初等数论练习
初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12; 0(2420)=_880_2、设比n是大于1的整数,若是质数,则a=_2.3、模9的绝对最小完全剩余系是_卜4, -3, -2, -1,0,1,2,3,4}.4、同余方程9x+12=0(mod 37)的解是x三11 (mod 37)。
5、不定方程18x-23y=100 的通解是x=900+23t, y=700+18t t Z。
.6、分母是正整数m的既约真分数的个数为—(山)_。
7、18100被172除的余数是_殛。
9、若p是素数,则同余方程L 1 l(modp)的解数为p-1 。
二、计算题疋11X 20 0 (mod lO5)o1、解同余方程:3解:因105 = 3 5 7,同余方程3x211X 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x211X 38 0 (mod 5)的解为x0, 3 (mod 5),同余方程3x211X 20 0 (mod 7啲解为x2, 6 (mod 7), 故原同余方程有4解。
作同余方程组:x (mod 3), x b2 (mod 5), x b3 (mod 7),其中®=1, b2 = 0, 3, b3 = 2, 6,由子定理得原同余方程的解为x 13, 55, 58, 100 (mod 105)o2. 判断同余方程/三42(mod 107)是否有解?*3x7 2 3 7)=(二)(一)(―-)107 107 107 1072 3 I 。
, 2 v( —) = -1, ( — ) = (-1) 2 2(ArL) = -<±) = L 107 107 3 3.-.(—) = 1 107故同余方程x 2三42(mod 107)有解。
3、求(12715C +34) 23除以ill 的最小非负余数。
解:易知 1271 = 50 (mod 111)0由 502 =58 (mod 111) , 503 三58X50三 14 (mod 111), 509=143=80 (mod111)知 502G = (509)彳x50三803X50三803x50三68x50三70 (mod 111) 从而505C=16 (mod 11 l)o故(12715C +34) 2c = (16+34) 20 =502G =70 (mod 111)三、证明题1、 已知p 是质数,(a,p) =1,证明:(1) 当 Q 为奇数时,a p l +(p-l)A =O (mod p);(2) 当a 为偶数时,衣三°(mod p)。
初等数论练习题一(含答案)
初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。
初等数论试题(练习题)
《初等数论》选修结业试题班级 姓名; 考籍号;一、单项选择题(每题5分,共30分) 1、=),0(b ( ). A b Bb- CbD 02、如果a b ,b a ,则( ). Aba = Bba -= Cba ≤ Dba ±=3、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 Dba +4、小于30的素数的个数( ). A 10 B 9 C 8 D 75、大于10且小于30的素数有( ). A 4个 B 5个 C 6个 D 7个6、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定 二、计算题(每题10分,共30分) 1、 求24871与3468的最大公因数?2、 求[24871,3468]=?3、求[136,221,391]=?三、证明题(每题10分,共40分) 1、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0. 2、证明对于任意整数n ,数62332nnn ++是整数.3、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.4、证明相邻两个偶数的乘积是8的倍数.答案一、单项选择题C D C A C A 二、计算题 3、求24871与3468的最大公因数?解: 24871=3468⨯7+5953468=595⨯5+493 595=493⨯1+102 493=102⨯4+85 102=85⨯1+17 85=17⨯5,所以,(24871,3468)=17. 4、求[24871,3468]=?解:因为(24871,3468)=17 所以 [24871,3468]=17346824871⨯=5073684 所以24871与3468的最小公倍数是5073684。
3、求[136,221,391]=?解: [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]=173911768⨯=104⨯391=40664.三、证明题 5、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.证明 :首先证明唯一性.设q ',r '是满足条件的另外整数对,即r q b a '+'=,br '≤0.所以rbq r q b +='+',即()r r q q b '-=-',r r q q b '-=-'.又由于br ≤0,b r '≤0,所以b r r '-.如果q q '≠,则等式r r q q b '-=-'不可能成立. 因此q q '=,r r'=.其次证明存在性.我们考虑整数的有序列……,,3,2,,0,,2,3b b b b b b ---……则整数a 应介于上面有序列的某两数之间,即存在一整数q 使()bq a qb 1+≤ .我们设qb a r -=,则有r bq a +=,br ≤0.6、证明对于任意整数n ,数62332nnn ++是整数.证明: 因为62332nnn ++=)32(62n n n ++=)2)(1(61++n n n ,而且两个连续整数的乘积是2的倍数,3个连续整数的乘积是3的倍数,并且(2,3)=1, 所以从)2)(1(2++n n n 和)2)(1(3++n n n 有)2)(1(6++n n n ,即62332nnn ++是整数.7、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.证明: 因为=-121a a a a n n 12211101010a a a a n n n n +⨯++⨯+⨯--- ,n n a a a a 121- =n n n n a a a a +⨯++⨯+⨯---10101012211 ,所以,121a a a a n n --n n a a a a 121- =).101()101(10)110(10)110(1132311------+-⨯++-⨯+-⨯n n n n n n a a a a而上面等式右边的每一项均是9的倍数, 于是所证明的结论成立. 8、证明相邻两个偶数的乘积是8的倍数.证明: 设相邻两个偶数分别为)22(,2+n n 所以)22(2+n n =)1(4+n n 而且两个连续整数的乘积是2的倍数 即)1(4+n n 是8的倍数.。
初等数论习题与答案、及测试卷
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
《初等数论》习题集及答案
《初等数论》习题集第1章 第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论习题
初等数论练习题1、()=320011 ()10,()=107137 ()2。
2、()=531404 ()10,()=1021580()8 3、比较()21011011与()41203的大小。
4、求证:对于任意整数n m ,,必有1616+≠-n m 。
5、如果n 是一个自然数,则()1+n n 是 (填“奇数”或“偶数”)6、若b a ,两数的和与积均为偶数,则b a ,的奇偶性是 。
7、若a 除以b 商c 余r ,则am 除以bm 商 余 。
8、设4>n ,且()()2434+-n n ,求n 。
9、设()223b a +,证明a 3且b 310证明:若()()pq mn p m +-,则()()np mq p m +-。
11、若23++n m 是偶数,试判定()()200311+--n m 是奇数还是偶数。
12、求证:若b a ,a b ,则b a ±=。
11、设b a ,是正整数,且b a ≤,若5776=ab ,()31,=b a ,求b a ,。
13、设b a ,是正整数,且b a ≤,若50=+b a ,()5,=b a ,求b a ,。
14、如果p 是素数,a 是整数,则有()1,=p a 或者____ ___ 15、()=204,360 ,[]=204,360 。
16、若()()24,4,==b a ,则()=+4,b a 。
17、写出1500的标准分解式是,60480的标准分解式为 18、541是 。
(填“质数”或“合数”)19、设()1,=n m ,求证:()()()n d m d mn d =,()()()n S m S mn S =。
20、计算()430d ,()430S 。
21、求!100末尾0的个数。
22、求13除486的余数。
23、写出模9的一个完全剩余系,使其中每个数都是奇数。
24、写出模9的一个完全剩余系,使其中每个数都是偶数。
25、若()1,=m a ,求证:若x 通过模m 的简化剩余系,则ax 通过模m 的简化剩余系。
初等数论期末练习
初等数论期末练习一、单项选择题2、如果(a,b) = l9则(ab,a + b)=()・A aB bC 1D a + b3、小于30的素数的个数()•A 10B 9C 8D 74、如果a = /?(mod 〃?),c是任意整数,则A ac =B a = bC ac T bc(modm)D a * b5、不定方程525x+231y = 210 ().A有解B无解C有正数解D有负数解6、整数5874192能被()整除.A 3 B3 与9 C 9 D3 或98、公因数是最大公因数的().A因数E倍数C相等D不确定9、大于20且小于40的素数有()•A4个E5个C2个D3个11、因为(),所以不定方程12v+15>- = 7没有解.A [12, 15]不整除7B (12, 15)不整除7C 7不整除(12, 15 )D 7不整除[12, 15]二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是()・b2、同余式1力+15三0(mod45)有解,而且解的个数为().3、不大于545而为13的倍数的正整数的个数为().4、设“是一正整数,Euler函数久“)表示所有()“,而且与“()的正整数的个数.5、设a,b 整数,则(a,b)()= ab.6、一个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、x = [x] +().8、同余式llLv = 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果肋A0,则[d,b](d,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) = l,那么(ab,a+b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107A-+37J =25. (8分)$429、3、求—L其中563是素数•(8分)4、解同余式lllx三75(mod321)・(8分)5、求[525,231]=?6、求解不定方程6.v-lly = 18.7、判断同余式A2 =365(modl847)是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个〃位数①“一…你①与其按逆字码排列得到的数勺①…的差必是9的倍数.(11分)2、证明当〃是奇数时,有3怦+1)・(10分)3、一个能表成两个平方数和的数与一个平方数的乘枳,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数“的个位数是5,则该数是5的倍数.5、如果("是两个整数上A0,则存在唯一的整数对如•,使得a = bq+r^中0"Yd《初等数论》期末练习答案一、单项选择题2、C3、A4、A5、A6、E 8、A 9、A 11、B二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是((M0) = l )・b2、同余式1S+15三0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设〃是一正整数,Euler函数处“)表示所有(不大于",而且与“(互素)的正整数的个数.5、设整数,则(a,b) ( [a,b] ) = ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除.7、X =[A]+({x} ).8、同余式llLz75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab >■ 0,则[«,/?](«, b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) = l,那么(",a + b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468) =17所以[24871,3468]= 24871x3468 17=5073684 所以24871与3468的最小公倍数是5073684。
初等数论期末练习
初等数论练习题一、单项选择题2、如果1),(=b a ,则),(b a ab +=( ).A aB bC 1D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(m od m bcD b a ≠ 5、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解 6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9 8、公因数是最大公因数的( ).A 因数B 倍数C 相等D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15]二、填空题1、有理数ba,1),(,0=b a b a ,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ).3、不大于545而为13的倍数的正整数的个数为( ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( )n ,而且与n ( )的正整数的个数.5、设b a ,整数,则),(b a ( )=ab .6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除.7、+=][x x ( ).8、同余式)321(m od 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ). 11、b a ,的最小公倍数是它们公倍数的( ). 12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最小公倍数?2、求解不定方程2537107=+y x .(8分)3、求⎪⎭⎫⎝⎛563429,其中563是素数. (8分)5、求[525,231]=?6、求解不定方程18116=-y x .8、求11的平方剩余与平方非剩余.四、证明题1、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》练习答案一、单项选择题2、C3、A4、A5、A6、B 8、A 9、A 11、B 二、填空题1、有理数ba,1),(,0=b a b a ,能写成循环小数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( 3 ).3、不大于545而为13的倍数的正整数的个数为( 41 ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( 不大于 )n ,而且与n ( 互素 )的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、一个整数能被3整除的充分必要条件是它的( 十进位 )数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,而且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最小公倍数是它们公倍数的( 因数 ). 12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最小公倍数? 解:因为(24871,3468)=17 所以 [24871,3468]=17346824871⨯=5073684 所以24871与3468的最小公倍数是5073684。
(完整版)初等数论练习题二(含答案)
(完整版)初等数论练习题二(含答案)《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果a b (modm ) ,c 是任意整数贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、整数637693能被()整除. A 3 B 5C 7D 9二、填空题1、素数写成两个平方数和的方法是(). 2、同余式ax b O (modm )有解的充分必要条件是().8、如果同余式ax b O (modm )有解,则解的个数(). 9、在176与545之间有()是13的倍数.10、如果 ab 0 则[a,b ](a,b )=(). Cab Dab )n . 等于 D 不一定 3、如果a,b 是两个正整数,则不大于 4、如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有().11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、素数写成两个平方数和的方法是(唯一的)2、同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 rb.7、设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、在176与545之间有(28 )是13的倍数.10、如果 ab 0 则[a,b](a,b)=( ab ).11、如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分)解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。
(完整版)初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
最新初等数论试卷,最全面的答案,包括截图
初等数论考试试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗?】C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( D)A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( D ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( A ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( ? )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .不超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( C ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为:( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的原根存在,下列数中,m 不可能等于:( D ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是 ( B ) A .322ind = B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( C ) A .茂陛鸟斯(mobius)函数w(a) ; B .欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18.若x 对模m 的指数是ab ,a >0,ab >0,则a χ对模m 的指数是( B ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( A ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = _____21____; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2≥n ,有整数解的充分必要条件是_(1a ,2a ,…,n a ,)︱N_;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_(10,b )=1__; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为2,__;25. 威尔生(wilson )定理:____()1p -!+1()0mod ,p p ≡为素数______; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=___1___; 27. 若)(,1a p =,则a 是模p 欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是___()()m φφ__;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_g 与g+a p 中的奇数_; 30. ()48ϕ=___16___。
初等数论试题库
初等数论练习一、单项选择题1. 如果n是一个自然数,那么n(n+1)是()。
A. 奇数B. 偶数C. 奇数或偶数D. 由n奇偶性而定2. 19983除以9后的余数是()。
A. 1B. 2C. 3D. 03. 模10的绝对值最小的完全剩余系是()。
A. 0,1,2,3,…8,9B. 1,2,3,…9,10C. -5,-4,-3,-2,-1,0,1,2,3,4D. 11,12,13,…19,204. 1500的标准分解式是()。
A. 2×2×5×5×5×3B. 3×53×22C. 22×3×53D. 2×2×3×5×5×55. 有一批同样砖块,宽30cm,长45cm,至少需要这样的砖多少块,才能铺成一个正方形地面?()A. 4B. 6C. 9D. 246. 边长为自然数,面积为30的长方形有多少个?()A. 2B. 3C. 4D. 无数7. 一堆排球,3个3个数余2个,4个4个数余3个,问这堆排球至少有多少个?()A. 23B. 35C. 24D. 118. 下列不定方程中是三元二次不定方程的有()。
A. xyz=9B. 5x+6y+7z=5C. xy+5z=8D. 2x+3y=69. 若ac≡bc(mod m),则下列正确的是( )A. a≡b(mod m)B. m|(a-b)cC. m|cD. m|(a+b)c10. 若a、b两数的和与积均为偶数,则a,b的奇偶性为( )A. a奇b偶B. a偶b奇C. 均为偶数D. 均为奇数11. 已知五位数123A5能被11整除,则A是( )A. 0B. 7C. 9D. 1812. 下列算式肯定错误的是( )A. 4569×91=415779B. 4569×92=420348C. 2376×156=370646D. 4569×29=13250113. 下列数中能表示成20和12的倍数之和的是( )A. 2B. 6C. 10D. 3614. 已知甲数除以11的余数是4,乙数除以11的余数是7,则甲、乙两数之和除以11的余数是( )A. 4B. 7C. 0D. 615. 下列答案中正确的是( )A. 〔x〕+〔y〕≤〔x+y〕B. 〔x+y〕=〔x〕+〔y〕C. 〔x〕+〔y〕<〔x+y〕D. 〔x〕+〔y〕>〔x+y〕16.m,n为整数,下列式子一定不可能成立的是( )A.m-n=3B.m+2n=5C.2m+n=12D.m+n=017.若a,b,c均为整数,且a+b被c整除,则下列一定成立的是( )A.c|aB.c|bC.c|a-bD.c|a2-b218.相邻两个整数之和与相邻两个整数之积分别是( )A.奇数奇数B.奇数偶数C.偶数奇数D.偶数偶数19.m为奇数时,模m的绝对最小完全剩余系是( )A.1,2,3,…,m-1,mB.-m,-(m-1),…,-2,-1C.--m12,…,-1,0,1,…m-12D.-m2,…,-1,0,1,…m21-20.下列不属于二元二次不定方程的是( )A.xy=5B.x2+y2=16C.2x2+y=8D.13442 xy+=21.11与-10以下列( )数为模时同余?A.2B.7C.10D.522.已知(a,b,c)=1,则一定有( )A.(a,b)=1B.(b,c)=1C.(a,c)=1D.((a,b),c)=123.所有不超过152的自然数中,5的倍数有( )个。
《初等数论》习题集
第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
《初等数论》复习练习
《初等数论》复习练习1. 求24871与3468的最大公因数?2. [24871,3468]=?3.求[525,231]=?4.找出100以内的质数5.证明对于任意整数n ,数62332n n n ++是整数.6.求解不定方程并求出正整数解:1)、144219=+y x2)、18176=-y x .3).求不定方程471325=++zy x 的整数解。
7、解同余式(组) (1) ⎪⎩⎪⎨⎧≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x8、求3643的末两位数码.9.求84965除以13的余数。
10.n=9450,求n 的标准分解式,并求τ(n ),σ(n ),φ(n )。
11.求2004!的末尾有多少个连续的零。
12.判断x=1*1996+2*1996+3*1996+…1996*1996除以9余几?13.判断359是否是质数。
14.M=8,写出M 的一个完全剩余系。
15.X 是方程X2+X-1=0的根,求[X]及{X}16. 欧拉函数)(n 的值,n=1,2,3,4,5,6,7,8,9,1017、如果整数a 的个位数是5,则该数是5的倍数.18.128*935*874*(),要使这个乘积的最后4个数字都是0,说明()最小应填什么数。
19. [x]=9,[y]=10,[z]=11,求[x+y-z]的值20.若今天是星期二,那么从今天起再过22010天是星期几?为什么?设A=2010∵(2,7)=1,∴由费马小定理,26≡1(mod7),2010=6×333+2≡2(mod6) ∴A=6q+2,2A =26q+2=26q 22≡22(mod7)≡4(mod7)故是星期六参考解答:1.解:24871=7×11×17×19,3468=22×3×172∴(24871,3468)=17.2.由上题得[24871,3468]=2×2×3×7×17×17×19=5073684.3.由上题的方法 ,或用短除法求得,[525,231]=11×21×25=5775。
02013初等数论练习题及答案
02013初等数论练习题及答案初等数论练习题一一、填空题1、?(2420)=27;?(2420)=_880_2、设a,n是大于1的整数,若an-1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t,y=700+18t t?Z。
.6、分母是正整数m的既约真分数的个数为_?(m)_。
7、18100被172除的余数是_256 。
8、??65?? = -1 。
?103?9、若p是素数,则同余方程x p ? 1 ?1(mod p)的解数为 p-1 。
二、计算题1、解同余方程:3x2?11x?20 ? 0 (mod 105)。
解:因105 = 3?5?7,同余方程3x2?11x?20 ? 0 (mod 3)的解为x ? 1 (mod 3),同余方程3x2?11x?38 ? 0 (mod 5)的解为x ? 0,3 (mod 5),同余方程3x2?11x?20 ? 0 (mod 7)的解为x ? 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ? b1 (mod 3),x ? b2 (mod 5),x ? b3 (mod 7),其中b1 = 1,b2 = 0,3,b3 = 2,6,孙子定理得原同余方程的解为x ? 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?237)1071071071071073?1107?17?1107?1 ??23107271072221,1,?221107107331077742??11072?3?7解:(42)??28除以111的最小非负余数。
解:易知1271≡50。
502 ≡58, 503 ≡58×50≡14,509≡143≡80知5028 ≡3×50≡803×50≡803×50≡68×50≡70 从而5056 ≡16。
初等数论练习题二(含答案)
《初等数论》期末练习一一、单项选择题1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果n 2,n 15,则30( )n .A 整除B 不整除C 等于D 不一定8、大于10且小于30的素数有( ).A 4个B 5个C 6个D 7个9、模5的最小非负完全剩余系是( ).A -2,-1,0,1,2B -5,-4,-3,-2,-1C 1,2,3,4,5D 0,1,2,3,410、整数637693能被( )整除.A 3B 5C 7D 9二、填空题1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.7、设p 是素数,则不定方程22y x p +=有( ).8、如果同余式)(mod 0m b ax ≡+有解,则解的个数( ).9、在176与545之间有( )是13的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分) 5、求[24871,3468]=?6、求解不定方程18176=-y x .7、解同余式)321(mod 75111≡x .8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数n ,数62332n n n ++是整数. 2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.4、如果整数a 的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案一、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][ba ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.7、设p 是素数,则不定方程22y x p +=有( 唯一解 ).8、如果同余式)(mod 0m b ax ≡+有解,则解的个数( ),(m a ).9、在176与545之间有( 28 )是13的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯] =[1768,391] = 173911768⨯ =104⨯391=40664.2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;化简得4873=+y x ;考虑173=+y x ,有1,2=-=y x ,所以原方程的特解为48,96=-=y x ,因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论练习题
6、 设 m1, m2, , mn 是两两互素的正整数, xi 分别通过模 mi 的既约剩余系 (1 i n) , m = m1m2mn, Mi =
17 写成三个既约分数之和,它们的分母分别是 3,5 和 7。 105
3、求方程 7x1 3x2 = 41 的所有非负整数解。 4、求方程 x1 2x2 3x3 = 41 的所有正整数解。 5、求解不定方程组:
x1 2 x 2 3x3 7 2 x1 5 x 2 20x3 11
i 1 m
axi b } 1 (m 1) 。 m 2
24、求 (
71 ) 、 ( 91 ) 563 73
17、求出模 23 的所有的二次剩余和二次非剩余。 18、设 p 是奇素数,证明:模 p 的两个二次剩余的乘积是二次剩余;两个二次非 剩余的乘积是二次剩余;一个二次剩余和一个二次非剩余的乘积是二次非剩余。 19、已知 563 是素数,判定方程 x2 429 (mod 563)是否有解。 20、求所有的素数 p,使得 (
7、设 n > 1。证明:n 是素数的充要条件是(n 1)! 1 (mod n)。 8、解同余方程 325x 20 (mod 161) 。 9、解同余方程 81x3 24x2 5x 23 0 (mod 7)。 10、解同余方程 18x 39 (mod 69)。
x b1 (mod5) x b2 (mod6) 11、解同余方程组: x b3 (mod7) x b4 (mod11) 。
( p 1)( p 2) ( p a 1) (mod p)。 a!
初等数论练习题标准答案
初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若an -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(m od 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y =100的通解是x =900+23t,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m)_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1 ≡1(mo d p)的解数为 p -1 。
二、计算题1、解同余方程:3x2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (m od 3)的解为x ≡ 1 (mo d 3), 同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mo d 7)的解为x ≡ 2,6 (mod 7), 故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b3 (mo d 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论练习题与答案
初等数论练习题一一、填空题1、 (2420)=27; (2420)=_880_2、设 a , n 是大于 1 的整数,若 a n -1 是质数,则 a=_2.3、模 9 的绝对最小完全剩余系是 _{-4 ,-3,-2, -1,0,1,2,3,4}.4、同余方程 9x+12≡0(mod 37)的解是 x ≡11(mod 37)。
5、不定方程 18x-23y=100 的通解是 x=900+23t ,y=700+18tt Z 。
.6、分母是正整数 m 的既约真分数的个数为 _ ( m) _。
7、18100被 172除的余数是 _256。
8、65=-1。
103p19、若 p 是素数,则同余方程 x1(mod p) 的解数为 p-1 。
21、解同余方程: 3x 11x 20 0 (mod 105) 。
同余方程 3x 2 11x 20 0 (mod 3) 的解为 x 1 (mod 3) ,同余方程 3x 2 11x 38 0 (mod 5) 的解为 x 0, 3 (mod 5) ,同余方程 3x 2 11x 20 0 (mod 7) 的解为 x 2,6 (mod 7) ,故原同余方程有 4 解。
作同余方程组: x b 1 (mod 3) ,x b 2 (mod 5) ,x b 3 (mod 7) ,其中 b 1 = 1 ,b 2 = 0 ,3,b 3 = 2 ,6,由孙子定理得原同余方程的解为x 13,55, 58,100 (mod 105) 。
2、判断同余方程 x 2 ≡42(mod 107)是否有解?解: 42 ) ( 2 37)( 2 )(3 )(7 ) 107 107 1071071072 ) 33 1 107 1107 )2 )7)(7 1 107 1107 2 )(,( )( )22( ( ,( )22 () ( 11071107133110717 7( 42) 1 107故同余方程 x 2≡ 42(mod 107)有解。
初等数论试题及答案大学
初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。
答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。
答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。
答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。
答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。
证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。
特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。
这意味着2^(p-1) - 1是p的倍数。
2. 计算:求1到100之间所有素数的和。
答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。
证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。
如果a + b是素数,那么a + b至少有3个不同的素因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业次数:学号姓名作业成绩第0章序言及预备知识第一节序言(1)1、数论人物、资料查询:(每人物写60字左右的简介)(1)华罗庚2、理论计算与证明:(1(2)Show that there are infinitely many Ulam numbers3、用Mathematica数学软件实现A Ulam number is a member of an integer sequence which was devised by Stanislaw Ulamand published in SIAM Review in 1964. The standard Ulam sequence (the (1, 2)-Ulam sequence) starts with U1=1 and U2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest integer that is the sum of two distinct earlier terms in exactly one way 。
By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct.) The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99(1)Find the first 200 Ulam numbers(2)What conjectures can you make about the number of Ulam numbers less than an integer n?Do your computations support these conjetures?作业次数: 学号 姓名 作业成绩第2节 序言(2)1、数论人物、资料查询:(每人物写60字左右的简介)(2)陈景润2、理论计算与证明:(1)用数学归纳法证明:!n n n ≤(2)用数学归纳法证明:2!(4)n n n ≤≥3、用Mathematica 数学软件实现The 3x + 1 problem, also known as the Collatz problem, the Syracuse problem, Kakutani's problem, Hasse'salgorithm , and Ulam's problem , concerns the behavior of the iterates of the function which takes odd integers nto 3n+1 and even integers n to 2n . The 3x+1 Conjecture asserts that, starting from any positive integer n , repeated iteration of this function eventually produces the value 1.参考文献:Jeffrey C. Lagarias, "The 3x+1 problem and its generalizations".作业次数: 学号 姓名 作业成绩第3节 预备知识1、数论人物、资料查询:(每人物写60字左右的简介)(1)王小云(山东大学)(2)The tower of Hanoi2、理论计算与证明: (1)设n f 是第n 个Fabonacci 数,11F 10⎛⎫= ⎪⎝⎭,则1n 1F n n n n f f f f +-⎛⎫= ⎪⎝⎭(2)求证:212232122...n n n f f f f f f f -+++=3、用Mathematica 数学软件实现(The tower of Hanoi puzzle )The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle. It consists of threerods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts withthe disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus makinga conical shape.The objective of the puzzle is to move the entire stack to another rod, obeying the followingrules:∙Only one disk may be moved at a time.∙ Each move consists of taking the upper disk from one of the rods and sliding it ontoanother rod, on top of the other disks that may already be present on that rod.∙ No disk may be placed on top of a smaller disk 参考文献:[1]、http://wipos.p.lodz.pl/zylla/games/hanoi5e.html[2]、/wiki/Tower_of_Hanoi作业次数: 学号 姓名 作业成绩第一章 整数的可除性第1节 整数的整除性1、数论人物、资料查询:(每人物写60字左右的简介)(1)素数有无限个的多种证明方法.(2) 欧几里德 高斯2、理论计算与证明:(1)证明:3|(1)(21)n n n ++,其中n 是任何整数。
(2)若00ax by +是形如ax by +(,x y 是任意整数,,a b 是两个不全为零的整数)的数中的最小正数,则00()|()ax by ax by ++。
作业次数: 学号 姓名 作业成绩第2节 带余数除法、辗转相除法1、数论人物、资料查询:(每人物写60字左右的简介)(1)DONALD KUNTH2、理论计算与证明:(1)证明00(,)a b ax by =+,其中00ax by +是形如ax by +(,x y 是任意整数)的整数里的最小正数,并将此结果推广到n 个整数的情形。
(2)求(252,198)。
(3)设1n f +和2n f +是连续的Fibonacci 序列,1n >,求证:12(,)1n n f f ++=作业次数: 学号 姓名 作业成绩第3节 最大公约数1、数论人物、资料查询:(每人物写60字左右的简介)(1)Fibonacci2、理论计算与证明:(1)证明两整数,a b 互质的充分与必要条件是:存在两个整数,s t 满足条件1as bt +=。
(2)设,m n 是正整数,a 是大于1的整数。
证明:(,)(1,1)1m n m n a a a --=-。
(3)如果,m n 是正整数,则(,)(,)m n m n f f f =。
作业次数:学号姓名作业成绩第4节最小公倍数、素数与算术基本定理1、数论人物、资料查询:(每人物写60字左右的简介)(1)ALTE SELBERG2、理论计算与证明:(1)若21n+是素数,则n是2的方幂。
(2)设,,a b c都是正整数,则max{,,}min{,}min{,}min{,}min{,,}a b c a b c a b a c b c a b c=++---+由此证明:(,,) [,,](,)(,)(,)abc a b ca b ca b a c b c=作业次数:学号姓名作业成绩第6节函数[x]与{x}1、数论人物、资料查询:(每人物写60字左右的简介)(1)PAUL ERDOS2、理论计算与证明:(1)求30!的标准分解式。
(2)求20!的末尾有多少个零?(3)设n是任一正整数,α是实数,证明:(i)[][] nnαα⎡⎤=⎢⎥⎣⎦(ii)11[][]...[][]nnn nαααα-+++++=作业次数: 学号 姓名 作业成绩第二章 不定方程第一节 二元一次不定方程1、数论人物、资料查询:(每人物写60字左右的简介)(1)整理Fermat last theorem 的历史过程2、理论计算与证明(1)解方程 1525100x y += (2)证明:二元一次不定方程,0,0,(,)1ax by N a b a b +=>>=的非负整数解为N ab ⎡⎤⎢⎥⎣⎦或1N ab ⎡⎤+⎢⎥⎣⎦。
(3)解方程 2345x y z ++=作业次数: 学号 姓名 作业成绩第三章 同余第一节 同余的概念1、数论人物、资料查询:(每人物写60字左右的简介)(1)G .L. DIRICHLET2、理论计算与证明(1) 找出被2,3,5,6,7,9整除的整数的刻画.(2) 设1101010...,09n n n n i a a a a a --=+++≤≤,证明:011|11|(1)n i i i a a =⇔-∑ (3) 证明:32641|21+.作业次数: 学号 姓名 作业成绩第二节 剩余类及完全剩余系、简化剩余系1、数论人物、资料查询:(每人物写60字左右的简介)(1)DA VID HILBERT2、理论计算与证明(1)证明 2(1)()()...(),p p p p p ααϕϕϕϕ++++=为素数。
(2)求(200)ϕ。
作业次数: 学号 姓名 作业成绩第三节 欧拉定理及费马小定理1、数论人物、资料查询:(每人物写60字左右的简介)(1)PIEERE DE FERMAT(2) ANDREW WILES2、理论计算与证明(1)设p 是素数,12,h h 是整数,则1212()(mod )p p p h h h h p +≡+.(2)设n 是正整数,则|()d nd n ϕ=∑.(3) 设p 是素数,如果p p p x y z +=,证明:|p x y z +-.作业次数: 学号 姓名 作业成绩第四章 同余式第一节 基本概念及一次同余式、孙子定理1、数论人物、资料查询:(每人物写60字左右的简介)(1)RSA 三个人物(2) 整理 The RSA Cryptosystem2、理论计算与证明(1)解同余式(i) 25(mod 7)x ≡ (iii) 95(mod 25)x ≡(iii) 256179(mod337)x ≡ (2) 设m 是正整数,(,)1a m =,证明:()1(mod )m x ba m ϕ-≡是同余式(mod )ax b m ≡的解。