反射波法检测基桩完整性时的注意事项
低应变反射波法检测细则
低应变反射波法检测1适用范围本细则适用于低应变反射波法检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置。
其有效检测桩长范围应通过现场试验确定。
2编制依据《建筑基桩检测技术规范》JGJ 106-2014。
3检测仪器设备检测仪器设备主要为RS-1616K(S)基桩动测仪、力锤、力棒。
4受检桩种类及要求4.1 受检桩种类1、混凝土预制桩2、混凝土灌注桩4.2 受检桩要求4.2.1受检桩混凝土强度至少达到设计强度的70%,且不小于15MPa。
4.2.2桩头的材质、强度、截面尺寸应与桩身基本等同。
4.2.3桩顶面应平整、密实,并与桩轴线基本垂直。
5现场检测5.1准备工作5.1.1收集工程桩的桩型、桩长、桩径、设计桩身混凝土强度、施工记录及地质勘察报告等有关技术资料。
5.1.2检查桩顶条件和桩头处理情况受检桩桩顶的混凝土质量、截面尺寸应与设计条件基本相同。
灌注桩应凿去桩顶浮浆或松散、破损部分,并露出坚硬的混凝土表面;桩顶平面应平整干净无积水,必要时宜采用便携式砂轮机磨平;妨碍正常测试的桩顶外露主筋应割掉。
预应力管桩当法兰盘与桩身混凝土之间结合紧密时,可不进行处理,否则,应采用电锯将桩头锯平。
当桩头与承台或垫层相连时,应将桩头与混凝土承台或垫层断开。
5.1.3检查仪器设备,使测试系统各部分之间匹配良好。
5.2现场仪器设备配置(如下图):5.3测量传感器的选择和安装5.3.1传感器的选择检测长桩的桩端反射信息或深部缺陷时,应选择低频性能好的传感器;检测短桩或桩的浅部缺陷时,应选择加速度传感器或宽频带的速度传感器。
5.3.2传感器的安装1、传感器安装应采用化学粘结剂或石膏、黄油等粘贴,不应采用手扶式。
安装时必须保证传感器与桩顶面垂直。
2、激振点和传感器安装位置应避开钢筋笼的主筋影响。
3、实心桩的激振点位置应选择在桩中心,测量传感器安装位置宜为距桩中心2/3半径处;空心桩的激振点与测量传感器安装位置宜在同一水平面上,且与桩中心连线形成的夹角宜为90度,激振点和测量传感器安装位置宜为桩壁厚的1/2处。
低应变反射波法桩身完整性检测浅解
低应变反射波法桩身完整性检测浅解摘要:灌注桩桩身缺陷性状比较复杂,受成孔质量和混凝土浇注工艺影响较大,难以判别引起缺陷的原因,同时受桩径的影响、特别是大直径桩,在同一桩身截面上缺陷分布上存在不均匀性,因此,应根据桩径的大小合理布置检测点,并收集成孔、混凝土灌注记录、地层资料,对存在的缺陷进行综合判断,必要时,采用钻孔取芯或其他合适的方法进行验证。
关键词:灌注桩;低应变反射波法;桩身缺陷;检测点数量;验证;准确性和可靠性1前言随着城市化发展进程加快,土地的使用越来越受到限制,建筑物变的越来越密集、并且寻求向空中和地下拓展,钻孔灌注桩因成桩相对容易,成桩过程中基本不产生挤土效应,振动小,抗拔效果好,只要控制好成孔过程中泥浆收集、排放问题,对周边建筑物及环境的影响相对较小,适合在相对密集的建筑群以及对沉降控制严格的建筑物周围施工,因此,在高层建筑和地下建筑的基础中得到广泛应用。
由于成孔质量受机具、成孔工艺和地层等各种因素的影响,灌注桩桩径会发生变化,并存在蜂窝、空洞、夹泥、离析等缺陷,影响成桩的质量。
低应变反射波法能方便快捷检测桩身完整性。
2低应变反射波法桩身完整性检测原理根据一维弹性波在基桩内传播理论【1】,用手锤或力锤、力棒敲击桩顶,由此在桩顶产生的应力波沿桩身以波速C向下传播,应力波在沿桩身传播过程中,当遇到桩身阻抗Z发生变化的界面(如扩颈、缩颈、混凝土离析、裂缝、断裂等变化界面时,一部分应力波产生反射向上传播,另一部分应力波产生透射向下传播至桩端,在桩端处又产生反射。
由安装在桩顶的加速度或速度传感器,接收反射波信号,并由测桩仪进行信号放大等处理后,得到加速度时程曲线。
从曲线形态特征可以判断阻抗变化位置或校核桩长,根据反射波的时域特性和幅频特性分析结果,根据上海市工程建设规范《建筑地基与基桩检测技术规程》表10.4.2所列特征综合分析,定性分析桩身完整性。
混凝土的速度C及桩身缺陷的深度L可按下列公式计算:C=2L/ΔT根据上海市工程建设规范《建筑地基与基桩检测技术规程》第10.4.条第2款规定,应选取本工程同一条件下部少于5根的有代表性的完整桩的纵波波速值,计算桩身纵波的平均波速值C m。
桥涵检工程测技术 反射波法检测基桩完整性(1.2)
Ⅱ类桩实例分析
0. 03
cm/s
2: # 232
0. 01
0. 00
MA: 3.00 MD : 2.00 LE: 35. 00 W S: 3856 LO: 0.64 H I: 0.00 PV: 0 T1: 50
T1 -0.01 0 5 10 15 20 25 30
现场检测技术方法
安装传感器
传感器安装点及其附近不得有缺损或裂缝; 当锤击点在桩顶中心时,传感器安装点与桩中心的距离 宜为桩半径的三分之二; 当锤击点不在桩顶中心时,传感器安装点与锤击点的距 离不宜小于桩半径的二分之一; 对于预应力管桩,传感器安装点、锤击点与桩顶面圆心 构成的平面夹角宜为90度。 对于大直径桩,宜在不同位置选取2~4个测点 尽量避开钢筋、混凝土质量有问题的位置
数据分析处理
时间域分析
在测试波形上辨认反射波,由反射波的形态、相位和到达时间,确定反 射界面的性质、程度和位置
桩长及缺陷位置计算
L cT / 2 L' ct / 2
波速一般采用同一工地内 多根已测完整桩桩身纵波 速度的平均值。
检测结果评价
I类桩—桩身结构完整,可正常使用。 II类桩—桩身基本完整,有轻度缺陷, 不影响正常使用。 III类桩—桩身有明显缺陷,对桩身结构 承载力有影响,应采用其它方法进一 步抽检确定其可用性 IV类桩—桩身存在严重缺陷,对桩身结 构承载力有严重影响。
0. 05
0. 00
MA: 3.00 MD : 2.00 LE: 40. 00 W S: 4285 LO: 0.67 H I: 0.00 PV: -8 T1: 53
T1 -0.05 0 5 10 15 20的长度不同,分别为18米 和40米。对比两棵桩的波形, 0台-8桩的桩底反射比2墩-4 桩的桩底反射强烈、清晰的 多。就是说桩长越长,桩底 反射的清晰程度越小。这是 因为应力波在混凝土中的传 播是有一定的损耗的。当桩 长过长时,损耗加大,传感 器所接收的信号变弱,则长 桩的桩底反射就不那么清晰 了。
低应变桩基检测方法2
反射波检测基桩完整性的技术要点 —(二)上期在“反射波检测基桩完整性的技术要点 —(一)”一文中讨论了:反射波法检测基桩完整性如何获取桩底反射以及反射波信号的数据处理问题。
本文进一步讨论信号处理后如何分析判断桩身的完整性。
三.桩身完整性的分析与推断解释1. 首先要有合格的反射波记录即多次激励的反射波一致性好,且有桩底反射波;或击振的一致性不太好,但可见或隐约可见桩底反射波;或经过信号处理以后可以见到桩底反射波。
这种反射波记录,可以认为它能够反映桩身客观性状,是可靠的、合格的记录,有了这样的反射波记录,才能为我们准确推断解释桩身完整性奠定基础。
2. 桩身完整性不能单纯从反射波的波形记录去推断解释取得了理想的反射波记录,是否就可以从这些记录来推断解释桩身的完整性呢。
答案是不可以的。
原因如下:(1) 缺陷的反射波记录存在多解性我们已经知道:缺陷产生反射波的条件是缺陷所形成的波阻抗界面,有很多种缺陷形成的波阻抗界面异常往往是相同的。
例如:缩径、离析、夹泥、空洞、蜂窝、裂缝等缺陷,它们都是缺陷部位的上界面波阻抗比桩身正常波阻抗低,这个波阻抗界面,产生的反射波相位都是和直达波同相位的,其差异仅仅是缺陷反射波波幅略有不同,这就形成缺陷反射波的多解性。
(2)除了多解性之外,还存在假异常反应。
例如,扩径缺陷的下界面,是缩径如图12。
这个缩径异常是否要判定呢,显然不能判,它是假异常;还有如果是逐渐的扩径然后又突然缩回到正常的桩径如图13,可见逐渐扩径的波阻抗是渐变的,产生不了扩径类的反射波,但后面的突然缩径,由于波阻抗的突变却会产生明显的缩径异常,于是会出现缩径类反射波,就有可能把扩径缺陷误判为缩径。
(3)地层的突变也会产生假异常由于地质情况的复杂性,桩周的地层有时会遇到地层由软突然变硬的状况,如图14就是这种例证。
图中上部为淤泥(或淤泥质黏土)下部突变为硬塑黏土,于是地层存在一个明显的波阻抗界面。
当我们击振桩头产生向下传播的弹性波(或称应力波、声波)时,桩周的 图13. 逐渐扩径的下界面是缩径 图12. 扩径缺陷下界面是缩径地层也会通过桩身的质点的振动引起相应的振动,在地层的波阻抗界面同样会产生反射,于是在反射波记录中就夹杂了地层的反射波见图14中的,R 。
反射波法检测工程桩桩身完整性
一维干的声波传播速度
VB
E
E ――桩身混凝土弹性模量(MPa/m2)
――桩身混凝土密度(Kg/m3)
2. 反射波检测桩身缺陷的基本原理
2.2.2 桩身波速视为一维杆波速的边界条件
2D
即当
D 1 5桩L 身声 速为
VB
E
波长λ=C/f=VB/f;D为桩径;L为桩长。
工程桩桩身内的纵波声速(C20—C25)范围
预制桩桩身的声速 : 4200 m/s 水下灌筑桩的声速 : 3300-3800 m/s 干作业灌筑桩声速 : 3500-4000 m/s
2. 反射波检测桩身缺陷的基本原理
2.2.3 桩身反射波的传播速度和超声测试波速的关系
一维干的声速
VB
E
超声波的声速
1.概述
1.7 反射波检测基桩完整性的发展概况
1.荷兰于二十世纪六十年代中期开发了反射波法检测基桩完整性方法 2.我国在上世纪八十年代中后期国家基本建设大规模发展的背景下
开发研究并推广了反射波法基桩完整检测技术 3.1995年地质矿产部和建设部联合颁发了《基桩低应变动力检测规程》
(JGJ/T 93-95) 4. 2003年建设部颁发 《建筑基桩检测技术规范》(JGJ 106-2003) 5. 2004年交通部颁发《公路工程基桩动测技术规程》(JTG/T F81-
◆ 低应变使用的是小锤,锤头是球面 的,它属于“点振源”,激励桩头后, 在桩身内激励产生的是半球面波。这时 产生的波动是三维问题,有试验验证。
远离振源后,可近似视为平面 波,故波速可按平面波处理。实 践证实,这种简化问题之处理方 法是正确的
2. 反射波检测桩身缺陷的基本原理
简述低应变反射波法在灌注桩桩身完整性检测的应用
工作研究简述低应变反射波法在灌注桩桩身完整性检测的应用杨 帆 刘海艳(沈阳岩土工程技术测试开发有限公司,辽宁 沈阳 110015)摘 要:简述低应变反射波法在灌注桩桩身完整性检测的应用,总结出低应变反射波法的优缺点,为检测人员在工程现场更好的应用低应变反射波法提供依据,更高效更准确的运用低应变反射波法进行灌注桩桩身完整性的检测工作。
关键词:灌注桩桩身完整性检测;低应变法;适用条件及提高准确性灌注桩因其本身具有的特点,具有较为广泛的应用,是一种常见的桩基础形式。
灌注桩根据成孔的机械不同而通常有以下几种:螺旋钻机成孔法、冲击钻机成孔法、正循环回转法、反循环回转法等。
受场地岩土工程地质条件、现场施工条件及施工工艺、原料及施工进度安排、施工人员技术水平等制约,灌注桩成桩质量有很大的不确定性,易产生桩身混凝土振捣不密实、蜂窝、空洞、夹泥、离析等缺陷,影响成桩的质量,造成重大安全隐患。
而桩基础属于重要的隐蔽工程具有不可逆性,又是整个建筑物安全体系的重要一环,所以根据现场的实际情况,通过行之有效的完整性检测方法,对灌注桩进行桩身完整性评价是一件十分重要的工作。
低应变反射波法作为一项广泛应用于灌注桩桩身完整性检测的方法,任何更好的准确的运用于灌注桩桩身完整性检测,是一项十分重要的工作,本文通过总结多年的现场工作经验,简述低应变反射波法的优缺点,将低应变反射波法更好的应用于不同条件下的灌注桩桩身完整性检测。
1 低应变反射波法桩身完整性检测简介:该方法是将速度或加速度传感器用耦合剂粘贴在桩顶上,用激振锤敲击桩顶激发产生应力波沿桩体向下传播,根据振动理论和波动理论分析应力波在桩体内的传播与反射的固有规律,对完整桩体,只会在桩端产生反射,对桩体中的蜂窝、断桩、缩(扩)径、沉渣、离析等破损部位,因存在波阻抗差异,也会产生反射波。
这些信息经桩基动测分析仪记录下来,将室外记录下来的信息通过室内回放,借助于计算机进行对实测信号在时域内进行波形分析,在频域内进行频谱分析,以了解桩内波阻抗的变化情况,进而据其规律和特征确定桩体的缺陷性质和缺陷位置。
低应变反射波法检测灌注桩应该注意的几个问题
低应变反射波法检测灌注桩应该注意的几个问题摘要:本文介绍了低应变反射波法检测桩基础完整性的基本原理及其优缺点,并结合工程实例,阐述了其在检测灌注桩过程中应该注意的几个问题,为更好的开展工程检测提供参考。
关键词:低应变反射波法、完整性、局限性引言低应变反射波法检测基桩完整性在我国已有二十多年的发展历史,理论、检测设备、技术水平等都较为成熟。
其作为一种基桩完整性检测的普查方法,广泛地应用于工程实践中,具有快捷、无损、经济、轻便等优点。
但作为一种半直接检测方法,还是存在一些不确定的因素会对检测结果的分析判断带来困难,甚至导致误判,应引起重视。
一、低应变反射波法检测基本原理低应变反射波法检测桩身结构完整性是目前使用最广泛的一种基桩无损检测方法。
其基本原理是通过在桩顶施加激振信号产生应力波,该应力波在沿桩身传播过程中,遇到不连续界面(如夹泥、离析、缩颈、断裂等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性,包括桩身存在的缺陷位置及其影响程度、桩端与持力层的结合状况等。
二、低应变反射波法检测的优点及其局限性低应变反射波法作为桩基础无损检测的常用方法,其优点是检测速度快、费用低、对桩基础没有破坏性,是桩基质量普查的良好手段。
检测技术经过几十年的发展,检测设备越来越先进,精确,工程技术人员也积累了大量的工作经验,检测水平也越来越高,采用这种方法进行检测,一天可以完成几十根甚至上百根桩基础,其时效性无可比拟,能够在满足正确评价的前提下兼顾经济合理性,做的快速经济。
低应变反射波法的一维弹性杆件波动理论,其前提条件是把桩看成是连续的一维弹性杆件,其波动理论只有将桩视为一单独自由杆件时才能成立,而由于地质条件和环境条件的复杂性,桩土参数异常复杂,波动理论难于高度拟合,而且受桩的形状、长径比、成桩工艺等的影响,在实际检测工作中存在一定的局限性。
因此,充实的理论基础及丰富的现场工作经验,是一个优秀检测人员必须具备的基本素质。
反射波法注意的问题
浅谈反射波法在基桩完整性检测中应注意的几个问题张琦涛吴小勐史明文(中国科学院武汉岩土力学研究所,武汉430071)一、前言随着国民经济的飞速发展,我国工程建设项目日益增多,工程桩的应用越来越普及,因此基桩质量的检测越来越重要。
作为基桩完整性检测的常规手段,低应变反射波法在我国有多年的发展历史并已纳入国家的规范,由于此种方法具有野外数据采集快速、方便;测试资料分析简单、精确;费用低廉等优点,因此其被众多的检测单位所采纳与使用。
我通过工程实践发现这种方法在实际应用中存在许多问题应引起注意和重视,否则将对基桩完整性检测的效果产生较大的影响。
二、低应变反射波法的基本原理低应变反射波法是以一维弹性杆平面应力波波动理论为基础的。
将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播,当桩身存在明显的波阻抗Z变化界面时,将产生反射和透射波,反射的相位和幅值大小由波阻抗Z变化决定。
安装在桩顶上的传感器,将接收到来自桩身各个波阻抗Z变化界面处反射上来的信息,根据这些信息,可对桩身完整性质量进行分析判断。
桩身波阻抗Z由桩的横截面积A、桩身材料密度ρ等决定,如式(1)。
Z = ρ C A (1)假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗Z1=ρ1C1A1,上部波阻抗Z2=ρ2C2A2。
①当Z1 =Z2时,表示桩截面均匀,无缺陷。
②当Z1 >Z2时,表示在相应位置存在截面缩小或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。
③当Z1 <Z2时,表示在相应位置存在扩径,反射波速度信号与入射波速度信号相位相反。
当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t和桩身传播速度C来推算缺陷位置L x,入式(2)。
L x= △t·C / 2 (2)三、低应变反射波法测试的建议1、桩头的处理在现场信号采集工作中,桩头的处理是测试成功的第一关键,但在大多情况下,很多测试人员忽略了这一点。
低应变反射波法对基桩检测的几点建议
低应变反射波法对基桩检测的几点建议一、[前言]随着工程建设项目日益增多,工程桩的应用越来越普及,因此基桩质量的检测越来越重要。
然而,基桩作为隐蔽工程,方便检测手段有限,低应变反射波法在我国有多年的发展历史并已纳入国家的规范,由于此种方法具有野外数据采集快速、方便;测试资料分析简单、比较精确;费用低廉等优点,因此其被众多的检测单位所采纳与使用。
许多问题应引起注意和重视,否则将对基桩完整性检测的效果产生较大的影响。
二、低应变反射波法的基本原理低应变反射波法是以一维弹性杆平面应力波波动理论为基础的。
将桩身假定为一维弹性杆件(桩长>>直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播,当桩身存在明显的波阻抗Z变化界面时,将产生反射和透射波,反射的相位和幅值大小由波阻抗Z变化决定。
安装在桩顶上的传感器,将接收到来自桩身各个波阻抗Z变化界面处反射上来的信息,根据这些信息,可对桩身完整性质量进行分析判断。
桩身波阻抗Z由桩的横截面积A、桩身材料密度ρ等决定,如式(1)。
Z = ρ C A(1)假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗Z1=ρ1C1A1,上部波阻抗Z2=ρ2C2A2。
① 当Z1 =Z2时,表示桩截面均匀,无缺陷。
② 当Z1 >Z2时,表示在相应位置存在截面缩小或砼质量较差等缺陷,反射波速度信号与入射波速度信号相位一致。
③当Z1 <Z2时,表示在相应位置存在扩径,反射波速度信号与入射波速度信号相位相反。
当桩身存在缺陷时,根据缺陷反射波时刻与桩顶锤击触发时刻的差值△t和桩身传播速度C来推算缺陷位置L x,入式(2)。
L x= △t·C / 2(2)三、低应变反射波法测试的建议1、桩头的处理除去桩头的浮浆,处理以露出新鲜含骨料的混凝土面为止,而且要尽量平整、干净(桩头不要破碎、不要有杂物、不要有水),这样有利于传感器的安装和力棒的锤击。
2、传感器的安装的建议对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处。
桩基完整性(低应变试验)试验方法
1 桩基完整性(低应变试验)1、1一般规定:(1)低应变反射波法适用范围为:混凝土灌注桩、混凝土预制桩、预应力管桩及CFG 桩。
(2)对桩身截面多变且变化幅度较大灌注桩,应采用其她方法辅助验证低应变法检测得有效性。
(3)受检桩混凝土强度不应低于设计强度得70%,且不应低于15MPa 。
1、2检测原理:低应变法目前国内普遍采用低应变反射波法,为狭义低应变法,其通过采用瞬态冲击得方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩得桩身完整性。
因此基桩必须符合一维波动理论要求,满足平截面假定与一维线弹性杆件模型要求,一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量得波长与桩得横向尺寸之比大于5。
1、3检测方法及工艺要求(1)检测前得准备工作a 受检基桩混凝土强度至少达到设计强度得70%,或期龄不少于14天时方可报检。
b 施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c 施工单位向检测单位提供基桩工程相关参数与资料。
d 检测前,施工单位做好以下准备工作:①剔除桩头,使桩顶标高为设计得桩顶标高。
②要求受检桩桩顶得混凝土质量、截面尺寸应与桩身设计条件基本相同。
③灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬得混凝土表面。
④桩顶表面平整干净且无积水。
⑤实心桩得第三方位置打磨出直径约10cm 得平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm 得平面,打磨面应平顺光洁密实图2 不同桩径对应打磨点数及位置示意图0.8m<D≤1.25m D≤0.8m图2 不同桩径对应打磨点数及位置示意图⑥当桩头与垫层相连时,相当于桩头处存在很大得截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
⑦准备黄油1~2包,作为测试耦合剂用。
⑧在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。
低应变桩基检测方法
反射波检测基桩完整性的技术要点 —(一)一.反射波法检测基桩完整性如何获取桩底反射众所周知,反射波法检测基桩桩身完整性,能否采集到桩底反射信号,是现场进行数据采集成败的关键。
要获取桩底反射波有几个必须的条件即:1. 桩头要处理好这些往往由于不同的原因不能实现,如此的后果往往造成检测失败。
桩头不做上述处理如图1所示,桩头面不仅凹凸不平,尚有突出的混凝土楞刺,在这下锤头下落,冲击能量首先在冲破凹凸不平消耗大理能量,使有效的击振能量大打折扣,还不能励出理想的入射脉冲波。
于是只好再次加大激振力度再次击破凹凸不平的楞刺,恶性循环的结果,不仅取得良好的激振脉冲波,还会激励出杂散振动。
恶性循环的结果,将使反射波信号复杂,多次击振的一致性差和得不到桩底反射波。
如先将激振和安装传感器部位打磨平整,反而会取得事半功倍的成效。
桩头没有打磨平整,会使直达波上叠加高频噪音信号,图2便是一个实测范例(还不是最严重的)。
与此同时还会带来多次激励的信号一致性极差,而无法确认检测的真实结果。
2. 传感器与桩头的耦合是采集到良好质量信号的重要条件。
传感器安装点,应事先检查混凝土是否完整,并打磨平整。
安装时,传感器的轴线应平行桩身的轴线,即垂直于桩头的水平面,这样传感器的最大灵敏度方向可对准桩底,有利于接收桩头下部的反射信号。
传感器应通过耦合剂牢牢黏结在桩头上,不可松动,以免在击振时传感器也随之振动,形成干扰。
耦合剂的选用以黏度较大的橡皮泥最佳,因为橡皮泥可以起到机械滤波的作用,滤除击振时产生的高频干扰(但是在北方冬季橡皮泥“凝固”失去了柔软性,到不如凝固的黄油会更好些)。
3. 击振脉冲波的力度和主频要适度锤击脉冲波的力度、主频与桩长相匹配。
原则是至少要有两次以上击振后的反射波信号基本一致,方可确定得到的信号是可靠的桩身状况的客观反映。
图3是几种典型的现场检测到的反射波记录。
多次采集的反射波信号不一致,且有高频干扰的实例如图3(a);击振一致性较好,还可见缺陷反射,但是没有桩底反射波如图3(b );图3(c)是桩径1200mm 、桩长15.3m 人工挖孔灌注桩,用速度型传感器接收,有桩底反射波、击振一致性好的实例;图3(d )是用加速度传感器接收的检测记录,虽然击振的直达波一致性不太好,但可见一致性较好的桩底反射。
桩基检测中反射波法的关键措施
桩基检测中反射波法的关键措施发布时间:2021-06-28T15:41:35.653Z 来源:《工程管理前沿》2021年第7卷6期作者:张源[导读] 基桩检测做为建筑工程施工试验的重要组成部分张源身份证号:45020219721019****摘要:基桩检测做为建筑工程施工试验的重要组成部分,从实际工程检测应用来看,反射波法是基桩完整性检测中最为有效、应用最普遍技术方法。
本文将对利用反射波法检测基桩完整性的技术应用做重点分析。
关键词:反射波法;桩基检测;条件;分析1、工程概况某高层商住建筑群基础采用桩基基础。
其中灌注桩837根,人工挖孔桩456根。
上部结构为大空问厂房时桩基采用的是人工挖孔桩,混凝土强度等级为C30,桩径为0.8m,桩长15m左右。
上部结构为多层房屋时桩基采用的是灌注桩,混凝土强度等级为C30,桩径为0.8m,桩长12m左右。
2、桩基现场检测具备的条件(1)工程地质资料、桩基设计图纸、桩位布置图、桩基施工记录。
(2)桩头的处理:凿去桩顶的浮浆露出桩体的混凝土面。
(3)仪器的检测:仪器电量情况,电脑主机、加速度传感器连接线头、力锤是否正常,耦合剂等物品是否带全。
(4)参数设定:选择测试的模式,输入工程名称、桩号、桩长、桩径、波速等参数。
(5)加速度计的安放:把加速度计用耦合剂粘贴在桩顶提前磨平整的位置,确保粘贴牢固。
3、现场数据收集与分析根据检测过程中收集到的具体数据及检测中出现的问题,对桩基检测的影响因素进行了分析。
3.1桩头处理及平整度的影响在现场信号采集的过程中,桩头的处理是非常关键的一步。
桩头处理得不好,就不能采集到较为理想的波形,进而为后续数据处理及检测报告的输出带来麻烦。
在检测过程中常见的情况是桩头浮浆清理不彻底,采集到的波形不理想,信号的浅层部位存在较严重的反向脉冲,不能客观地反映桩身的完整性情况。
图1(a)是未清理浮浆前收集到的波形,可以得出此桩桩头松散,由此产生激荡波形。
反射波法检测基桩完整性
仪器设备——接收传感器
速度传感器 加速度传感器 ICP(内置前放)
较强烈的冲击或震动都会导致传感器的性能下降或损坏,所以应防止传感器 从高处跌落或被压在重物之下
仪器设备——接收传感器
足够的量程范围、动态范围、灵敏度;良好的 阻尼特性。
速度传感器:磁电式;将振动速度转换为电量; 常用下限频率10、14、28、38Hz,阻尼0.60.7,灵敏度大约300mv/cm/s.
由于速度传感器的高频不足,浅部缺陷(<2m)辨别困难; 并非所有浅部缺陷都难以识别,如果采用合理振源、合理安 装方法和处理方法,它还是可以识别大部分浅部缺陷,只是 较加速度传感器差而已。
由于低频不足,使用速度传感器检测桩长大于40m时,时域 波形的桩底反射特征往往模糊不清,频域曲线难见整桩的一 阶谐振。
的影响 桩在变形时横截面保持为平面,沿截
面有均布的轴向应力
满足以上假定条件时,桩可视为一维杆件
基本原理——波的传播
当在桩顶垂直施加一瞬时作用力后,桩的端面 上的质点受力后产生振动,而振动的传播就形 成了波,此时弹性波就会沿着桩身进行传播。
1、激振产生的是半 球面波,要求垂直 激振,只产生纵波;
现场检测
检测过程中应:
1)严格按检测规范进行检测;
2)遵循国家有关安全生产的规定; 3)数据出现异常,立即查找原因,确定是否重新检测; 4)对低应变法检测中不能明确桩身完整性类别的桩或Ⅲ类桩,
可根据实际情况采用静载法、钻芯法、高应变法、开挖等 适宜的方法进行验证检测 5)当采用低应变法、高应变法和声波透射法检测桩身完整性发 现有Ⅲ、Ⅳ类桩存在,且检测数量覆盖的范围不能为补强 或设计变更方案提供可靠依据时,宜采用原检测方法,在 未检桩中继续扩大检测。当原检测方法为声波透射法时, 可改用钻芯法。
桩基完整性(低应变试验)试验方法
桩基完整性(低应变试验)试验方法1.1 基础完整性检测(低应变试验)1.1.1 适用范围低应变反射波法适用于混凝土灌注桩、混凝土预制桩、预应力管桩和CFG桩。
对于桩身截面多变且变化幅度较大的灌注桩,应采用其他方法辅助验证低应变法检测的有效性。
受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa。
1.1.2 检测原理低应变反射波法是目前国内普遍采用的低应变法。
它通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。
因此,基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求。
一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5.1.1.3 检测方法及工艺要求1.1.3.1 检测前的准备工作a。
受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。
b。
施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。
c。
施工单位向检测单位提供基桩工程相关参数和资料。
d。
检测前,施工单位需做好以下准备工作:1.剔除桩头,使桩顶标高为设计的桩顶标高。
2.要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。
3.灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。
4.桩顶表面平整干净且无积水。
5.实心桩的第三方位置打磨出直径约10cm的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm的平面,打磨面应平顺光洁密实。
6.当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。
因此,测试前应将桩头侧面与断层断开。
7.准备黄油1~2包,作为测试耦合剂用。
8.在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。
e。
搜集受检桩的相关技术资料,包括工程概况、基桩的设计参数、场地的工程地质资料以及施工记录情况。
浅谈低应变反射波法检测基桩完整性
浅谈低应变反射波法检测基桩完整性近年来,随着波动理论的的深入研究和电子技术,计算机技术的迅速提高以及微型便携机的大量普及,反射波法诊断桩身完整性技术取得了很大的发展和日益广泛的应用。
该方法能够有效的判断桩身的局部缺陷。
是一种经济、轻便、高效的桩基完整性检测手段。
低应变反射波法源于应力波理论,基本原理是在桩顶进行竖向激振,使桩中产生应力波,弹性波沿着桩身向下传播,当桩身存在明显波阻抗界面(如桩底、断裂或离析、夹泥等部位)或桩身截面积变化(如缩颈或扩径)部位,将产生反射波,利用特定的仪器设备经接收、放大、滤波和数据处理,可识别来自桩身不同部位的反射信息。
通过对反射信息进行分析计算,来判断桩身完整性,判定桩身缺陷的程度及其位置。
反射波法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置,它属于快速普查桩身质量的一种方法,由于其具有检测速度快、费用低和检测覆盖面广的优点,它已成为基桩完整性检测中应用最为广泛的方法。
反射波法在实际应用中存在许多问题应引起注意和重视,否则将对基桩完整性检测的效果产生较大的影响。
笔者根据多年来现场及室内工作经验,现将日常低应变检测中常见的几个注意事项总结如下:一、桩头处理在低应变反射波法现场信号采集工作中,桩头处理的好坏关系到测试是否能够成功的重要因素,也是测试前需要准备的关键性步骤。
在实际工程中,往往由于破桩头不到位,桩顶面存在浮浆或低强度混凝土,此外,在破桩头时很容易使桩顶混凝土出现裂纹或疏松、破碎,有时桩头被水或淤泥等覆盖,所以在检测时必须对桩顶面进行处理,但在大多情况下,很多测试工作人员忽略了这一点,结果无论怎么改变传感器及其安装位置或激振方式,始终得不到理想的信号曲线。
因此,桩头应为达到设计标高的有效桩头,必须凿去表面浮浆,处理到有新鲜含骨料的混凝土为止,且桩头不能破碎,含水,不能有杂物,要尽量保证桩头干净,平整。
这可以通过随身携带凿子以凿平安装点和锤击点或委托施工方在测试前用电砂轮打磨4至5个小平面,这样有利于传感器的安装和力棒的锤击。
反射波法低应变检测基桩
混凝土强度
C1 5
波速范围( / ) m s
2 50 0—3 00 1特征波速( /ຫໍສະໝຸດ ) m s 2 8 0 0
C20
3 00 0 ̄3 5 O0
3 20 0
C5 2
35 0 38 0 0  ̄ 0
36 0 5
反射波 法检测基桩 完整性时 , 缺 陷类型 的判别可 以通过公式 v — v r i
维普资讯
20 0 6年 第 8期
江 苏水 利
反射波法低应变检测基桩
周永勤
反射 波法 检测 基桩 是 建立 在一
合桩底反射时差 △ , t推算混凝土波速 v。 以此波速 v, 再 结合缺 陷反射时差 △. t 推算出缺陷的位置 L。 ,
应力 波在 桩 身 中传播 的速度 v 与混凝土强度之 间是正相关 ( 但非线 性相关 ) ,即传播 速度 大的混凝土强 度也大 , 目前 混凝土强度 与混凝土波
4 1 0 4 50 0 0
410 0
4 3 0 0
而缺陷 的位置或桩长则 由公式 L v× =
实际检测时 , 往往通过 一个场地 十几乃至几十根桩 的测试 , 结合混凝 土强 度与 波速 的对应 关 系及测试 分 析人员 的经验 , 给波 速一 个值 , 从而 对桩长进行核校 。 从表 1 以看出波 可 速取值有一定范围 , 因而 L就会出现
整性及 桩身质量 。 1 反射波法检 测的范 围
速的关 系及取值范 围见表 1 。
表1
从 反射波法 的原 理可 以看 出 , 反 射 波法所 测试 的对象 应 该是一 维 弹 性杆 , 桩来说 , 对 就要 求桩 长远 大于 桩径 , 身是 连续且 较均 匀 , 桩 因此对
低应变反射波法检测桩基的注意事项与质量控制
低应变反射波法检测桩基的注意事项与质量控制【摘要】在土建工程中,桩基往往是一项最为普遍的隐蔽工程,而桩基的作用对于整个工程而言都至关重要。
桩基检测对于桩基的质量保证起到一个关键作用,是土建工程中的关键所在。
本文通过对低应变反射法检测桩基的原理进行分析,从理论和实践层面对低应变反射波法桩基检测方法的影响因素进行分析,并从多方面对桩基检测的影响因素及消除方法进行阐述,对于桩基检测具有一定的参考作用,能够在实际工程中广泛应用。
【关键词】桩基检测;低应变反射波法;质量控制随着我国经济实力的不断增强,建设行业正在以前所未有的速度飞速发展。
在越来越多的房屋、水利以及公路桥涵的建设中,桩基作为一项典型的隐蔽工程在工程质量控制中起到了至关重要的作用。
桩基的质量问题往往会影响整个工程的质量,严重的会对工程造成不可逆转的损害,甚至造成事故。
由于桩基的隐蔽工程特点,在桩基的施工过程中,尤其是在灌注施工过程中,很容易受到外界因素的影响,出现离析、夹泥、缩径、沉渣甚至断裂等质量问题,造成工程隐患。
因此在实际工程检测中,利用测得反射波曲线信号准确地判定桩身质量,排除桩身隐患,对基桩的质量评价是至关重要的。
低应变反射波法较传统的检测方法具有快速,经济,准确的特点,在工程上具有广泛的应用前景。
1.低应变反射波法检测桩基的基本原理对于桩基的检验目的,主要是为了了解桩基的承载力,对桩基的混凝土质量进行检测,以验证其是否符合质量标准,还有就是对桩基本身的灌注情况进行检测,对桩基中存在的质量隐患进行排查,通过适当的手段进行补救,保证工程质量。
低应变反射波法检测桩基,主要是对桩基的完整性进行检测,对桩基的长度进行校对,检验桩基是否存在缺陷,并准确定位缺陷位置,以及对混凝土的强度等级进行估算。
其原理是通过力锤或手锤敲击桩基顶部,使桩基产生应力波,应力波通过桩基,延桩基方向传播。
根据一维弹性杆应力波波动理论,桩基中存在如断裂、夹泥、扩径、缩径、沉渣等情况时,应力波的波阻抗Z会发生明显变化,从而产生反射波和透射波,变化的程度取决于波阻抗Z的大小,也就是说取决于桩基中存在问题的严重性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反射波法检测基桩完整性时的注意事项低应变反射波法源于应力波理论,基本原理是在桩顶进行竖向激振,使桩中产生应力波,弹性波沿着桩身向下传播,当桩身存在明显波阻抗界面(如桩底、断裂或离析、夹泥等部位)或桩身截面积变化(如缩颈或扩径)部位,将产生反射波,利用特定的仪器设备经接收、放大、滤波和数据处理,可识别来自桩身不同部位的反射信息。
通过对反射信息进行分析计算,来判断桩身完整性,判定桩身缺陷的程度及其位置。
反射波法适用于检测混凝土桩的桩身完整性,判定桩身缺陷的程度及位置,它属于快速普查桩身质量的一种半直接方法,由于其具有检测速度快、费用低和检测覆盖面广的优点,它已成为基桩完整性检测中应用最为广泛的方法。
反射波法在实际应用中存在许多问题应引起注意和重视,否则将对基桩完整性检测的效果产生较大的影响。
1、桩头处理在现场信号采集工作中,桩头处理的好坏关系到测试是否能够成功的重要因素,也是测试前需要准备的关键性步骤。
在实际工程中,往往由于破桩头不到位,桩顶面存在浮浆或低强度混凝土,此外,在破桩头时很容易使桩顶混凝土出现裂纹或疏松、破碎,有时桩头被水或淤泥等覆盖,所以在检测时必须对桩顶面进行处理,但在大多情况下,很多测试工作人员忽略了这一点,结果无论怎么改变传感器及其安装位置或激振方式,始终得不到理想的信号曲线。
因此,桩头应为达到设计标高的有效桩头,必须凿去表面浮浆,处理到有新鲜含骨料的混凝土为止,且桩头不能破碎,含水,不能有杂物,要尽量保证桩头干净,平整。
这可以通过随身携带凿子以凿平安装点和锤击点或委托施工方在测试前用电砂轮打磨4至5个小平面(如图1所示),这样有利于传感器的安装和力棒的锤击。
图1 打磨桩头桩头出露的钢筋笼应以不影响敲击为准,并且高度应适中,否则当小锤敲击桩头时产生的激荡应力波易于在钢筋上产生振荡反射叠加于入射波中,从而影响浅部缺陷波形的识别。
2、传感器选择与安装测振传感器是反射波动测中最基本的重要测试元件之一,它直接与被测桩相连接,将机械振动参量换成电信号,它的性能参数的好坏,直接影响到转换电信号的数据是否真实地反映桩本身的反射信息。
现在大家都倾向于选择内装式加速度传感器(ICP),因为这种传感器无电荷放大器约束,频响更宽,由于已变成电压量和低阻输出,对联线要求低,更适合于野外需要。
传感器的安装对现场信号采集工作影响较大,理论上传感器越轻,越贴近桩面,与桩面之间接触刚度越大,传递特性越好,采集到的信号也越接近桩面的质点振动。
对实心桩的测试,传感器安装位置宜为距桩心2/3~3/4半径处;对空心桩的测试,锤击点与传感器安装位置宜在同一水平面上,且与桩中心连线形成90°夹角,传感器安装位置宜为桩壁厚的1/2处。
如图2所示。
图2 传感器安装点与激振点位置布置示意图此外,传感器的安装应与桩顶面垂直;用耦合剂粘结时,应具有足够的粘结强度。
常用的耦合剂有黄油(稠度高),凡士林,橡皮泥(弹性差油性少粘性强),石膏,牙膏,口香糖等。
传感器用耦合剂粘好后,用手指轻弹传感器侧面,若传感器纹丝不动,则说明传感器已安装好,可以进行测试。
有的测试人员为了测试简便,经常不用藕合剂或少用藕合剂,致使藕合剂的作用减少或消失,导致测试信号振荡很明显,不利于对基桩的分析判断,这样是不可取的。
3、激振设备与激振点的选择激振的目的是在桩头产生一个扰动,从而生成一个沿桩身传播的弹性应力波,而不同频率的应力波沿桩身传播时,具有不同的衰减特性。
定性来说,高频分量对细小界面、骨料等反应灵敏,但衰减较快;低频分量在小界面处易产生绕射,但衰减较慢,传播深度相对较大。
因此,实际应用中常通过现场敲击试验,如改变手锤重量或激发棒的形状、材料硬度以及在桩头加不同材料的桩垫来达到产生不同频率成分的应力波的目的,以适应对桩浅部和深部缺陷的判断的需要。
此外,由于桩顶锤击点产生的应力波实际上为球面波,当沿桩身传播到大于桩径的1.5倍后,方可认为波阵面曲率较小,近似为平面波;并且,激振后还引起沿桩顶水平方向传播的横波、表面波以及由于桩顶材料局部塑性变形、破碎,造成干扰性杂波成分,而这些成分往往幅度较强。
以上干扰因素,可通过带通滤波、改善传感器耦合、降低传感器横向灵敏度、选择适当阻尼系数的传感器,以及桩顶处理、调整激发方式来改善。
反射波测桩时,不能一成不变地使用一种锤头,应准备几种锤头、垫层,依据不同检测目的而选用。
对于长大桩测试一般应选择能量大、脉冲宽、频率低的激振方式,如力棒、尼龙锤等,适用于桩底及深部缺陷的检测,但由此很容易带来浅部缺陷和微小缺陷的漏判,可以结合能量小、脉冲窄、频率高的激振方式来判定桩身浅部的缺陷和位置。
在某些复杂情况下,可以用高频与低频相结合的方式获取基桩桩身的完整信号,即用低频脉冲波获取桩底反射,再用高频脉冲波检测桩身上部缺陷。
另外,敲击质量的高低将直接影响到测试结果的优劣,要由经验丰富的熟练工人来操作。
敲击时锤要落到实处,干脆利索,锤击方向与桩顶平面垂直,避免二次冲击,达到产生瞬间激发点源,入射脉冲狭窄且符合半正弦规律。
4、信号采集现场信号采集首先要进行仪器参数设置,主要包括采样间隔、采样点数、增益、模拟滤波、触发方式等。
根据桩径大小,围绕桩心沿桩身对称布置2-4个检测点,每个检测点记录的有效信号数不宜少于3个,以便通过叠加平均提高信噪比。
应力波反射法所采集的较好波形应该是:1)多次锤击的波形重复性好2)波形真实反映桩的实际情况,完好桩桩底反射明显3)波形光滑,不应含毛刺或振荡波形4)波形最终回归基线不同检测点及多次实测时域信号一致性较差时,应分析原因或产生零漂或信号幅值超过测量系统的量程时,应在检测现场及时研究,排除影响测试的不良因素后重新测试。
5、桩周土对波形曲线的影响在对基桩进行低应变反射波法测试时,要充分考虑到桩周土对采集波形曲线的影响,一般来说,桩侧土力学性质越好,应力波在桩侧土中损耗越大。
当桩周土软土层变到硬土层时,采集的波形曲线就会在相应位置处产生类似扩径的反射波(见图3);而当桩周土由硬土层变到软土层时,采集到的波形曲线就会在相应位置产生类似缩颈的反射波(见图4)。
图3 桩周土对波形曲线的影响示意图(由软土层变到硬土层时)图4 桩周土对波形曲线的影响示意图(由硬土层变到软土层时)如不考虑桩周土对采集波形曲线的影响,不了解基桩所处的地质情况,很容易发生误判。
因此,为更好地对桩的质量进行分析和判断,首先必须对测试工地的有关资料进行全面地收集和了解,其中包括收集工地的地质资料,查阅岩土的物理力学指标,弄清土层的分布和走向,特别要了解在基桩长度范围内各地层的含水量、孔隙比、压缩模量、容重、内摩擦角、地基承载力以及侧摩阻力和端阻力的建议值。
6、波形指数放大的优缺点在现场信号采集过程中,桩底反射信号不明显的情况经常发生,这时指数放大是非常有用的一种功能,它可以确保在桩头信号不削波的情况下,使桩底部信号得以清晰地显现出来。
但有些测试人员认为它使波形失真,过分突出了桩深部的缺陷,这种观点有一定的道理,过分的指数放大甚至有可能人为地造出一个桩底反射。
但是如果结合原始波形,适当地对波形进行指数放大,作为显示深部缺陷和桩底的一种手段,它还是一种非常有用的功能。
7、滤波、平滑处理与小波分析滤波是波形分析处理的重要手段之一,是对采集的原始信号进行加工处理,它是为了将测试信号中无用的或次要成份的波滤除掉,使波形更容易分析判断。
在实际工作中,多采用低通滤波,而低通滤波频率上限的选择尤为重要,选择过低,容易滤掉缺陷反射信号,选择过高,又起不到滤波的作用。
桩基检测中,在确定数字滤波高、低截止频率之前,最好将原始信号进行全频段的频谱分析,然后结合整个测试系统的频响要求,有目的地选择滤波参数。
一般情况下,数字滤波的高频截止频率应选择在桩基的高频范围以外,或选择在频谱曲线中第一个干扰频率左侧的低谷处,这样就可以滤掉不需要的或干扰较严重的高频部分。
当信号中有高频“杂波”时,可以采用平滑将其滤掉。
平滑点数越大,则平滑后的波形越“平缓”。
平滑点数过大时,有些缺陷信号也会被平滑掉,所以此参数也应适当。
小波分析是近年来发展起来的一种新的时频分析方法,它在信号处理、图像压缩、语音编码、模式识别、地震勘探以及许多非线性科学领域内获得了巨大的突破,得到广泛的应用。
我们将其用于动测信号的分析,可以得到较好的效果。
需要设置小波因子(范围为0.1~8.0),该因子越大,则信号越“平缓”。
一般小波因子设为1~3之间的数,如果过大,则可能将缺陷信号处理掉,造成误判。
8、曲线的旋转用加速度传感器采集到的信号一般需要进行积分处理,从而获得速度信号,由于漂移特性和土阻力方面的原因,可能自某一点开始出现纯线性漂移,以至于波形负向或正向成分较多,且尾部不归零。
此时,一般需要对曲线进行逆时针或顺时针方向的旋转,使曲线自某一点开始增加或减少一偏移加速度,对其进行修正,从而确保曲线的合理性和准确性。
9、关于“盲区”从应力波传播的角度看,实测中手锤对桩顶的敲击可视为点振源,敲击后产生一个半球面波,直到传播到一定深度,球面波才能近似看作平面波,满足平截面的假设。
而在此深度之内,应力波传播很复杂,信号干扰严重,理论及实测表明“盲区”范围为测点以下1倍桩径至1/2λ。
低应变激振频率约在1000~4000Hz范围内,因此一般测点以下2m之内为反射波法测试的“盲区”。
由于“盲区”的存在,使基桩本身很浅的部分存在的缺陷被掩盖,所以应该尽量减少“盲区”对测试结果的影响,因此可在实测中通过改变手锤质量、接触面刚度,使用合适的传感器及检测参数,以减小“盲区”的范围,一般可检测到距离测点以下1m左右的较严重的缺陷,再浅的缺陷只能凭经验推测,并且由于缺陷在桩头附近,可通过开挖进行验证。
10、大直径桩的测试技巧在测试大直径灌注桩时,由于浅部缺陷干扰、局部三维效应和表面波影响,往往会产生振荡现象,而且在不同的测点(传感器耦合点)和敲击点获得的信号往往一致性较差。
在这种情况下,一般可以利用信号的叠加平均来得到理想的反映桩身实际情况的非振荡信号。
固定传感器和敲击方式,进行多次敲击,将各次的测试信号进行平均,一般来说,平均结果可以消除浅部干扰、三维效应和表面波效应,突现理想信号。
我公司生产的P8系列基桩动测仪,都可以在测试时使用叠加采样。
11、信号振荡的消除产生信号振荡的原因是多方面的,传感器耦合不好、敲击设备选用不当、敲击点混凝土疏松或离钢筋太近、桩头外露钢筋过长、桩身浅部存在缺陷都可能产生振荡信号,50Hz干扰也会引起低频振荡。
可以利用谱分析来区别不同因素引起的振荡。
加速度传感器测试信号中是否有振荡应在积分成速度后观察。
在现场测试时如果出现振荡信号,应该首先检查一下传感器安装的位置是否合理、耦合剂是否恰当、耦合是否良好(粘结牢固无松动),然后换换敲击点,找一块平整、密实的混凝土表面敲击。