直线、平面平行的判定及其性质
直线、平面平行的判定与性质
[点评] 证明线面平行的基本方法之一就是根据线面平行的 判定定理,利用这个定理的关键是在要证明的平面内找一条和 已知的直线平行的直线,如果已知条件中含有比例关系,要通 过添加适当的辅助线使用平面几何中的平行线分线段成比例定 理,如果已知条件中含有中点,则要添加适当的辅助线使用三 角形中位线定理等.
(2)对
(1)由平面与平面平行的判定定理知,这两条直线
必须是相交直线;(2)两个平面平行,则两个平面无公共点, 故分别在这两个平面内的两条直线没有交点.
► α.( )
问题3
若直线a与平面α内无数条直线平行,则a∥
[答案]错
[解析] 还有另一种可能:a⊂α.
►
问题4
若直线a∥α,P∈α,则过点P且平行于a的直线 )
知识梳理
类 别
1.直线与平面平行
语言表述 图形表示 应 符号表示 用 证 明 a∩α=∅ 直 ⇒ a∥α 线 与 平 a⊄α,b⊂ 面 α,且a∥b 平 ⇒ a∥α 行
定义:一条直线与 一个平面 没有公共点 ________,则称这 条直线与这个平面 判 平行 定 判定定理:平面外 一条直线与此平 ________________ 面内的一条直线 平行,则这条直线 平行于这个平面
►
探究点3
例3
线面、面面平行的综合应用
已知:直线a,b和平面α,a⊄α,a⊥b,b⊥α,求
证:a∥α.
[思路]
分直线a,b相交和异面,异面的情况可以通过
作平行线转化为相交的情况.
[解答]
证明:(1)当直线a,b相交时,如图(1),经过a,b
作平面β,设α∩β=c.因为b⊥α,c⊂α,所以b⊥c.又a⊥b,且 a,b,c都在平面β内,根据平面几何知识a∥c,又a⊄α,c⊂ α,所以a∥α. (2)当a,b是异面直线时,如图(2),过直线b上一点(这点异 于直线b和平面α的交点)A作a′∥a,由于a⊥b,故a′⊥b,仿 照(1)可证a′∥c,根据公理4得a∥c,而a⊄α,c⊂α,所以a∥ α.
直线、平面平行的判定及其性质课件
思考6:设直线a,b为异面直线,经过
直线a可作几个平面与直线b平行?过a,
b外一点P可作几个平面与直线a,b都
平行?
a
b
p
b a a
p b
理论迁移
例1 在空间四边形ABCD中,E,F分别是 AB,AD的中点,求证:EF//平面BCD.
A E B
F D
C
例2 在长方体ABCD—A1B1C1D1中. (1)作出过直线AC且与直线BD1平行的
思考4:有一块木料如图,
E
P为面BCEF内一点,要求 过点P在平面BCEF内画一
F
P D
条直线和平面ABCD平行,
那么应如何画线?
A
C B
思考5:如图,设直线b在平面α内,直 线a在平面α外,猜想在什么条件下直线 a与平面α平行?
a
a//b
α
b
探究(二):直线与平面平行的判断定理
思考1:如果直线a与平面α内的一条直 线b平行,则直线a与平面α一定平行吗?
D′
A′
P
C′
B′ D
C
A
B
例2 已知平面外的两条平行直线中的 一条平行于这个平面,求证另一条也 平行于这个平面.
如图,已知直线a,b
和平面α ,a∥b,
a
b
a∥α , a,b都在 平面α外 .
c α
求证:b∥α .
作业: P61练习,习题2.2A组:1,2. (做在书上) P62习题2.2A组:5,6. P63习题2.2B组:1,2.
由此可得什么推论?
推论 如果一个平 面内有两条相交直 线分别平行于另一
a
b
α
个平面内的两条直
线,那么这两个平 β
直线、平面平行的判定及其性质
直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。
面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。
例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。
求证:PB ∥平面ACM 。
变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。
求证:BD 1∥平面AEC 。
变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。
A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。
直线、平面平行的判定与性质
[解析]
选项A,平行直线的平行投影可以依然是两条平行
直线;选项 B ,两个相交平面的交线与某一条直线平行,则这
条直线平行于这两个平面;选项 C,两个相交平面可以同时垂
直于同一个平面;选项D,正确. [答案] D
2.(2009·福建,10)设m,n是平面α内的两条不同直线;l1,
l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件
∵AF⊄平面PCD,CD⊂平面PCD,∴AF∥平面PDC.
∵AF∩EF=F,∴平面AEF∥平面PCD.
∵AE⊂平面AEF,AE∥平面PCD.
∴线段PB的中点E是符合题意要求的点.
1.证明直线和平面平行的方法有:
(1)依定义采用反证法
(2) 判定定理( 线∥线 ⇒线∥面) ,即想方设法在平面内找出 一条与已知直线平行的直线. (3)面面平行性质定理(面∥面⇒线∥面) 2.证明平面与平面平行的方法有:
(1)[证明] ∵PA⊥平面ABCD,AB⊂平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,
∵PD⊂平面PAD,∴AB⊥PD.
(2)[解]
解法一:取线段 PB 的中点 E,PC 的中点 F,连
接 AE,EF,DF,则 EF 是△PBC 的中位线. 1 1 ∴EF∥BC,EF= BC,∵AD∥BC,AD= BC, 2 2 ∴AD∥EF,AD=EF. ∴四边形 EFDA 是平行四边形,∴AE∥DF. ∵AE⊄平面 PCD,DF⊂平面 PCD, ∴AE∥平面 PCD. ∴线段 PB 的中点 E 是符合题意要求的点.
(1)依定义采用反证法
(2) 判定定理( 线∥面 ⇒面∥面) .即证一平面内两条相交直
线与另一平面垂直.
直线与平面平行的判定与性质
直线与平面平行的判定与性质
直线与平面平行是几何中一个重要的概念,它在几何学中有着重要的地位。
直线与平面平行的判定:如果一条直线与平面都不相交,那么这条直线与平面就是平行的。
直线与平面平行的性质:1、直线与平面平行,它们之间的夹角为0度;2、直线与平面平行,它们之间的距离是一定的;3、直线与平面平行,它们的交点个数都是0。
因此,直线与平面平行是几何中一个重要的概念,它们之间的夹角为0度,距离也是一定的,交点个数也是0,这是它们之间的特点。
直线、平面平行的判定与性质
直线、平面平行的判定与性质考纲要求以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定.考情分析1.线面平行、面面平行的判定及性质是命题的热点.2.着重考查线线、线面、面面平行的转化及应用.题型多为选择题与解答题.教学过程基础梳理1.平面与平面的位置关系有两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:符号表示:a⊄α,b⊂α,且a∥b⇒a∥α;(3)其他判定方法:α∥β;a⊂α⇒a∥β.3.直线和平面平行的性质定理:符号表示:a∥α,a⊂β,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:符号表示:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.5.两个平面平行的性质定理(1) 即α∥β,a⊂α⇒a∥β;(2) 即α∥β,γ∩α=a,γ∩β=b⇒a∥b.6.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b;(2)a⊥α,a⊥β⇒α∥β.双基自测1.(教材习题改编)下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面2.设m,l表示直线,α表示平面,若m⊂α,则l∥α是l∥m的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(教材习题改编)若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直4.已知α、β是两个不同的平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的________条件.5.(教材习题改编)已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号).1.平行问题的转化方向如图所示:2.应用判定和性质定理的注意事项在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如:把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.考点一、 线面平行、面面平行的基本问题[例1] (2011·福建高考) 如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.[巧练模拟]——————(课堂突破保分题,分分必保!)1.(2012·义乌模拟)已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎨⎧ m ⊥αn ⊥α⇒m ∥n ; (2)⎩⎨⎧m ⊥αm ⊥n⇒n ∥α (3)⎩⎨⎧ m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( )A .0B .1C .2D .32.(2012·金华模拟)已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2[冲关锦囊]解决有关线面平行,面面平行的判定与性质的基本问题要注意1.注意判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.2.结合题意构造或绘制图形,结合图形作出判断.3.会举反例或用反证法推断命题是否正确.考点二、直线与平面平行的判定与性质[例2] (2011·北京高考改编)如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB 的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;[巧练模拟]——————(课堂突破保分题,分分必保!)3. (2012·东北三校联考)如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1= 3.(1)求证:BC1∥平面A1CD;(2)求三棱锥D-A1B1C的体积.[冲关锦囊]证明直线与平面平行,一般有以下几种方法(1)若用定义直接判定,一般用反证法;(2)用判定定理来证明,关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言叙述证明过程;(3)应用两平面平行的一个性质,即两平面平行时,其中一个平面内的任何直线都平行于另一个平面.考点三、平面与平面平行的判定与性质[例3] (2012·宁波模拟) 如图,在三棱锥A-BOC中,AO⊥平面COB,∠OAB=∠OAC=π6,AB=AC=2,BC=2,D、E分别为AB、OB的中点.(1)求证:CO⊥平面AOB;(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F 的位置;若不存在,请说明理由.[巧练模拟]—————(课堂突破保分题,分分必保!)4.(2012·南昌模拟)已知α、β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β.②若m⊂α,n⊂α,m∥β,n∥β,则α∥β.③如果m⊂α,n⊄α,m、n是异面直线,那么n与α相交.④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β其中正确命题的个数是()A.1 B.2C.3 D.45.(2012·温州调研)如图,在直四棱柱ABCD-A1B1C1D1中,底面是正方形,E、F、G分别是棱B1B、D1D、DA的中点.求证:(1)平面AD1E∥平面BGF;(2)D1E⊥AC.[冲关锦囊]判定平面与平面平行的方法:1.利用定义;2.利用面面平行的判定定理;3.利用面面平行的判定定理的推论;4.面面平行的传递性(α∥β,β∥γ⇒α∥γ);5.利用线面垂直的性质(l⊥α,l⊥β⇒α∥β).一、选择题1.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是() A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α2.设α、β是两个平面,l 、m 是两条直线,下列命题中,可以判断α∥β的是( )A .l ⊂α,m ⊂α,且l ∥β,m ∥βB .l ⊂α,m ⊂β,且m ∥αC .l ∥α,m ∥β,且l ∥mD .l ⊥α,m ⊥β,且l ∥m3.(2012·长春模拟)a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题① ⎭⎬⎫α∥c β∥c ⇒α∥β ② ⎭⎬⎫α∥γβ∥γ⇒α∥β ③ ⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( )A .①②③B .①④C .②D .①③④4.下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④若l 与平面α平行,则l 与α内任何一条直线都没有公共点;⑤平行于同一平面的两直线可以相交.A .1B .2C .3D .45.(2012·天津模拟)如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,则下列命题中正确的是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC ∥平面A ′DE ;③三棱锥A ′-FED 的体积有最大值.A .①B .①②C .①②③D .②③二、填空题6.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD上的一点,AP =a 3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.。
直线平面平行的判定及其性质
解析几何中的应用
在解析几何中,直线与平面的平行关系 也是非常重要的。例如,在求解一些涉 及平面解析几何的问题时,需要使用直 线与平面平行的判定定理和性质来解决
。
ቤተ መጻሕፍቲ ባይዱ
直线与平面平行的判定定理的应用:在 解析几何中,利用直线与平面平行的判 定定理,可以用来判断一个点是否在一 条直线上,或者判断两个平面是否平行
直线与平面平行的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都没有交 点。
直线与平面平行的判定定理的应用
在几何学中,这个定理经常被用来判断两条直线是否平行,或者一个平面是否平 行于另一个平面。
02
直线与平面平行的性质
直线平行于平面的性质
直线平行于平面,则 直线与平面内的任意 一条直线都平行。
直线平行于平面,则 直线与平面内的任意 一条直线都平行或异 面。
直线平行于平面,则 直线与平面内的任意 一条直线都没有公共 点。
平面平行于直线的性质
平面平行于直线,则平面与直 线的任意一条平行线都平行。
平面平行于直线,则平面与直 线的任意一条垂线都垂直。
平面平行于直线,则平面与直 线的任意一条垂线都垂直或平 行。
直线与平面平行的判定定理的应用:在空间几何中,利用直线与平面平 行的判定定理,即“如果直线与平面内的一条直线平行,则直线与该平
面平行”,可以用来判断建筑物的结构是否符合设计要求。
直线与平面平行的性质的应用:直线与平面平行的性质定理的应用,即 “如果直线与平面平行,则直线与平面的垂线互相垂直”,可以用来判 断建筑物的高度和角度是否符合设计要求。
直线平行于平面的判定定理
如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线都平行 。
5.4直线平面平行的判定及其性质
5.4 直线、平面平行的判定及其性质1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α,l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b文字语言图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b考点一 直线与平面平行的判定与性质(题点多变型考点——多角探明)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行是高考热点,多出现在解答题中.常见的命题角度有:(1)证明直线与平面平行;(2)线面平行性质定理的应用. 例1.已知平面α∥平面β,直线a ⊂α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直.其中真命题的序号是________.变式1-1.在正方体ABCD -A 1B 1C 1D 1中,点E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.变式1-2.如果直线a ∥平面α,那么直线a 与平面α内的( ) A .一条直线不相交 B .两条直线不相交 C .无数条直线不相交 D .任意一条直线都不相交变式1-3.(2015·北京高考)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件角度一:证明直线与平面平行例2.(2016·全国丙卷)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求四面体N-BCM的体积.角度二:线面平行性质定理的应用例3.(2017·瑞安期中)已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.变式3-1.如图,四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB∥平面AEC;(2)在PC上求一点G,使FG∥平面AEC,并证明你的结论.考点二平面与平面平行的判定与性质(重点保分型考点——师生共研)例4.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.《5.4 直线、平面平行的判定及其性质》1.若两条直线都与一个平面平行,则这两条直线的位置关系是()A.平行B.相交C.异面D.以上都有可能2.(2017·合肥模拟)在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在平面内D.不能确定3.(2017·绍兴期中考试)已知两个不重合的平面α,β,给定以下条件:①α内任意不共线的三点到β的距离都相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β;其中可以判定α∥β的是()A.①B.②C.①③D.③4.在空间中,已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1 C.2 D.35.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线.则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l26.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④7.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确命题的个数是()A.1 B.2 C.3 D.48.在三棱锥S -ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为()A.452B.4532C .45D .45 3 9.如图,α∥β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.10.如图所示,在四面体ABCD 中,点M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.11.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).12.正方体ABCD -A 1B 1C 1D 1的棱长为1 cm ,过AC 作平行于对角线BD 1的截面,则截面面积为________cm 2;其周长为________cm.13.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC=4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.14.(2016·嘉兴一模)如图所示,在几何体P -ABCD 中,四边形ABCD 为矩形,平面ABCD ⊥平面P AB ,且平面P AB 为正三角形,若AB =2,AD =1,E ,F 分别为AC ,BP 中点.(1)求证EF ∥平面PCD ;(2)求直线BP 与平面P AC 所成角的正弦值.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A 的中点.求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H .14.(2016·嘉兴一模)如图所示,在几何体P-ABCD中,四边形ABCD为矩形,平面ABCD ⊥平面PAB,且平面PAB为正三角形,若AB=2,AD=1,E,F分别为AC,BP中点.(1)求证EF∥平面PCD;(2)求直线BP与平面PAC所成角的正弦值.解:(1)证明:连接DB,与AC交于点E,在△DPB中,∵E,F分别是DB,PB中点,∴EF∥DP.又∵DP⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD,(2)取AP中点H,连接HC,HB.过B作BO⊥HC,垂足为O,连接OP.∵平面ABCD⊥平面APB,且平面ABCD∩平面APB=AB,又BC⊥AB,∴BC⊥平面APB,∴BC⊥AP.又∵AB=BP,∴BH⊥AP,且BC∩BH=B,∴AP⊥平面CHB,∴AP⊥BO.又AP∩HC=H,∴BO⊥平面PAC,∴∠BPO就是直线BP与平面PAC所成角.由已知得,BO=32,BP=2,∴sin∠BPO=34,即直线BP与平面PAC所成角的正弦值为3 4.15.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,∴HD 1∥MC 1.又∵MC 1∥BF ,∴BF ∥HD 1.(2)取BD 的中点O ,连接EO ,D 1O ,则OE 綊12DC ,又D 1G 綊12DC ,∴OE 綊D 1G ,∴四边形OEGD 1是平行四边形, ∴GE ∥D 1O .又GE ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D , ∴EG ∥平面BB 1D 1D . (3)由(1)知BF ∥HD 1,又BD ∥B 1D 1,B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .。
直线、平面平行的判定与性质
直线、平面平行的判定与性质1.直线与平面平行的判定定理和性质定理(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β; (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b ; (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( )(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( )(3)若直线a 与平面α内无数条直线平行,则a ∥α.( )(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( )(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( )答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)如果直线a ∥平面α,那么直线a 与平面α内的( )A .一条直线不相交B .两条直线不相交C .无数条直线不相交D .任意一条直线都不相交解析:选D.因为a ∥平面α,直线a 与平面α无公共点,因此a 和平面α内的任意一条直线都不相交,故选D.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题: ①⎭⎪⎬⎪⎫c ∥αc ∥β⇒α∥β ②⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β ③⎭⎪⎬⎪⎫c ∥αa ∥c ⇒a ∥α ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒a ∥α其中正确的命题是________.解析:②正确.①错在α与β可能相交.③④错在a 可能在α内. 答案:②(教材习题改编)在正方体ABCD -A1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析:如图,连接AC ,BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案:平行线面平行的判定与性质(高频考点)平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题的某一问中.高考对线面平行的判定与性质的考查主要有以下三个命题角度:(1)线面位置关系的判断;(2)线面平行的证明;(3)线面平行性质的应用.[典例引领]角度一线面位置关系的判断设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β【解析】A错误,n有可能在平面α内;B错误,平面α有可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.【答案】 D角度二线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD1∥MC1.又因为在平面BCC1B1中,BM綊FC1,所以四边形BMC1F为平行四边形,所以MC1∥BF,所以BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE∥DC且OE=12DC,又D1G∥DC且D1G=12DC,所以OE綊D1G,所以四边形OEGD1是平行四边形,所以GE∥D1O.又D1O⊂平面BB1D1D,GE⊄平面BB1D1D,所以EG∥平面BB1D1D.角度三线面平行性质的应用B1C1D1中,E为线段AD上的任意一如图,在四棱柱ABCD-A点(不包括A,D两点),平面CEC1与平面BB1D交于FG.证明:FG∥平面AA1B1B.【证明】在四棱柱ABCD-A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D,又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG,因为BB1∥CC1,所以BB1∥FG,而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明.(2)判定定理法:在利用判定定理时,关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.[通关练习]1.(优质试题·高考全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.2.如图,四棱锥P-ABCD中,底面ABCD为矩形,F是AB的中点,E是PD的中点.(1)证明:PB ∥平面AEC ;(2)在PC 上求一点G ,使FG ∥平面AEC ,并证明你的结论.解:(1)证明:连接BD 与AC 交于点O ,连接EO . 因为四边形ABCD 为矩形, 所以O 为BD 的中点. 又E 为PD 的中点, 所以EO ∥PB .因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)PC 的中点G 即为所求的点. 证明如下: 连接GE 、FG , 因为E 为PD 的中点, 所以GE 綊12CD .又F 为AB 的中点,且四边形ABCD 为矩形, 所以F A 綊12CD . 所以F A 綊GE .所以四边形AFGE 为平行四边形,所以FG ∥AE .又FG ⊄平面AEC ,AE ⊂平面AEC ,所以FG∥平面AEC.面面平行的判定与性质[典例引领]B1C1中,E,F,G,如图所示,在三棱柱ABC-AH分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,。
直线、平面平行的判定与性质
§8.4 直线、平面平行的判定与性质考纲解读分析解读 1.理解空间直线和平面位置关系的定义;了解直线和平面的位置关系;掌握直线与平面平行的判定定理和性质定理.2.会运用直线与平面及平面与平面的位置关系,以及它们平行的判定定理和性质定理解决简单的应用问题与证明问题.3.推理和证明要严谨、合理、充分.4.高考对本节内容的考查,一般通过对图形或几何体的认识,考查线线平行、线面平行、面面平行之间的转化思想,题型以解答题为主,分值约为5分,属中档题.五年高考考点一 直线与平面平行的判定与性质1.(2015安徽,5,5分)已知m,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n 平行于同一平面,则m 与n 平行 C.若α,β,则在α内与β平行的直线 D.若m,n,则m 与n 垂直于同一平面答案 D2.(2017江苏,15,14分)如图,在三棱锥A-BCD 中,AB ⊥AD,BC ⊥BD,平面ABD ⊥平面BCD,点E,F(E 与A,D 不重合)分别在棱AD,BD 上,且EF ⊥AD.求证:(1)EF ∥平面ABC; (2)AD ⊥AC.证明 (1)在平面ABD 内,因为AB ⊥AD,EF ⊥AD,所以EF ∥AB. 又因为EF ⊄平面ABC,AB ⊂平面ABC,所以EF ∥平面ABC. (2)因为平面ABD ⊥平面BCD,平面ABD ∩平面BCD=BD, BC ⊂平面BCD,BC ⊥BD,所以BC ⊥平面ABD. 因为AD ⊂平面ABD,所以BC ⊥AD.又AB ⊥AD,BC ∩AB=B,AB ⊂平面ABC,BC ⊂平面ABC, 所以AD ⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.3.(2016江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.4.(2016四川,18,12分)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.解析(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)解法一:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,又CE⊂平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在Rt△AEH中,∠AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sin∠APH==.解法二:由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2).设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα===.所以直线PA与平面PCE所成角的正弦值为.教师用书专用(5—13)5.(2013广东,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案D6.(2013安徽,15,5分)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为答案①②③⑤7.(2015山东,17,12分)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.解析(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,F(0,,1),故=,=(0,,1).设n=(x,y,z)是平面FGH的法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为是平面ACFD的一个法向量,=(,0,0),所以cos<,n>===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=BG=,由△GNM∽△GCF,可得=,从而MN=.由HM⊥平面ACFD,MN⊂平面ACFD,得HM⊥MN,因此tan∠MNH==,所以∠MNH=60°.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.8.(2015安徽,19,13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.解析(1)证明:由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD,以A为原点,分别以,,为x轴,y轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为(0.5,0.5,1).设面A1DE的法向量n1=(r1,s1,t1),而该面上向量=(0.5,0.5,0),=(0,1,-1),由n1⊥,n1⊥得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设面A1B1CD的法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角E-A1D-B1的余弦值为==.评析本题考查直线与直线的平行关系以及二面角的求解,考查空间想象能力、逻辑推理能力以及运算求解能力.正确求解各点坐标以及平面法向量是解决问题的关键.9.(2015江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.10.(2015天津,17,13分)如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(1)求证:MN∥平面ABCD;(2)求二面角D1-AC-B1的正弦值;(3)设E为棱A1B1上的点.若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.解析如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2).又因为M,N分别为B1C和D1D的中点,得M,N(1,-2,1).(1)证明:依题意,可得n=(0,0,1)为平面ABCD的一个法向量.=.由此可得·n=0,又因为直线MN⊄平面ABCD,所以MN∥平面ABCD.(2)=(1,-2,2),=(2,0,0).设n1=(x,y,z)为平面ACD1的法向量,则即不妨设z=1,可得n1=(0,1,1).设n2=(x,y,z)为平面ACB1的法向量,则又=(0,1,2),得不妨设z=1,可得n2=(0,-2,1).因此有cos<n1,n2>==-,于是sin<n1,n2>=.所以,二面角D1-AC-B1的正弦值为.(3)依题意,可设=λ,其中λ∈[0,1],则E(0,λ,2),从而=(-1,λ+2,1).又n=(0,0,1)为平面ABCD的一个法向量,由已知,得cos<,n>===,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=-2.所以,线段A1E的长为-2.11.(2014课标Ⅱ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.解析(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,的方向为x轴的正方向,||为单位长,建立空间直角坐标系A-xyz,则D(0,,0),E,=.设B(m,0,0)(m>0),则C(m,,0),=(m,,0).设n1=(x,y,z)为平面ACE的法向量,则即可取n1=.又n2=(1,0,0)为平面DAE的法向量,由题设得|cos<n1,n2>|=,即=,解得m=.因为E为PD的中点,所以三棱锥E-ACD的高为.三棱锥E-ACD的体积V=××××=.12.(2014湖北,19,12分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.解析解法一:(几何方法)(1)证明:如图1,连接AD1,由ABCD-A1B1C1D1是正方体,知BC1∥AD1.当λ=1时,P是DD1的中点,又F是AD的中点,所以FP∥AD1.所以BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图2,连接BD.因为E,F分别是AB,AD的中点,所以EF∥BD,且EF=BD.又DP=BQ,DP∥BQ,所以四边形PQBD是平行四边形,故PQ∥BD,且PQ=BD,从而EF∥PQ,且EF=PQ.在Rt△EBQ和Rt△FDP中,因为B Q=DP=λ,BE=DF=1,于是EQ=FP=,所以四边形EFPQ是等腰梯形.同理可证四边形PQMN是等腰梯形.分别取EF,PQ,MN的中点,记为H,O,G,连接OH,OG,则GO⊥PQ,HO⊥PQ,而GO∩HO=O,故∠GOH是面EFPQ与面PQMN所成的二面角的平面角.若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则∠GOH=90°.连接EM,FN,则由EF∥MN,且EF=MN,知四边形EFNM是平行四边形.连接GH,因为H,G是EF,MN的中点,所以GH=ME=2.在△GOH中,GH2=4,OH2=1+λ2-=λ2+,OG2=1+(2-λ)2-=(2-λ)2+,由OG2+OH2=GH2,得(2-λ)2++λ2+=4,解得λ=1±,故存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.解法二:(向量方法)以D为原点,射线DA,DC,DD1分别为x,y,z轴的正半轴建立如图3所示的空间直角坐标系D-xyz.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ).=(-2,0,2),=(-1,0,λ),=(1,1,0).(1)证明:当λ=1时,=(-1,0,1),因为=(-2,0,2),所以=2,即BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)设平面EFPQ的法向量为n=(x,y,z),则由可得于是可取n=(λ,-λ,1).同理可得平面MNPQ的法向量为m=(λ-2,2-λ,1).若存在λ,使面EFPQ与面PQMN所成的二面角为直二面角,则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±.故存在λ=1±,使面EFPQ与面PQMN所成的二面角为直二面角.13.(2013山东,18,12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD 与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.解析(1)证明:因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB.所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)解法一:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ.因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知,AB∥GH,所以GH⊥平面PBQ.又FH⊂平面PBQ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC为二面角D-GH-E的平面角.设BA=BQ=BP=2,连接FC,在Rt△FBC中,由勾股定理得FC=,在Rt△PBC中,由勾股定理得PC=.又H为△PBQ的重心,所以HC=PC=.同理,FH=.在△FHC中,由余弦定理得cos∠FHC==-.即二面角D-GH-E的余弦值为-.解法二:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°.又PB⊥平面ABQ,所以BA,BQ,BP两两垂直.以B为坐标原点,分别以BA,BQ,BP所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系.设BA=BQ=BP=2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2).所以=(-1,2,-1),=(0,2,-1),=(-1,-1,2),=(0,-1,2).设平面EFQ的法向量为m=(x1,y1,z1),由m·=0,m·=0,得取y1=1,得m=(0,1,2).设平面PDC的法向量为n=(x2,y2,z2),由n·=0,n·=0,得取z2=1,得n=(0,2,1),所以cos<m,n>==.因为二面角D-GH-E为钝角,所以二面角D-GH-E的余弦值为-.考点二平面与平面平行的判定与性质1.(2016课标全国Ⅱ,14,5分)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)答案②③④2.(2013江苏,16,14分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.证明(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC,因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.三年模拟A组2016—2018年模拟·基础题组考点一直线与平面平行的判定与性质1.(人教A必2,二,2-2A,3,变式)如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为()A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°答案B2.(2018江苏无锡模拟,18)如图,在四面体PABC中,已知PA⊥平面ABC,PA=AC,∠ACB=90°,D为PC的中点.(1)求证:AD⊥BD;(2)若M为PB的中点,点N在直线AB上,且AN∶NB=1∶2,求证:直线AD∥平面CMN.证明(1)∵PA=AC,D为PC的中点,∴AD⊥PC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,PA,AC⊂平面PAC,∴BC⊥平面PAC.∵AD⊂平面PAC,∴BC⊥AD.又∵AD⊥PC,BC∩PC=C,PC,BC⊂平面PBC,∴AD⊥平面PBC.∵BD⊂平面PBC,∴AD⊥BD.(2)连接DM,设BD与CM交于点G,连接NG.∵D、M分别为PC和PB的中点,∴DM∥BC且DM=BC,∴DG∶GB=DM∶BC=1∶2.∵AN∶NB=1∶2,∴AN∶NB=DG∶GB.∴△BNG∽△BAD,∴AD∥NG.∵AD⊄平面CMN,NG⊂平面CMN,∴直线AD∥平面CMN.3.(2017广东六校联盟联考,19)如图,在三棱锥P-ABC中,PA⊥平面ABC,底面ABC是直角三角形,PA=AB=BC=4,O是棱AC的中点,G 是△AOB的重心,D是PA的中点.(1)求证:BC⊥平面PAB;(2)求证:DG∥平面PBC;(3)求二面角A-PC-B的大小.解析(1)证明:∵PA⊥平面ABC,∴PA⊥BC,∵底面ABC是直角三角形,AB=BC,∴BC⊥AB,又∵PA∩AB=A,∴BC⊥平面PAB.(2)证明:如图,连接OG并延长交AB于点E,连接DO,DE,∵G是△AOB的重心,∴OE为AB边上的中线,∴E为AB的中点,又D为PA的中点,∴DE∥PB,同理可得DO∥PC,又DE∩DO=D,PB∩PC=P,∴平面DOE∥平面PBC,又DG⊂平面DOE,∴DG∥平面PBC.(3)过点O作OQ⊥PC于点Q,连接BQ,∵AB=BC且O是棱AC的中点,∴BO⊥AC.∵PA⊥平面ABC,∴平面PAC⊥平面ABC.又平面PAC∩平面ABC=AC,且BO⊂平面ABC,∴BO⊥平面PAC,∴BO⊥PC,又OQ⊥PC,BO∩OQ=O,∴PC⊥平面BOQ,∴BQ⊥PC,∴∠OQB为二面角A-PC-B的平面角.由已知得OB=OC=2,PC==4,∵△PAC∽△OQC,∴=,即=,∴OQ=,∴tan∠OQB==,∴∠OQB=60°,即二面角A-PC-B的大小为60°.考点二平面与平面平行的判定与性质4.(2017豫西五校4月联考,6)已知m,n,l1,l2表示不同直线,α、β表示不同平面,若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案D5.(2017江西九江模拟,19)如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(1)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(2)证明:EF⊥A1C.解析(1)∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(4分)∵在△ABC中,E是BC的中点,∴D是线段AC的中点.(6分)(2)证明:∵在三棱柱ABC-A1B1C1中,AC=AA1,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(7分)又易得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(9分)∴A1C⊥BC1.(10分)又∵E、F分别为棱BC、CC1的中点,∴EF∥BC1,(11分)∴EF⊥A1C.(12分)B组2016—2018年模拟·提升题组(满分:60分时间:60分钟)一、选择题(共5分)1.(2016浙江金华十校联考,8)如图,在四面体ABCD中,AB=CD=2,AD=BD=3,AC=BC=4,点E,F,G,H分别在棱AD,BD,BC,AC上,若直线AB,CD都平行于平面EFGH,则四边形EFGH面积的最大值是()A. B. C.1 D.2答案C二、填空题(共5分)2.(2017山西太原五中月考,14)过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有_____条.答案6三、解答题(共50分)3.(2018江苏无锡检测,18)如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AD∥BC,AD=2AB=2BC,M为AD的中点,CB1⊥底面ABCD.求证:(1)C1M∥平面A1ABB1;(2)平面B1BM⊥平面ACB1.证明(1)因为ABCD-A1B1C1D1为四棱柱,所以B1C1∥BC且B1C1=BC.又M为AD的中点,所以BC∥AM,所以B1C1∥AM,又AD=2BC,所以BC=AM,所以B1C1=AM,所以四边形B1C1MA为平行四边形,所以C1M∥B1A,又B1A⊂平面A1ABB1,C1M⊄平面A1ABB1,所以C1M∥平面A1ABB1.(2)连接CM.由(1)知四边形BCMA为平行四边形,又BC=AB,所以AM=AB,所以四边形BCMA为菱形,所以BM⊥AC,又CB1⊥底面ABCD,所以CB1⊥BM.因为AC∩CB1=C,所以BM⊥平面ACB1.又BM⊂平面B1BM,所以平面B1BM⊥平面ACB1.4.(2018安徽合肥一中模拟,18)如图,四棱锥P-ABCD中,E为AD的中点,PE⊥平面ABCD,底面ABCD为梯形,AB∥CD,AB=2DC=2,AC∩BD=F,且△PAD与△ABD均为正三角形,G为△PAD的重心.(1)求证:GF∥平面PDC;(2)求三棱锥G-PCD的体积.解析(1)证明:连接AG交PD于H,连接CH.在梯形ABCD中,AB∥CD,且AB=2DC,可得=.又正△PAD中,G为△PAD的重心,∴=.在△AHC中,==,故GF∥HC.又HC⊂平面PCD,GF⊄平面PCD,∴GF∥平面PDC.(2)∵PE⊥平面ABCD,且易求PE=3,又由(1)知GF∥平面PDC,∴V G-PCD=V F-PCD=V P-CDF=×PE×S△CDF.又由AB∥CD,且AB=2DC=2,△ABD为正三角形,知DF=BD=.又∠CDF=∠ABD=60°,∴S△CDF=×CD×DF×sin∠BDC=,∴V P-CDF=×PE×S△CDF=,∴三棱锥G-PCD的体积为.5.(2018山西太原质检,19)如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABCD 沿EF折起,使BE⊥EC.(1)若BE=1,在折叠后的线段AD上是否存在一点P,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(2)求三棱锥A-CDF的体积的最大值,并求出此时点F到平面ACD的距离.解析(1)AD上存在一点P,使得CP∥平面ABEF,此时=.理由如下:当=时,=,过点P作MP∥FD交AF于点M,连接EM,CP,则有==.∵BE=1,∴F D=5,故MP=3.又EC=3,MP∥FD∥EC,故有MP EC,故四边形MPCE为平行四边形,∴CP∥ME.又∵CP⊄平面ABEF,ME⊂平面ABEF,故CP∥平面ABEF.(2)设BE=x(0<x≤4),∴AF=x,FD=6-x,故V A-CDF=××2·(6-x)·x=(-x2+6x),∴当x=3时,V A-CDF有最大值,且最大值为3,此时EC=1,AF=3,FD=3,DC=2,由BE⊥EC,BE⊥EF,且EC∩EF=E,得BE⊥平面ECDF,又AF∥BE,故AF⊥平面ECDF.∴AF⊥FD,∴AD==3,同理可求AC=.在△ACD中,由余弦定理得cos∠ADC===,∴sin∠ADC=,∴S△ADC=·DC·DA·sin∠ADC=3.设点F到平面ADC的距离为h,∵V A-CDF=V F-ACD,即3=·h·S△ADC,∴h=,即三棱锥A-CDF的体积最大时,点F到平面ADC的距离为.6.(2017河北石家庄二模,18)如图,在三棱柱ABC-DEF中,侧面ABED是边长为2的菱形,且∠ABE=,BC=.四棱锥F-ABED的体积为2,点F在平面ABED内的正投影为点G,且点G在AE上,点M在线段CF上,且CM=CF.(1)证明:直线GM∥平面DEF;(2)求二面角M-AB-F的余弦值.解析(1)证明:因为四棱锥F-ABED的体积为2,所以V F-ABED=××2×2×FG=2,所以FG=.又BC=EF=,所以EG=,易知AE=2,则点G是AE的靠近点A的四等分点.(2分)过点G作GK∥AD交DE于点K,连接FK,则GK=AD=CF.又MF=CF,所以MF=GK,又MF∥GK,所以四边形MFKG为平行四边形,(4分)所以GM∥FK,又FK⊂平面DEF,GM⊄平面DEF,所以直线GM∥平面DEF.(6分)(2)连接BD,设AE,BD的交点为O,以OB所在直线为x轴,OE所在直线为y轴,过点O的平面ABED的垂线为z轴建立空间直角坐标系,如图所示,则A(0,-1,0),B(,0,0),F,M,=(-,-1,0),=,=.(8分)设平面ABM,平面ABF的法向量分别为m=(x1,y1,z1),n=(x2,y2,z2),则得不妨取x1=x2=1,则m=(1,-,-1),n=,(10分)所以cos<m,n>==,易知二面角M-AB-F是锐二面角,故二面角M-AB-F的余弦值为.(12分)C组2016—2018年模拟·方法题组方法1证明直线与平面平行的常用方法1.(2018湖北武汉汉阳一中模拟,19)如图,在三棱柱ABC-A1B1C1中,底面△ABC是等边三角形,且AA1⊥平面ABC,D为AB的中点.(1)求证:直线BC1∥平面A1CD;(2)若AB=BB1=2,E是BB1的中点,求三棱锥A1-CDE的体积.解析(1)证明:连接AC1,交A1C于点F,连接DF,则F为AC1的中点,又D为AB的中点,所以BC1∥DF.又BC1⊄平面A1CD,DF⊂平面A1CD,所以BC1∥平面A1CD.(2)三棱锥A1-CDE的体积==·h.其中三棱锥C-A1DE的高h等于点C到平面ABB1A1的距离,可知h=CD=.又=2×2-×1×2-×1×1-×1×2=,所以==·h=××=.2.(2017河南新乡调研,19)如图①所示,四边形ABCD为等腰梯形,AD∥BC,且AD=BC=a,∠BAD=135°,AE⊥BC于点E,F为BE的中点.将△ABE沿AE折起至△AB'E的位置,得到如图②所示的四棱锥B'-ADCE.(1)求证:AF∥平面B'CD;(2)若平面AB'E⊥平面AECD,求二面角B'-CD-E的余弦值.解析(1)证明:如图,取B'C的中点G,连接FG,DG.∵F为B'E的中点,∴FG∥EC,且FG=EC,(2分)∵题图①中四边形ABCD为等腰梯形,AD∥BC,且AD=BC=a,AE⊥BC,∠BAD=135°,∴BC=3a,AD∥EC,AD=EC.∴AD∥FG,AD=FG,∴四边形ADGF为平行四边形,∴AF∥DG,(5分)∵AF⊄平面B'CD,DG⊂平面B'CD,∴AF∥平面B'CD.(6分)(2)易证EA,EB',EC两两垂直,故以点E为原点,直线EB'为x轴,直线EC为y轴,直线EA为z轴,建立如图所示的空间直角坐标系,则B'(a,0,0),D(0,a,a),C(0,2a,0),所以=(-a,2a,0),=(0,-a,a),设平面B'CD的法向量为n=(x,y,z),则令z=1,得n=(2,1,1),(10分)显然=(a,0,0)为平面AECD的一个法向量,所以cos<,n>==,(11分)由图知平面B'CD与平面AECD所成的二面角为锐角,所以所求的余弦值为.(12分)方法2证明平面与平面平行的常用方法3.(2018安徽合肥一中模拟,18)如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.4.(2017河南中原名校联考,20)如图,在矩形ABCD中,AB=1,AD=a,PA⊥平面ABCD,且PA=1,E,F分别为AD,PA的中点,在BC上有且只有一个点Q,使得PQ⊥QD.(1)求证:平面BEF∥平面PDQ;(2)求二面角E-BF-Q的余弦值.解析(1)证明:如图,以点A为原点,分别以,,的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),D(0,a,0),P(0,0,1),设Q(1,x,0),则=(1,x,-1),=(-1,a-x,0),(2分)若PQ⊥QD,则·=-1+x(a-x)=0,即x2-ax+1=0,Δ=(-a)2-4,∵在BC上有且只有一个点Q,使得PQ⊥QD,∴Δ=0,∴a=2,x=1.(4分)∴Q(1,1,0),=(-1,1,0),又E是AD的中点,∴E(0,1,0),=(-1,1,0),∴=,∴BE∥DQ,又BE⊄平面PDQ,DQ⊂平面PDQ,∴BE∥平面PDQ,又F是PA的中点,∴EF∥PD,∵EF⊄平面PDQ,PD⊂平面PDQ,∴EF∥平面PDQ,∵BE∩EF=E,BE,EF⊄平面PDQ,∴平面BEF∥平面PDQ.(6分)(2)设平面BFQ的法向量n1=(x,y,z),则n1·=0,n1·=0,易知=,=(0,1,0),∴-x+z=0,y=0,取z=2,得n1=(1,0,2),同理,可得平面BEF的一个法向量n2=(1,1,2),∴cos<n1,n2>==,又易知二面角E-BF-Q为锐角,∴二面角E-BF-Q的余弦值为.(12分)。
高中数学必修2 直线、平面平行的判定与性质
两个防范(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.答案 A5.(2012·衡阳质检)在正方体________.解析如图.连接AC、BD交于ACE.答案平行在四棱锥PABCD中,底面求证:PB∥平面ACM.[审题视点] 连接MO,证明证明连接BD,MO.中点,所以PB∥MO.利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.在正方体ABCDA1B1C1D1求证:平面MNP∥平面[审题视点] 证明MNMP∥C1B.(1)面面平行的定义;下面给出证明:如图,取BB1的中点则DF∥B1C1.∵AB的中点为E,连接结论成立的充分条件,规范解答13——怎样证明线线、线面、面面平行与垂直的综合性问题【问题研究】高考对平行、垂直关系的考查主要以线面平行、线面垂直为核心,以多面体为载体结合平面几在四棱台ABCDA1B1C1D1BAD=60°.(1)证明:AA1⊥BD;(2)如图,连结AC,A1C1设AC∩BD=E,连结EA1因为四边形ABCD为平行四边形,明的依据是空间线面关系的判定定理和性质定理.如图,在多面体ABCDEF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;β=b)平行的直线②④β=则,bm不平行于平面又∵AE∥CD且∴FM綉AE,即四边形证明如下:如图,取。
第42讲直线、平面平行的判定及性质
第4讲 直线、平面平行的判定及性 质
1
PART ONE
基础知识整合
1.直线与平面平行 (1)判定定理
文字语言 平面外一条直 线与此平面内 判定 的一条直线平 定理 行,则该直线 与此平面平行
图形语言
符号语言 ⇒a∥α
(2)性质定理 文字语言
一条直线与一个平
性质 定理
面平行,则过这条 直线的任一平面与 此平面的交线与该
答案
解析 A 项,作如图①所示的辅助线,其中 D 为 BC 的中点,则 QD∥ AB.∵QD∩平面 MNQ=Q,∴QD 与平面 MNQ 相交,∴直线 AB 与平面 MNQ 相交.B 项,作如图②所示的辅助线,则 AB∥CD,CD∥MQ,∴AB∥MQ. 又 AB⊄平面 MNQ,MQ⊂平面 MNQ,∴AB∥平面 MNQ.
面,则 α 与 β 可以平行也可以相交,故 A,C,D 均不是充要条件.根据平
面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面
平行,则这两个平面平行,反之也成立.因此 B 中的条件是 α∥β 的充要条
件.故选 B.
解析 答案
3.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N, Q 为所在棱的中点,则在这四个正方体中,直线 AB 与平面 MNQ 不平行的 是( )
A.若 m∥α,n∥α,则 m∥n B.若 m∥α,m∥β,则 α∥β C.若 α⊥γ,β⊥γ,则 α∥β D.若 m⊥α,n⊥α,则 m∥n
解析 A 中,两直线可能平行、相交或异面;B 中,两平面可能平行 或相交;C 中,两平面可能平行或相交;D 中,由线面垂直的性质定理可 知结论正确,故选 D.
如果两个平行平 面同时和第三个 性质 平面 13 _相__交___, 定理 那 么 它 们 的 14 __交__线__平行
高中数学直线、平面平行的判定与性质
例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.
直线与平面,平面与平面平行的判定及其性质
2.2.1 直线与平面平行的判定一:知识要点直线与平面平行的判断方法有两种1根据定义:直线和平面没有公共点,则直线和平面平行. (一般用反证法.) 2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.(符号表示为:,,////a b a b a ααα⊄⊂⇒. 图形如图所示). 二:例题判定定理证明:已知:a ⊄α,b ⊂α,且a ∥b 求证:a ∥α例1:求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
已知:如图空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
求证:EF ∥平面BCD证明:例2: 正方体ABCD —A 1B 1C 1D 1中,E 为DD 1的中点,试判断BD 1与平面AEC 的位置关系,说明理由。
B A DC EF l ab αC1D1A1B1CBADE三练习:1.判断下列说法是否正确,并说明理由.○1平面α外的一条直线a 与平面α内的无数条直线平行则直线a 和平面α平行; ○2平面α外的两条平行直线,a b ,若//a α,则//b α; ○3直线a 和平面α平行,则直线a 平行于平面α内任意一条直线; ○4直线a 和平面α平行,则平面α中必定存在直线与直线a 平行. 2.已知直线1l 、2l , 平面α, 1l ∥2l , 1l ∥α, 那么2l 与平面α的关系是( ). A. 1l ∥α B. 2l ⊂α C. 2l ∥α或2l ⊂α D. 2l 与α相交 3.以下说法(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b ③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b 其中正确说法的个数是( ).A. 0个B. 1个C. 2个D. 3个4.已知a ,b 是两条相交直线,a ∥α,则b 与α的位置关系是( ). A. b ∥α B. b 与α相交 C. b ⊂α D. b ∥α或b 与α相交5.如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( ).A. 平行B. 相交C. 平行或相交D. AB ⊂α6.平面α与△ABC 的两边AB 、AC 分别交于D 、E ,且AD ∶DB =AE ∶EC ,求证:BC ∥平面α.7.P 是平行四边形ABCD 所在平面外一点,E 为PB 的中点,O 为AC ,BD 的交点. (1)求证:EO ‖平面PCD ; (2)图中EO 还与哪个平面平行?8.在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、C 1D 1的中点. 求证:EF ∥平面BB 1D 1DC1D1B1A1CDABFEE D C B A α2.2 平面与平面平行的判定 一:知识要点平面与平面平行的判断方法有三种1. 定义:两平面没有公共点,则两平面平行.2.判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.用符号表示为:,,////,//a b ab P a b βββααα⊂⊂=⎫⇒⎬⎭图形如图所示图形如图所示 3.推论:①如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行 ②垂直于同一条直线的两个平面平行. ③平行与同一平面的两个平面平行. 二:例题判定定理证明:已知:如图,α⊂m ,α⊂n ,O n m =⋂,β//m ,β//n 求证:βα//(思考1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行吗?为什么?)(思考2:.在判断一个平面是否水平时,把水准器在这个平面内交叉地放两次,如果水准器的气泡都是居中的,就可以判定这个平面和水平面平行,你能说出理由吗?) 例2:已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD 。
直线、平面平行的判定及其性质
直线、平面平行的判定及其性质考点梳理1.直线与平面平行(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行).即:a⊄α,b⊂α,且a∥b⇒a∥α.其他判定方法;α∥β,a⊂α⇒a∥β.(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行).即:a∥α,a⊂β,α∩β=l⇒a∥l.2.平面与平面平行(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行).即:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即:α∥β,γ∩α=a,γ∩β=b⇒a∥b.一个转化关系平行问题的转化关系两点提醒(1)在推证线面平行时,必须满足三个条件:一是直线a在已知平面外;二是直线b在已知平面内;三是两直线平行.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则该直线与交线平行.考点自测1.若两条直线都与一个平面平行,则这两条直线的位置关系是().A.平行B.相交C.异面D.以上均有可能解析借助长方体模型易得.答案 D2.在空间中,下列命题正确的是().A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D,正确.答案 D3.(2013·长沙模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( ).A .b ⊂αB .b ∥αC .b ⊂α或b ∥αD .b 与α相交或b ⊂α或b ∥α解析 可以构造一草图来表示位置关系,经验证,当b 与α相交或b ⊂α或b ∥α时,均满足直线a ⊥b ,且直线a ∥平面α的情况,故选D.答案 D4.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β解析 若a ∥α,b ∥a ,则b ∥α或b ⊂α,故A 错误;由面面平行的判定定理知,B 错误;若α∥β,b ∥α,则b ∥β或b ⊂β,故C 错误.答案 D5.在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析 如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案 平行考向一 线面平行的判定及性质【例1】►(2012·辽宁)如图,直三棱柱ABCA ′B ′C ′,∠BAC=90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)[审题视点] (1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC ,体积可求.(1)证明 法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)解 法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′MNC =V NA ′MC =12V NA ′BC =12V A ′NBC =16.法二 V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC =16.(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.注意说明已知的直线不在平面内.(2)证明直线与平面平行的方法:①利用定义结合反证;②利用线面平行的判定定理;③利用面面平行的性质.【训练1】 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点.(1)证明:EF ∥平面P AD ; (2)求三棱锥EABC 的体积.(1)证明 在△PBC 中,E ,F 分别是PB ,PC 的中点, ∴EF ∥BC .又BC ∥AD ,∴EF ∥AD . 又∵AD ⊂平面P AD ,EF ⊄平面P AD , ∴EF ∥平面P AD .(2)解 连接AE ,AC ,EC ,过E 作EG ∥P A 交AB 于点G ,则EG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AP =AB ,∠P AB =90°,BP =2, ∴AP =AB =2,EG =22. ∴S △ABC =12AB ·BC =12×2×2= 2.∴V EABC =13S △ABC ·EG =13×2×22=13.考向二 面面平行的判定和性质【例2】►(2013·济南调研) 如图,在正方体ABCDA 1B 1C 1D 1中,M 、N 、P 分别为所在边的中点.求证:平面MNP ∥平面A 1C 1B .[审题视点] 利用面面平行判定定理的证明即可. 证明如图,连接D 1C ,则MN 为△DD 1C 的中位线,∴MN ∥D 1C . ∵D 1C ∥A 1B ,∴MN ∥A 1B . 同理可证,MP ∥C 1B .而MN 与MP 相交,MN ,MP 在平面MNP 内,A 1B ,C 1B 在平面A 1C 1B 内, ∴平面MNP ∥平面A 1C 1B .要证面面平行需证线面平行,要证线面平行需证线线平行,因此“面面平行”问题最终转化为“线线平行”问题来解决.【训练2】 如图,在三棱柱ABCA 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC ,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.考向三线面平行中的探索性问题【例3】►如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.[审题视点] 取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.解存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.【训练3】如图,在四棱锥P ABCD中,底面是平行四边形,P A⊥平面ABCD,点M、N分别为BC、P A的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.解在PD上存在一点E,使得NM∥平面ACE.证明如下:如图,取PD 的中点E ,连接NE ,EC ,AE , 因为N ,E 分别为P A ,PD 的中点, 所以NE 綉12AD .又在平行四边形ABCD 中,CM 綉12AD .所以NE 綉MC ,即四边形MCEN 是平行四边形.所以NM 綉EC .又EC ⊂平面ACE ,NM ⊄平面ACE ,所以MN ∥平面ACE , 即在PD 上存在一点E ,使得NM ∥平面ACE .规范解答13——如何作答平行关系证明题【命题研究】 通过近三年的高考试题分析,对线面平行、面面平行的证明一直受到命题人的青睐,多以多面体为载体,证明线面平行和面面平行,题型为解答题,题目难度不大.【真题探究】► (本小题满分12分)(2012·山东)如图,几何体EABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . [教你审题] 一审 取BD 的中点O ,证明BD ⊥EO ;二审 取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE 的交线EF ,证明DM ∥EF .[规范解答] 证明 (1)图(a)如图(a),取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,(2分)又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分)因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分)(2)法一如图(b),取AB的中点N,连接DM,DN,MN,图(b)因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分)又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分)又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分)法二如图(c),延长AD,BC交于点F,连接EF.图(c)因为CB=CD,∠BCD=120°,所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .(8分)又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分)又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分)[阅卷老师手记] (1)对题目已知条件分析不深入,不能将已知条件与所证问题联系起来; (2)识图能力差,不能观察出线、面之间的隐含关系,不能作出恰当的辅助线或辅助面; (3)答题不规范,跳步、漏步等.证明线面平行问题的答题模板(一)第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检查关键点及答题规范. 证明线面平行问题的答题模板(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行; 第四步:转化为线面平行; 第五步:反思回顾.检查答题规范. 【试一试】如图,在几何体ABCDEFG 中,下底面ABCD 为正方形,上底面EFG 为等腰直角三角形,其中EF ⊥FG ,且EF ∥AD ,FG ∥AB ,AF ⊥面ABCD ,AB =2FG =2,BE =BD ,M 是DE 的中点.(1)求证:FM ∥平面CEG ; (2)求几何体GEFC 的体积. (1)证明取CE 的中点N ,连接MN ,GN ,则MN 綉FG 綉12AB .故四边形MNGF 为平行四边形. ∴MF ∥GN .又MF ⊄平面CEG ,GN ⊂平面CEG , ∴FM ∥平面CEG .(2)解 在Rt △ABD 中,AB =AD =2,BD =22, ∴BE =2 2.∵AF ⊥平面ABCD ,AB ⊂平面ABCD , ∴AF ⊥AB .在正方形ABCD 中,AB ⊥AD . 又AD ∩AF =A ,∴AB ⊥平面ADEF .又AE ⊂平面ADEF ,∴AB ⊥AE . ∴在Rt △ABE 中,AE =8-4=2.又在Rt △AEF 中,EF =1,∴AF =4-1= 3. 又EF ∥AD ,EF ⊄平面ABCD ,AD ⊂平面ABCD , ∴EF ∥平面ABCD .同理由FG ∥AB ,可得FG ∥平面ABCD .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . ∴平面EFG ∥平面ABCD . 又AF ⊥平面ABCD ,AF =3, ∴点C 到平面EFG 的距离等于3, ∴V GEFC =V CEFG =13×S △EFG ·d=13×⎝⎛⎭⎫12×1×1×3=36A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是().A.l∥αB.l⊥αC.l与α相交但不垂直 D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是().A.AB∥CD B.AD∥CB C.AB与CD相交D.A,B,C,D四点共面解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.答案 D3.(2012·北京模拟)以下命题中真命题的个数是().①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,则a∥α;④若直线a∥b,b⊂α,则a平行于平面α内的无数条直线.A.1 B.2 C.3 D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③直线a可以在平面α内,不正确;命题④正确.答案 A4.(2013·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是().A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行解析A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案 B二、填空题(每小题5分,共10分)5.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 66.α、β、γ是三个平面,a 、b 是两条直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析 ①中,a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).③中,b ∥β,b ⊂γ,a ⊂γ,β∩γ=a ⇒a ∥b (线面平行的性质).答案 ①③三、解答题(共25分)7.(12分)如图,在四面体ABCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23.又据题设条件知,BE BG =23,∴BK BH =BE BG ,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点, ∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF . ∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .8.(13分)如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG =A 1E ,∴A 1G =BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形, ∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言
图形表示 符号表示
平面外一___条__直__线__与__此__ 判定 平面内的一条直线
定理 平行,则该直线平行于
此平面
a⊄α ,b⊂ α ,a∥ b⇒a∥α
基础诊断
考点突破
课堂总结
一条直线和一个平面平 性质 行,则过这条直线的任 定理 一平面与此平面的_交__线_
基础诊断
考点突破
课堂总结
规律方法 (1)判断与平行关系相关命题的真假,必须熟悉 线、面平行关系的各个定义、定理,无论是单项选择还是 含选择项的填空题,都可以从中先选出最熟悉最容易判断 的选项先确定或排除,再逐步判断其余选项. (2)①结合题意构造或绘制图形,结合图形作出判断. ②特别注意定理所要求的条件是否完备,图形是否有特殊 情况,通过举反例否定结论或用反证法推断命题是否正确.
基础诊断
考点突破
课堂总结
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)若一条直线和平面内一条直线平行,那么这条直线和 这个平面平行.( ) (2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直 线有无数条.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么 这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条 直线平行或异面.( )
基础诊断
考研)设m,n是两条不同的直线,α,β,γ是 三个不同的平面,给出下列四个命题: ①若m⊂α,n∥α,则m∥n; ②若α∥β,β∥γ,m⊥α,则m⊥γ; ③若α∩β=n,m∥n,m∥α,则m∥β; ④若m∥α,n∥β,m∥n,则α∥β. 其中是真命题的是________(填上正确命题的序号). 解析 ①m∥n或m,n异面,故①错误;易知②正确;③m∥β 或m⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ②
基础诊断
考点突破
课堂总结
2.下列命题中,正确的是( ) A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面 B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行 C.若直线a,b和平面α满足a∥α,b∥α,那么a∥b D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α 解析 根据线面平行的判定与性质定理知,选D. 答案 D
基础诊断
考点突破
课堂总结
5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件: ①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ; ④a⊥α,b⊥β,a∥b. 其中能推出α∥β的条件是________(填上所有正确的序号). 解析 在条件①或条件③中,α∥β或α与β相交. 由α∥γ,β∥γ⇒α∥β,条件②满足. 在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足. 答案 ②④
基础诊断
考点突破
课堂总结
考点一 线面、面面平行的相关命题的真假判断
【例1】 (2015·安徽卷)已知m,n是两条不同直线,α,β是两个 不同平面,则下列命题正确的是( D ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 解析 A项,α,β可能相交,故错误;B项,直线m,n的位 置关系不确定,可能相交、平行或异面,故错误;C项,若 m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n 垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以 原命题正确,故D项正确.
基础诊断
考点突破
课堂总结
解析 (1)若一条直线和平面内的一条直线平行,那么这条 直线和这个平面平行或在平面内,故(1)错误. (2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故 (2)错误. (3)如果一个平面内的两条直线平行于另一个平面,则这两 个平面平行或相交,故(3)错误. 答案 (1)× (2)× (3)× (4)√
• 第4讲 直线、平面平行的判定及其性质
基础诊断
考点突破
课堂总结
最新考纲 1.以立体几何的定义、公理和定理为出发点, 认识和理解空间中线面平行的有关性质与判定定理;2.能 运用公理、定理和已获得的结论证明一些有关空间图形的 平行关系的简单命题.
基础诊断
考点突破
课堂总结
1.直线与平面平行
知识梳理
(1)直线与平面平行的定义
基础诊断
考点突破
课堂总结
3.(2015·北 京 卷 ) 设 α , β 是 两 个 不 同 的 平 面 , m 是 直 线 且
m⊂α.“m∥β”是“α∥β”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析 当m∥β时,可能α∥β,也可能α与β相交.
当α∥β时,由m⊂α可知,m∥β.
个平面相交,那么它们的_交__线_ 平行
图形表示
符号表示 a⊂α,b⊂α, a∩b=P, a∥β, b∥β⇒α∥β α∥β, a⊂α⇒a∥β α∥β,α∩γ =a,β∩γ= b⇒a∥b
基础诊断
考点突破
课堂总结
3.与垂直相关的平行的判定 (1)a⊥α,b⊥α⇒_a__∥__b__. (2)a⊥α,a⊥β⇒_α_∥___β__.
∴“m∥β”是“α∥β”的必要不充分条件.
答案 B
基础诊断
考点突破
课堂总结
4.(必修2P56练习2改编)如图,正方体ABCD- A1B1C1D1中,E为DD1的中点,则BD1与平面 AEC的位置关系为________.
解析 连接BD,设BD∩AC=O,连接EO,在△BDD1中, O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位 线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以 BD1∥平面ACE. 答案 平行
与该直线平行
a∥α,a⊂β, α∩β= b⇒a∥b
2.平面与平面平行 (1)平面与平面平行的定义 没有公共点的两个平面叫做平行平面.
基础诊断
考点突破
课堂总结
(2)判定定理与性质定理 文字语言
一个平面内的两条_相__交__直__线__与 判定
另一个平面平行,则这两个平 定理
面平行
两个平面平行,则其中一个平 性质 面内的直线_平__行__于另一个平面 定理 如果两个平行平面同时和第三