判断两个向量是否垂直。
当两个向量的数量积为0时,它们互相垂直;当数量积为正时,它们夹角为锐角;当数量积为负时,它们夹角为钝角。
其次,数量积还可以用来计算向量的模长,即向量的长度。
二、向量投影向量投影是指一个向量在另一个向量上的投影长度。
设向量A的投影在向量A上的长度为A,则向量投影的计算公式为:A = |A| × cosθ其中,|A|表示向量A的长度,θ表示向量A和A之间的夹角。
向量投影的几何意义是指一个向量沿着另一个向量的方向的投影长度。
这个投影长度可以用来表示一个向量在另一个向量的作用下的分量。
在几何中,数量积和向量投影有着广泛的应用。
比如,利用数量积可以判断两个向量的相对方向,它们是平行还是垂直;利用向量投影可以计算一个向量在另一个向量上的分量,从而解决实际问题。
总结起来,平面向量的数量积和向量投影在几何中有着重要的意义。
数量积可以用来判断两个向量的夹角和它们的相对方向,向量投影可以用来表示一个向量在另一个向量上的投影长度。
平面向量的数量积与几何意义
平面向量的数量积与几何意义平面向量是代表了平面上的位移和方向的量,而数量积则是用来衡量两个向量之间的关系的一种运算。
它不仅仅是一个数值结果,还有着重要的几何意义。
本文将探讨平面向量的数量积及其几何意义。
一、数量积的定义与性质数量积,也叫点积或内积,是指两个向量的乘积与两个向量夹角的余弦值的乘积。
设有向量a和向量b,其数量积记为a·b。
数量积的定义如下:a·b = |a|·|b|·cosθ其中,|a|表示向量a的模长,|b|表示向量b的模长,θ表示a与b之间的夹角。
根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积的模长:|a·b| = |a|·|b|·|cosθ|4. 垂直性:若a·b=0,则a和b垂直二、数量积的几何意义数量积不仅仅是一个数值结果,还蕴含着重要的几何意义。
下面我们将从两个方面来解释数量积的几何意义。
1. 夹角的余弦值在数量积的定义中,夹角的余弦值cosθ是数量积的一个因子。
夹角的大小可以通过夹角的余弦值来衡量。
当夹角为锐角时,cosθ大于0;当夹角为钝角时,cosθ小于0;而当夹角为直角时,cosθ等于0。
由此可以得到以下结论:- 若a·b > 0,夹角θ为锐角;- 若a·b < 0,夹角θ为钝角;- 若a·b = 0,夹角θ为直角。
2. 平行与垂直根据数量积的性质4,若a·b=0,则a和b垂直。
这个性质给出了判定两个向量是否垂直的方法。
另外,当两个向量的数量积大于0时,可以说明它们的方向相似,即平行;当数量积小于0时,可以说明它们的方向相反,即反平行。
这些几何意义使得数量积在解决几何问题中有着广泛的应用。
三、数量积的应用举例1. 判断两个向量的方向通过判断两个向量的数量积的正负,可以得知它们的方向关系。