平行四边形复习(全章)PPT课件
合集下载
人教版八年级数学下册《平行四边形的性质》平行四边形PPT优质教学课件
10 ●O
∴AC= AB2−BC2= 102−82=6
∵OA=OC,∴OA=12AC=3
B
C
∴S ABCD= BC×AC=8×6=48.
随堂检测
1.如图,在▱ABCD中,对角线AC、BD相交于点O,若 AC=14,BD=8,AB=10,则△OAB的周长为 21 .
2.如图,平行四边形ABCD中,AD=5cm,AB⊥BD, 点O是两条对角线的交点,OD=2cm,则AB= 3 cm.
叫做这两条平行线之间的距离.
如图,直线a∥b,A是直线a上的任意
A
a
一点,AB ⊥b ,B是垂足,线段AB的
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
随堂检测
C:拓展延伸:
A
D
如图,在 ABCD中,
B
C
(1)∠A:∠B : ∠C : ∠D的度数可能是( B )
A. 1 : 2 : 3 : 4
B.3 : 2 : 3 : 2
C.2 : 3 : 3 : 2
D.2 : 2 : 3 : 3
(2)连接AC, 若∠D=60°, ∠DAC=40°,则 ∠B=_6_0_°_,
一条直线的距离相等.
已知:如图,EF∥MN,A,D是直线
平行四边形复习课件
证明线段相等的方法有哪些?
E A
B
D
C F
综合运用
一.如图,△ABC中,点O是边AC上一个动点,过 O作直线MN∥BC,设MN交∠BCA的平分线 于点E,交∠BCA的外角平分线于点F。
1. 探究:线段OE与OF的数量关系并加以证明; 2. 当点O在边AC上运动时, 四边形AECF是
矩形? 二.证明你的结论。
∴ 四边形BFDE是平行四边形
产品品鉴会活 动方案
汇报人姓名
A
D
O
边 矩形对边平行且相等;B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且互相平分;
对称性 既是中心对称图形又是轴对称图形
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
矩形的判定方法 A
D
O
B
C
1.有一个角是直角的平行四边形是矩形。
A
B
•9
4.△ABC中,D、E分别是AB、AC的中点, BC=10cm,则DE=_5__c_m__.
5. △ABC中,D、E分别是AB、AC的中点,
∠A=50°, ∠B=70°,则∠AED=_____.60°
A
A
D
E
B (4)
C
D
E
B
(5)
C
6. 如图,在周长为20cm的 ABCD中,
AB≠AD,AC,BD相交于点O,OE⊥BD
6.已知正方形ABCD中,对角线AC=10cm, P为AB上任意一点,PE⊥AC,PF⊥BD, E、F为垂足,则PE+PF=5cm 。
综合运用
已知:如图,E、F为 ABCD的对角线AC所在直线 上的两点,AE=CF,求证: BE=DF.
E A
B
D
C F
综合运用
一.如图,△ABC中,点O是边AC上一个动点,过 O作直线MN∥BC,设MN交∠BCA的平分线 于点E,交∠BCA的外角平分线于点F。
1. 探究:线段OE与OF的数量关系并加以证明; 2. 当点O在边AC上运动时, 四边形AECF是
矩形? 二.证明你的结论。
∴ 四边形BFDE是平行四边形
产品品鉴会活 动方案
汇报人姓名
A
D
O
边 矩形对边平行且相等;B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且互相平分;
对称性 既是中心对称图形又是轴对称图形
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
矩形的判定方法 A
D
O
B
C
1.有一个角是直角的平行四边形是矩形。
A
B
•9
4.△ABC中,D、E分别是AB、AC的中点, BC=10cm,则DE=_5__c_m__.
5. △ABC中,D、E分别是AB、AC的中点,
∠A=50°, ∠B=70°,则∠AED=_____.60°
A
A
D
E
B (4)
C
D
E
B
(5)
C
6. 如图,在周长为20cm的 ABCD中,
AB≠AD,AC,BD相交于点O,OE⊥BD
6.已知正方形ABCD中,对角线AC=10cm, P为AB上任意一点,PE⊥AC,PF⊥BD, E、F为垂足,则PE+PF=5cm 。
综合运用
已知:如图,E、F为 ABCD的对角线AC所在直线 上的两点,AE=CF,求证: BE=DF.
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)
论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册
感悟新知
解题秘方:紧扣平行四边形边的性质进行解答 .
知2-练
解:∵平行四边形的对边相等, ∴ CD=AB=5 cm, AD=BC=4 cm. ∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知 ∠ BAC =40 °, ∠ ACB = 80 °,则∠ BCD = ( C)
解:S 四边形 ABFE=S 四边形 FCDE. 理由如下: ∵四边形 ABCD 是平行四边形, ∴ OA=OC, AD ∥ BC. ∴∠ 1= ∠ 2. 又∵∠ 3= ∠ 4, ∴△ AOE ≌△ COF(ASA). ∴ S △ AOE=S △ COF.
知3-练
感悟新知
又由 ▱ ABCD 得
知3-练
感悟新知
例4 如图 6-1-8,在▱ ABCD 中,对角线 AC, BD 相
知3-练
交于点 O,过点 O 作直线 EF,分别交 AD, BC 于点 E, F. 判断四边形 ABFE 的面积与四边形 FCDE 的面 积有何关系,试说明理由 .
感悟新知
解题秘方:紧扣平行四边形的对角线性质、全等 三角形的性质进行解答 .
知2-讲
特别提醒
1. 2.
从 从• 边角• 看看• ::平平行行四四边边形形的的对对角边相平等行、且邻相角等互. 补 注• 意•:•要根据推理证明的需要,合理选用平
.
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P137随堂练习T1] 如图 6-1-4,在 ABCD 中, AB=5 cm, BC=4 cm,则▱ ABCD 的周长为__1_8___cm.
部编人教版四年级数学上册《平行四边形和梯形(全章)》PPT教学课件
4
8 厘米
10 厘米
新知探究
4 回顾与反思
你是怎样画 出这个长方 形的?
先画出长方形的长 再用画垂线的方法
画出两条宽
最后连接两条宽
巩固练习
1. 画一个长4 厘米,宽3 厘米的长方形。
3 厘米 4 厘米
巩固练习
2. 画一个边长5 厘米的正方形。
5 厘米
5 厘米
课堂小结
1.画长; 画长方形 2.再用画垂线的方法画出两条宽 (正方形) (等长的边); 的步骤
新知探究
2 也可以用一把三角尺来画。
2.过直线外一点画垂线。
新知探究
2 也可以用一把三角尺来画。
2.过直线外一点画垂线。
新知探究
2
巩固练习
你能分别过下面的点,画出相应直线的垂线吗?
新知探究
3 (1)从直线外一点A,到这条直线所画几条线
段。量一量所画线段的长度,哪一条最短?
A
新知探究
3
垂直 的线段最短。 A
5 平行四边形和梯形
第 1 课时 平行与垂直
情景导入
在纸上任意画两条直线,会有哪几 种情况?
新知探究
1
0
1厘米 2
3
4
5
6
7
8
9 10(1)新知探究源自1(1)(2)
新知探究
1
(1)
(2)
0
1厘米 2
3
4
5
6
7
8
9 10
(3)
新知探究
1
(1)
把没有相交的两条直线再画长 一些会怎样?(2)
(3)
阅读与理解
知道长方形的 长 、 宽 ,要 画出这个长方形。
8 厘米
10 厘米
新知探究
4 回顾与反思
你是怎样画 出这个长方 形的?
先画出长方形的长 再用画垂线的方法
画出两条宽
最后连接两条宽
巩固练习
1. 画一个长4 厘米,宽3 厘米的长方形。
3 厘米 4 厘米
巩固练习
2. 画一个边长5 厘米的正方形。
5 厘米
5 厘米
课堂小结
1.画长; 画长方形 2.再用画垂线的方法画出两条宽 (正方形) (等长的边); 的步骤
新知探究
2 也可以用一把三角尺来画。
2.过直线外一点画垂线。
新知探究
2 也可以用一把三角尺来画。
2.过直线外一点画垂线。
新知探究
2
巩固练习
你能分别过下面的点,画出相应直线的垂线吗?
新知探究
3 (1)从直线外一点A,到这条直线所画几条线
段。量一量所画线段的长度,哪一条最短?
A
新知探究
3
垂直 的线段最短。 A
5 平行四边形和梯形
第 1 课时 平行与垂直
情景导入
在纸上任意画两条直线,会有哪几 种情况?
新知探究
1
0
1厘米 2
3
4
5
6
7
8
9 10(1)新知探究源自1(1)(2)
新知探究
1
(1)
(2)
0
1厘米 2
3
4
5
6
7
8
9 10
(3)
新知探究
1
(1)
把没有相交的两条直线再画长 一些会怎样?(2)
(3)
阅读与理解
知道长方形的 长 、 宽 ,要 画出这个长方形。
平行四边形的性质复习课件ppt
分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-
第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用
《平行四边形的性质》PPT课件(第1课时)
(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时
八年级下册第五章平行四边形复习课件1
O是对角线AC和BD
(1)若△ABC的周长是18cm,求OC的长
4cm
(2)若△OAB的周长比△OBC的周长短4cm,求AB的长
3cm
A O B C D
9、如图在
ABCD中, E、F是对角线AC上的两点,且
AE=CF, 求证:四边形BEDF是平行四边形
A D E
O
F
B
C
变式:已知如图四边形ABCD和四边形BFDE都是 平行四边形, 求证:AE=CF
A
B
B
E
C
C
)
B
A O
D
C.1<AD<9
D.AD>0
C
12、判断题: (1)邻角互补的四边形是平行四边形. (2)一组对边平行,另一组对边相等的四边形是 平行四边形.
(3)一组对边平行, 一组对角相等的四边形是
平行四边形.
(4)对角线相等的四边形是平行四边形.
13、某人到瓷砖商店去购买一种多边形形状的瓷砖,用 来铺设无缝地板.他购买的瓷砖形状不可以是( C (A)正三角形 (C)正八边形 (B)正四边形 (D)正六边形 )
2 2
F M
●
G
●
E N
∴MG=GE,NG=GF. ∴AM=MG=GE,BN=NG=GF. ∴ GE∶GA=GF∶GB=1∶2. 同理,GD∶GC=1∶2.. ∴GE∶GA=GF∶GB=GD∶GC=1∶2.
A
D
B
本章要点聚焦
一、四边形的概念
1.定义:在同一平面内,由不在同一直线上的四条线段
首尾顺次相接组成的图形.
2.四边形的内角和与外角和均为360°.
3.四边形具有不稳定性. 4.多边形内角和定理:n边形的内角和等于(n-2)·180° 5.多边形外角和定理:n边形的外角和等于360°. 6.多边形的对角线.
八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)
的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O
人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件
新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.
6.平行四边形的判定课件
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -1
X轴
(-1,-2)B -2 -3
C(3 , -2 )
-4
-5 -6
F(0,-5)
高效上好每节课·快乐上好每天学
学习了本节课后, 你会用什么方法 来画一个平行四
边形呢?
1
2
3
4
高效上好每节课·快乐上好每天学
高效上好每节课·快乐上好每天学
高效上好每节课·快乐上好每天学
已知:在四边形ABCD中,AB=CD, AD=BC , 求证:四边形ABCD是平行四边形.
A
D
分析: △ABC ≌△CDA
连结AC
B
C
角相等
AD ∥ BC或AB ∥ CD
两组对边分别平行 一组对边平行且相等 四边形ABCD是平行四边形
高效上好每节课·快乐上好每天学
已知:在四边形ABCD中,AB=CD, AD=BC , 求证:四边形ABCD是平行四边形.
高效上好每节课·快乐上好每天学
已知:如图 ,在平行四边形ABCD中, E,F分别是边AD,BC的中点.
(1)求证:EB=DF.
(2)图中还有其它平行四边形吗?说明理由.
高效上好每节课·快乐上好每天学
学习目标
1.探索平行四边形的性质定理1与判定定理1互为逆命 题的关系,体验数学命题探究和发现的过程; 2.理解并掌握平行四边形的判定定理1和2——“一组 对边平行且相等的四边形是平行四边形”、“两组 对边分别相等的四边形是平行四边形”.
3
1
2
4
∵ AB ∥ CD (已知)
B
C
∴∠1=∠2(两直线平行,内错角相等)
又∵ AB=CD(已知) AC=AC(公共边)
中考数学《特殊平行四边形》专题复习课件(共32张PPT)
ACEF是菱形?请回答并证明你的结论. (3)四边ACEF有可能是正方形吗?请证明
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
你的结论。
7.如图,OABC是一张放在平面直角坐标系中的 矩形纸片,O为原点,点A在x轴上,点C在y 轴上,OA=10,OC=6。
(1)如图①,在OA上选取一点G,将△COG 沿CG翻折,使点O落在BC边上,设为E, 求折痕CG所在直线的解析式。
谢谢观赏
You made my day!
我们,还在路上……
⑵当x为何值时,⊿PBC的周长最 小,并求出此时y的值
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 ❖4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
一、四边形的分类及转化
两组对边平行 平行四边形
任意四边形
一组对边平行
梯形
另一组对边不平行
矩形
菱 形
正方形
等腰梯形
直角梯形
二、几种特殊四边形的性质:
项目 四边形
对边
角
对角线
对称性
对角相等
平行且相等
平行四边形
邻角互补
四个角
矩形 平行且相等 都是直角
平行
对角相等
北师大版九年级数学上册第一章 特殊平行四边形复习课件(共64张PPT)
第一章
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
特殊平行四边形
章末复习
第一章 特殊平行四边形
章末复习
知识框架
归纳整合
素养提升
中考链接
第一章 特殊平行四边形
知识框架
菱形
正方形
矩形
菱形、矩形、正
方形之间的关系
特殊平行四边形
第一章 特殊平行四边形
知识框架
定义
有一组邻边相等的平行
四边形叫作菱形
四条边相等
性质
对角线互相垂直
菱形
对称性
既是轴对称图形, 又是中心对称图形
第一章 特殊平行四边形
归纳整合
相关题1-2
如图1-Z-4, 在菱形ABCD中, 对角线AC, BD相
交于 点O, 过点D作对角线BD的 垂线交BA的
延长线于点E. (1)求证:四边形ACDE是 平行
四边形;(2) 若 AC = 8 ,
△ADE的周长.
BD = 6 ,
求
第一章 特殊平行四边形
归纳整合
分析
①
√
∵正方形ABCD的边长为6, CE=2DE, ∴DE=2, CE=4.
又∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=AB=6, ∠AFE=∠D=∠B=90°, 又AG=AG,故Rt△ABG和Rt△AFG
全等, ∴BG=GF
②
√
设 BG=x, 则GF=x, CG=BC-BG=6-x, 在Rt△CGE中, GE=x+2, EC=4,
过点H作PQ∥EF, 分别交AB, CD于点P, Q, 得到四边形MNQP, 此
时, 他猜想四边形MNQP是菱形, 请在图1-Z-2的框中补全他的证明
思路.
第一章 特殊平行四边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.两条对角线相等垂直且相互平 的四边形是正方形。
分
精选ppt课件
9
精选ppt课件
10
(一)判断题
1、一组对边平行,另一组对边相等的的四边形
是平行四边形。( x )
2、两条对角线相等的四边形是矩形 ( x ) 3、一组邻边相等的的矩形是正方形。(√ ) 4、对角线互相垂直的四边形是菱形。(x )
精选ppt课件
1
精选ppt课件
2
四边形知识结构(定义)图
矩形
两组对边平行
四边形
平行四边形
一角为直角且一组邻边相等
正方形
菱形
精选ppt课件
3
关系 图
菱形
矩形
峰Hale Waihona Puke 高攀 勇精选ppt课件
4
二、几种平行四边形的性质:
对边平行且 相等
对边平行且 相等
对边平行 且四边相等
对边平行 且四边相等
对角相等 邻角互补
精选ppt课件
12
选一选
B 1、矩形具有而一般的平行四边形不具有的性质是( ) A、对角相等 B、对角线相等 C、对边相等 D、对角线互相平分
D
2、菱形有而一般的平行四边形不具有的性质是( ) A、对角相等 B、对角线互相平分 C、对边平行且相等 D、对角线互相垂直
精选ppt课件
13
(3).下列性质中,平行四边形不一定具备的是( C )
F
A、6cm
B、12cm
E
C、18cm
D、24cm
精选ppt课件
B
D
C 15
5、平行四边形一边长为12cm,那么它的两条
对角线的长度可以是( C )
A、8cm和14cm
B、10cm 和14cm
C、18cm和20cm
D、10cm和34cm
6、四边形的四个内角的度数比是
2:2:3:1,则此四边形是( D )
1、定义:一组邻边相等且有一个角是直角的平行四边形
2、矩形+菱形
3 两条对角线互相垂直精平选分pp且t课相件等的四边形是正方形.
6
1、填空:(选填“平行四边形”,“矩形”,“菱形”,“正方形”或“不确定”)
(1)4个角都相等的是四边形是 矩形
;
(2)4条边都相等的四边形是
菱形
;
(3)对角线互相平分的四边形是 平行四边形 ;
5、两条对角线互相平分的四边形是平行四边形
。 (√ )
精选ppt课件
11
(二)选择题
⒈矩形、菱形、正方形都具有的性质是(B )
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
⒉已知矩形的一条对角线与一边的夹角是40°,则
两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
精选ppt课件
19
(三)填空题
相信自 己,你 是最棒
的
1、菱形的周长为32cm,若有一个内角为120°,
则菱形的一条较短的对角线为__8___cm.
B
C
A
D 精选ppt课件
相信自己,你 是最棒的!!
17
已知:如图矩形ABCD中DE⊥AC与E, AE:EC=3:1 若DC=6cm,则AC的长 为__1_2____cm
A
D
O
E
B
C
精选ppt课件
18
1、 已知菱形ABCD的周长为20cm。 ∠A:∠ABC=1:2 ,则对角线BD的 长等于______5____cm。
2、正方形的两条对角线的和为8cm, 它的面积为______平3方2 厘米
对角线互相平分
中心对称图形
四个角 都是直角
对角线互相平分且相等
中心对称图形 轴对称图形
对角相等 对角线互相垂直平分,且每 中心对称图形
邻角互补 一条对角线平分一组对角
轴对称图形
四个角 对角线互相垂直平分且相等,中心对称图形
每一条对角线平分一组对角
都是直角
轴对称图形
精选ppt课件
5
三、几种特殊平行四边形的常用判定方法 :
D
C
O
A
B 精选ppt课件
8
(三)填空题:
1.两条对角线 相等 的平行四边形是矩形。
2.两条对角线 相等且相互平分 的四边形是矩形。
3.两条对角线垂直 的平行四边形是菱形。 4.两条对角线 垂直平分 的四边形是菱形。
5.两条对角线 垂直 的矩形是正方形。
6.两条对角线
的菱形是正方形。
7.两条对角线 相等且垂直 的平行四边形是正形。
(4)对角线相等的四边形是
不确定 ;
(5)对角线相等的平行四边形是 矩形
;
(6)对角线互相垂直且相等的平行四边形是 正方形 ;
(7)对角线互相垂直平分的四边形是 菱形 ;
(8)有一条对角线垂直平分另一条对角线的四边形是 不确定 ;
(9)对角线互相垂直,且有一组邻边相等的四边形是 不确定 ;
(10)有一条对角线平分一个内角的平行四边形是 菱形 ;
(A)对角相等 (C )对角互补
(B)邻角互补 (D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,
错误的是( D )。
(A)一组对边平行,另一组对边也平行; (B)一组对角相等,另一组对角也相等; (C )一组对边平行,一组对角相等; (D)一组对边平行,另一组对边相等
精选ppt课件
(11)一组对边平行,另一组精对选边ppt课相件等的四边形是 不确定 .7
2.填空:
□ABCD的对角线AC与BD相交于点O, (1)若AB=AD,则□ABCD是 菱 形;
(2)若AC=BD,则□ABCD是 矩 形;
(3)若∠ABC是直角,则□ABCD是 矩 形;
(4)若∠BAO=∠DAO,则□ABCD是 菱 形。
A、任意四边形
B、任意梯形
C、等腰梯形
D、直角梯形
精选ppt课件
16
3. 如图所示,平行四边形ABCD的对角线相交
于O点,且AB≠BC,过O点作OE⊥AC,交BC 于E,如果△ABE的周长为b,则平行四边形
ABCD的周长是( )C
A. b B. 1.5b C. 2b
A
D
D. 3b
O
B
E
C 精选ppt课件
14
(5).能够判定一个四边形是平行四边形的条件是( B )
(A)一组对角相等
(B)两条对角线互相平分
(C )两条对角线互相垂直 (D)一对邻角的和为180°
(6)、在△ABC中,AB=AC=6cm,
D是BC上一点,且DE∥AC,交AB
于E,DF∥AB,交AC于F,则四边
A
形AEDF的周长为( B )
1、定义:两组对边分别平行的四边形 2、两组对边分别相等的四边形 3、一组对边平行且相等的四边形 4、对角线互相平分的四边形 5、两组对角分别相等的四边形平行四边形
1、定义:有一角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形
1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形