中考二次函数总复习例题习题

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案

中考数学总复习《二次函数图像与系数的关系》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤2.已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论中正确的是()A.ac>0B.b>0C.a+c<0D.a+b+c=03.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个4.在平面直角坐标系xOy中,开口向下的抛物线y=ax2+bx+c的一部分图象如图所示,它与x轴交于A(1,0),与y轴交于点B(0,3),则a的取值范围是()A.a<0B.-3<a<0C.a<−32D.−92<a<−325.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是A.B.C.D.6.已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.-2B.-1C.1D.27.对于二次函数y=﹣(x+1)2﹣3,下列结论正确的是()A.函数图象的顶点坐标是(﹣1,﹣3)B.当x>﹣1时,y随x的增大而增大C.当x=﹣1时,y有最小值为﹣3D.图象的对称轴是直线x=18.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x…-5-4-3-2-10…y…40-2-204…A.抛物线的开口向下B.当时,y随x的增大而增大C.二次函数的最小值是D.抛物线的对称轴是直线9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当x≥1时,y随x的增大而增大C.c<0D.当﹣1<x<3时,y>010.如图,在同一平面直角坐标系中,函数y=ax+2(a≠0)与y=−ax2−2x(a≠0)的图象可能是().A.B.C.D.11.已知二次函数y=﹣(x+k)2+h,当x>﹣2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥﹣2B.k≤﹣2C.k≥2D.k≤212.已知:二次函数y=ax2+bx+c的图象如图,则下列答案正确的是()A.a>0,b>0,c>0,△<0B.a<0,b>0,c<0,△>0C.a>0,b<0,c<0,△>0D.a<0,b<0,c>0,△<0二、填空题13.二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②a﹣b+c>0;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1)其中正确的结论有(填上所有正确结论的序号)14.已知二次函数y=ax2+bx+c的图象如图所示,则由此可得a0,b0,c 0.(填“<”或“>”)15.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;乙:当x<2时,y随x的增大而减小.丙:函数的图象与坐标轴只有两个交点.已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.16.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.17.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有。

(完整版)初三中考复习二次函数专题练习题含答案

(完整版)初三中考复习二次函数专题练习题含答案

二次函数专题练习题一、选择题1 抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=22.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1 B.2 C.3 D.63.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2 B.4 C.8 D.164. 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-15. 如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( )A.①② B.①④ C.②③ D.③④6. 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )7. 如图,在正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以 1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二、填空题8.若y=(2-m)xm2-3是二次函数,且开口向上,则m的值为.9.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1____y2.(填或“=”)“>”“<”10.已知二次函数y=-2x2-4x+1,当-3≤x≤0时,它的最大值是____,最小值是____.11.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过 4 s落地,则足球距地面的最大高度是____m.12. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.三、解答题13.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.14.用铝合金材料做一个形状如图①所示的矩形窗框,设窗框的一边为x m,窗户的透光面积为y m2,y与x的函数图象如图②所示.(1)观察图象,当x为何值时,窗户的透光面积最大?最大透光面积是多少?(2)要使窗户的透光面积不小于 1 m2,则窗框的一边长x应该在什么范围内取值?15. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李种植水果____亩,小李应得的报酬是____元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W(元),当10<m≤30时,求W与m之间的函数关系式.16. 如图,抛物线y=-12x2+bx+c与x轴分别交于点A(-2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H,当四边形OMHN为矩形时,求点H的坐标.答案:一、1. B2. B3. B4. C5. C6. A7. B二、8. -59. >10. 3 -511. 19.612. (1+2,2)或(1-2,2)三、13. 解:(1)答案不唯一,如y=x2-2x+2(2)∵定点抛物线的顶点坐标为(b,b2+c+1),且-1+2b+c+1=1,∴c=1-2b,∵顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x2+2x14. 解:(1)由图象可知当x=1时,窗户的透光面积最大,最大透光面积是 1.5 m2(2)由题意可设二次函数解析式为y=a(x-1)2+1.5,将(0,0)代入可求a=-1.5,∴解析式为y=-1.5(x-1)2+1.5,令y=1,则-1.5(x-1)2+1.5=1,解得x1=1-33,x2=1+33,由图象可知,当1-33≤x≤1+33时,透光面积不小于 1 m215. (1) 140 2800 10 1500(2) z=120n+300(10<n≤30)(3)当10<m≤30时,y=-2m+180,∵m+n=30,又∵当0≤n<10时,z=150n;当10≤n<20时,z=120n+300,∴当10<m≤20时,10≤n<20,∴W=m(-2m+180)+120n+300=m(-2m+180)+120(30-m)+300=-2m2+60m+3900;当20<m≤30时,0≤n<10,∴W=m(-2m+180)+150n=m(-2m+180)+150(30-m)=-2m2+30m+4500,∴W=-2m2+60m+3900(10<m≤20)-2m2+30m+4500(20<m≤30)16. 解:(1)y=-12x2+x+4(2)根据题意可设ON=OM=t,则MH=-12t2+t+4,∵ON∥MH,∴当ON=MH时,四边形OMHN为矩形,即t=-12t2+t+4,解得t=22或t=-22(不合题意,舍去),把t=22代入y=-12t2+t+4得y=22,∴H(22,22)。

中考数学总复习《二次函数的三种形式》练习题附带答案

中考数学总复习《二次函数的三种形式》练习题附带答案

中考数学总复习《二次函数的三种形式》练习题附带答案一、单选题(共12题;共24分)1.已知二次函数y=ax2+bx+c的y与c的部分对应值如下表则下列判断中正确的是().A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0D.方程ax2+bx+c=0有两个相等实数根2.若b<0,则二次函数y=x2-bx-1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.将二次函数y=2x2﹣4x+1化成顶点式是()A.y=2(x+1)2﹣1B.y=2(x﹣1)2﹣1C.y=2(x+1)2+1 D.y=2(x﹣1)2+14.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+25.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)6.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+77.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-28.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-79.在平面直角坐标系中,抛物线y=-(x-2)2+1的顶点是点P,对称轴与x轴相交于点Q,以点P为圆心,PQ长为半径画⊙P,那么下列判断正确的是()A.x轴与⊙P相离;B.x轴与⊙P相切;C.y轴与⊙P与相切;D.y轴与⊙P相交.10.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b、k的值分别为()A.0,5B.0,1C.-4,5D.-4,111.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE⊙x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE 所在抛物线的解析式为()A.y= 14(x+3)2B.y= 14(x﹣3)2C.y=﹣14(x+3)2D.y=﹣14(x﹣3)212.抛物线y=−(x−1)2−2的顶点坐标是()A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)二、填空题(共6题;共6分)13.将二次函数y=﹣2x2+6x﹣5化为y=a(x﹣h)2+k的形式,则y=.14.一抛物线和另一抛物线y=﹣2x2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为15.已知某抛物线的顶点是(2,−1),与y轴的交点到原点的距离为3,则该抛物线的解析式为.16.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,那么抛物线y=x2+bx+c的顶点坐标为.17.将二次函数y=x2﹣2x+4化成y=(x﹣h)2+k的形式,则y=.18.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.三、综合题(共6题;共74分)19.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的表达式;(3)当线段PB最短时,二次函数的图象是否过点Q(a,a﹣1),并说理由.20.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,⊙AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.21.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴(1)y=2x2+6x﹣12(2)y=﹣0.5x2﹣3x+3.22.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.23.已知二次函数y=x2−4x+3.(1)将y=x2−4x+3化成y=a(x−ℎ)2+k的形式:;(2)这个二次函数图象与x轴交点坐标为;(3)这个二次函数图象的最低点的坐标为;(4)当y<0时,x的取值范围是.24.已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】B12.【答案】C13.【答案】﹣2(x﹣32)2﹣1214.【答案】y=﹣2(x+2)2+115.【答案】y=(x−2)2−1或y=−12(x−2)2−116.【答案】( 32,- 14)17.【答案】(x﹣1)2+318.【答案】y=x2-8x+20.19.【答案】(1)解:设直线OA的解析式为y=kx∵A(2,4)∴2k=4,解得k=2∴线段OA所在直线的函数解析式为y=2x;(2)解:∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2)∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2)∴当m=1时,PB最短当PB最短时,抛物线的解析式为y=(x﹣1)2+2;(3)解:若二次函数的图象是过点Q(a,a﹣1)则方程a﹣1=(a﹣1)2+2有解.即方程a2﹣3a+4=0有解∵⊙=(﹣3)2﹣4×1×4=﹣7<0.∴二次函数的图象不过点Q.20.【答案】(1)解:设抛物线解析式为y=a(x+4)(x﹣2)将B(0,﹣4)代入得:﹣4=﹣8a,即a= 1 2则抛物线解析式为y= 12(x+4)(x﹣2)=12x2+x﹣4;(2)解:过M作MN⊙x轴将x=m代入抛物线得:y= 12m2+m﹣4,即M(m,12m2+m﹣4)∴MN=| 12m2+m﹣4|=﹣12m2﹣m+4,ON=﹣m∵A(﹣4,0),B(0,﹣4),∴OA=OB=4∴⊙AMB的面积为S=S⊙AMN+S梯形MNOB﹣S⊙AOB= 12×(4+m)×(﹣12m2﹣m+4)+ 12×(﹣m)×(﹣12m2﹣m+4+4)﹣12×4×4=2(﹣12m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4当m=﹣2时,S取得最大值,最大值为4.21.【答案】(1)解:y=2x2+6x﹣12=2(x+ 32)2﹣32,则该抛物线的顶点坐标是(﹣32,﹣32)对称轴是x=﹣3 2(2)解:y=﹣0.5x2﹣3x+3=﹣12(x+3)2+ 152,则该抛物线的顶点坐标是(﹣3,152),对称轴是x=﹣322.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4)令x=0,则y=﹣3∴与y轴交点为(0,﹣3)令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3∴与x轴交点为(﹣1,0),(3,0).列表:x…﹣10 123…y=x2﹣2x﹣3…0﹣3﹣4﹣30…(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<1223.【答案】(1)y=(x-2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x<324.【答案】(1)解:y=(x2﹣2x+1)﹣4=(x﹣1)2﹣4(2)解:令y=0,得x2﹣2x﹣3=0解得x1=3,x2=﹣1∴这条抛物线与x轴的交点坐标为(3,0),(﹣1,0)。

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④2.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值() A.-3B.3C.-6D.93.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√24.如图,一条抛物线(形状一定)与x轴相交于E、F两点(点E在点F左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,−3)、(4,−3),点E的横坐标的最小值为-5,则点F的横坐标的最大值为()A.6B.7C.8D.95.如图1,在矩形ABCD中,动点E从A出发,沿A−B−C方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.254C.6D.56.已知0≤x≤32,则函数y=x2+x+1()A.有最小值34,但无最大值B.有最小值34,有最大值1C.有最小值1,有最大值194D.无最小值,也无最大值7.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:x﹣5﹣4﹣202y60﹣6﹣46;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的是()A.①②③B.①③④C.①②④D.②③④8.已知二次函数y=ax2−2ax+a+2(a≠0),若−1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.1B.-1C.±1D.无法确定9.如图,已知二次函数的图象(0≤x≤1+2 √2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值210.如图,Rt△ABC中,∠ACB=90°,AC=12BC=2点D是AB上一动点,连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE,当△BED面积最大时,AD的长为()A.2B.√5C.25√5D.4√5511.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是()A.﹣4或72B.﹣2 √3或72C.﹣4 或2 √3D.﹣2 √3或2 √3 12.若二次函数y=ax2+4x+a-1的最小值是2,则a的值为()A.4B.-1C.3D.4或-1二、填空题13.二次函数y=x2−2x+3的最小值是.14.当实数a满足2≤a≤5时,且代数式−a2+2ab−b2取最大值-1时,则b的值为.15.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是.)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线x=12;④在对称轴左侧,y随x增大而增大.16.二次函数y=﹣x2﹣4x+k的最大值是9,则k=.17.已知关于x的函数y=−x2−ax+1,当0≤x≤3时函数有最大值5,则a=.18.已知关于x的二次函数y=x2-2ax+3,当1≤x≤3时,函数有最小值2a,则a的值为.三、综合题19.已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.(1)试用含a的代数式表示b、c.(2)当抛物线过点(2,3)时,求此抛物线的解析式.(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.20.如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=,∠AGH=°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若∠ABG∠∠FDH,求y与x之间的函数关系式,并求出y的取值范围.21.如图,抛物线y=12x2−32x−2与x轴交于A,B两点,与y轴交于点C,连接AC,BC,点M是线段BC下方抛物线上的任意一点,点M的横坐标为m,过点M画MN∠x轴于点N,交BC于点P.(1)填空:A(,),C(,);(2)探究∠ABC的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m取何值时线段PM的长度取得最大值,最大值为多少?22.某商品现在的售价为每件50元,每天可卖出200件.市场调查反映:如调整价格,每涨价1元,每天要少卖出10件,已知商品的进价为每件40元,请你帮助分析,当每件商品涨价多少元时,可使每天的销售利润最大,最大利润是多少?设每件商品涨价x元,每天售出商品的利润为y元.(1)根据题意,填写下表:每件售价(元)505152……50+x每天售出商品的数量(件)200190……每天售出商品的利润(元)20002090……23.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.24.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】A13.【答案】214.【答案】1或615.【答案】①③④16.【答案】517.【答案】-418.【答案】119.【答案】(1)解:∵抛物线与y轴交于点(0,3a)∴c=3a∵对称轴为x=1∴x=−b2a=1∴b=−2a(2)解:∵抛物线过点(2,3)∴3=a×22+2(−2a)+3a∴a=1∴b=−2a=−2,c=3a=3∴抛物线为y=x2−2x+3(3)解:∵b(c+6)=−2a(3a+6)=−6a2−12a=−6(a+1)2+6∴当a=−1时,b(c+6)的最大值为6;∴抛物线y=−x2+2x−3=−(x−1)2−2故抛物线的顶点坐标为(1,−2)20.【答案】(1)1:3;90(2)解:∵正方形ABCD的边长为4,BG=3,DH=1∴CG=1,CH=3∵CG∠DF,CH∠BE∴∠CGH∠∠BGE∠∠DFH∴GCHC=BGBE=DFDH,即13=3BE=DF1解得BE=9,DF= 1 3∴Rt∠BEG中,EG= √BG2+BE2= √32+92=3 √10(3)解:∵正方形ABCD的边长为4,BG=x,DH=y ∴CG=4﹣x,CH=4﹣y由(1)可得,∠FDH∠∠GCH,而∠ABG∠∠FDH∴∠ABG∠∠GCH∴ABGC=BGCH,即44−x=x4−y∴y与x之间的函数关系式为:y= 14x2﹣x+4∵44−x=x4−y∴4﹣y= x(4−x)4=﹣14x2+x∴当x=﹣12×(−14)=2时,4﹣y有最大值,且最大值为﹣14×4+2=1∴0<4﹣y≤1解得3≤y<4.21.【答案】(1)-1;0;0;-2(2)解:|OA|=1,|OC|=2,|OB|=4∠AOC=∠COB=90°∴OAOC=OCOB=12∴∠AOC∠∠COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt∠ACB的外接圆圆心为AB的中点∵A(-1,0)B(4,0)∴圆心的坐标( 32,0 ).(3)解:C (0,-2),B (4,0) 又∵直线BC 解析式y =12x −2 p(m ,12m −2) ,M (m , 12m 2−32m −2 )PM=( 12m −2 )-( 12m 2−32m −2 )PM =−12m 2+2m =−12(m −2)2+2 当m=2时,PM 最大值=2.22.【答案】(1)180;200﹣10x ;2160;(200﹣10x )(10+x )(2)解:y =(200﹣10x )(10+x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250 ∴当x =5时,y 取得最大值,此时y =2250即y =﹣10x 2+100x+2000,当每件商品涨价5元时,可使每天的销售利润最大,最大利润是2250元23.【答案】(1)解:∵AB=xm ,铝合金材料长为18m∴AD=BC=18−3x 2∴S =x·18−3x2=−32x 2+9x即S 与x 的函数表达式为:S =−32x 2+9x.(2)解:由题意得:2≤x <18−3x 2解得:2≤x <3.6∵S =−32x 2+9x =−32(x -3)2+272∵−32<0,对称轴是直线x =3,且2≤x <3.6∴当x =3时,S 取得最大值,此时S =272当x =2时,S 取得最小值,此时S =−32(2-3)2+272=12答:窗户总面积S 的最大值272m 2,最小值是12m 2.24.【答案】(1)解:对于一元二次方程x 2﹣(m+1)x+ 12(m 2+1)=0∠=(m+1)2﹣2(m 2+1)=﹣m 2+2m ﹣1=﹣(m ﹣1)2 ∵方程有实数根∴﹣(m﹣1)2≥0∴m=1.(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)解:由{y=2x+ny=−x2−4x−2消去y得到x2+6x+n+2=0由题意∠≥0∴36﹣4n﹣8≥0∴n≤7∵n≤m,m=1∴1≤n≤7令y′=n2﹣4n=(n﹣2)2﹣4∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21∴n2﹣4n的最大值为21,最小值为﹣4.。

2025年中考数学复习:二次函数综合压轴题常考热点试题汇编 解析版

2025年中考数学复习:二次函数综合压轴题常考热点试题汇编 解析版

2025年中考数学复习:二次函数综合压轴题常考热点试题汇编1.如图,已知抛物线y =-x 2+bx +c 与一直线相交于A -1,0 ,C 2,3 两点,与y 轴交于点N .其顶点为D .(1)求抛物线及直线AC 的函数表达式;(2)设点M 3,m ,求使MN +MD 的值最小时m 的值;(3)若点P 是抛物线上位于直线AC 上方的一个动点,过点P 作PQ ⊥x 轴交AC 于点Q ,求PQ 的最大值.【答案】(1)解:由抛物线y =-x 2+bx +c 过点A -1,0 ,C 2,3 得-1-b +c =0-4+2b +c =3,解得b =2c =3 ,∴抛物线为y =-x 2+2x +3;设直线为y =kx +n 过点A -1,0 ,C 2,3 ,得-k +n =02k +n =3,解得k =1n =1 ,∴直线AC 为y =x +1;(2)解:∵y =-x 2+2x +3=-x -1 2+4,∴D 1,4 ,令y =0,则0=-x 2+2x +3,解得x =-1或x =3,即抛物线与x 轴的另一个交点为3,0 ,作直线x =3,作点D 关于直线x =3的对称点D ,得D 坐标为5,4 ,如图,连接ND 交直线x =3于点M ,此时N 、M 、D 三点共线时,NM +MD 最小,即NM +MD 最小,设直线ND 的关系式为:y =ax +b ,把点N 0,3 和D 5,4 代入得b =35a +b =4 ,1∴直线NM 的函数关系式为:y =15x +3,当x =3时,y =185,∴m =185;(3)解:如图,∵PQ ⊥x 轴交AC 于点Q ,∴设Q x ,x +1 ,则P x ,-x 2+2x +3 ,∴PQ =-x 2+2x +3 -x +1 =-x 2+x +2=-x -12 2+94,∵-1<0,∴PQ 有最大值,最大值为94.2.如图,在平面直角坐标系中,已知点B 的坐标为-1,0 ,且OA =OC =5OB ,抛物线y =ax 2+bx +c a ≠0 图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】(1)解:∵点B 的坐标为-1,0 ,∴OB =1,∵OA =OC =5OB ,∴OA =OC =5,∴点A 5,0 ,C 0,-5 ;把点C0,-5代入得:-5a=-5,解得:a=1,故抛物线的表达式为:y=x+1x-5=x2-4x-5;(3)解:∵直线CA过点C0,-5,∴可设其函数表达式为:y=kx-5,将点A5,0代入得:5k-5=0解得:k=1,故直线CA的表达式为:y=x-5,过点P作y轴的平行线交CA于点H,∵OA=OC=5,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,∴PD=PH,∵PD⊥AC,∴PD=22PH,设点P x,x2-4x-5,则点H x,x-5,∴PD=22x-5-x2+4x+5=-22x2+522x=-22x-522+2528,∵-22<0,∴PD有最大值,当x=52时,其最大值为252 8,此时点P52,-354 .3.如图抛物线y=ax2+bx+c经过点A(-1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D、E是直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBP A 的面积分为3:5两部分,求点P 的坐标.【答案】(1)解:∵OB =OC ,点C (0,3),∴点B (3,0),则抛物线的表达式为:y =a (x +1)(x -3)=a (x 2-2x -3)=ax 2-2ax -3a ,将点C (0,3)代入得,故-3a =3,解得:a =-1,故抛物线的表达式为:y =-x 2+2x +3,∵y =-x 2+2x +3=-x -1 2+4,函数的对称轴为:x =1;(2)四边形ACDE 的周长=AC +DE +CD +AE ,其中AC =AO 2+CO 2=12+32=10、DE =1是常数,故CD +AE 最小时,周长最小,取点C 关于直线x =1对称点C (2,3),则CD =C D ,如图所示,取点A -1,1 ,则A D =AE ,点C 与C 关于x =1对称,则C 2,3 ,∴A C =32+22=13,∴CD +AE =A D +DC ,则当A 、D 、C 三点共线时,CD +AE =A D +DC 最小,周长也最小,四边形ACDE 的周长的最小值=AC +DE +CD +AE=10+1+A D +DC=10+1+A C 10+1+13;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBP A 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB ×(y C -y P ):12AE ×(y C -y P )=BE :AE ,则AE=52或32,即:点E的坐标为32,0或12,0,∵C0,3,设直线CP的表达式:y=kx+3,将点E的坐标代入直线CP的表达式:y=kx+3,解得:k=-6或-2,故直线CP的表达式为:y=-2x+3或y=-6x+3,联立y=-x2+2x+3y=-2x+3,y=-x2+2x+3y=-6x+3,解得:x=4或x=8(x=0舍去),故点P的坐标为(4,-5)或(8,-45).4.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C,作直线BC,点P是抛物线在第四象限上一个动点(点P不与点B,C重合),连结PB,PC,以PB,PC为边作▱CPBD,点P的横坐标为m.(1)求抛物线对应的函数表达式;(2)当▱CPBD有两个顶点在x轴上时,则点P的坐标为;(3)当▱CPBD是菱形时,求m的值.(4)当m为何值时,▱CPBD的面积有最大值?【答案】(1)解:∵抛物线y=x2+bx+c与x轴交于点A(-1,0),B(3,0),∴抛物线的解析式为y=(x+1)(x-3),即y=x2-2x-3,(2)解:∵抛物线的解析式为y=x2-2x-3,令x=0,则y=-3,∴C(0,-3),∵▱CPBD有两个顶点在x轴上时,∴点D在x轴上,∵四边形CPBD是平行四边形,∴CP∥BD,∴点P和点C为抛物线上的对称点,∵抛物线y=x2-2x-3的对称轴为x=--22×1=1,C(0,-3),∴P(2,-3),故答案为:(2,-3);(3)解:设点P的坐标为(m,y),∵B(3,0),C(0,-3),∴BP2=(3-m)2+y2,CP2=m2+(m+3)2,∵▱CPBD 是菱形,∴BP =CP ,∴BP 2=CP 2,∴(3-m )2+y 2=m 2+(y +3)2,9-2m +m 2+y 2=m 2+y 2+6y +9,m +y =0,∵y =m 2-2m -3,∴m +m 2-2m -3=0,m 2-m -3=0,m =-(-1)±(-1)2-4×1×(-3)2×1=1±132,即m 1=1+132,m 2=1-132,∵点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),∴0<m <3,∴m =1+132;(4)解:如图所示,过点P 作PE ∥y 轴交直线BC 于点E ,设直线BC 的解析式为y =kx +b (k ≠0),将B (3,0),C (0,-3)代入得,3k +b =0b =-3 ,解得,k =1b =-3 ,∴直线BC 的解析式为y =x -3,设P (m ,m 2-2m -3),则E (m ,m -3),∴PE =-m 2+3m ,∴S △PBC =12×3(-m 2+3m ),∵S ▱CPBD =2S △PBC=2×12×3(-m 2+3m )=-3m 2+9m=-3m -32 2+274,∴当m =32时,平行四边形CPBD 的面积有最大值.5.二次函数y =ax 2+bx +4a ≠0 的图象经过点A -4,0 ,B 1,0 ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)在对称轴上是否存在一个点M ,使MB +MC 的和最小,存在的话,请求出点M 的坐标.不存在的话请说明理由.(3)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式.【答案】(1)解:把A -4,0 ,B 1,0 代入y =ax 2+bx +4a ≠0 得:16a -4b +4=0a +b +4=0 ,解得a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)在对称轴上存在一个点M ,使MB +MC 的和最小,理由如下:连接AC 交对称轴于M ,则MB +MC 的和最小,如图:∵MA =MB ,∴MB +MC =MA +MC ,而C ,M ,A 共线,∴此时MB +MC 最小,在y =-x 2-3x +4中,令x =0得y =4,∴C 0,4 ,设直线AC 的表达式为y =rx +s ,由A -4,0 ,C 0,4 可得-4r +s =0s =4解得r =1s =4 ∴直线AC 解析式为y =x +4,由y =-x 2-3x +4=-x +32 2+254知抛物线对称轴为直线x =-32,在y =x +4中,令x =-32得y =52,∴M -32,52;(3)设BP 交y 轴于K ,如图:∵PD⊥x轴,∴∠DPB=∠OKB,∵∠DPB=2∠BCO,∴∠OKB=2∠BCO,∴∠CBK=∠BCO,∴BK=CK,设OK=m,则CK=BK=4-m,∵OB2+OK2=BK2,∴12+m2=4-m2,解得m=15 8,∴K0,158,设直线BP的表达式为y=px+q,由B1,0,K0,15 8得到p+q=0q=158解得p=-158 q=158∴直线BP的表达式为y=-158x+158.6.如图,抛物线y=14x2-32x交x轴正半轴于点A,M是抛物线对称轴上的一点,过点M作x轴的平行线交抛物线于点B,C(B在C左边),交y轴于点D,连结OM,已知OM=5.(1)求OD的长.(2)P是第四象限内抛物线上的一点,连结P A,AC,OC,PO.设点P的横坐标为m,四边形OCAP的面积为S.①求S关于m的函数表达式.②当∠POC=∠DOC时,求S的值.【答案】解:(1)抛物线对称轴为x=-b2a=3,∴DM=3,OA=6;∵OM =5,∴OD =OM 2-DM 2=52-32=4.(2)过点P 作PN ⊥OA 于N ,①由y =0得,0=14x 2-32x解得:x =0(舍去),x =6∴OA =6,∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN=12×6×4+12×6-14m 2-32m=12+3-14m 2+32m=-34m 2+92m +12所以,S 关于m 的表达式为:S =-34m 2+92m +12②MC =CD -DM =5=OM ,∴∠MOC =∠MCO .∵BC ∥x 轴,∴∠AOC =∠MCO =∠MOC .∵∠POC =∠DOC ,∴∠POC -∠AOC =∠DOC -∠MOC ,∴∠POE =∠DOM ,∴tan ∠POA =tan ∠DOM =34,∴-y p x P =34∴y P =-34x p ,代入抛物线解析式得-34x p =14x 2p -32x p解得x P =0(舍去)或x P =3,∴y P =-34x p =-34×3=-94∴S 四边形OCAF =S △OAC +S △OAP=12⋅OA ⋅OD +12⋅OA ⋅PN =18.757.如图,已知抛物线y =-x 2+bx +c 经过B -3,0 ,C 0,3 两点,与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E ,使得AE +CE 的值最小,求点E 的坐标;(3)设点P 为x 轴上的一个动点,写出所有使△BPC 为等腰三角形的点P 的坐标,并把求其中一个点P 的坐标的过程写出来.【答案】(1)解:将点B -3,0 ,C 0,3 代入抛物线解析式得-9-3b +c =0c =3,解得b =-2c =3 ,∴抛物线的解析式为y =-x 2-2x +3;(2)解:∵抛物线解析式为y =-x 2-2x +3=-x +1 2+4,∴抛物线的对称轴为直线x =-1,∵点A 、B 关于对称轴对称,∴BE =AE ,∴AE +CE =BE +CE ,∴当B 、C 、E 三点共线时,BE +CE 最小,即此时AE +CE 最小,∴BC 与对称轴的交点即为点E ,如下图,设直线BC 解析式为y =mx +n ,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 的解析式为y =x +3;当x =-1时,y =x +3=2,∴E -1,2 ;(3)解:∵B -3,0 ,C 0,3 ,∴OB =OC =3,∴BC =32+32=32,当B 为顶点时,则PB =BC =32,∴点P 的坐标为32-3,0 或-32-3,0 ;当C为顶点时,则PC=BC,∴点P与点B关于y轴对称,∴点P的坐标为3,0;当BC为底边时,则PC=PB,设点P的坐标为m,0,∴-3-m2=m2+32,解得m=0∴点P的坐标为0,0;综上,点P的坐标为0,0或3,0或32-3,0或-32-3,0.8.如图,在平面直角坐标系xOy中,将抛物线y=12x2平移,使平移后的抛物线仍经过原点O,新抛物线的顶点为M(点M在第四象限),对称轴与抛物线y=12x2交于点N,且MN=4.(1)求平移后抛物线的表达式;(2)如果点N平移后的对应点是点P,判断以点O、M、N、P为顶点的四边形的形状,并说明理由;(3)抛物线y=12x2上的点A平移后的对应点是点B,BC⊥MN,垂足为点C,如果△ABC是等腰三角形,求点A的坐标.【答案】(1)解:由题意得,平移后的抛物线表达式为:y=12x2+bx,则点M的坐标为:-b,-1 2 b2,当x=-b时,y=12x2=12b2,即点N-b,12b2,则MN=12b2+12b2=4,解得:b=2(舍去)或b=-2,则平移后的抛物线表达式为:y=12x2-2x;(2)解:四边形OMPN是正方形,根据题意可得O0,0,M2,-2,N2,2,P4,0,记MN与OP交于点G,则G2,0,∴OG=GP=2,MG=NP=2,MN=OP=4,NO=NP=22,∴四边形OMPN是平行四边形,∵MN=OP=4,∴四边形OMPN是矩形,∵NO=NP=22,∴四边形OMPN是正方形;(3)解:设A a ,12a 2 ,B a +2,12a 2-2 ,C 2,12a 2-2 ,可得AB =22,AC =a -2 2+22,BC =a 2,①AB =AC ,22=a -2 2+22,即a 2-4a =0,解得a 1=4,a 1=0(舍去0),∴A 4,8 ;②AB =BC ,22=a 2,解得a 1=22,a 1=-22,∴A 22,4 或A -22,4 ;③AC =BC ,a -2 2+22=a 2,解得a =2,∴A 2,2 ;综上,点A 的坐标是4,8 、22,4 、-22,4、2,2 .9.综合与探究如图,抛物线y =12x 2-32x -2与x 轴交于A ,B 两点,与y 轴交于点C .过点A 的直线与抛物线在第一象限交于点D 5,3 .(1)求A ,B ,C 三点的坐标,并直接写出直线AD 的函数表达式.(2)点P 是线段AB 上的一个动点,过点P 作x 轴的垂线,交抛物线于点E ,交直线AD 于点F .试探究是否存在一点P ,使线段EF 最大.若存在,请求出EF 的最大值;若不存在,请说明理由.(3)若点M 在抛物线上,点N 是直线AD 上一点,是否存在以点B ,D ,M ,N 为顶点的四边形是以BD 为边的平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【答案】(1)解:令y =0,则12x 2-32x -2=0,解得x =4或x =-1,∴A -1,0 ,B 4,0 ,令x =0,则y =-2,∴C 0,-2 ,设直线AD 的函数表达式为y =kx +b ,将A -1,0 ,D 5,3 的坐标代入得,-k +b =05k +b =3 ,解得:k =12b =12,∴y =12x +12;(2)解:存在,理由如下:设P a ,0 ,则E a ,12a 2-32a -2 ,F a ,12a +12,∵P 线段AB 上的一个动点,∴E 在x 轴下方,∴EF =12a +12-12a 2-32a -2 =-12a 2+2a +52=-12a -2 2+92,∵-12<0,∴当a =2时,EF 有最大值,最大值为92;(3)解:存在,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142;设M m ,12m 2-32m -2 ,N n ,12n +12,∵B 4,0 ,D 5,3 ,①当平行四边形对角线为BN 和DM 时,则4+n 2=5+m 20+12n +122=3+12m 2-32m -22 ,解得:m =0n =1 或m =4n =5 (当m =4时,M 4,0 与B 点重合,不符合题意,舍去)∴点M 的坐标为0,-2 ;②当平行四边形对角线为BM 和DN 时,则4+m 2=5+n 20+12m 2-32m -22=3+12n +122 ,解得:m =2+14n =1+14 或m =2-14n =1-14 ,∴点M 的坐标为2+14,4+142 或2-14,4-142,综上所述,点M 的坐标为0,-2 ,2+14,4+142 或2-14,4-142 .10.如图,已知直线y =34x +3与x 轴交于点D ,与y 轴交于点C ,经过点C 的抛物线y =-14x 2+bx +c 与x 轴交于A -6,0 、B 两点,顶点为E .(1)求该抛物线的函数解析式;(2)连接DE ,求tan ∠CDE 的值;(3)设P 为抛物线上一动点,Q 为直线CD 上一动点,是否存在点P 与点Q ,使得以D 、E 、P 、Q 为顶点的四边形是平行四边形?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【答案】(1)解:对于y =34x +3,由x =0,得y =3,∴C 0,3 ,∵抛物线过点A -6,0 、C 0,3 ,-14×-6 2-6b +c =0c =3 ,解得:b =-1c =3 ,∴该抛物线为y =-14x 2-x +3;(2)解:由y =-14x 2-x +3=-14x +2 2+4得顶点E -2,4 ,过点E 分别作EF ⊥x 轴于F ,作EG ⊥y 轴于G ,连接EC ,则EF =4,DF =2,EG =2,CG =1,∴DF EF =12=CG EG,∵∠DFE =∠CGE =90°,∴△DFE ∽△CGE∴∠DEF =∠CEG ,EC DE =CG DF=12.∵∠CEG +∠CEF =90°,∠DEF +∠CEF =90°,∴∠DEC =90°,∴tan ∠CDE =EC DE =12;(3)设Q m ,34m +3 ①若DE 为平行四边形的一边,且点P 在点Q 的上方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m +2,34m +7 ,代入抛物线得:34m +7=-14m +2 2-m +2 +3,解得m 1=-7,m 2=-4(舍去)∴Q -7,-94;②若DE 为平行四边形的一边,且点P 在点Q 的下方,∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P m -2,34m -1 ,同理得Q -3+892,15+3898或Q -3-892,15-3898 ,③若DE 为平行四边形的对角线∵∵D -4,0 ,E -2,4 ,Q m ,34m +3 ,∴P -m -6,-34m +1 代入抛物线得:-34m +1=-14-m -6 2--m -6 +3,解得m 1=-1,m 2=-4(舍去)∴Q -1,94,综上所述,点Q 的坐标为-7,-94 Q -3+892,15+3898 或Q -3-892,15-3898或-1,94 .11.如图,已知抛物钱经过点A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作MN ∥y 轴交抛物线于点N .若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB 、NC ,当m 为何值时,△BNC 的面积最大,最大面积是多少?【答案】(1)解:根据题意,抛物钱与x 轴交于点A (-1,0),B (3,0)设抛物线解析式为y =a x +1 x -3将C (0,3)代入可得:-3a =3,解得a =-1即y =-x +1 x -3 =-x 2+2x +3;(2)设直线BC 的解析式为y =kx +b将B (3,0)、C (0,3)代入可得:3k +b =0b =3 ,解得k =-1b =3即y =-x +3,则M (m ,-m +3),N (m ,-m 2+2m +3),MN =-m 2+2m +3--m +3 =-m 2+3m ;(3)由题意可得:S △BNC =S △BNM +S △MNC =12×MN ×OB =32-m 2+3m =-32m 2+92m∵-32<0,开口向下,∴m =-92-2×32=32时,S △BNC 面积最大,∴最大面积为S △BNC =-32×32 2+92×32=278.12.如图,已知抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于C 点,顶点为D ,其中A 1,0 ,C 0,3 .直线y =mx +n 经过B ,C 两点.(1)求直线BC 和抛物线的解析式;(2)在抛物线对称轴上找一点M ,使MA +MC 最小,直接写出点M 的坐标;(3)连接BD ,CD ,求△BCD 的面积.【答案】解:(1)将点A 1,0 ,C 0,3 代入y =-x 2+bx +c ,得-1+b +c =0,c =3,解这个方程组,得b =-2,c =3.∴抛物线的解析式为y =-x 2-2x +3.当y =0时,0=-x 2-2x +3=-x +3 x -1 ,解得x 1=-3,x 2=1,∴点B 的坐标为-3,0 ,∵直线y =mx +n 经过B ,C 两点,∴-3m +n =0n =3,解得m =1n =3 ,∴直线BC 解析式为y =x +3;∴当点M是直线BC和对称轴的交点时,MA+MC取得最小值,∵抛物线y=-x2-2x+3=-x+12+4,∴点D的坐标为-1,4,对称轴为直线x=1,将x=1代入直线y=x+3,得:y=-1+3=2,∴点M的坐标为-1,2;(3)∵点D-1,4,点M-1,2,∴DM=4-2=2,∵点B-3,0,∴BO=3,∴S△BCD=S△DMB+S△DMC=12DM⋅BO=12×2×3=3.13.抛物线y=ax2+bx-4(a≠0)与x轴交于点A-2,0和B4,0,与y轴交于点C,连接BC.点P是线段BC下方抛物线上的一个动点(不与点B,C重合),过点P作y轴的平行线交BC于M,交x轴于N,设点P的横坐标为t.(1)求该拋物线的解析式;(2)用关于t的代数式表示线段PM,求PM的最大值及此时点M的坐标;(3)过点C作CH⊥PN于点H,S△BMN=9S△CHM,①求点P的坐标;②连接CP,在y轴上是否存在点Q,使得△CPQ为直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.2∴4a-2b-4=016a+4b-4=0,即2a-b=24a+b=1,∴a=12 b=-1∴抛物线的解析式为:y=12x2-x-4;(2)解:令x=0得y=-4,∴C0,-4设直线BC的解析式为y=kx+b,∴b=-44k+b=0∴k=1b=-4 ,∴直线BC的解析式为:y=x-4 ∵P的横坐标为t,PM∥y轴,∴P t,12t2-t-4,M t,t-4,∴PM=t-4-12t2-t-4=-12t2+2t=-12t-22+2,∵-12<0,∴当t=2时,PM有最大值2,此时M2,-2;(3)解:①∵B4,0、C0,-4,∴OB=OC=4,∵∠BOC=90°,∴∠OBC=∠OCB=45°,∵PN∥y轴∴∠NMB=∠OCB=45°,∠MNB=∠COB=90°,∴∠NBM=∠NMB,∴BN=MN,∴S△BMN=12BN2,又∠CMH=∠NMB=45°,∠CHM=90°,∴△CHM是等腰直角三角形∴S△CHM=12CH2∵S△BMN=9S△CHM∴12BN 2=9×12CH 2∴BN =3CH ,∵BN +CH =OB =4,∴CH =1∴P 1,-92 ;②设Q 0,m ,则CQ 2=4+m 2,CP 2=1+-4+92 2=54,PQ 2=1+m +92 2,(Ⅰ)当∠CQP =90°时,54=4+m 2+1+m +92 2,解得:m =-4(舍去)或m =-92,∴Q 0,-92 ;(Ⅱ)当∠CPQ =90°时,54+1+m +92 2=4+m 2,解得:m =-132, ∴Q 0,-132(Ⅲ)当∠PCQ =90°时54+4+m 2=1+m +92 2解得:m =-4(舍去)综上所述,存在点Q 0,-132 或Q 0,-92使得△CPQ 为直角三角形.14.如图,抛物线y =ax 2+bx +c a >0 交x 轴于A 、B 两点(点A 在点B 左侧),交y 轴于点C .(1)若A(-1,0),B(3,0),C(0,-3),①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)若直线y=bx+t t>c与抛物线交于点M、N(点M在对称轴左侧),直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.【答案】解:(1)①把A(-1,0),B(3,0),C(0,-3)分别代入y=ax2+bx+c,得a-b+c=09a+3b+c=0c=-3,解得a=1b=-2 c=-3 ,∴抛物线的解析式为y=x2-2x-3.②设P(m,0),过Q作QH⊥x轴于H,则∠PHQ=90°,∵△CPQ是以CQ为斜边的等腰直角三角形,∴PC=PQ,∠CPQ=90°,∴∠OPC+∠HPQ=90°,∠HQP+∠HPQ=90°,∴∠OPC=∠HQP,在△POC和△QHP中∠OPC=∠HQP∠COP=∠PHQCP=QP,∴△POC≌△QHP AAS,∴QH=OP=m,PH=OC=3.当点H在点P的右侧时,OH=m+3,∴Q(m+3,-m),把Q(m+3,-m)代入y=x2-2x-3,得-m=m+32-2m+3-3,解得m=0或-5,此时,P(0,0)或P(-5,0).当点H在点P的左侧时,H(m-3,0),∴Q (m -3,m ),代入y =x 2-2x -3,得m =m -3 2-2m -3 -3,整理,得m 2-9m +12=0,解得m =9±332,此时P 9+332,0 或9-332,0 综上,点P 的坐标为P (0,0)或P (-5,0)或P 9+332,0或9-332,0 (2)设直线AM 为y =kx +m ,直线AN 为y =k 1x +m 1,联立y =bx +t y =ax 2+bx +c ,得ax 2+c -t =0,∴x M +x N =0.联立y =kx +m y =ax 2+bx +c ,得ax 2+b -k x +c -m =0,∴x A x M =c -m a .同理,得x A x N =c -m 1a.∴x A x M +x A x N =x A x M +x N =0,∴c -m a +c -m 1a=0,∴c -m =m 1-c .∵D (0,m 1),E (0,m ),C (0,c ),∴CD =m 1-c ,CE =c -m ,∴CE =CD ,∴点C 为线段DE 的中点.15.如图,二次函数y =-x 2+c 的图象交x 轴于点A 、点B ,其中点B 的坐标为(2,0),点C 的坐标为(0,2),过点A 、C 的直线交二次函数的图象于点D .(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵二次函数y=-x2+c的图象过点B(2,0),∴0=-22+c,解得c=4∴二次函数解析式为y=-x2+4∴A点坐标为(-2,0)设直线AC的解析式为y=kx+b∴0=-2k+b2=b,解得:k=1b=2∴直线AC的解析式为y=x+2(2)∵直线AC:y=x+2与二次函数交于点A、D∴联立y=-x2+4y=x+2,解得x=-2y=0或x=1y=3∴D点坐标为:(1,3)∵AB=4∴S△DAB=12AB×y D =12×3×4=6(3)∵C(0,2),A点坐标为(-2,0)∴∠CAB=45°当Q在正半轴时,∵∠AQB=135°,QA=QB∴∠QAO=22.5°=12∠CAO∴AQ平分∠CAO过Q作PQ⊥AC于P设OQ =x ,则OQ =PQ =x ,CQ =2PQ =2x∴OC =OQ +CQ =2x +x =2解得x =22-2∴Q 点坐标为(0,22-2)当Q 在与轴负半轴时,根据对称性可得Q 点坐标为(0,2-22)∴Q 点坐标为(0,2-22)或(0,22-2)(4)当AD 是矩形边长时过A 作AM ⊥AD 交抛物线于M∵直线AC 的解析式为y =x +2∴设直线AM 的解析式为y =-x +b 1代入A 点(-2,0)得b 1=-2∴直线AM 的解析式为y =-x -2∴联立y =-x 2+4y =-x -2,解得x =-2y =0 或x =3y =-5 ∴M 点坐标为(3,-5)∵此时MN 平行且等于AD∴由A (-2,0)平移到D (1,3)与由M (3,-5)平移到N 的平移方式一致∴N 点坐标为(6,-2)同理::过D 作DM ⊥AD 交抛物线于M ,此时M (0,4),N (-3,1)综上所述,存在,N 点坐标为(6,-2)或(-3,1)16.如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为D(2,1),抛物线的对称轴交直线BC 于点E.(1)求抛物线y =-x 2+bx +c 的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h (h >0),在平移过程中,该抛物线与直线BC 始终有交点,求h 的最大值;(3)M 是(1)中抛物线上一点,N 是直线BC 上一点.是否存在以点D ,E ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)解:由D (2,1)可知,-b 2×-1 =24×-1 c -b 24×-1 =1,解得:b =4c =-3 ,∴y =-x 2+4x -3.(2)分别令y =-x 2+4x -3中,x =0,y =0得,B (3,0),C (0,-3);设BC 的表达式为:y =kx +n k ≠0 ,将B (3,0),C (0,-3)代入y =kx +n 得,0=3k +n -3=0+n 解得:k =1n =-3 ;∴BC 的表达式为:y =x -3;抛物线平移后的表达式为:y =-x 2+4x -3-h ,根据题意得,y =-x 2+4x -3-h y =x -3,即x 2-3x +h =0,∵该抛物线与直线BC 始终有交点,∴-3 2-4×1×h ≥0,∴h ≤94,∴h 的最大值为94.(3)存在,理由如下:将x =2代入y =x -3中得E 2,-1 ,①当DE 为平行四边形的一条边时,∵四边形DEMN 是平行四边形,∴DE ∥MN ,DE =MN ,∵DE ∥y 轴,∴MN ∥y 轴,∴设M m,-m2+4m-3,N m,m-3,当-m2+4m-3-m-3=2时,解得:m1=1,m2=2(舍去),∴N1,-2,当m-3--m2+4m-3=2时,解得:m1=3+172,m2=3-172,∴N3+172,17-3 2或N3-172,-17+32;②当DE为平行四边形的对角线时,设M p,-p2+4p-3,N q,q-3,∵D、E的中点坐标为:(2,0),∴M、N的中点坐标为:(2,0),∴p+q2=2-p2+4p-3+q-32=0 ,解得:p1=1 q1=3,p2=2q2=2(舍去),∴此时点N的坐标为(3,0);综上分析可知,点N的坐标为:1,-2或3+172,17-32或3-172,-17+32或(3,0).。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析

中考数学总复习《二次函数的最值》练习题-附带答案解析一、单选题(共12题;共24分)1.如图,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm。

点P从点A出发,沿AB方向以2cm/s的速度向点B运动,同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ的最大面积是()A.0cm2B.8cm2C.16cm2D.24 cm2 2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A.②④⑤⑥⑦B.①②③⑥⑦C.①③④⑤⑦D.①③④⑥⑦3.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时函数值y的最小值为﹣2,则m的值是()A.B.C.或D.- 或4.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1 C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣25.二次函数y=−x2+6x−7,当x取值为t≤x≤t+2时有最大值t=2,则t的取值范围为()A.t≤0B.0≤t≤3C.t≥3D.以上都不对6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.√3cm2B.32√3cm2C.92√3cm2D.272√3cm27.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.x>1时y随x的增大而减小C.顶点坐标是(1,2)D.函数有最大值28.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7 9.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是()①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时函数值y随x值的增大而增大;④当x=﹣1或x=3时函数的最小值是0;⑤当x=1时函数的最大值是4A.4B.3C.2D.110.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√2 11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时函数y的值等于0;④当x=-3或x=1时函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.4 12.如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1,0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(共6题;共6分)13.已知二次函数y=ax2+4ax+a2−1,当−4≤x≤1时y的最大值为5,则实数a的值为.14.函数y=2x2-8x+1的最小值是.15.当-2≤x≤1时二次函数若y=−(x−m)2+m2+1有最大值4,则m的值为.16.如图,在△ABC中△B=90°,AB=12cm,BC=24cm,动点P从点A开始向B点以2cm/s的速度移动(不与点B重合);动点Q从点B开始向点C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒四边形APQC的面积最小.17.一条抛物线与x轴相交于A,B两点(点A在点B的左侧),若点M,N的坐标分别为(-1,-2),(1,-2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为.18.二次函数y=mx2+2x+m−4m2的图象经过原点,则此抛物线的顶点坐标是三、综合题(共6题;共66分)19.如图,在平面直角坐标系中点A、C的坐标分别为(﹣1,0)、(0,﹣√3),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.20.X市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n4710往返次数m16104b(k,b为常数,k≠0);②y=ax2+bx+c(a,b,c为常数,a≠0)中选取一个合适的函数模型,求出的m关于n的函数关系式是m=(不写n的范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时一天的设计运营人数Q最多(每节车厢载容量设定为常数p).21.在平面直角坐标系xOy中抛物线y=ax2+bx+2(a≠0)经过点A(1,−1),与y轴交于点B.(1)直接写出点B的坐标;(2)点P(m,n)是抛物线上一点,当点P在抛物线上运动时n存在最大值N.①若N=2,求抛物线的表达式;②若−9<a<−2,结合函数图象,直接写出N的取值范围.22.一商店销售某种商品,平均每天可售出20件,每件盈利50元,为了扩大销售、增加利润,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)当每件商品降价多少元时该商店每天销售利润为1600元?(2)当每件商品降价多少元时该商店每天销售利润最大?最大为多少元?23.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?24.如图,已知直线y=﹣12x+2与抛物线y=a (x+2)2相交于A、B两点,点A在y 轴上,M为抛物线的顶点.(1)请直接写出点A的坐标及该抛物线的解析式;(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案1.【答案】C 2.【答案】D 3.【答案】D 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】A 11.【答案】B 12.【答案】D13.【答案】2−√10 或1 14.【答案】-7 15.【答案】2或- √3 16.【答案】3 17.【答案】-3 18.【答案】(-4,-4)19.【答案】(1)解:设二次函数的解析式为y=ax 2+bx+c (a≠0,a 、b 、c 为常数)由抛物线的对称性知B 点坐标为(3,0) 依题意得: {a −b +c =09a +3b +c =0c =−√3解得: {a =√33b =−2√33c =−√3∴所求二次函数的解析式为 y =√33x 2−2√33x −√3(2)解:∵P 点的横坐标为m∴P 点的纵坐标为 √33m 2−2√33m −√3设直线BC 的解析式为y=kx+b (k≠0,k 、b 是常数) 依题意,得 {3k +b =0b =−√3∴{k=√33b=−√3故直线BC的解析式为y=√33x−√3∴点F的坐标为(m,√33m−√3)∴PF=−√33m2+√3n(0<m<3)(3)解:∵△PBC的面积S=S△CPF+S△BPF=12PF⋅BO=12×(−√33m2+√3m)×3=−√32(m−32)2+9√38∴当m=32时△PBC的最大面积为9√38把m=32代入y=√33x2−2√33x−√3得y=−5√34∴点P的坐标为(32,−5√3 4)20.【答案】(1)-2n+24(2)解:由题意得:Q=pmn=pn(−2n+24)=−2pn2+24pn ∵−2p<0∴Q有最大值∴当n=−24p2×(−2p)=6时Q有最大值此时答:一列火车每次挂6节车厢,一天往返12次时一天的设计运营人数最多. 21.【答案】(1)(0,2)(2)解:①依题意,当N=2时该抛物线的顶点为(0,2).设抛物线的解析式为y=ax2+2.由抛物线过A(1,−1),得a+2=−1解得a=−3∴抛物线的表达式为y=−3x2+2.②2≤N<322.【答案】(1)解:设每件商品应降价x元,根据题意,得(50-x)(20+2x)=1600 解得:x1=10,x2=30因要求每件盈利不少于25元,故x2=30应舍去……答:每件商品应减价10元,该商店每天销售利润为1600元.(2)解:设每件商品应降价x元,销售利润为W元。

中考数学总复习《二次函数的三种形式》练习题及答案

中考数学总复习《二次函数的三种形式》练习题及答案

中考数学总复习《二次函数的三种形式》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.抛物线y=﹣2(x ﹣3)2+5的顶点坐标是( )A .(3,﹣5)B .(﹣3,5)C .(3,5)D .(﹣3,﹣5)2.将函数y=x 2﹣2x ﹣5变形为y=a (x ﹣h )2+k 的形式,正确的是( )A .y=(x ﹣1)2﹣5B .y=(x ﹣2)2+5C .y=(x ﹣1)2﹣6D .y=(x+1)2﹣43.抛物线y=(x-2)2+3的对称轴是( )A .直线x=-3B .直线x=-2C .直线x=2D .直线x=3 4.抛物线y=﹣ 15 x 2+ 25 x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =−15(x −1)2+45C .y=﹣ 15 (x ﹣1)2﹣ 45 .D .y =15(x +1)2+455.抛物线y=-2(x -1)2-3与y 轴的交点纵坐标为( )A .-3B .-4C .-5D .-16.二次函数 y =−x 2+6x −7 ,当x 取值为 t ≤x ≤t +2 时,有最大值t=2,则t 的取值范围为()A .t ≤0B .0≤t ≤3C .t ≥3D .以上都不对 7.抛物线y=x 2﹣2x+2的顶点坐标为( )A .(1,1)B .(﹣1,1)C .(1,3)D .(﹣1,3) 8.抛物线y =-(x +2)2-3的顶点坐标是 ( )A .(-2,3)B .(2,3)C .(-2,-3)D .(2,-3)9.抛物线y =−(x −1)2−2的顶点坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)10.顶点为(﹣5,﹣1),且开口方向,形状与函数y=﹣13x 2的图象相同的抛物线是( )A .y=13(x ﹣5)2+1B .y=﹣13x 2﹣5C .y=﹣13(x+5)2﹣1D .y=13(x+5)2﹣111.若二次函数y =x 2−mx +6配方后为y =(x −2)2+k ,则 m, k 的值分别为( )A .0,6B .0,2C .4,6D .4,2 12.二次函数y=-(x-1)2+3的图象的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)二、填空题13.利用配方法求出抛物线y=2x 2﹣4x ﹣1的顶点坐标、对称轴、最大值或最小值;若将抛物线y=2x 2﹣4x ﹣1先向左平移3个单位,再向上平移2个单位,所得抛物线的函数关系式为 . 14.二次函数y=x 2﹣4x ﹣3的顶点坐标是 .15.将抛物线y=x 2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 .16.把二次函数y=x 2﹣12x 化为形如y=a (x ﹣h )2+k 的形式17.将二次函数y=ax 2+bx+c 利用配方法化为顶点式 . 18.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= . 三、综合题19.已知二次函数 y =−12x 2+x +32. (1)将 y =−12x 2+x +32化成 y =a(x −ℎ)2+k 的形式; (2)指出该二次函数的图象的顶点坐标;(3)请用描点法画出此二次函数的图象.20.如图,在平面直角坐标系xOy 中,抛物线C 1:y=a (x- 52)2+h 分别与x 轴、y 轴交于点A (1,0)和点B (0,-2),将线段AB 绕点A 逆时针旋转90°至AP .(1)求点P 的坐标及抛物线C 1的解析式;(2)将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2,请你判断点P 是否在抛物线C 2上,并说明理由.21.已知二次函数y=﹣ 12 x 2﹣x+ 72(1)用配方法把该二次函数的解析式化为y=a (x+h )2+k 的形式;(2)指出该二次函数图象的开口方向、顶点坐标和对称轴.22.已知抛物线经过点(4,3),且当 x =2 时, y 有最小值 −1 .(1)求这条抛物线的解析式.(2)写出 y 随 x 的增大而减小的自变量 x 的取值范围.23.已知二次函数y=x 2﹣(2k+1)x+k 2+k (k >0)(1)当k= 12时,将这个二次函数的解析式写成顶点式; (2)求证:关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0有两个不相等的实数根. 24.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.(1)y=﹣3x 2+8x ﹣2(2)y=﹣ 14x 2+x ﹣4.参考答案1.【答案】C2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】C7.【答案】A8.【答案】C9.【答案】C10.【答案】C11.【答案】D12.【答案】A13.【答案】y=2x2+8x+714.【答案】(2,﹣7)15.【答案】y=x2-8x+20.16.【答案】y=(x﹣6)2﹣3617.【答案】y=a(x+ b2a)2+ 4ac−b24a18.【答案】﹣319.【答案】(1)解:y=−12x2+x+32=−12(x2−2x)+32=−12(x−1)2+2(2)解:由(1)知,该二次函数的图象的顶点坐标为(1,2)(3)解:列表:x…−10123…y…0 1.52 1.50…20.【答案】(1)解:∵A (1,0)和点B (0,-2),∴OA=1,OB=2,过P 作PM ⊥x 轴于M由题意得:AB=AP ,∠BAP=90°,∴∠OAB+∠PAM=∠ABO+∠OAB=90° ∴∠ABO=∠PAM .在△ABO 于△APM 中,{∠AOB =∠AMP∠ABO =∠PAM AB =AP,∴△ABO ≌△APM ,∴AM=OB ,PM=OA ∴P (3,-1)∵A (1,0)和点B (0,-2)在抛物线C 1:y=a (x- 52 )2+h 上,∴{a (1−52)2+ℎ=0a (0−52)2+ℎ=−2解得: {a =−12ℎ=98,∴抛物线的解析式 C 1:y =−12(x −52)2+98 (2)解:∵将抛物线C 1先向左平移2个单位,再向上平移1个单位得到抛物线C 2 ∴y=- 12 (x- 52+2)2+ 98 +1 ∴抛物线C 2的解析式为:y=- 12 (x- 12 )2+ 178当x=3时,y=- 12 (3- 12 )2+ 178=-1 ∴点P 在抛物线C 2上.21.【答案】(1)解:y=﹣ 12 x 2﹣x+ 72=﹣ 12 (x 2+2x+1)+ 12 + 72=﹣ 12(x+1)2+4 (2)解:∵a=﹣ 12<0 ∴开口向下;顶点坐标(﹣1,4);对称轴为直线x=﹣122.【答案】(1)解:设抛物线的解析式为:y=a(x-2)2-1 把(4,3)代入,得4a-1=3∴a=1即y=(x-2)2-1 或y=x 2-4x+3(2)解:由y=(x-2)2-1知图形对称轴为x=2,且a=1>0∴y 随 x 的增大而减小的自变量 x 的取值范围是x<2.23.【答案】(1)解:把k= 12 代入y=x 2﹣(2k+1)x+k 2+k (k >0)得y=x 2﹣2x+ 34 因为y=(x ﹣1)2﹣ 14所以抛物线的顶点坐标为(1,﹣ 14) (2)证明:△=(2k+1)2﹣4(k 2+k )=1>0所以关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0有两个不相等的实数根24.【答案】(1)解:y=﹣3x 2+8x ﹣2=﹣3(x ﹣ 43 )2+ 103. 该抛物线的开口方向向下,对称轴为x= 43 ,顶点坐标( 43 , 103) (2)解:y=﹣ 14 x 2+x ﹣4=﹣ 14(x ﹣2)2﹣3。

中考数学复习《二次函数》练习题含答案

中考数学复习《二次函数》练习题含答案

中考数学复习 二次函数一、选择题1.下列函数中,图象经过原点的是( A )A .y =3xB .y =1-2xC .y =4x D .y =x 2-1【解析】代入原点即可验证.2.将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的解析式为( A )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-53.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( A )A .x 1=0,x 2=4B .x 1=-2,x 2=6C .x 1=32,x 2=52D .x 1=-4,x 2=04.已知二次函数y =a x 2+bx +c 的图象如图所示,则( B )A .b >0,c >0B .b >0,c <0C .b <0,c <0D .b <0,c >05.将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( D )A .b >8B .b >-8C .b ≥8D .b ≥-86.如图,抛物线y =ax 2+bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论:①abc <0;②10a +3b +c >0;③抛物线经过点(4,y 1)与点(-3,y 2),则y 1>y 2;④无论a ,b ,c 取何值,抛物线都经过同一个点(-ca ,0);⑤am 2+bm +a ≥0,其中所有正确的结论是( A )A .②④⑤B .①④⑤C .①②③D .③④⑤ 二、填空题7.已知抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__4__. 【解析】由题意得--b2×2=1,∴b =4.8.已知二次函数的图象开口向上,且顶点在y 轴的负半轴上,请你写出一个满足条件的二次函数的解析式__y =x 2-2__.【解析】答案不唯一,要满足条件a >0,c <0.9.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (-1,p ),B (4,q )两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是__x<-1或x>4__.,第9题图) ,第10题图)10.如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是__y =12(x -2)2+4__.11.已知抛物线y =-x 2-2x +3与x 轴交于A ,B 两点,将这条抛物线的顶点记为C ,连结AC ,BC ,则tan ∠CAB 的值为__2__.【解析】令y =0,则-x 2-2x +3=0,解得x =-3或1,不妨设A(-3,0),B(1,0),∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C(-1,4),如图所示,作CD ⊥A B 于D.在Rt △ACD 中,tan ∠CAD =CD AD =42=2.12.已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0),当a -b 为整数时,ab 的值为__34或1__.【解析】依题意知a >0,b2a >0,a +b -2=0,故b >0,且b =2-a ,于是0<a <2,a-b =a -(2-a)=2a -2,∴-2<2a -2<2,又a -b 为整数,∴2a -2=-1,0,1,故a =12,1,32,b =32,1,12,∴ab =34或1. 三、解答题13.已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x 轴的交点A ,B(A 在B 的左侧)的坐标,及△ABC 的面积. 解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1,∴顶点C 的坐标是(2,-1),当x ≤2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大(2)解方程x 2-4x +3=0得x 1=3,x 2=1,即A 点的坐标(1,0),B 点的坐标(3,0).如图,过C 作CD ⊥AB 于D ,∵AB =2,CD =1,∴S △ABC =12AB·CD =12×2×1=114.在平面直角坐标系中,设二次函数y 1=(x +a )(x -a -1),其中a ≠0. (1)若函数y 1的图象经过点(1,-2),求函数y 1的解析式;(2)若一次函数y 2=ax +b 的图象与y 1的图象经过x 轴上同一点,探究实数a ,b 满足的关系式;(3)已知点P (x 0,m )和Q (1,n )在函数y 1的图象上.若m <n ,求x 0的取值范围.解:(1)由题意知(1+a )(1-a -1)=-2,即a (a +1)=2,因为y 1=x 2-x -a (a +1),所以y 1=x 2-x -2(2)由题意知,函数y 1的图象与x 轴交于点(-a ,0)和(a +1,0),当y 2的图象过点(-a ,0)时,得a 2-b =0;当y 2的图象过点(a +1,0)时,得a 2+a +b =0(3)由题意知,函数y 1的图象的对称轴为直线x =12,所以点Q (1,n )与点(0,n )关于直线x =12对称.因为函数y 1的图象开口向上,所以当m <n 时,0<x 0<115.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边的距离分别为12 m ,32m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?解:(1)根据题意得B (12,34),C (32,34),把B ,C 代入y =ax 2+bx 得⎩⎨⎧34=14a +12b ,34=94a +32b ,解得⎩⎨⎧a =-1,b =2,∴拋物线的函数关系式为y =-x 2+2x ,∴图案最高点到地面的距离=-224×(-1)=1 (2)令y =0,即-x 2+2x =0,∴x 1=0,x 2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案16.如图,在平面直角坐标系中,二次函数y =-14x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).(1)求该二次函数的解析式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连结CD ,CF ,以CD ,CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .①求S 的最大值;②在点F 的运动过程中,当点E 落在该二次函数图象上时,请直接写出此时S 的值.解:(1)把A (0,8),B (-4,0)代入y =-14x 2+bx +c 得⎩⎨⎧c =8,-4-4b +c =0,解得⎩⎨⎧b =1,c =8,∴抛物线的解析式为y =-14x 2+x +8;当y =0时,-14x 2+x +8=0,解得x 1=-4,x 2=8,∴C 点坐标为(8,0)(2)①连结OF ,如图,设F (t ,-14t 2+t +8),∵S四边形OCFD=S △CDF +S △OCD =S △ODF +S△OCF,∴S △CDF =S △ODF +S △OCF -S △OCD =12×4×t +12×8×(-14t 2+t +8)-12×4×8=-t 2+6t+16=-(t -3)2+25,当t =3时,△CDF 的面积有最大值,最大值为25,∵四边形CDEF 为平行四边形,∴S 的最大值为50 ②∵四边形CDEF 为平行四边形,∴CD ∥EF ,CD =EF ,∵点C 向左平移8个单位,再向上平移4个单位得到点D ,∴点F 向左平移8个单位,再向上平移4个单位得到点E ,即E (t -8,-14t 2+t +12),∵点E 在抛物线上,∴-14(t -8)2+t -8+8=-14t 2+t +12,解得t =7,当t =7时,S △CDF =-(7-3)2+25=9,∴此时S =2S△CDF=18。

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为()A.πB.2πC.3πD.4π2.如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l⊙x轴,交该抛物线于M、N两点,交⊙P与E、F两点,若EF=2√3,则MN的长为()A.2√6B.4√2C.5D.63.如图,已知⊙ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣24.如图,在⊙ABC中,⊙C=90°,AC=BC=3cm.动点P从点A出发,以√2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC →CB方向运动到点B.设⊙APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.5.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=(12﹣x2)C.y=(12﹣x)•x D.y=2(12﹣x)6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。

已知计划中的建筑材料可建围墙(不包括门)的总长度为50m。

设饲养室长为x(m),占地面积为y(m²),则y关于x的函数表达式是()A.y=-x²+50x B.y= −12x²+24xC.y= −12x2+25x D.y= −12x2+26x7.如图,四边形ABCD中,AB=AD,CE⊙BD,CE= 12BD.若⊙ABD的周长为20cm,则⊙BCD的面积S(cm2)与AB的长x(cm)之间的函数关系式可以是()2−10x+100B.S=2x2−40x+200A.S=14xC.S=x2−20x+100D.S=x2+20x+1008.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是()A.12B.18C.24D.369.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若⊙ABC与⊙ABD的面积比为1:4,则k值为()A.1B.12C.43D.4510.半径是3的圆,如果半径增加2x,那么面积S和x之间的函数关系式是()A.S=2π(x+3)2B.S=9π+xC.S=4πx2+12x+9D.S=4πx2+12πx+9π11.设抛物线y=ax2+bx+c(ab≠0)的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 () A.y=−3(x−1)2+1B.y=2(x−0.5)(x+1.5)C.y=13x 2−43x+1D.y=(a2+1)x2−4x+2(a为任意常数)12.已知坐标平面上有两个二次函数y=a(x+1)(x−7),y=b(x+1)(x−15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x−15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位二、填空题13.如图,点A(0,1),平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE⊙AC,交y2于点E,则DE =.14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.15.如图,在平面直角坐标系中,菱形OABC的边长为2,⊙AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊙AB时,CE的长为。

中考数学总复习《二次函数的实际应用》专项测试卷带答案

中考数学总复习《二次函数的实际应用》专项测试卷带答案

中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。

中考数学总复习《二次函数的最值》练习题附带答案

中考数学总复习《二次函数的最值》练习题附带答案

中考数学总复习《二次函数的最值》练习题附带答案一、单选题(共12题;共24分)1.二次函数y=−(x−1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+ n的值为()A.52B.2C.12D.322.已知二次函数y=(x-1)2-3,则此二次函数()A.有最大值1B.有最小值1C.有最大值-3D.有最小值-33.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512⑴二次函数y=ax2+bx+c有最小值,最小值为﹣3;⑴当−12<x<2时,y<0;⑴二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.04.对于代数式x2-10x+24,下列说法:①它是二次三项式;②该代数式的值可能等于2017;③分解因式的结果是(x-4)(x-6);④该代数式的值可能小于-1.其中正确的有()A.1个B.2个C.3 个D.4个5.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④a+b+cb−a的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个6.已知非负数a,b,c满足a+b=3且c﹣3a=﹣6,设y=a2+b+c的最大值为m,最小值为n,则m ﹣n的值是()A.16B.15C.9D.77.由二次函数y=(x﹣1)2﹣3可知()A.图象开口向下B.对称轴是直线x=﹣1C.函数最小值是3D.顶点是(1,﹣3)8.抛物线y=x2,当﹣1≤x≤3时,y的取值范围是()A.﹣1≤y≤9B.0≤y≤9C.1≤y≤9D.﹣1≤y≤39.已知二次函数的图象(-0.7≤x≤2)如图所示。

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案

中考数学专项复习《二次函数的三种形式》练习题带答案一、单选题1.二次函数y=x 2﹣2x+4化为y=a (x ﹣h )2+k 的形式,下列正确的是( )A .y=(x ﹣1)2+2B .y=(x ﹣1)2+3C .y=(x ﹣2)2+2D .y=(x ﹣2)2+42.抛物线y=x 2﹣2x ﹣3的对称轴和顶点坐标分别是( ).A .x=1,(1,﹣4)B .x=1(1,4)C .x=﹣1,(﹣1,4)D .x=﹣1,(﹣1,﹣4)3.把y=4x 2﹣4x+2配方成y=a (x ﹣h )2+k 的形式是( )A .y=(2x ﹣1)2+1B .y=(2x ﹣1)2+2C .y=(x ﹣ 12)2+1D .y=4(x ﹣ 12)2+24.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为( ) A .b =2,c =-2 B .b =-8,c =14 C .b =-6,c =6D .b =-8,c =185.直角坐标平面上将二次函数y=x 2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( ) A .(0,0)B .(1,-1)C .(0,-1)D .(-1,-1)6.将二次函数y=x 2+4x ﹣8化为y=(x+m )2+n 的形式正确的是( )A .y=(x+2)2+8B .y=(x+2)2﹣8C .y=(x+2)2+12D .y=(x+2)2﹣127.若b<0,则二次函数y=x 2-bx-1的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限8.通过配方法将二次函数y=ax 2+bx+c (a≠0)化成y=a (x ﹣h )2+k 的形式,此二次函数可变形为( )A .y=a (x+ b 2a )2+ 4ac−b 24aB .y=a (x ﹣ b 2a )2+ 4ac−b 24aC .y=a (x+ b 2a )2+ b 2−4ac 4aD .y=a (x ﹣ b 2a )2+ b 2−4ac 4a9.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x+1)2+2C .y=(x ﹣1)2+4D .y=(x ﹣1)2+210.抛物线y=﹣ 15 x 2+ 25x ﹣1,经过配方化成y=a (x ﹣h )2+k 的形式是( )A .y =15(x +1)2−45B .y =15(x −1)2+45C .y =15(x −1)2−45D .y =15(x +1)2+4511.如图,在 ΔABC 中 ∠B =90° ,tan ∠C =34,AB=6cm.动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.若P,Q 两点分别从A,B 两点同时出发,在运动过程中 ΔPBQ 的最大面积是( )A .18cm 2B .12cm 2C .9cm 2D .3cm 212.如图,在平面直角坐标系中抛物线所表示的函数解析式为y=﹣2(x ﹣h )2+k ,则下列结论正确的是( )A .h >0,k >0B .h <0,k >0C .h <0,k <0D .h >0,k <0二、填空题13.二次函数 y =−x 2+2x +3 的图象与 x 轴交于 A 、 B 两点, P 为它的顶点,则S △PAB = .14.把二次函数的表达式y=x 2﹣6x+5化为y=a (x ﹣h )2+k 的形式,那么h+k= 15.将二次函数y=x 2﹣2x+4化成y=(x ﹣h )2+k 的形式,则y= . 16.若二次函数y=x 2+bx+5配方后为y=(x ﹣2)2+k ,则b+k= .17.若将二次函数y=x 2﹣2x+3配方为y=(x ﹣h )2+k 的形式,则y= . 18.已知抛物线的表达式是y =2(x +2)2−1,那么它的顶点坐标是 ;三、综合题19.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.已知二次函数y= 2x2 -4x-6.(1)用配方法将y= 2x2 -4x-6化成y=a (x-h) 2 +k的形式;并写出对称轴和顶点坐标。

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。

2023年中考数学专题复习:二次函数综合题训练(含答案)

2023年中考数学专题复习:二次函数综合题训练(含答案)
(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案

中考数学总复习《二次函数》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.要得到二次函数y=−x2图象,可将y=−(x−1)2+2的图象如何移动()A.向左移动1单位,向上移动2个单位B.向右移动1单位,向上移动2个单位C.向左移动1单位,向下移动2个单位D.向右移动1单位,向下移动2个单位2.若二次函数y=a x2+bx+c(a≠0)的图象的顶点在第二象限,且过点(0,1)和(1,0),则m=a-b+c的值的变化范围是()A.0<m<1B.0<m<2C.1<m<2D.-1<m<13.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1−(x−a)(x−b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b4.对于二次函数y=x2﹣2mx﹣3,有下列说法:①它的图象与x轴有两个公共点;②若当x≤1时y随x的增大而减小,则m=1;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=4时的函数值与x=2时的函数值相等,则当x=6时的函数值为﹣3.其中正确的说法是()A.①②③B.①④C.②④D.①②④5.已知二次函数y=x2+2mx+m的图象与x轴交于A(a,0),B(b,0)两点,且满足,4≤a+b≤6.当1≤x≤3时,该函数的最大值H与m满足的关系式是()A.H=3m+1B.H=5m+4C.H=7m+9D.H=−m2+m6.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣1),且顶点在第三象限,则a的取值范围是()A.a>0B.0<a<1C.1<a<2D.﹣1<a<17.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.8.正方形的边长为3,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+3)2B.y=x2+9C.y=x2+6x D.y=3x2+12x9.若将抛物线y=2x2+1先向右平移1个单位长度,再向下平移3个单位长度,则所得抛物线的表达式为()A.y=2(x−1)2−2B.y=2(x+1)2−2C.y=2(x−1)2+3D.y=2(x+1)2+310.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a−b<0;②abc<0;③a+b+c<0;④a−b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个11.如图,二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣312.已知某种礼炮的升空高度ℎ(m)与飞行时间t(s)的关系式是ℎ=−52t2+20t+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3 s B.4 s C.5 s D.6 s二、填空题13.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,x2−2x+3)图象上的最低点是.14.有一个角是60°的直角三角形,它的面积S与斜边长x之间的函数关系式是.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x−2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△ POQ面积的最大值是.16.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:下列结论:①a>0;②当x=﹣2时,函数最小值为﹣6;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的序号是(把所有正确结论的序号都填上)x﹣5﹣4﹣202y60﹣6﹣4617<3时,x的取值范围是.18.在平面直角坐标系中,抛物线y=-x2+2ax与直线y=x+2的图象在-1≤x≤1的范围有且只有一个公共点P,则a的取值范围是.三、综合题19.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,74)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 74时,直接写出x的取值范围是.20.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.21.如图,有一个长为24米的篱笆,一面有围墙(墙的最大长度为10米)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1)求S与的函数关系式及x的取值范围.(2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?22.如图,二次函数y=−x2+2x+3的图象与x轴交于A、B两点,与y轴交于点C,顶点为D(1)求点A,B,C的坐标.(2)求△BCD的面积23.给出两种上宽带网的收费方式:收费方式月使用费/元包月上网时间/h超时费/(元/ min)A30250.05B50500.0512(1)直接写出y1,y2与x之间的函数关系式;(2)x为何值时,两种收费方式一样?(3)某用户选择B方式宽带网开网店.若该用户上网时间x小时,产生y=−x2+ax+1950(元)(a>103)的经济收益.若某月该用户上网获得的利润最大值为5650元,直接写出a的值.(上网利润=上网经济收益-月宽带费)24.已知抛物线y=ax2−2ax+c(a<0)的图象过点A(3,m).(1)当a=-1,m=0时,求抛物线的顶点坐标;(2)若P(t,n)为该抛物线上一点,且n<m,求t的取值围;(3)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD△x轴交直线l于点D,作QE△y轴于点E,连接DE.设△QED=b,当2≤x≤4时,b 恰好满足30°≤β≤60°,求a的值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】B13.【答案】(1,2)14.【答案】√38x 215.【答案】3 16.【答案】①③④ 17.【答案】-1<x <3 18.【答案】a≥0或a≤-119.【答案】(1)解:把A (﹣1,0),B (3,0)代入y =ax 2+bx+3解得:a =﹣1,b =2抛物线的解析式为y =﹣x 2+2x+3(2)解:把点D 的y 坐标y = 74,代入y =﹣x 2+2x+3解得:x = 12 或 32则EF 长 =32−(−12)=2 (3)x ≤12 或 x ≥32.20.【答案】解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32,解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32(2)将抛物线y =−12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】解:抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.(1)解:把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32解得:{b =−1c =32则抛物线解析式为y =−12x 2−x +32(2)解:抛物线解析式为y=−12x2−x+32=−12(x+1)2+2将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=−12x2.21.【答案】解:AB为xm,则BC就为(24-3x)m,S=(24-3x)x=24x-3x2,∵x>0,且10≥24-3x>0,∴143≤x<8. (2)如果要围成的花圃ABCD的面积是45平方米,则AB的长为多少米?解:45=24x-3x2,解得x=5或x=3;故AB的长为5米.(1)解:AB为xm,则BC就为(24-3x)mS=(24-3x)x=24x-3x2∵x>0,且10≥24-3x>0∴143≤x<8.(2)解:45=24x-3x2解得x=5或x=3;故AB的长为5米.22.【答案】(1)解:令y=0,可得x=3或x=﹣1.令x=0,可得y=3.∴A(-1,0)B(3,0)C(0,3)(2)解:依题意,可得y=-x2+2x+3=-(x-1)2+4.∴顶点D(1,4).令y=0,可得x=3或x=-1.∴令x=0,可得y=3.∴C(0,3).∴OC=3,∴直线DC的解析式为y=x+3.设直线DE交x轴于E.∴BE=6.∴S△BCD=S△BED-S△BCE=3.∴△BCD的面积为3.23.【答案】(1)解:由题意可得:A、B两种收费超时收费都为0.05×60=3元/小时A种上网的月收费为y1=30+3(x−25)=3x−45;B种上网的月收费可分①当25≤x≤50时,y2=50,②当x>50时,y2=50+3(x−50)=3x−100综上所述:y2={50,25≤x≤503x−100,x>50.(2)解:由(1)可分:①当25≤x≤50时,两种收费一样,则有3x−45=50解得:x=953②当x>50时,两种收费一样,则有3x−45=3x−100,方程无解,故不成立∴综上所述:当上网时间为953小时,两种上网收费一样;答:当上网时间x为953小时,两种上网收费一样.(3)解:设上网利润为w元,则由题意得:①当上网时间25≤x≤50时,上网利润为w=−x2+ax+1950−50=−x2+ax+1900∵a>103∴x=a2>50∵该二次函数的图象开口向下,在25≤x≤50,y随x的增大而增大∴该用户上网获得的利润最大值为5650元,所以当x=50时,则有:−2500+50a+1900=5650,解得:a=125;②当x>50时,上网利润为w=−x2+ax+1950−3x+100=−x2+(a−3)x+2050∴该二次函数的图象向下,对称轴为直线x=a−3 2∵a>103∴x=a−32>50∴y随x的增大而减小∴当x=a−32时,y有最大值,即−(a−32)2+(a−3)(a−32)+2050=5650解得:a1=123,a2=−117(不符合题意,舍去)综上所述:当某月该用户上网获得的利润最大值为5650元,则a=125或123. 24.【答案】(1)解:当a=-1,m=0时,y=−x2+2x+c,A点的坐标为(3,0)∴-9+6+c=0.解得c=3∴抛物线的表达式为y=−x2+2x+3.即y=−(x−1)2+4.∴抛物线的顶点坐标为(1,4).(2)解:∵y=ax2−2ax+c的对称轴为直线x=−2a−2a=1∴点A关于对称轴的对称点为(-1,m).∵a<0∴当x<1,y随x的增大而增大;当x>1,y随x的增大而减小.又∵n <m∴当点P 在对称轴左边时,t <-1; 当点P 在对称轴右边时,t >3.综上所述:t 的取值范围为t <-1或t >3; (3)解:∵点Q (x ,y )在抛物线上 ∴y =ax 2−2ax +c .又∵QD△x 轴交直线 l :y =kx +c(k <0) 于点D ∴D 点的坐标为(x ,kx +c ).又∵点Q 是抛物线上点B ,C 之间的一个动点 ∴QD =ax 2−2ax +c −(kx +c)=ax 2−(2a +k)x . ∵QE =x∴在Rt△QED 中, tanβ=QD QE =ax 2−(2a+k)x x=ax −2a −k . ∴tanβ 是关于x 的一次函数 ∵a <0∴tanβ 随着x 的增大而减小.又∵当 2≤x ≤4 时, β 恰好满足 30°≤β≤60° ,且 tanβ 随着 β 的增大而增大 ∴当x =2时, β =60°;当x =4时, β =30°. ∴{2a −2a −k =√34a −2a −k =√33解得 {k =−√3a =−√33∴a =−√33.。

中考数学总复习《二次函数综合题》专项提升练习题(附答案)

中考数学总复习《二次函数综合题》专项提升练习题(附答案)

中考数学总复习《二次函数综合题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________类型一 线段问题1. 如图,抛物线y =14 x 2+bx +c 过点A (4,0),B (-4,4),与y 轴交于点C ,连接AB .(1)求抛物线的表达式;(2)若E 是线段AB 上的一个动点(不与点A ,B 重合),过点E 作y 轴的平行线,分别交抛物线,x 轴于F ,D 两点,若DE =2DF ,请求出点E 的坐标.第1题图2. 平面直角坐标系中已知抛物线y =ax 2+83 x +c (a ≠0)与x 轴交于点A (1,0)和点B ,与y轴交于点C (0,-4).(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作 PD ⊥x 轴,垂足为D ,连接PC . ①如图,若点P 在第三象限,且tan ∠CPD =2,求点P 的坐标;②直线PD 交直线BC 于点E ,当点E 关于直线PC 的对称点E ′落在y 轴上时,请直接写出四边形 PECE ′的周长.第2题图 备用图类型二 面积问题1. 如图,抛物线y =ax 2+bx +5(a ≠0)交x 轴于A (-1,0),B (5,0)两点,交y 轴于点C ,连接AC ,BC ,点G 为线段BC 上方的抛物线上一点,过点G 作GH ∥AC 交BC 于点H . (1)求抛物线的解析式;(2)连接AG ,AH ,BG ,设h =S △AGB -S △AHB ,点G 的横坐标为t ,求h 关于t 的函数解析式,并求出h 的最大值.第1题图2. 在平面直角坐标系中点O 是坐标原点,抛物线y =ax 2+bx (a ≠0)经过点A (3,3),对称轴为直线x =2. (1)求a ,b 的值;(2)已知点B ,C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为t +1.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E . (ⅰ)当0<t <2时,求△OBD 与△ACE 的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B ,使得以B ,C ,D ,E 为顶点的四边形的面积为32 ?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.类型三存在性问题典例精析例如图,在平面直角坐标系xOy中抛物线y=-x2+2x+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C,连接BC,点D为抛物线的顶点.(1)若点M为抛物线对称轴上一点,是否存在点M,使得△BCM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;例题图①【思路点拨】判断等腰三角形存在性问题,一般要进行分类讨论.①BC为腰时:分别以点B,C为圆心,BC长为半径画圆,与直线x=1的交点即为所求作的点;②BC为底时:作线段BC的垂直平分线,与直线x=1的交点即为所求作的点.(2)在抛物线上是否存在一点N,使得△BCN是以BC为直角边的直角三角形?若存在,求出点N的坐标;若不存在,请说明理由;例题图②【思路点拨】判断直角三角形存在性问题,一般要进行分类讨论.①BC 为直角边时:分别过点B ,C 作BC 的垂线,与抛物线的交点即为所求作的N 点; ②BC 为斜边,点N 为直角顶点时:以BC 的中点为圆心,12 BC 的长为半径作圆,所作的圆与抛物线的交点即为所求作的N 点.(3)若点Q 为第一象限内抛物线上一点,过点Q 作QG ⊥x 轴,垂足为G ,连接AC ,OQ .是否存在点Q ,使得△QGO ∽△AOC ?若存在,求出点Q 的坐标;若不存在,请说明理由; 【思路点拨】判断相似三角形存在性问题,通常利用相似三角形的性质,列出线段比例关系,求解即可.例题图③(4)若点E 在抛物线上,点F 在x 轴上,是否存在点E ,使得以D ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标;若不存在,请说明理由; 【思路点拨】判断平行四边形存在性问题,一般要进行分类讨论. ①当DE ,FC 是平行四边形对角线时; ②当DF ,EC 是平行四边形对角线时; ③当DC ,EF 是平行四边形对角线时.再利用平行四边形对角线的性质结合中点坐标公式求点坐标即可.例题图④(5)若点H是x轴上一点,点K是平面任意一点,是否存在点H,使得以点A,C,H,K为顶点的四边形是矩形?若存在,求出点H的坐标;若不存在,请说明理由;【思路点拨】判断矩形存在性问题,一般要进行分类讨论.①当AC为矩形的边时,∠ACH=90°;②当AC为矩形的对角线时,∠AHC=90°.再利用勾股定理求解即可.例题图⑤(6)若点S是第一象限抛物线上一点,过点S作ST⊥BC于点T,连接AC,CS,是否存在点S使得△CST中有一个角与∠CAO相等,若存在,求出S点坐标;若不存在,请说明理由.【思路点拨】判断角度存在性问题,一般要进行分类讨论.①若∠SCT=∠CAO;②若∠CST=∠CAO.再构造直角三角形,利用三角函数求解即可.例题图⑥对接中考1. 如图,抛物线y=x2+bx+c过点A(-1,0),点B(5,0),交y轴于点C.(1)求b,c的值;(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.第1题图2. 如图,将一块自制的直角三角板放置在平面直角坐标系中顶点为坐标原点,A(0,-3),B(6,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O,抛物线L经过点A′,B′,B.(1)求抛物线L的解析式;(2)点Q为平面内一点,在直线AB上是否存在点P,使得以点A,B′,P,Q为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.第2题图拓展类型二次函数性质综合题1. 在二次函数y=x2-2tx+3(t>0)中(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值;(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2. 已知抛物线y=ax2+bx+3(a,b均为常数,且a≠0)的对称轴为直线x=2.(1)求抛物线顶点M的坐标和b的值(用含a的代数式表示);(2)已知点A(x1,y1),B(x2,y2)都在此抛物线上,且x1<2<x2,x1+x2<4,若a>0,试比较y1与y2的大小,并说明理由;(3)若自变量x的值满足-1≤x≤1,与其对应的函数的最大值为18,请直接写出b的值.3. 在平面直角坐标系中抛物线y=ax2-4ax+c(a<0)与x轴交于A(1,0),B两点,与y轴交于点C.(1)若OC=2OB,求抛物线的解析式;(2)若抛物线的最大值为6,求a 的值;(3)若点P (x 0,m ),Q (52,n )在抛物线上,且m <n ,求x 0的取值范围.参考答案类型一 线段问题1. 解:(1)∵抛物线y =14 x 2+bx +c 过点A (4,0),B (-4,4)∴将A (4,0),B (-4,4)分别代入y =14x 2+bx +c 中得⎩⎪⎨⎪⎧4+4b +c =04-4b +c =4 解得⎩⎪⎨⎪⎧b =-12c =-2∴抛物线的表达式为y =14 x 2-12x -2;(2)由点A (4,0),B (-4,4)可得直线AB 的表达式为y =-12 x +2设点E (x ,-12 x +2),其中-4<x <4,则F (x ,14 x 2-12 x -2)∴DE =2-12 x ,DF =|14 x 2-12 x -2|分两种情况讨论:①当点F 在x 轴上方时,即2-12 x =2×(14 x 2-12 x -2)解得x 1=-3,x 2=4(舍去) 将x =-3代入y =-12 x +2中得y =72∴E (-3,72);②当点F 在x 轴下方时,即2-12 x =2×(-14 x 2+12 x +2)解得x 1=-1,x 2=4(舍去)将x =-1代入y =-12 x +2得y =52 ,∴E (-1,52);综上所述,当DE =2DF 时,点E 的坐标为(-3,72 )或(-1,52).2. 解:(1)∵抛物线y =ax 2+83 x +c (a ≠0)与x 轴交于点A (1,0),与y 轴交于点C (0,-4)∴⎩⎪⎨⎪⎧a +83+c =0c =-4 ,解得⎩⎪⎨⎪⎧a =43c =-4∴抛物线的函数解析式为y =43 x 2+83x -4;(2)①如解图①,过点C 作CE ⊥PD 于点E第2题解图①则∠PEC =∠CED =90° ∵C (0,-4) ∴OC =4∵PD ⊥x 轴,垂足为D ∴∠PDO =90°,∠DOC =90° ∴四边形DOCE 是矩形 ∴DE =OC =4 设P (x ,43 x 2+83 x -4)∴CE =-x∴PE =PD -DE =-(43 x 2+83 x -4)-4=-43 x 2-83 x∵tan ∠CPD =CEPE =2∴-x -43x 2-83x =2解得x 1=-138 ,x 2=0(不合题意,舍去)当x =-138 时,43 x 2+83 x -4=-7716∴P (-138 ,-7716);②四边形PECE ′的周长为353 或853.【解法提示】设P (m ,43 m 2+83 m -4),对于y =43 x 2+83 x -4,当y =0时,43 x 2+83 x -4=0,解得x 1=1,x 2=-3,∴B (-3,0),∴OB =3,在Rt △BOC 中由勾股定理得BC =OB 2+OC 2 =5.当点P 在第三象限时,如解图②,过点E 作EF ⊥y 轴于点F第2题解图②则四边形DEFO 是矩形,∴EF =DO =-m ,∵点E 与点E ′关于PC 对称,∴∠ECP =∠E ′CP ,CE =CE ′,PE =PE ′,∵PE ∥y 轴,∴∠EPC =∠PCE ′,∴∠EPC =∠ECP ,∴PE =CE ,∴PE =CE =CE ′=PE ′,∴四边形PECE ′是菱形,∵EF ∥OA ,∴△CEF ∽△CBO ,∴CE CB =EFBO,∴CE 5 =-m 3 ,∴CE =-53m ,设直线BC 的解析式为y =kx +b (k ≠0),把B (-3,0),C (0,-4)代入得,⎩⎪⎨⎪⎧-3k +b =0b =-4 ,解得⎩⎪⎨⎪⎧k =-43b =-4,∴直线BC 的解析式为y =-43 x -4,∴E (m ,-43 m -4),∴PE =-43 m 2-4m ,∵PE =CE ,∴-43 m 2-4m =-53 m ,解得m 1=-74 ,m 2=0(舍去),∴CE =-53 ×(-74 )=3512 ,∴四边形PECE ′的周长为4CE =4×3512 =353;当点P 在第二象限时,如解图③第2题解图③同理可得43 m 2+4m =-53 m ,解得m 1=-174 ,m 2=0(舍去),∴CE =-53 ×(-174 )=8512 ,∴四边形PECE ′的周长为4CE =4×8512 =853 ;综上所述,四边形PECE ′的周长为353 或853.类型二 面积问题1. 解:(1)∵抛物线y =ax 2+bx +5(a ≠0)交x 轴于A (-1,0),B (5,0)两点∴⎩⎪⎨⎪⎧a -b +5=025a +5b +5=0 ,解得⎩⎪⎨⎪⎧a =-1b =4 ∴抛物线的解析式为y =-x 2+4x +5;(2)如解图,过点G 作GD ∥y 轴交BC 于点D ,连接CG ∵当x =0时,y =-x 2+4x +5=5 ∴C (0,5) ∵GH ∥AC ∴S △AGH =S △CGH∴h =S △AGB -S △AHB =S △AGH +S △BGH =S △CGH +S △BGH =S △BGC . 设直线BC 的解析式为y =kx +b 1(k ≠0) 将B (5,0),C (0,5)代入y =kx +b 1中∴⎩⎪⎨⎪⎧5k +b 1=0b 1=5 ,解得⎩⎪⎨⎪⎧k =-1b 1=5 ∴直线BC 的解析式为y =-x +5∵点G 的横坐标为t (0<t <5),∴G (t ,-t 2+4t +5),D (t ,-t +5) ∴GD =-t 2+4t +5-(-t +5)=-t 2+5t ∴h =S △BGC =S △CGD +S △BGD =12 GD ·t +12 GD ·(5-t ) =-52 (t -52 )2+1258∵-52<0,0<t <5∴当t =52 时,h 取最大值,最大值为1258.第1题解图2. 解:(1)由题意得⎩⎪⎨⎪⎧-b 2a =2,9a +3b =3,解得⎩⎪⎨⎪⎧a =-1,b =4;(2)(i)如解图①,延长BD 与x 轴交于点M ,延长CE 与x 轴交于点N ,过点A 作AF ⊥CE 于点F ,连接OB ,AC第2题解图①由(1)知抛物线的解析式为y =-x 2+4x ,易知直线OA 的解析式为y =x ∵点B ,C 在抛物线上,点B 横坐标为t ,点C 的横坐标为t +1 ∴B (t ,-t 2+4t ),C (t +1,-(t +1)2+4(t +1)),D (t ,t ),E (t +1,t +1) ∴OM =t ,BD =-t 2+3t ,CE =-(t +1)2+3(t +1),AF =-t +2 ∵0<t <2 ∴1<t +1<3∴S △OBD +S △ACE =12 OM ·BD +12 CE ·AF =12 t ·(-t 2+3t )+12 [-(t +1)2+3(t +1)]·(-t +2)=2;(ii)存在.如解图②,当点B 在点D 上方,即2<t <3时,过点D 作DQ ⊥EC 于点Q ,连接BE ,CD第2题解图②∵BD ∥EC∴四边形DBEC 为梯形此时,BD =-t 2+3t ,CE =-(t +1)2+3(t +1) ∵DQ =1∴S 四边形DBEC =12 (BD +EC )·DQ =12 [-t 2+3t -(t +1)2+3(t +1)]·1=t -1当S 四边形DBEC =32 时,可得t -1=32 ,解得t =52;当点D 在点B 上方,即t >3时,如解图③,过点D 作DQ ⊥EC 于点Q ,连接BC第2题解图③此时BD =t 2-3t ,CE =(t +1)2-3(t +1)∴S 四边形DBCE =12 (BD +EC )·DQ =12 [t 2-3t +(t +1)2-3(t -1)]·1=t 2-2t -1令t 2-2t -1=32 ,解得t 1=142 +1<3,t 2=-142 +1<3,均舍去;综上所述,t 的值为52.类型三 存在性问题典例精析例 解:(1)存在 设点M (1,m )由题意得BC =32 ,BM =4+m 2 ,CM =1+(m -3)2①当BC 为腰时 a .若BC =BM ,如解图①例题解图①即32=4+m2解得m=±14则M1(1,14),M2(1,-14);b.若BC=CM,如解图②即32=1+(m-3)2,解得m=3±17,则M3(1,3+17),M4(1,3-17);②当BC为底边时,则CM=BM,如解图②,即1+(m-3)2=4+m2解得m=1,则M5(1,1);∴综上所述,满足条件的点M的坐标为(1,14)或(1,-14)或(1,3+17)或(1,3-17)或(1,1);例题解图②(2)存在设点N(x,-x2+2x+3).①当点C为直角顶点时,如解图③,则∠N1CB=90°,过点N1作N1H⊥y轴于点H∵△BOC是等腰直角三角形∴∠BCO=45°∴∠N1CH=180°-90°-45°=45°∴△N1CH是等腰直角三角形∴N1H=HC,即x=-x2+2x+3-3解得x1=0(舍去),x2=1∴N1(1,4);例题解图③②当点B 为直角顶点时,如解图③,则∠CBN 2=90°,过点N 2作N 2G ⊥y 轴,过点B 作BG ⊥x 轴交N 2G 于点G∴同理可得∠BN 2G =45°,△BN 2G 是等腰直角三角形 ∴N 2G =BG ,即3-x =-(-x 2+2x +3) 解得x 1=-2,x 2=3(舍去) ∴N 2(-2,-5).综上所述,满足条件的点N 的坐标为 (1,4)或(-2,-5); (3)存在∵点Q 在第一象限内抛物线上 ∴设Q (m ,-m 2+2m +3),0<m <3 ∵QG ⊥x 轴∴G (m ,0),OG =m ,QG =-m 2+2m +3 ∵△AOC ∽△QGO ∴AO QG =CO OG ,即1-m 2+2m +3 =3m解得m 1=5+1336 或m 2=5-1336 (舍去)此时点Q 的坐标为(5+1336 ,5+13318 );(4)存在设E (m ,-m 2+2m +3),F (n ,0),易得抛物线顶点D 的坐标为(1,4),点C 的坐标为(0,3)①如解图④,当DE ,FC 是平行四边形对角线时 ∵平行四边形对角线互相平分 ∴DE ,FC 的中点重合∴⎩⎪⎨⎪⎧1+m =n +04-m 2+2m +3=0+3 解得m =1+5 或m =1-5∴E 1(1+5 ,-1)或E 2(1-5 ,-1);例题解图④②如解图⑤,当DF ,EC 是平行四边形对角线时,同理DF ,EC 的中点重合∴⎩⎪⎨⎪⎧1+n =m +04+0=-m 2+2m +3+3 解得m =1+3 或m =1-3 ∴E 3(1+3 ,1)或E 4(1-3 ,1);例题解图⑤③当DC ,EF 是平行四边形对角线时,DC ,EF 的中点重合∴⎩⎪⎨⎪⎧1+0=m +n 4+3=-m 2+2m +3+0方程组无实数解.综上所述,满足条件的点E 的坐标为(1+5 ,-1)或(1-5 ,-1)或(1+3 ,1)或(1-3 ,1); (5)存在如解图⑥,由题意知,A (-1,0),C (0,3),设点H 的坐标为(p ,0) ∴AH 2=(p +1)2,CH 2=p 2+32,AC 2=12+32=10 当AC 为矩形的边时,∠ACH =90° ∴AH 2=CH 2+AC 2即(p +1)2=p 2+32+10,解得p =9 ∴点H 的坐标为(9,0);当AC 为矩形的对角线时,∠AHC =90° ∴此时点H 与原点重合,点H 的坐标为(0,0). 综上所述,满足条件的点H 的坐标为(9,0)或(0,0);例题解图⑥(6)存在如解图⑦,过点S 作SZ ⊥x 轴于点Z ,交BC 于点X ∵A (-1,0),B (3,0),C (0,3)∴OA =1,OC =OB =3,易得直线BC 的函数解析式为y =-x +3 ∴∠OBC =∠OCB =45° ∵SZ ⊥x 轴∴∠BXZ =∠SXT =45° ∵ST ⊥BC ∴XT =ST设S (m ,-m 2+2m +3),且0<m <3,则X (m ,-m +3) ∴CX =m 2+(-m +3-3)2 =2 m ,SX =-m 2+3m ∴ST =TX =22 SX =-22 m 2+322m ∴CT =CX -TX =2 m -(-22 m 2+322 m )=22 m 2-22m ①若∠SCT =∠CAO∴tan ∠SCT =tan ∠CAO =OCOA =3∵tan ∠SCT =STCT =3∴ST =3CT ∴-22 m 2+322 m =3×(22 m 2-22m )解得m =32 或m =0(舍去)∴点S 的坐标为(32 ,154 );②若∠CST =∠CAO 则tan ∠CST =tan ∠CAO =3 ∵tan ∠CST =CTST =3∴3ST =CT ∴3×(-22 m 2+322 m )=22 m 2-22m 解得m =52 或m =0(舍去)∴点S 的坐标为(52 ,74);综上所述,存在点S ,使得△CST 中有一个角与∠CAO 相等,点S 的坐标为(32 ,154 )或(52 ,74).例题解图⑦对接中考1. 解:(1)由题意可知,抛物线y =x 2+bx +c 过点A (-1,0),点B (5,0)∴⎩⎪⎨⎪⎧1-b +c =025+5b +c =0 ,解得⎩⎪⎨⎪⎧b =-4c =-5; (2)①如解图,过点P 作y 轴的平行线交BC 于点D ∴S △PBC =S △CPD +S △PDB由(1)可知,c =-5,故点C 的坐标为(0,-5) 易知BC 的表达式为y =x -5∵点P 的坐标为(x 0,y 0)(0<x 0<5),点P 在抛物线上 ∴y 0=x 20 -4x 0-5设点D 的坐标为(x 0,x 0-5)∴|PD |=x 0-5-x 20 +4x 0+5=-x 20 +5x 0∴S △PBC =12 ×|PD |×5=12 ×(-x 20 +5x 0)×5 =-52 (x 0-52 )2+1258∴当x 0=52 时,△PBC 面积最大,最大值为1258;第1题解图②存在.由题意可知,∠EPF =90°,△PEF 为等腰直角三角形 ∴PE =PF∵PE ⊥x 轴,PF ∥x 轴,且点E 在线段BC 上,点F 在抛物线上 由(2)可知PE =-x 20 +5x 0 易知PF =|4-2x 0|∴|PF |=|PE |,即|4-2x 0|=|-x 20 +5x 0|解得x 0=4或x 0=7-332 或x 0=-1(舍去)或x 0=7+332 (舍去)当x 0=4时,解得y =-5当x 0=7-332 时,解得y 0=3-3332∴综上所述,当△PEF 为等腰直角三角形时,点P 的坐标为(4,-5)或(7-332 ,3-332 ).2. 解:(1)由题意得A ′(-3,0),B ′(0,-6),B (6,0)已知抛物线L 经过点A ′,B ′,B ,设抛物线L 的解析式为y =a (x +3)(x -6)(a ≠0) 将点B ′(0,-6)代入抛物线解析式中得-6=a (0+3)(0-6),解得a =13∴抛物线L 的解析式为y =13 (x +3)(x -6)=13 x 2-x -6;(2)存在.∵A (0,-3),B ′(0,-6) ∴AB ′=3设直线AB 的解析式为y =kx +b (k ≠0) 将A (0,-3),B (6,0)代入直线AB 的解析式得⎩⎪⎨⎪⎧b =-36k +b =0 ,解得⎩⎪⎨⎪⎧b =-3k =12∴直线AB 的解析式为y =12 x -3∵点P 在直线AB 上∴设点P (m ,12m -3),分情况讨论:①当以AB ′为边且AP 2=AB ′2时,即m 2+(12 m )2=9解得m 1=655 ,m 2=-655∴点P 的坐标为(655 ,355 -3)或(-655 ,-355 -3);②当以AB ′为边且B ′P 2=AB ′2时,即m 2+(12 m +3)2=9解得m 1=0(舍去),m 2=-125∴P (-125 ,-215 );③当以AB ′为对角线时 ∵AB ′=3∴AB ′的中点坐标为(0,-92 )由菱形的性质可得y P =-92即12 m -3=-92 ,解得m =-3 ∴P (-3,-92);综上所述,点P 的坐标为(655 ,355 -3)或(-655 ,-355 -3)或(-125 ,-215 )或(-3,-92). 拓展类型 二次函数性质综合题1. 解:(1)把点(2,1)代入y =x 2-2tx +3中 得4-4t +3=1解得t =32; (2)∵抛物线对称轴为直线x =t①若0<t ≤3∵a =1>0∴当x =t 时,函数y 取得最小值∵y 的最小值为-2∴t 2-2t 2+3=-2解得t =±5 .∵0<t ≤3∴t =5 ;②若t >3,∵a =1>0∴当0≤x ≤3时,y 随x 的增大而减小∴当x =3时,函数y 取得最小值∵y 的最小值为-2∴9-6t +3=-2解得t =73(不符合题意,舍去). 综上所述,t 的值为5 ;(3)∵A (m -2,a ),C (m ,a )关于对称轴直线x =t 对称∴m -2+m 2=t ,即m -1=t ,且点A 在对称轴左侧,点C 在对称轴右侧. 在y =x 2-2tx +3中令x =0,则y =3∴抛物线与y 轴交点为(0,3)∴此交点关于对称轴直线x =t 的对称点为(2m -2,3).∵a <3,b <3且t >0∴4<2m -2,解得m >3.当点A ,B 都在对称轴左边时∵a <b∴4<m -2,解得m >6∴m >6;当点A ,B 分别在对称轴两侧时∴B 到对称轴的距离大于A 到对称轴的距离∴4-(m -1)>m -1-(m -2),解得m <4∴3<m <4.综上所述,m 的取值范围为3<m <4或m >6.2. 解:(1)由题意得,-b 2a=2 解得b =-4a∴4ac -b 24a =12a -(-4a )24a=3-4a ∴抛物线顶点M 的坐标为(2,3-4a );(2)y 2<y 1,理由如下:由题可知,抛物线的对称轴为直线x =2∴A (x 1,y 1)关于直线x =2的对称点为(4-x 1,y 1)∵x 1<2<x 2,x 1+x 2<4∴2<x 2<4-x 1∵a >0∴抛物线开口向上∴在对称轴右侧y 随x 的增大而增大∴y 2<y 1;(3)b 的值为-12或20.【解法提示】由(1)知,b =-4a ,∴抛物线的解析式为y =ax 2-4ax +3,当a >0时,抛物线开口向上,此时在对称轴左侧,y 随x 的增大而减小,∴当x =-1时,函数值y 最大,最大值为a +4a +3,∴a +4a +3=18,解得a =3,∴b =-4a =-12;当a <0时,抛物线开口向下,此时在对称轴左侧,y 随x 的增大而增大,∴当x =1时,函数值y 最大,最大值为a -4a +3,∴a -4a +3=18,解得a =-5,∴b =-4a =20.综上所述,b 的值为-12或20.3. 解:(1)∵抛物线的对称轴为直线x =--4a 2a=2,抛物线与x 轴的交点为A (1,0),B ∴B (3,0)∴OB =3.∵OC =2OB∴OC =6.∴抛物线开口向下∴C (0,-6).把A (1,0),C (0,-6)代入y =ax 2-4ax +c 中得⎩⎪⎨⎪⎧a -4a +c =0,c =-6, 解得⎩⎪⎨⎪⎧a =-2,c =-6, ∴抛物线的解析式为y =-2x 2+8x -6;(2)由解析式可知抛物线的最大值为4ac -(-4a )24a =4ac -16a 24a=c -4a . ∵抛物线的最大值为6∴c -4a =6.∵抛物线过点A (1,0)∴a -4a +c =0,即c -4a =-a∴-a =6,即a =-6;(3)已知抛物线的对称轴为直线x =2,a <0∴(52 ,n )与(32,n )关于对称轴对称 当点P 在对称轴的左侧(含顶点)时,y 随x 的增大而增大,由m <n ,得x 0<32; 当点P 在对称轴的右侧时,y 随x 的增大而减小,由m <n ,得x 0>52. 综上所述,x 0的取值范围为x 0<32 或x 0>52.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考二次函数总复习例题习题Revised by Jack on December 14,2020第八篇二次函数的图像及性质【考纲传真】1. 理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会根据公式确定图象的顶点、开口方向和对称轴,并能掌握二次函数图象的平移. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.5.会用二次函数的图象求一元二次方程的近似解.【复习建议】二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【考点梳理】考点一二次函数的概念一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.注意:(1)二次项系数a≠0;(2)ax2+bx+c必须是整式;(3)一次项可以为零,常数项也可以为零,一次项和常数项可以同时为零;(4)自变量x的取值范围是全体实数.考点二二次函数的图象及性质考点三二次函数图象的特征与a,b,c及b2-4ac的符号之间的关系考点四二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的形状和大小都相同,只是位置的不同.它们之间的平移关系如下表:考点五二次函数的应用设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.考点六二次函数与方程不等式之间的关系1.二次函数y=ax2+bx+c(a≠0),当y=0时,就变成了ax2+bx+c=0(a≠0).2.ax2+bx+c=0(a≠0)的解是抛物线与x轴交点的横坐标.3.当Δ=b2-4ac>0时,抛物线与x轴有两个不同的交点;当Δ=b2-4ac=0时,抛物线与x轴有一个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点.【典例探究】考点一 二次函数的概念【例1】下列各式中,y 是x 的二次函数的是( ) A .xy+x 2=2 B .x 2-2y+2=0 C .y=21xD .y 2-x=0 【变式1】若y=(m+1)562--m mx 是二次函数,则m 的值为 .考点二 根据实际问题列二次函数关系式【例2】图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .22x y -=B .22x y =C .221x y -=D .221x y -=【变式2】如图,正方形ABCD 的边长为1,E 、F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管E 、F 怎样动,始终保持AE ⊥EF .设BE=x ,DF=y ,则y 是x 的函数,函数关系式是( )A .1+=x yB .1-=x yC .12+-=x x yD .12--=x x y考点三 二次函数对称轴、顶点、与坐标轴的交点【例3】已知抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系内的图象如图,其中正确的是( )A .B .C .D .【变式3】抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .考点四 二次函数图象的平移【例4】二次函数y =-2x 2+4x +1的图象怎样平移得到y =-2x 2的图象( ).A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位【变式4(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.考点五二次函数的应用【例5】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元请直接写出结果.【变式5】如图,已知抛物线y=x2-x-6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P (m ,m )在该抛物线上,求m 的值.考点六 二次函数与方程及不等式之间的关系【例6】如图,二次函数的图象与x 轴交于A (-3,0)和B (1,0)两点,交y 轴于点C (0,3),点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)请直接写出D 点的坐标. (2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x 的取值范围. 【变式6】如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的解析式;(2)求不等式x 2+bx+c >x+m 的解集.(直接写出答案) 【课堂小结】1.将抛物线解析式写成y =a(x -h)2+k 的形式,则顶点坐标为(h ,k),对称轴为直线x = h ,也可应用对称轴公式abx 2-=,顶点坐标(a b ac a b 44,22--)来求顶点坐标及对称轴.2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.3.根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意开口方向与a 的关系,抛物线与y 轴的交点与c 的关系,对称轴与a ,b 的关系,抛物线与x 轴交点数目与b 2-4ac 的符号的关系;当x=1时,决定a+b+c 的符号,当x=-1时,决定a-b+c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.4.二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.5.运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:(1).列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.(2).在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 【课堂练习】1、下列函数中,哪些是二次函数 (1)02=-x y (2)2)1()2)(2(---+=x x x y(3)xx y 12+= (4)322-+=x x y 2、二次函数5)3(22---=x y 的图象开口方向 ,顶点坐标是 ,对称轴是 ; 3、当k 为何值时,函数1)1(2+-=+kk xk y 为二次函数画出其函数的图象.3、函数)32(x x y -=,当x 为 时,函数的最大值是 ;4、二次函数x x y 2212+-=,当x 时, 0<y ;且y 随x 的增大而减小;5、如图,抛物线的顶点P 的坐标是(1,-3), Y则此抛物线对应的二次函数有( )(A)最大值1 (B)最小值-3O(C)最大值-3 (D)最小值1 X P6、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 . 其中所有正确结论的序号是( ) A .③④ B .②③ C .①④D .①②③7.一次函数b kx y +=的图象过点(m ,1)和点(1-,m ),其中m > 1,则二次函数k b x a y ++=2)(的顶点在第 象限;8、对于二次函数为y=x 2-x -2,当自变量x <0时,函数图像在 ( ) (A) 第一、二象限 (B) 第二、三象限 (C) 第三、四象限 (D) 第一、四象限9、已知点A (1,1y )、B (2,2y -)、C (3,2y -)在函数()21122-+=x y 上,则1y 、2y 、3y 的大小关系是A 1y >2y >3yB 1y >3y >2yC 3y >1y >2yD 2y >1y >3y10、直线)0(≠+=ab b ax y 不经过第三象限,那么ax y+=2A B D11、若二次函数22-+-=mx x y 的最大值为49,则常数_____=m ;12、若二次函数c bx ax y ++=2的图象如图所示,则直线c abx y += 不经过 象限;13、(1)二次函数x x y 22--=的对称轴是 .(2)二次函数1222--=x x y 的图象的顶点是 ,当x 时,y 随x的增大而减小.(3)抛物线642--=x ax y 的顶点横坐标是-2,则a = .14、抛物线c x ax y ++=22的顶点是)1,31(-,则a 、c 的值是多少15.抛物线的对称轴是2=x ,且过(4,-4)、(-1,2),求此抛物线的解析式; 【课后作业】 一、选择题1.二次函数y=x 2+2x-7的函数值是8,那么对应的x 的值是( )A .3B .5C .-3和5D .3和-52.二次函数y=ax 2+bx+c (a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) A .函数有最小值 B .对称轴是直线21=x C .当21<x ,y 随x 的增大而减小 D .当-1<x <2时,y >03.已知二次函数y=-x 2+2bx+c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A .b≥-1B .b≤-1C .b≥1D .b≤14.如图,平面直角坐标系中,点M 是直线y=2与x 轴之间的一个动点,且点M 是抛物线c bx x y ++=221的顶点,则方程1212=++c bx x 的解的个数是( )A .0或2B .0或1C .1或2D .0,1或25.如图,二次函数y=x2+bx+c 的图象过点B (0,-2).它与反比例函数y=-x8的图象交于点A (m ,4),则这个二次函数的解析式为( ) A .y=x 2-x-2 B .y=x 2-x+2C .y=x 2+x-2D .y=x 2+x+26.已知抛物线y=x 2-x-1与x 轴的一个交点为(m ,0),则代数式m 2-m+2014的值为( )A .2012B .2013C .2014D .20157.二次函数y=x 2+bx 的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解,则t 的取值范围是( ) A .t ≥-1B .-1≤ t <3C .-1≤ t <8D .3<t <88.在矩形ABCD 的各边AB ,BC ,CD 和DA 上分别选取点E ,F ,G ,H ,使得AE=AH=CF=CG ,如果AB=60,BC=40,四边形EFGH 的最大面积是( ) A .1350 B .1300 C .1250 D .1200 二、填空题1. 抛物线y=ax 2+bx+c 经过点A (-3,0),对称轴是直线x=-1,则a+b+c= .2.对于二次函数y=ax 2-(2a-1)x+a-1(a≠0),有下列结论: ①其图象与x 轴一定相交;②若a <0,函数在x >1时,y 随x 的增大而减小; ③无论a 取何值,抛物线的顶点始终在同一条直线上; ④无论a 取何值,函数图象都经过同一个点. 其中所有正确的结论是 .(填写正确结论的序号) 3.如图,在平面直角坐标系中,抛物线221x y =经过平移得到抛物线x x y 2212-=,其对称轴与两段抛物线所围成的阴影部分的面积为 . 4.如图示:己知抛物线C 1,C 2关于x 轴对称,抛物线C 1,C 3关于y 轴对称.如果抛物线C 2的解析式是1)2(432+--=x y ,那么抛物线C 3的解析式是 .1.在平面直角坐标系xOy 中,抛物线y=2x 2+mx+n 经过点A (0,-2),B (3,4).(1)求抛物线的表达式及对称轴,并画出图像;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.2.如图,已知抛物线y=x2-x-6,与x轴交于点A和B,点A在点B的左边,与y 轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.3.如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.4.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元。

相关文档
最新文档