五年级上册数学竞赛试题-奥数经典例题一
五年级上册数学竞赛试题-奥数经典例题一(含解析)
五年级奥数精典例题一例1:甲乙两车同时分别从两地相向而行。
甲车每小时行72千米,乙车每小时行64千米。
两车相遇时距全程的中点20千米。
两地之间相距多少千米?解答:20×2÷(72-64)=40÷8=5(小时)……相遇时间(72+64)×5=136×5=680(千米)答:两地之间相距680千米。
解析:在相同的时间内,甲的速度快,行的路程多,比全程的一半多20千米,而乙则比全程的一半少20千米,所以甲应该比乙多行20×2=40(千米)。
而甲1小时比乙多行72-64=8(千米),多少小时甲比乙多行40千米呢?40÷8=5(小时),这就是他们行驶的时间,即相遇时间。
例2:甲、乙、丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙从B地同时相向出发,丙遇到乙后2分钟遇到甲,A、B两地相距多远?解答:(50+70)×2=240(米)240÷(60一50)=24(分钟)(60+70)×24=3120(米)答:A、B两地相距3120米。
解析:丙与乙相遇时,甲与丙还相距一段路程,这段路程甲、丙还要行2分钟相遇,说明甲、丙还相距(50+70)X2=240(米)。
由于乙、丙相遇处在同一位置,所以240米也是甲、乙相距的路程,即甲、乙的路程差,根据路程差÷速度差=时间,列式240÷(60-50)=24(分),这也是乙、丙的相遇时间,就可求出全程。
例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
五年级数学奥数竞赛题-不定方程(含答案)
奥数竞赛题一: 不定方程(每题10分, 共100分,限时1小时)
1.已知△和☆表示两个自然数,并且△/5+☆/11=37/55, 问△+☆等于多少? 5
2. 已知1999×△+4×□=9991,其中△和□是自然数, 那么□等于多少? 1998
3. 有一箱乒乓球, 其中25%是一级品, 五分之几是二级品,其余91个是三等品, 问箱子里共有多少个乒乓球? 260
4. 全班同学分成若干组去植树, 如果每组植树n棵,且n为质数,则剩下树苗20棵; 若每组植树9棵,则还缺少2棵树苗,问全班共分成多少组? 11
5. 数学竞赛有20道题,答对一道得7分,答错一道扣4分,不答题得0分.张红得了100分,问她有几道题没答?错了几道? 1, 3
6. x是自然数, x÷800=0.a25, 字母a代表一个数字, 问x是多少? 750
7. 1997年有一青年,他的年龄等于年份各数字之和, 请问他的出生年份是哪一年? 1975
8. 王老师家的电话号码是七位数,若将前四个号码组成的数与后三个号码组成的数相加得9063, 将前三个号码组成的数与后四个号码组成的数相加得2529, 问王老师家电话号码是多少? 8371692
9. 如果在分数28/43的分子和分母上分别加上自然数a和b, 所得结果是7/12, 那么, a+b的最小值等于多少? 24
10. 有三个分子相同的最简假分数化成带分数后为a 2
3,b
5
6,c
7
8, 已知a,b,c均小于10,问a是几? 7。
人教版【精选】小学五年级数学奥数竞赛试卷及答案(1)
人教版【精选】小学五年级数学奥数竞赛试卷及答案(1)一、拓展提优试题1.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米2.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.3.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?4.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;5.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.6.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.7.用0、1、2、3、4这五个数字可以组成个不同的三位数.8.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.9.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)10.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四=平方米.边形EFGH11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?13.观察下面数表中的规律,可知x = .14.松鼠A 、B 、C 共有松果若干,松鼠A 原有松果26颗,从中拿出10颗平分给B 、C ,然后松鼠B 拿出自己的18颗松果平均分给A 、C ,最后松鼠C 把自己现有松果的一半平分给A 、B ,此时3只松鼠的松果数量相同,则松鼠C 原有松果 颗.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.2800[解答] 设两地之间距离为S 。
五年级奥数题及答案5篇
五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。
顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。
而甲行走45分钟,乙行走45分钟也能走完一圈。
所以甲行走25分钟的路程相当于乙行走45分钟的路程。
甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。
即乙走一圈的时间是126分钟。
2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。
如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。
又因为每次移动12张牌,所以至少移动108÷12=9(次)。
2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。
提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。
(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
五年级上册数学竞赛试题-奥数经典例题
五年级上册数学竞赛试题-奥数经典例题例1:甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。
求:甲、乙二人的速度各是多少?解答:甲、乙两人的速度差:40÷20=2(米/秒)(乙速:2×9÷6=3(米/秒)甲速:3+2=5(米/秒)。
答:甲、乙二人的速度分别为5米/秒和3米/秒。
解析:如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。
如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。
例2:把一块棱长12分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少?解答:12×12×12÷9=1728÷9=192(分米)答;铸成的钢材长度是192分米。
解析:钢材从正方体变成长方体,体积保持不变。
正方体的体积是1728立方分米,那么长方体的体积也是1728立方分米。
又知道长方体的截面积,则可求出长度。
例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。
五年级上册数学竞赛奥数题
五年级上册数学竞赛奥数题1. 问题描述在一批玩具糖果中,有红色、黄色、绿色三种颜色的圆球,其中红色球的数量是黄色球的3倍,而绿色球的数量是红色球数量的一半。
如果总共有72个球,那么红色球的数量是多少个?解析:设红色球的数量为x个,则黄色球的数量为3x个,绿色球的数量为x/2个。
根据题意可知,红、黄、绿三种颜色的球数量之和为72,即:x + 3x + x/2 = 72将分数转为整数:2x + 6x + x = 1449x = 144x = 16答案:红色球的数量为16个。
2. 问题描述甲乙两个人玩奥数游戏,甲每次都能正确回答1道题目并得到5分,乙每次都能正确回答2道题目并得到8分。
他们各自作答20道题目,共得到了118分。
请问甲和乙各自回答正确的题目数量各是多少道?解析:设甲回答正确的题目数量为x,乙回答正确的题目数量为y。
根据题意可知,甲每次回答1道题目得5分,乙每次回答2道题目得8分,他们各自作答20道题目共得到了118分,即:5x + 8y = 118又因为甲和乙各自作答20道题目,即:x + y = 20解方程组:5x + 8y = 118 --(1)x + y = 20 --(2)由(2)式得到 x = 20 - y,代入(1)式中:5(20 - y) + 8y = 118100 - 5y + 8y = 1183y = 18y = 6将y的值代入(2)式中,可得:x + 6 = 20x = 14答案:甲回答正确的题目数量为14道,乙回答正确的题目数量为6道。
3. 问题描述小明和小红合作参加了一次数学竞赛,他们需要在100秒内计算出尽可能多的数字。
小明每秒能计算3个数字,小红每秒能计算2个数字。
他们一起计算了100秒后,小明和小红计算的数字总数之和是多少?解析:小明每秒计算3个数字,小红每秒计算2个数字,他们一起计算了100秒后,设小明计算了x个数字,小红计算了y个数字。
根据题意可知:3x + 2y = 总数字个数又因为他们一起计算了100秒,即:x + y = 100解方程组:3x + 2y = 总数字个数 --(1)x + y = 100 --(2)由(2)式得到 x = 100 - y,代入(1)式中:3(100 - y) + 2y = 总数字个数300 - 3y + 2y = 总数字个数300 - y = 总数字个数答案:小明和小红计算的数字总数之和为300。
小学五年级经典奥数题[1]带答案
小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。
小学五年级上册奥数题三篇
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是®⽆忧考⽹整理的《⼩学五年级上册奥数题三篇》相关资料,希望帮助到您。
【篇⼀】⼩学五年级上册奥数题 1、参加数学竞赛的某同学的准考证号是⼀个四位数。
已知个位数字是⼗位数字的3倍,⼗位数字是百位数字的3倍,并且这个四位数各个数字的和是15,求这个同学的准考证号。
2、有20⼈修筑⼀条公路,计划15天完成。
动⼯3天后抽出5⼈植树,留下的⼈继续修路。
如果每⼈⼯作效率不变,那么修完这段公路实际⽤多少天? 3、 3名⼯⼈5⼩时加⼯零件90个,要在10⼩时完成540个零件的加⼯,需要⼯⼈多少名? 4、 2个篮球的价钱可以买6个排球,6个⾜球的价钱可以买3个篮球。
买排球、⾜球、⽹球各1个的价钱可以买1个篮球。
那么,买1个篮球的价钱可以买多少个⽹球? 5、甲仓存粮128吨,⼄仓存粮52吨。
甲仓每天运出12吨,⼄仓每天运进7吨。
那么多少天后两仓的存粮就同样多了? 6、三年级⼀班选举班长,每⼈投票从甲、⼄、丙三个候选⼈中选择⼀⼈。
已知全班共有52⼈,并且在计票过程中的某时刻,甲得到17票,⼄得到16票,丙得到11票。
如果得票⽐其它两⼈都多的候选⼈将成为班长,那么甲最少再得到多少票就能够保证当选? 7、从1999这个数⾥减去253以后,再加上244,然后在减去253,再加上244,……,这样⼀直减下去,减到第多少次,得数恰好等于0? 8、在134+7,134+14,134+21,……,134+210这30个算式中,每个算式的计算结果都是三位数,求这些三位数的百位数字之和。
9、计算:1234+2341+3412+4123 10、计算:123+234+345-456+567-678+789-890【篇⼆】⼩学五年级上册奥数题 1、甲、⼄两辆汽车从相遇516千⽶的两地同时出发相对⽽⾏,⼄车⾏驶6⼩时后停车修理,这时两车还相距72千⽶,甲车保持原速⼜⾏驶了2⼩时与停着,求⼄车的速度。
五年级上册奥数含真题(含答案)
五年级上册奥数含真题(含答案)五年级上册奥数含真题(含答案)第一题在一个小镇里,有一家卖糖果的甜品店。
店老板有4个特别的盒子装糖果。
第1个盒子装了2个水果糖,4个摇扣糖和3个口香糖。
第2个盒子装了6个口香糖,8个巧克力糖和3个水果糖。
第3个盒子装了4个摇扣糖和8个巧克力糖。
第4个盒子装了3个口香糖,5个摇扣糖和2个水果糖。
如果一个袋子里必须有一个以上的糖果,那么能够从这4个盒子里一共取出多少种不同的袋子?(A) 96(B) 104(C) 112(D) 120答案:C第二题你需要从10个整数中选出五个,使得这5个数的平均数是13。
那么这个10个整数的平均数是多少?(A) 12(B) 13(C) 14(D) 15答案:C第三题下面的对话中,每个字母代表一个单词。
如果在对话中大约有三分之一的字母被改变,则这段对话一般情况下是什么?- 何:Hey Joe, what's up?- 乔:Not much. I have a test tomorrow.- 何:In what?- 乔:Biology. What are you up to?- 何:Just hanging out.- 乔:All right. I better get back to my studying.(A) 两个人正在聊天。
(B) 两个人正在争吵。
(C) 两个人正在讨论问题。
(D) 无法得知。
答案:D第四题下面的对话中,棕色的线代表Bob说的话,蓝色的线代表Sue 说的话,箭头表示连续引用。
Bob说了什么?Bob:Actually, I can’t this weekend. I have a big test on Monday, so I need to study all weekend.Sue:Oh, that’s too bad. Can we study together then?Bob:Sure, that would be great.(A) 我不能看电影。
五年级数学奥数竞赛试题
五年级数学奥数竞赛试题第一题:小明有10支笔,小红有8支笔。
两个人将他们的笔放在一起,然后平均分成两份。
每份笔各有多少支?解答:小明和小红一共有18支笔。
将18支笔平均分成两份,每份有9支笔。
第二题:有一根长为36厘米的绳子,要将它分成相等的三段。
每段需要多长?解答:将36厘米的绳子平均分成三段,每段长为12厘米。
第三题:小鸟家族在一棵树上搭了8个巢。
每个巢里有4只小鸟,每只小鸟每天吃3粒米。
那么小鸟家族每天需要多少粒米?解答:小鸟家族共有8个巢,每个巢里有4只小鸟,所以一共有8*4=32只小鸟。
每只小鸟每天需要吃3粒米,所以小鸟家族每天需要32*3=96粒米。
第四题:小强在超市买了一箱苹果,一箱里有24个苹果。
他打算分给他的4个朋友,每个朋友能分到几个苹果?解答:小强的一箱苹果里有24个苹果,他要分给4个朋友。
将24个苹果平均分成4份,每个朋友能分到6个苹果。
第五题:一个表格有8行,每行有5个小方格。
要画出这个表格,总共需要画多少个小方格?解答:一个表格有8行,每行有5个小方格,所以总共需要画8*5=40个小方格。
第六题:小明写了24页作业,他每天写3页。
他一共需要多少天才能完成全部作业?解答:小明写了24页作业,每天写3页,所以他需要24÷3=8天才能完成全部作业。
第七题:一根绳子长12米,要将它剪成相等长度的小段。
每段要多长?解答:将12米的绳子平均剪成n段,每段长度为12÷n米。
第八题:有24个小球,要均匀分成6组,每组各有多少个小球?解答:将24个小球均匀分成6组,每组有24÷6=4个小球。
第九题:小明有48个糖果,小红有36个糖果。
他们将这些糖果放在一起,然后平均分成两份。
每份糖果各有多少个?解答:小明和小红一共有48+36=84个糖果。
将84个糖果平均分成两份,每份有42个糖果。
第十题:有一张纸,将它剪成相等大小的小方块。
纸最多可以剪成多少个小方块?解答:将一张纸剪成n个相等大小的小方块,最多可以剪成n²个小方块。
(完整)小学五年级上册数学竞赛奥数题
(完整)小学五年级上册数学竞赛奥数题
小学五年级上册数学竞赛奥数题
1.儿子10岁,5年前母亲的年龄是他的6倍.问母亲今年好多岁?
2.今年8岁,她爸爸今年43岁.多少年后,爸爸是
的3倍?
3.小明今年11岁,他妈妈今年43岁.几年后妈妈是小明的三倍?
4.父子年龄和是46岁,2年后父亲是儿子的4倍,问父子各几岁?
5.小明今年13,小刚今年9岁,问他两岁数的和是40时各几岁?
6.今年爸爸46岁,儿子16岁.几年后爸爸的年龄的2倍是儿子的5倍?
7.今年祖父的年龄是小明年龄的6倍,几年后是他的5倍,再几年后是他的4倍问祖父和小明的年龄各几岁?
8.重阳节,25老人来品茶,25老人的年龄是连续数,也是自然数,两年这后25位老人年龄和是2000,问25位老人最大的一位是多大?
9.小华的年龄是12岁,小华的年龄和姐姐
的年龄和是3倍等于81,问小丽的年龄?
10.小胖的年龄和爸爸的和是64岁,比是1:3,问5年后爸爸和小明的比?。
五年级上册数学奥数题带答案一
五年级上册数学奥数题带答案一一、拓展提优试题1.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.2.数一数,图中有多少个正方形?3.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.4.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.6.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.7.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.8.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.11.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.12.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).13.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.15.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.【参考答案】一、拓展提优试题1.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.2.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.3.解:设除数为b,商和余数都是c,这个算式就可以表示为:47÷b=c…c,即b×c+c=47,c×(b+1 )=47,所以c一定是47的因数,47的因数只有1和47;c为47肯定不符合条件,所以c=1,即除数是46,余数是1.故答案为:46,1.4.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.5.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.6.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.7.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.8.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12011.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.12.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.13.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.14.解:根据分析:这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.又因为这个数大于1,所以这个数最小是61.故答案为:61.15.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.。
五年级上册数学竞赛奥数题
题目1:某校图书馆中有5本数学书、7本语文书和3本英语书,现要从中挑选一本书,问挑选中出是英语书的概率是多少?解析:总共有5+7+3=15本书,其中有3本是英语书,所以挑选中出是英语书的概率是3/15=1/5。
题目2:甲能拨动一个半小时筷子100根,乙能拨动一个小时筷子多少根?解析:甲拨动一个半小时筷子100根,即1.5小时是100根,那么1小时是100根/1.5小时=66.67根。
所以乙能拨动一个小时筷子66.67根(取整数为67根)。
题目3:李华买了一些苹果,第一天吃掉剩下的苹果的三分之一,第二天又吃掉剩下的苹果的三分之一,如此下去第n天吃掉剩下的苹果的三分之一。
问第10天李华剩下多少苹果?解析:设第一天有x个苹果,第二天剩下的苹果为x(1-1/3)=2/3x,第三天剩下的苹果为(2/3x)(1-1/3)=(2/3)^2x,如此类推,第n天剩下的苹果为(2/3)^(n-1)x。
带入n=10,剩下的苹果为(2/3)^9x。
题目4:一辆汽车从A地出发,以100km/h的速度行驶到B地,然后以80km/h的速度返回到A 地。
整个过程共用时10小时。
求AB两地的距离。
解析:设AB两地的距离为x km,那么从A到B的时间为x/100小时,从B返回到A的时间为x/80小时。
根据题意,总时间为10小时,所以x/100+x/80=10。
解方程得到x=400。
题目5:某种蔬菜每1公斤售价5元,买30公斤可以打9折,买50公斤可以打8.5折,那么买80公斤需要多少元?解析:买30公斤9折,买50公斤8.5折。
所以30*(5*0.9)+50*(5*0.85)=270+212.5=482.5元,买80公斤需要482.5元。
五年级奥数竞赛题及答案
五年级奥数竞赛题及答案【题目一】题目:小明有3个苹果,小红有5个苹果,他们决定将苹果平均分给5个小朋友。
问每个小朋友能得到多少个苹果?答案:首先计算小明和小红一共有多少个苹果,即 3 + 5 = 8个苹果。
然后将8个苹果平均分给5个小朋友,每个小朋友可以得到8 ÷ 5 = 1.6个苹果。
但是苹果不能分割,所以实际上每个小朋友可以得到1个苹果,剩余的3个苹果无法平均分配。
【题目二】题目:一个数字乘以3后再加上10,得到的结果是40。
求这个数字是多少?答案:设这个数字为x,根据题意,我们有方程 3x + 10 = 40。
解这个方程,首先将10移到等号右边,得到3x = 40 - 10,即3x = 30。
然后将两边同时除以3,得到x = 30 ÷ 3,即x = 10。
所以这个数字是10。
【题目三】题目:一个班级有48名学生,其中女生人数是男生人数的2倍。
问这个班级有多少名男生?答案:设男生人数为x,女生人数为2x。
根据题意,男生和女生的总人数是48,所以我们有方程 x + 2x = 48。
合并同类项,得到3x = 48。
然后将两边同时除以3,得到x = 48 ÷ 3,即x = 16。
所以这个班级有16名男生。
【题目四】题目:一个长方形的长是宽的3倍,如果长增加20厘米,宽增加5厘米,面积就增加了155平方厘米。
求原来的长方形的长和宽分别是多少?答案:设原来的长方形的宽为x厘米,那么长就是3x厘米。
根据题意,新的长方形的长为3x + 20厘米,宽为x + 5厘米。
新的面积减去原来的面积等于155平方厘米,即 (3x + 20) * (x + 5) - 3x * x = 155。
展开这个方程,我们得到 3x^2 + 15x + 20x + 100 - 3x^2 = 155。
简化后得到 35x + 100 = 155。
将100移到等号右边,得到35x = 155 - 100,即35x = 55。
五年级上学期30道奥数竞赛题(带答案)
五年级上学期30道奥数竞赛题(带答案)1.200.8×7.3-20.08×63 99999×77778+33333×66666=20.08×73-20.08×63 =99999×77778+33333×3×22222=20.08×(73-63)=99999×77778+99999×22222=20.08×10 =99999×(77778+22222)=200.8 =99999×100000=99999000002.一列火车从A站驶到B站的途中要经过5个站,则在这条线路上需要准备往返车票多少种?6+5+4+3+2+1=21(种)21×2=42(种)答:需要准备往返车票42种。
3.李伟骑车从家经购物中心到游乐场,全程需要3小时,若以同样的速度,他从家直接去游乐场,可以省多少时间?15+18=33(km)33÷3=11(km)22÷11=2(时)3-2=1(时)答:可以省1小时。
4.27人乘车去某地,可供租的车有两种:一种可乘八人,另一种可乘四人。
第一种车的租金是300元/天,第二种车的租金是240元/天。
怎样租车费用最少?27÷8=3(辆)……3(人)3×300=900(元)900+240=1140(元)答:租3辆大车和1辆小车划算。
5.10棵树栽成5行,要求每行4棵,怎么栽?请画图表示。
6.某商品的编号是一个三位数,现在有5个三位数874 765 123 364 925,其中每一个数与商品的编号恰好在同一位上有一个相同的数,那么这个商品的编号是多少?答:这个商品的编号是724。
7.有一块长方形地,面积是864平方米,长和宽的和是60米,长宽各是多少米?60×60-864×4=144(m2)144÷12=12(米)(60+12)÷2=36(m)(60-12)÷2=24(m)答:长是36米,宽是24米。
五年级奥数竞赛试题
五年级奥数竞赛试题一、找规律填数1. 题目:观察数列1,3,6,10,15,(),28,…,括号里应填什么数?解析:通过观察可以发现,相邻两个数的差依次是2、3、4、5、…。
1到3相差2,3到6相差3,6到10相差4,10到15相差5,那么下一个数与15应该相差6,所以括号里的数是15 + 6=21。
2. 题目:数列2,4,8,16,32,(),128,…中括号里的数是多少?解析:这个数列的规律是后一个数是前一个数的2倍。
2×2 = 4,4×2 = 8,8×2 = 16,16×2 = 32,所以括号里的数是32×2 = 64。
二、数字谜1. 题目:在下面的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字,那么A、B、C分别代表什么数字?A B C+C B A1 2 3 2解析:从个位看,C+A = 2或者C + A=12。
先假设C+A = 2,因为A、C是不同的数字,那么只能是A = 1,C = 1,这与不同数字矛盾,所以C+A = 12。
再看百位,A + C进位1后得到12,向千位进1,所以A+C = 12。
又因为十位上B + B = 3或者B + B=13,若B + B = 3,B不是整数,所以B + B = 13,B = 6.5不符合题意。
那么只能是B + B = 3不进位,B = 1.5也不符合题意。
所以我们重新考虑C+A = 12,A和C可能是3和9、4和8、5和7等组合。
假设A = 5,C = 7,从十位看B + B = 2(不进位),B = 1,代入竖式验证:517+715 = 1232,符合题意。
所以A =5,B = 1,C = 7。
三、简单的行程问题1. 题目:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。
A、B两地相距多少千米?解析:根据路程=速度和×相遇时间。
小学五年级上册奥数题(精选10篇)
小学五年级上册奥数题(精选10篇)1.小学五年级上册奥数题精选篇一1、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。
求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。
因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
2、甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24。
解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。
乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
3、一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。
坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11。
2.小学五年级上册奥数题精选篇二1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
五年级奥数竞赛试题
五年级奥数竞赛试题【试题一】数字规律题题目:观察下列数字序列,找出规律并求出第10项的值。
2, 4, 7, 11, 16, ...【答案】规律分析:每一项与前一项的差值依次为2, 3, 4, 5, 5,可以看出差值序列是2, 1, 3, 4, 0,差值序列的规律是+1, +2, -1。
根据这个规律,我们可以推断出下一个差值为+3,再下一个差值为+1,以此类推。
所以第7项的差值为5+3=8,第8项为16+8=24,第9项的差值为24+1=25,第10项为25+5=30。
【试题二】几何图形题题目:一个长方形的长是宽的两倍,如果长增加10厘米,宽增加5厘米,面积增加了85平方厘米。
求原来长方形的长和宽。
【答案】设原来长方形的宽为x厘米,那么长为2x厘米。
根据题意,新的长方形的长为2x+10厘米,宽为x+5厘米。
面积增加了85平方厘米,可以列出方程:(2x+10)(x+5) - 2x*x = 852x^2 + 20x + 10x + 50 - 2x^2 = 8530x + 50 = 8530x = 35x = 35/30x = 7/6由于长和宽不能是分数,我们取最接近的整数,即x=1。
那么原来的长为2*1=2厘米,宽为1厘米。
但这个结果不符合题意,因为增加后的面积不可能是85平方厘米。
我们需要重新检查计算过程。
【试题三】逻辑推理题题目:有5个盒子,编号为1到5。
每个盒子里都装有不同数量的球,但每个盒子里的球数都不超过10个。
现在有5个人,每个人说出了关于球数的猜测,但每个人只猜对了一半。
请根据以下信息推断每个盒子里的球数。
A说:2号盒子有3个球,5号盒子有7个球。
B说:1号盒子有4个球,3号盒子有8个球。
C说:2号盒子有6个球,4号盒子有5个球。
D说:3号盒子有9个球,5号盒子有1个球。
E说:1号盒子有2个球,4号盒子有10个球。
【答案】我们可以通过排除法来解决这个问题。
首先,如果A关于5号盒子的猜测是正确的,那么D关于5号盒子的猜测就是错的,这意味着D关于3号盒子的猜测是正确的。
小学五年级数学奥林匹克竞赛题(含答案)
小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。
答案:221.766。
解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。
2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。
答案:103.25。
解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。
3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。
答案:46.8。
解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。
答案:1748。
解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。
5. 计算 1.25⨯0.32⨯2.5=_____。
答案:1。
解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。
6. 计算 75⨯4.7+15.9⨯25=_____。
答案:750。
原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。
7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。
答案:2867。
原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。
(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。
答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。
五年级上册奥数题及答案
五年级上册奥数题及答案篇一:小学五年级奥数题集锦及答案】1.甲乙两车同时从a、b两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求ab两地相距多少千米?解:甲行驶的距离为(5/11)×ab,时间为(5/11)×ab ÷4.5.乙行驶的距离为5×乙的速度,即5×(4.5/(5×4/11))=9千米。
由于甲、乙相向而行,相遇时的路程比为5:4,而货车行了全程的4/9,此时货车行了全程的1/4,距离相遇点还有4/9-1/4=7/36.那么ab两地相距为28÷(7/36)=144千米。
2.一辆客车和一辆货车分别从甲、乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲、乙两地相距多少千米?解:货车的速度是客车的五分之四,相遇时的路程比为5:4.此时货车行了全程的4/9,而行了28千米后离终点还有4/9-1/4=7/36.那么全程为28÷(7/36)=144千米,ab两地相距为全程的2/3,即96千米。
3.甲、乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲、乙速度比为4:3.相遇时,乙行了全程的3/7,再行4小时回到原出发点,即行了全程的4/7.那么乙绕城一周所需要的时间为4÷(4/7)=7小时。
4.甲、乙两人同时从a地步行走向b地,当甲走了全程的1/4时,乙离b地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求ab两地距离是多少米?解:甲走完1/4后余下的路程为1-1/4=3/4,此时甲已经走了1/4+5/8=7/8.那么甲、乙的路程比为7/8:7/10=35:28.乙离b地的距离为(28/63)×ab-640,而乙走完全程的距离为(7/10)×ab。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数精典例题一
例1:
甲乙两车同时分别从两地相向而行。
甲车每小时行72千米,乙车每小时行64千米。
两车相遇时距全程的中点20千米。
两地之间相距多少千米?
解答:20×2÷(72-64)=40÷8=5(小时)……相遇时间
(72+64)×5=136×5=680(千米)
答:两地之间相距680千米。
解析:在相同的时间内,甲的速度快,行的路程多,比全程的一半多20千米,而乙则比全程的一半少20千米,所以甲应该比乙多行20×2=40(千米)。
而甲1小时比乙多行72-64=8(千米),多少小时甲比乙多行40千米呢?40÷8=5(小时),这就是他们行驶的时间,即相遇时间。
例2:
甲、乙、丙三人中,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙从B地同时相向出发,丙遇到乙后2分钟遇到甲,A、B两地相距多远?解答:(50+70)×2=240(米)
240÷(60一50)=24(分钟)
(60+70)×24=3120(米)
答:A、B两地相距3120米。
解析:丙与乙相遇时,甲与丙还相距一段路程,这段路程甲、丙还要行2分钟相遇,说明甲、丙还相距(50+70)X2=240(米)。
由于乙、丙相遇处在同一位置,所以240米也是甲、乙相距的路程,即甲、乙的路程差,根据路程差÷速度差=时间,列式240÷(60-50)=24(分),这也是乙、丙的相遇时间,就可求出全程。
例3:
3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。
每头牛、每只羊每天各吃草多少千克?
解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)
(77-8×4)÷3=45÷3=15(千克)
答:每头牛每天吃草15千克,每只羊每天吃草8千克
解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。
我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。
把前面的牛的头数和羊的只数各扩大2倍得6头牛和8只羊,吃的草也扩大2倍是154千克。
这样再与后面比较就可以消去牛吃的草。
例4:
五(2)班同学去公园划船。
如果租来的船每条船坐4人,则有7人不能上船;如果每条船坐5人,则多一条船。
五(2)班租了多少条船?共有学生多少人?
解答:设租了x条船。
4x+7=5(x-1)
4x+7=5x-5
X=12
4×12+7=55(人)
答:五(2)班租了12条船,共有学生55人。
解析:解答这道题目,可以用盈亏问题的思路来思考,如果用列方程来解答,同样很合适。
前后两种安排座位的方法总人数是不变的。
如果设租了X条船,那么总人数既可以表示为(4x+7)人,也可以表示为5(x-1)人,就可以列出方程。
例5:
在平行的轨道上两列火车齐头并进。
快车车长320米,每秒行25米,慢车车长280米,每秒行20米,问:以并头并进经过多少时间快车完全超过慢车?
解答:320÷(25—20)=320÷5=64(秒)
答:从齐头并进经过64秒快车完全超过慢车。
解析:齐头并进的快车从慢车旁通过,其实就是快车的车尾去追赶慢车车头的过程。
追及的路程是快车的车长即320米。
我们用追及路程÷速度差=追及时间的关系式,可以列出算式。
例6:
王春、陈刚、殷华当中有一个人做了好事,李老师在了解情况的时候,他们三个人分别说了下面几句话:
陈刚:“我没做这件事,殷华也没做这件事。
”
王春:我没做这件事,陈刚也没做这件事”
殷华:“我没做这件事,也不知道谁做了这件事。
”
当老师一再追问时,得知他们都讲了一句真话,那么做好事的人是谁?
解答:陈刚做了这件好事。
解析:如果王春做了这件好事,则陈刚的两句话都是真话,不合题意;如果殷华做了这件好事,则王春的两句话都是真话,不合题意;如果陈刚做了这件好事,符合题意。
例7:
求一个最小的自然数A,使A×13的积的末四位数字组成的四位数是1999.
解答:因为11999=10010+1989,且1989=13×153,1001=13×77,都是13的倍数。
故11999也能被13整除,且最小的。
所以A=11999÷13=923
解析:本题主要是应用能被7,13整除的数的特征,然后逐步推断,缩小范围,最终得到答案。
例8:
加工某种机器零件,要经过三道工序。
第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?
解答:[3,10,5]=5×3×2=30。
30÷3=10(人)
30÷10=3(人)
30÷5=6(人)。
答:第一道工序至少要分配10人,第二道工序至少要分配3人,第三道工序至少要分配6人。
解析:要使加工生产均衡,各道工序生产的零件总数应是3,10和5的公倍数。
要求三道工序“至少”要多少工人,要先求3,10和5的最小公倍数。
例9:
在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(右图),求这个立体图形的表面积。
解答:上下方向: 5×5×2=50(平方分米)
侧面: 5×5×4=100(平方分米)
4×4×4=64(平方分米)
这个立体图形的表面积为:
50+100+64=214(平方分米)。
答:这个立体图形的表面积为214平方分米。
解析:我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面。
这样这个立体图形的表面积就可以分成这样两部分:
上下方向:大正方体的两个底面;
侧面:小正方体的四个侧面,大正方体的四个侧面。
例10:
一只长15分米、宽12分米的长方体玻璃缸中,有10分米深的水,放入一块棱长为3分米的正方体铁块,铁块完全浸没在水中,并且未溢出,这时水面升高了多少厘米?解答:3×3×3=27(立方分米)
27÷180=0.15(分米)
0.15分米=1.5厘米
答:水面升高了1.5厘米。
解析:铁块完全浸没在水中,玻璃缸中的水高度上升,上升部分水的体积就是正方体铁块的体积。
所以先求出正方体铁块的体积,也就是上升部分水的体积,用正方体铁块的体积除以长方体容器的底面积,就是水上升的高度了。