【精品专题】动量定理与电磁感应的综合应用

合集下载

用动量定理解决电磁感应问题

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。

本文结合例题分析应用动量定理解决电磁感应问题的思维起点。

一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。

通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。

在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。

利用该公式结合动量定理是解答此类问题思维起点。

例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。

析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。

当它们的速度相等时,它们之间的距离最大。

设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。

v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。

例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。

2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。

3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。

电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。

通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。

4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。

(2)在电源内部电流由负极流向正极。

(3)电源两端的电压为路端电压。

5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。

由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。

6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。

(2)功能关系:Q=W克服安培力,电流变不变都适用。

(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。

7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。

例析动量定理在电磁感应问题中的应用

例析动量定理在电磁感应问题中的应用
i 一 : 一Ls B
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:

根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)

电磁感应动量定理的应用(最新整理)

电磁感应动量定理的应用(最新整理)

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即tF I ∆=冲冲而=B L (为电流对时间的平均值)F I I 故有:安培力的冲量t L I B I ∆⋅=冲而电量q =Δt ,故有I BLq I =冲因只在安培力作用下运动 BLq =mv 2-mv 1 BLPq ∆=2.感应电量与磁通量的化量的关系:R n t R t n t R E t I q ∆Φ=∆⋅∆∆Φ=∆⋅=∆⋅=若磁感应强度是匀强磁场,R BLx R S B R q =∆=∆Φ=以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L 的区域内,现有一个边长为a (a <L )的正方形闭合线圈以初速度v 0垂直磁场边界滑过磁场后,速度为v (v <v 0),那么线圈A .完全进入磁场中时的速度大于(v 0+v )/2B .完全进入磁场中时的速度等于(v 0+v )/2C .完全进入磁场中时的速度小于(v 0+v )/2D .以上情况均有可能例2.在水平光滑等距的金属导轨上有一定值电阻R ,导轨宽d ,电阻不计,导体棒AB 垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B 。

现给导体棒一水平初速度v 0,求AB 在导轨上滑行的距离。

例3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

用动量定理解决电磁感应问题

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。

本文结合例题分析应用动量定理解决电磁感应问题的思维起点。

一、 以累积公式q=It 结合动量定理为思维起点直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。

通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。

在时间△t 内安培力的冲量BLq t BLI t F =∆=∆,式中q 是通过导体截面的电量。

利用该公式结合动量定理是解答此类问题思维起点。

例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。

析与解:当右棒运动时,产生感应电动势,两棒中有感应电流通过,右棒受到安培力作用而减速,左棒受到安培力作用而加速。

当它们的速度相等时,它们之间的距离最大。

设它们的共同速度为v ,则据动量守恒定律可得:mv 0=2mv ,即021v v = 对于左棒应用动量定理可得:BILt= mv所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2=∆ 由上述各式可得: x =220LB R mv 。

v点评:本题结合冲量公式BLq t BLI t F =∆=∆应用动量定理,使貌似复杂的问题得到迅速解决。

例2.(原创预测题)如图所示,两水平放置的平行光滑金属导轨相距为L ,导轨左端用导线连在一起,导轨电阻不计,整个装置垂直处于磁感强度为B 的匀强磁场中,另有一根长也为L 的金属棒垂直放在导轨上,现给金属棒一向右的水平初速度v 。

(完整版)电磁感应动量定理的应用

(完整版)电磁感应动量定理的应用

电磁感应与动量的综合1.安培力的冲量与电量之间的关系:设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即 I 冲 F 安 t而 F =B I L( I 为电流对时间的平均值)故有:安培力的冲量 I 冲 BI L t而电量 q= I t,故有I冲BLq因只在安培力作用下运动PBLq=mv2- mv1qBLEn2.感应电量与磁通量的化量的关系:q I t t t ntRR R若磁感应强度是匀强磁场,qB S BLxR R R以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例 1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为 L 的区域内,现有一个边长为 a( a<L )的正方形闭合线圈以初速度 v0垂直磁场边界滑过磁场后,速度为v(v<v0),那么线圈A .完全进入磁场中时的速度大于( v0+v) /2B .完全进入磁场中时的速度等于(v0+v) /2C.完全进入磁场中时的速度小于(v0+v) /2D.以上情况均有可能例 2.在水平光滑等距的金属导轨上有一定值电阻R,导轨宽 d ,电阻不计,导体棒 AB 垂直于导轨放置,质量为m,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为 B。

现给导体棒一水平初速度v0,求 AB 在导轨上滑行的距离。

例 3.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒 ab 和 cd,构成矩形回路。

已知两根导体棒的质量均为m、电阻均为 R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、 ab 有水平向右的初速度 v0,两导体棒在运动中始终不接触。

求:⑴开始时,导体棒ab 中电流的大小和方向;⑵从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热;⑶当ab 棒速度变为3v0/4 时, cd 棒加速度的大小。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是指通过磁场的变化产生感应电流或电动势的现象。

动量定理是牛顿力学中的重要定律,描述了物体的动量变化与施加在其上的力之间的关系。

本文将探讨电磁感应问题中动量定理的应用,并提供相关的参考内容。

1. 电磁感应中的电磁铁制动问题当磁铁的磁场加强时,会引起铝片产生感应电流。

根据安培力定律,感应电流会受到一个与外磁场相反的磁场之力,即产生阻力。

这一阻力使得磁铁减速,最终停止。

在这个过程中,动量定理可以用来描述磁铁的动能的变化。

参考内容:杨继拓. (2013). 电磁铁制动过程中电磁感应定律的应用. 物理, (8), 31-32.2. 电磁感应中的涡流制动问题当金属盘在磁场中旋转时,会产生涡流。

根据法拉第电磁感应定律,涡流会产生磁场,磁场与外磁场相互作用会产生力,即涡流制动力。

这一力对金属盘产生负作用,使其减速或停止旋转,同时也会消耗金属盘的动能。

动量定理可以用来描述金属盘的动能的变化。

参考内容:郁锋. (2017). 电磁感应中的涡流制动效应研究. 科技创新导报, 14(5), 183-184.3. 电磁感应中的感应电动势问题当导体中的磁通量发生变化时,会在导体两端产生感应电动势。

根据洛伦兹力定律,感应电动势会产生电流,而电流在导体中受到电阻力的作用,从而减慢电流的流动速度。

动量定理可以用来描述电阻力对电流动能的影响,进而分析电流的变化情况。

参考内容:陈立农. (2018). 电磁感应中感应电动势的发生和应用. 科技导报, (15), 110-112.4. 电磁感应中的电磁泵问题电磁泵是利用电磁感应产生的电磁力来实现液体输送的装置。

当电流通过线圈时,会在涡轮中产生涡流。

根据法拉第电磁感应定律,涡流会产生磁场与线圈的磁场相互作用,从而产生电磁力,将液体推入导管中。

动量定理可以用来分析电磁力对液体动能的传递。

参考内容:杨伟. (2013). 基于电磁感应原理的电磁泵设计. 物理, (8), 61-62.5. 电磁感应中的感应发电问题当导体与磁场相互作用时,会产生感应电流。

动量观点在电磁感应中的应用

动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良

08讲 动量与动量守恒定律在电磁感应中的应用解析版

08讲 动量与动量守恒定律在电磁感应中的应用解析版

2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应是电学的一个重要分支,它描述了磁场和电场交互作用的现象。

在这个过程中,一个恒定的磁场会在一个导体中产生一个阻尼运动,并且电流也会在其中生成。

这一过程应用了产生电动势的定律,即法拉第电磁感应定律。

动量定理则对于电磁感应过程中的动量守恒起着重要作用,如将动量定理应用于电磁感应问题中,可以更好地理解相关物理现象,提高我们的物理理解和分析问题的能力。

1.动量定理的基本概念动量定理是物理学中研究运动学的重要定理之一。

它不仅可以帮助我们更好地理解自然界中的运动现象,还能解释各种力学现象的本质。

动量定理内容如下:物体的动量变化率等于施加在物体上的合外力。

其中动量是质量和速度的乘积,即动量p=mv,其中p是动量,m是质量,v是速度。

合外力指施加在物体上的所有力的矢量和,其大小和方向由物体所处的环境和状态确定。

2.动量定理在电磁感应中的应用在电磁感应中,动量定理具有重要意义。

在电磁感应过程中,当一个导体通过磁场时,这个磁场会产生一个运动阻力,从而使导体运动速度降低。

这就是动量定理在电磁感应中的应用。

其中,动量定理可通过法拉第电磁感应定律得出,即磁通量改变剩余电荷所导致的电场。

当导体移动时,磁场以一定范围控制导体中的电子运动。

在这个过程中,当导体中的所有电荷向一个方向移动时,电子会受到合力,并且导体运动速度会降低。

这个动量由阻尼力提供,而阻尼又是由其与磁场的相互作用引起的。

此外,当电流被生成时,它还可以通过磁场和电场的相互作用来影响导体的运动。

动量定理可以帮助我们更好地理解这一复杂的过程。

在电磁感应过程中,动量定理告诉我们,当导体受到电磁力时,它的速度将会变化。

当导体停止运动时,电荷分布在导体上将会发生改变。

这一过程会继续,直到电流达到稳定状态为止。

3.电磁感应的动量定理应用案例一种常见的电磁感应案例是感应式加热。

感应式加热是一种运用电磁感应原理,通过电流在导体中产生的热来加热物体的加热方式。

【精品专题】动量定理与电磁感应的综合应用

【精品专题】动量定理与电磁感应的综合应用

动量定理与电磁感应的综合应用姓名:____________ 【例题精讲】例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求:(1)t=0时刻,棒ab两端电压;(2)整个过程中R上产生的总热量是多少;(3)整个过程中ab棒的位移是多少针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。

现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。

(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计).(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;(2)棒ab从静止释放经过时间 t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。

线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。

(1)求0~0.10 s线圈中的感应电动势大小;(2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向;(3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用碰撞与动量这部分内容对进一步学习物理学科是非常重要的,因为动量守恒定律是解决经典力学和微观物理问题的重要工具和方法之一。

动量动量定理1、动量、冲量2、动量变化量和动量变化率3、动量、冲量4、应用动量定理解题的一般步骤(1)选定研究对象,明确运动过程(2)受力分析和运动的初、末状态分析(3) 选正方向,根据动量定理列方程求解动量动量定理动量定理揭示了冲量和动量变化量之间的关系.1.应用动量定理的两类简单问题(1) 应用I=Δp求变力的冲量和平均作用力.物体受到变力作用,不能直接用I=Ft求变力的冲量.(2) 应用Δp=Ft求恒力作用下的曲线运动中物体动量的变化.曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量.2.动量定理使用的注意事项(1) 用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便.(2) 动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.动量定理在电磁感应现象中的应用在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量.动量守恒定律1、动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.2、动量守恒定律表达式(1) m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变.(2) Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反.(3) Δp=0,系统的动量变化量为零.3、对动量守恒定律的理解(1) 矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向.(2) 瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定.(3) 相对性:动量的大小与参考系的选取有关,一般以地面为参考系.(4) 普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况.动量守恒定律的简单应用1、应用动量守恒定律的条件(1) 系统不受外力或系统所受的合外力为零.(2) 系统所受的合外力不为零,比系统内力小得多.(3) 系统所受的合力不为零,在某个方向上的分量为零.2、运用动量守恒定律解题的基本思路(1) 确定研究对象并进行受力分析和过程分析;(2) 确定系统动量在研究过程中是否守恒;(3) 明确过程的初、末状态的系统动量;(4) 选择正方向,根据动量守恒定律列方程.3、动量守恒条件和机械能守恒条件的比较(1) 守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功.(2) 系统动量守恒时,机械能不一定守恒.(3) 系统机械能守恒时,动量不一定守恒.动量定理在电磁感应中的应用电磁感应中的动力学问题往往比较复杂,运用动量和能量的观点可以清晰、简洁地解决问题。

微专题78 动量观点在电磁感应中的应用

微专题78 动量观点在电磁感应中的应用

微专题78 动量观点在电磁感应中的应用电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒定律解决:1.应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题,如求作用时间、速度、位移和电荷量.2.在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.1.(2019·湖北宜昌市四月调研)如图1所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框,在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t =0时导线框的右边恰与磁场的左边界重合,并以此位置开始计时并作为导线框位移x 的起点,随后导线框进入并通过磁场区域.下列图像中,可能正确描述上述过程的是( )图1答案 B解析 导线框以一定初速度进入磁场,则感应电动势为:E =BL v ,根据闭合电路欧姆定律,则感应电流为:I =E R ;安培力为:F =BIL =B 2L 2v R ;由牛顿第二定律得:F =ma ,则有:a =B 2L 2v Rm,由于v 减小,所以a 也减小;当导线框完全进入磁场后,不受安培力,所以做匀速直线运动;当导线框出磁场时,速度与时间的关系与进入磁场相似,而速度—时间图像的斜率表示加速度,则A 错误,B 正确;导线框进入磁场时,设某时刻进入磁场的距离为x ,此时导线框的速度为v ,则由动量定理:-B I L Δt =m v -m v 0,其中I Δt =q =BLx R ,则v =v 0-B 2L 2Rmx ;同样,当导线框完全进入磁场后,不受安培力,所以做匀速直线运动,当导线框出磁场时,速度v 与位移x 的关系与进入磁场相似,则C 、D 错误.2.(2019·全国卷Ⅲ·19改编)如图2,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图像中可能正确的是( )图2答案 A解析 棒ab 以初速度v 0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab 受到与v 0方向相反的安培力的作用而做变减速运动,棒cd 受到与v 0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv =v 1-v 2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab 和棒cd 的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 正确,B 、C 、D 错误.3.(2020·河南焦作市高三第三次模拟)如图3所示,一正方形金属线框abcd 静止在光滑的水平桌面上,线框右侧两条平行虚线间存在一匀强磁场,磁感应强度方向竖直向上.cd 边与磁场边界平行,磁场虚线间距大于正方形金属线框边长.现给线框一水平向右的初速度,线框能通过磁场区域并继续向右运动,下列说法错误的是( )图3A.线框进入磁场的过程中,cd边受到的安培力方向水平向左B.线框通过磁场的整个过程中,cd边两端的电压始终不变C.线框进入磁场和离开磁场的过程中,通过线框的电荷量相等D.线框进入磁场和离开磁场的过程中,线框速度的变化量相等答案 B解析根据楞次定律的另一种表述可知,感应电流总是阻碍线框与磁场的相对运动,线框进入磁场的过程中,cd边受到的安培力方向水平向左,A正确;线框进入磁场的过程中,cd边相当于电源,cd边两端的电压为路端电压U1=34Bl v1线框完全进入磁场后,电路中没有感应电流,cd边两端的电压为E=Bl v2线框离开磁场的过程中,ab边相当于电源,cd边两端的电压为U3=14Bl v3且v1>v2>v3所以线框通过磁场的整个过程中,cd两端的电压会发生变化,B错误;线框进入磁场和离开磁场的两个过程中,磁通量的变化量相等,根据公式q=ΔΦ,分析可知R两个过程中通过线框横截面的电荷量相等,C正确;根据动量定理得,线框进入磁场的过程中,有B I1Lt1=mΔv1离开磁场的过程中,有B I2Lt2=mΔv2又因为I1t1=I2t2所以Δv1=Δv2,D正确.4.(2020·湖北大冶六中月考)如图4所示,光滑U形金属导轨PQMN水平固定在竖直向上的匀强磁场中.磁感应强度大小为B,导轨宽度为L.QM之间接有阻值为R的电阻,其余部分电阻不计.一质量为m、电阻为R的金属棒ab垂直放在导轨上,给棒一个水平向右的初速度v0使之开始滑行,经过位移x最后停在导轨上.由以上条件,在此过程中不可求出的物理量是()图4A .电阻R 上产生的焦耳热B .通过电阻R 的总电荷量C .安培力对ab 棒做的功D .ab 棒的运动时间答案 D解析 根据能量守恒得,电阻R 上产生的焦耳热Q =12×12m v 02=14m v 02,A 不符合题意;根据动量定理得,-B I L Δt =0-m v 0,又q =I Δt ,解得q =m v 0BL,B 不符合题意;克服安培力做的功等于电阻R 和金属棒ab 上产生的焦耳热Q ′=12m v 02,C 不符合题意;由于ab 棒做变减速运动,无法求出运动时间,D 符合题意.5.(2020·山东潍坊市期末)如图5所示,水平光滑金属导轨P 、Q 间距为L ,M 、N 间距为2L ,P 与M 相连,Q 与N 相连,金属棒a 垂直于P 、Q 放置,金属棒b 垂直于M 、N 放置,整个装置处在磁感应强度大小为B 、方向竖直向上的匀强磁场中.现给棒a 一个大小为v 0的初速度,设导轨足够长,两棒质量均为m ,在棒a 的速度由v 0减小到最终为0.8v 0的过程中,两棒始终与导轨接触良好.以下说法正确的是( )图5A .俯视时感应电流方向为顺时针B .棒b 的最大速度为0.6v 0C .回路中产生的焦耳热为0.1m v 02D .通过回路中某一截面的电荷量为2m v 025BL答案 C解析 棒a 向右运动,回路面积减小,根据楞次定律可知产生向上的感应磁场,根据安培定则可知俯视时感应电流的方向为逆时针,A 错误;棒a 向右做减速运动,棒b 向右做加速运动,由于棒b 会产生顺时针方向的感应电流,所以回路中电流会不断减小直到零,此时两棒产生的感应电动势相等,两棒都做匀速直线运动,棒b 的长度是棒a 的两倍,根据E =BL v可知,速度是棒a 的一半,即棒b 的最大速度为0.4v 0,B 错误;根据动能定理有Q =12m v 02-[12m (0.8v 0)2+12m (0.4v 0)2]=0.1m v 02,C 正确;对棒a 由动量定理可知,安培力的冲量等于动量的变化量,有B I Lt =BLq =m v 0-m ·0.8v 0,解得q =m v 05BL,D 错误. 6.如图6所示,固定在倾角为θ的斜面内的两根平行长直金属导轨,其间距为d ,底端接有阻值为R 的电阻,整个装置处在垂直斜面向上、磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,导体杆ab 与导轨间的动摩擦因数为μ.导体棒ab 从静止开始沿导轨下滑距离为L 时,速度恰好达到最大(运动过程中导体杆ab 始终与导轨保持垂直,且与两导轨保持良好接触).设导体杆ab 接入电路的电阻为R ,导轨电阻和空气阻力忽略不计,重力加速度大小为g .导体杆ab 由静止到速度达到最大的过程中,下列说法不正确的是( )图6A .通过电阻R 的电荷量为BdL RB .导体杆ab 两端电压的最大值为mg (sin θ-μcos θ)R BdC .电阻R 中的最大电流为mg (sin θ-μcos θ)BdD .导体杆ab 运动的时间为B 2d 2L 2mgR (sin θ-μcos θ)+2mR B 2d2 答案 A解析 导体杆ab 由静止到速度达到最大的过程中,由法拉第电磁感应定律得E =ΔΦΔt =BLd Δt,由闭合电路欧姆定律得I =E2R =BLd 2R Δt ,通过电阻R 的电荷量为q =I Δt =BLd 2R,选项A 错误;导体杆ab 匀速运动时回路中的电流最大,由平衡条件得mg sin θ=μmg cos θ+BId ,解得I =mg (sin θ-μcos θ)Bd ,选项C 正确;导体杆ab 两端电压的最大值U =IR =mg (sin θ-μcos θ)R Bd,选项B 正确;设导体杆ab 的最大速度为v ,E =Bd v ,I =E 2R,导体杆ab 由静止到速度达到最大的过程中,由动量定理得mgt (sin θ-μcos θ)-B I dt =m v ,解得t =B 2d 2L 2mgR (sin θ-μcos θ)+2mR B 2d 2,选项D 正确.7.如图7所示,绝缘水平面内固定有一间距d =1 m 、电阻不计的足够长光滑矩形导轨AKDC ,导轨两端接有阻值分别为R 1=3 Ω和R 2=6 Ω的定值电阻.矩形区域AKFE 、NMCD 范围内均有方向竖直向下、磁感应强度大小B =1 T 的匀强磁场Ⅰ和Ⅱ.一质量m =0.2 kg 、电阻r =1 Ω的导体棒ab 垂直放在导轨上AK 与EF 之间某处,在方向水平向右、大小F 0=2 N 的恒力作用下由静止开始运动,刚到达EF 时导体棒ab 的速度大小v 1=3 m/s ,导体棒ab 进入磁场Ⅱ后,导体棒ab 中通过的电流始终保持不变.导体棒ab 在运动过程中始终保持与导轨垂直且接触良好,空气阻力不计.则( )图7A .导体棒ab 刚到达EF 时的加速度大小为3 m/s 2B .两磁场边界EF 和MN 之间的距离L 为1 mC .若在导体棒ab 刚到达MN 时将恒力撤去,导体棒ab 继续滑行的距离为3 mD .若在导体棒ab 刚到达MN 时将恒力撤去,导体棒ab 继续滑行的过程中整个回路产生的焦耳热为3.6 J答案 D解析 导体棒ab 刚要到达EF 时,在磁场中切割磁感线产生的感应电动势E 1=Bd v 1,经分析可知,此时导体棒ab 所受安培力的方向水平向左,由牛顿第二定律有F 0-BI 1d =ma 1,I 1=E 1R +r ,上式中R =R 1R 2R 1+R 2=2 Ω,解得a 1=5 m/s 2,A 错误;导体棒ab 进入磁场Ⅱ后,导体棒ab 中通过的电流I 2保持不变,受到的安培力与F 0平衡,做匀速直线运动,则有F 0=BI 2d ,其中I 2=Bd v 2R +r,设导体棒ab 从EF 运动到MN 的过程中的加速度大小为a 2,则有F 0=ma 2,导体棒ab 在EF 、MN 之间做匀加速直线运动,则有v 22-v 21=2a 2L ,解得v 2=6 m/s ,L =1.35 m ,B 错误;撤去F 0后导体棒ab 继续滑行的过程中,有BId =ma ,I =Bd v R +r,若Δt →0,则有a =Δv Δt ,由以上三式可得B 2d 2R +r v Δt =m Δv ,则有B 2d 2R +r ∑v Δt =m ∑Δv ,即B 2d 2R +rs =m (v 2-0),解得s =3.6 m ,C 错误;根据能量守恒定律,Q =12m v 22=3.6 J ,D 正确. 8.(2020·天津市七校联考)随着电磁技术的日趋成熟,新一代航母已准备采用全新的电磁阻拦技术,它的原理是,飞机着舰时利用电磁作用力使它快速停止.为研究问题的方便,我们将其简化为如图8所示的模型.在磁感应强度为B 、方向如图所示的匀强磁场中,两根平行金属轨道MN 、PQ 固定在水平面内,相距为L ,电阻不计.轨道端点M 、P 间接有阻值为R 的电阻.一个长为L 、质量为m 、阻值为r 的金属导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好.飞机着舰时质量为M 的飞机迅速钩住导体棒ab ,钩住之后关闭动力系统并立即获得共同的速度v ,忽略摩擦等次要因素,飞机和金属棒系统仅在安培力作用下很快停下来.求:图8(1)飞机在阻拦减速过程中获得的加速度a 的最大值;(2)从飞机与金属棒共速到它们停下来的整个过程中R 上产生的焦耳热Q R ;(3)从飞机与金属棒共速到它们停下来的整个过程中运动的距离x .答案 (1)B 2L 2v (R +r )(M +m ) (2)R (M +m )v 22(R +r )(3)(M +m )v (R +r )B 2L 2 解析 (1)E =BL vI =E R +rF 安=BIL =(M +m )aa =B 2L 2v(R +r )(M +m )(2)12(M +m )v 2=Q Q R =R R +rQ Q R =R (M +m )v 22(R +r )(3)由BiL ·Δt =(M +m )Δvi =BL v i R +r得B ·BL v i R +r ·L ·Δt =(M +m )·Δv求和B 2L 2R +r·x =(M +m )v 得x =(M +m )v (R +r )B 2L 29.(2020·江西吉安市期末)如图9所示,长直平行光滑金属导轨MN 、PQ 固定在绝缘水平面上,导轨间距为1 m ,两导轨间接有电阻R 1、R 2,阻值均为4 Ω,虚线右侧有垂直导轨平面竖直向上的匀强磁场,磁感应强度大小为1 T ,一根质量为20 g 的金属棒放在导轨上,并处在磁场中,给金属棒施加水平向右、大小为5 N 的拉力F ,使金属棒从静止开始向右运动,金属棒运动过程中始终与导轨垂直并接触良好,不计金属棒与导轨的电阻,开始时开关S 闭合,金属导轨足够长,求:图9(1)金属棒运动的最大速度大小;(2)若金属棒匀速运动后,将开关S 断开,开关断开后金属棒运动1 m 时已处于匀速运动状态,则此过程中电阻R 1上产生的焦耳热为多少;(3)若金属棒匀速运动后,撤去拉力F ,则金属棒运动多长距离停下.答案 (1)10 m/s (2)2 J (3)0.4 m解析 (1)设金属棒运动的最大速度大小为v 1,根据力的平衡条件有F =BI 1L根据闭合电路欧姆定律I 1=E 1R 总其中R 总=R 1R 2R 1+R 2根据法拉第电磁感应定律E 1=BL v 1解得v 1=10 m/s(2)若金属棒匀速运动后,将开关S 断开,开关断开后金属棒运动1 m 时已处于匀速运动状态,设匀速运动的速度大小为v 2,则F =B 2L 2v 2R 1解得v 2=20 m/s设电阻R 1上产生的热量为Q ,根据能量守恒Fx=Q+12-12m v122m v2解得Q=2 J(3)若金属棒匀速运动后,撤去拉力F,设金属棒运动的时间为t,根据动量定理,有-B I Lt =0-m v0即BqL=m v1即B BLxL=m v1R总解得x=0.4 m.10.(2020·陕西宝鸡中学第三次模拟)如图10所示,平行光滑金属导轨由水平部分和倾斜部分组成,且二者平滑连接.导轨水平部分MN的右侧区域内存在方向竖直向上的匀强磁场,磁感应强度大小为B=0.4 T.在距离磁场左边界线MN为d=0.8 m处垂直导轨放置一个导体棒a,在倾斜导轨高h=0.2 m处垂直于导轨放置导体棒b.将b棒由静止释放,最终导体棒a和b速度保持稳定.已知轨道间距L=0.5 m,两导体棒质量均为m=0.1 kg,电阻均为R=0.1 Ω,g取10 m/s2,不计导轨电阻,导体棒在运动过程中始终垂直于导轨且接触良好,忽略磁场边界效应.求:图10(1)导体棒刚过边界线MN时导体棒a的加速度大小;(2)从初始位置开始到两棒速度稳定的过程中,感应电流在导体棒a中产生的热量;(3)两棒速度稳定后二者之间的距离.答案(1)4 m/s2(2)0.05 J(3)0.3 m解析(1)设导体棒b滑到边界线MN时的速度大小为v0,在其到达水平轨道过程中机械能守恒,则有mgh=122m v0导体棒b通过边界线MN时,发生电磁感应现象,导体棒a受到安培力作用而产生加速度即将开始运动,由法拉第电磁感应定律和牛顿第二定律可得E=BL v0I=E2R F=BILa=Fm解得a=4 m/s2(2)当导体棒b进入磁场后,a、b棒组成的系统在水平方向上受到的合力为零,系统满足动量守恒和能量守恒.当导体棒速度稳定时,两者做速度相等的匀速运动,设此时速度为v,则m v0=2m v12m v02=12×2m v2+2Q解得Q=0.05 J(3)设两棒速度稳定后两棒之间的距离为l,从b棒进入磁场到二者共速的过程中,对导体棒a 由动量定理可得F t=m v而F=B I LI=E 2RE=ΔΦtΔΦ=BLxl=d-x联立以上各式可得l=0.3 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理与电磁感应的综合应用姓名:____________ 【例题精讲】例1:如图所示,水平面上有两根相距0.5m足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3Ω的定值电阻;有一质量m=0.1kg,长L=0.5m,电阻r=1Ω的导体棒ab,与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=1T,在t=0s开始,使ab以v0=10m/s的初速度向右运动,直至ab停止,求:(1)t=0时刻,棒ab两端电压;(2)整个过程中R上产生的总热量是多少;(3)整个过程中ab棒的位移是多少针对训练1-1:如图所示,两条相距L的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻;在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。

现使电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化。

(棒ab与导轨始终保持良好的电接触且下落过程中始终保持水平,导轨电阻不计).(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;(2)棒ab从静止释放经过时间 t0下降了0.5d,求此时刻的速度大小。

针对训练1-2:(浙江2015年4月选考)如图所示,质量m=3.0×10-3kg的“”型金属细框竖直放置在两水银槽中,“”型框的水平细杆CD长l=0.20 m,处于磁感应强度大小B1=1.0 T、方向水平向右的匀强磁场中,有一匝数n=300匝、面积S=0.01 m2的线圈通过开关K与两水银槽相连。

线圈处于与线圈平面垂直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系如图所示。

(1)求0~0.10 s线圈中的感应电动势大小;(2)t=0.22 s时闭合开关K,若细杆CD所受安培力方向竖直向上,判断CD中的电流方向及磁感应强度B2的方向;(3)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h=0.20 m,求通过细杆CD的电荷量。

针对训练1-3:(浙江2017年11月选考)所图所示,匝数N=100、截面积s=1.0×10-2m2、电阻r=0.15Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的匀强磁场B1,其变化率k=0.80T/s。

线圈通过开关S连接两根相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻。

一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在等高的挡条上。

在竖直导轨间的区域仅有垂直纸面的不随时间变化的匀强磁场B2。

接通开关S后,棒对挡条的压力恰好为零。

假设棒始终与导轨垂直,且与导轨接触良好,不计摩擦阻力和导轨电阻。

(1)求磁感应强度B2的大小,并指出磁场方向;(2)断开开关S后撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m,求此过程棒上产生的热量。

针对训练1-4:.如图所示,平行金属导轨OP 、KM 和PQ 、MN 相互垂直,且OP 、KM 与水平面间夹角为θ=37º,导轨间距均为L=1m ,电阻不计,导轨足够长。

两根金属棒ab 和cd 与导轨垂直放置且接触良好,ab 的质量为M=2kg ,电阻为R1=2Ω,cd 的质量为m=0.2kg,电阻为R2=1Ω,金属棒和导轨之间的动摩擦因数均为µ=0.5,两个导轨平面均处在垂直于轨道平面OPKM 向上的匀强磁场中.现让cd 固定不动,将金属棒ab 由静止释放,当ab 沿导轨下滑x=6m 时,速度已达到稳定,此时,整个回路消耗的电功率为P=12W 。

(sin37º=0.6,g=10m/s2)求: (1)磁感应强度B 的大小;(2)ab 沿导轨下滑x=6m 的过程中ab 棒上产生的焦耳热Q;(3)若将ab 与cd 同时由静止释放,当cd 达到最大速度时ab 的加速度a.(4)若将ab 与cd 同时由静止释放,当运动时间t=0.5s 时,ab 的速度vab 与cd 棒的速度vcd 的关系式。

例2:如图所示,在光滑的水平面上有竖直向下(垂直纸面向里)的匀强磁场分布在宽度为s 的区域内.一个边长为L (L<s )的正方形闭合线圈以初速度v 0垂直与磁场的边界穿过磁场后速度变为v.设线圈完全进入磁场时的速度为v',则( )A.0'2v v v +>B.0'2v vv += C.0'2v v v +< D.无法判断针对训练2-1:如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢。

在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。

缓冲车的底部,还安装有电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B;导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。

假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。

求:(1)滑块K的线圈中最大感应电动势的大小以及流过线圈ab段的电流方向;(2)若缓冲车厢向前移动一段距离后速度为零(导轨未碰到障碍物),则此过程线圈abcd 中通过的电量和产生的焦耳热各是多少;(3)缓冲车厢减速运动的速度v随位移x变化的关系式。

针对训练2-2:月球探测器在月面实现软着陆是非常困难的,探测器接触地面瞬间速度为竖起向下的1v ,大于要求的软着陆速度0v ,为此科学家们设计了一种叫电磁阻尼缓冲装置,其原理如图所示,主要部件为缓冲滑块K 和绝缘光滑的缓冲轨道MN 和PQ ;探测器主体中还有超导线圈(图中未画出),能在两轨道间产生垂直于导轨平面的匀强磁场。

导轨内的缓冲滑块由高强度绝缘材料制成,滑块K 上绕有闭单匝矩形线圈abcd ,线圈的总电阻为R ,ab 边长为L 。

当探测器接触地面时,滑块K 立即停止运动,此后线圈与轨道间的磁场发生作用,使探测器主体做减速运动,从而实现缓冲.已知装置中除缓冲滑块(含线圈)外的质量为m ,月球表面的重力加速度为6g,不考虑运动磁场产生的电场。

(1)当缓冲滑块刚停止运动时,判断线圈中感应电流的方向和线圈ab 边受到的安培力的方向; (2)为使探测器主体做减速运动,磁感应强度B 至少应多大;(3)当磁感应强度为0B 时,探测器主体可以实现软着陆,若从1v 减速到0v 的过程中,通过线圈截面的电量为q ,求该过程所需要的时间,以及线圈中产生的焦耳热Q 。

针对训练2-3:如图所示,在空间有两个磁感强度均为 B 的匀强磁场区域,上一个区域边界AA′与DD′的间距为H,方向垂直纸面向里,CC′与DD′的间距为h,CC′下方是另一个磁场区域,方向垂直纸面向外。

现有一质量为m、边长为L (h < L < H ) 、电阻为R 的正方形线框由AA′上方某处竖直自由落下,恰能匀速进入上面一个磁场区域,当线框的cd 边刚要进入边界CC′前瞬间线框的加速度大小a1 = 0.2 g,空气阻力不计,求:(1)线框的cd 边从AA′运动到CC′过程产生的热量Q .(2)当线框的cd 边刚刚进入边界CC′时,线框的加速度大小(3)线框的cd 边从边界AA′运动到边界CC′的时间.例3:某同学利用电磁感应知识设计了一个测速仪。

其简化模型如图所示,间距为L的两根水平固定放置的平行光滑的金属导轨MN、PQ,导轨的右端连接一个定值电阻,阻值为R,导体棒a垂直导轨放置在导轨上,在a棒左侧和导轨间存在竖直向下的匀强磁场,磁感应强度为B,在a棒右侧有一绝缘棒b,b棒与固定在墙上的轻弹簧相连但不粘连,弹簧处于压缩状态且被锁定。

现解除锁定,b棒在弹簧的作用下向左移动,脱离弹簧后以速度v0与a棒发生碰撞粘在一起。

已知a、b棒的质量分别为m、M,碰撞前后,棒始终垂直导轨,a棒在导轨间的电阻为r,导轨电阻和空气阻力均忽略不计。

求:(1)弹簧的弹性势能和a棒中电流的方向;(2)从a棒开始运动到停止过程中,a棒产生的焦耳热Q;(3)若a棒向左滑行的距离为x,a棒向左滑行距离x与b棒的速度v0的函数关系式。

针对训练3-1:如图所示,平行光滑且足够长的金属导轨ab、cd固定在同一水平面上,处于竖直向上的匀强磁场中,磁感应强度 B=2T,导轨间距L=0.5m。

有两根金属棒MN、PQ质量均为lkg,电阻均为0.5Ω,其中PQ静止于导轨上,MN用两条轻质绝缘细线悬挂在挂钩上,细线长 h=0.9m,当细线竖直时棒刚好与导轨接触但对导轨无压力。

现将MN向右拉起使细线与竖直方向夹角为60°,然后由静止释放MN,忽略空气阻力。

发现MN到达最低点与导轨短暂接触后继续向左上方摆起,PQ在MN短暂接触导轨的瞬间获得速度,且在之后1s时间内向左运动的距离 s=1m。

两根棒与导轨接触时始终垂直于导轨,不计其余部分电阻。

求:(1)当悬挂MN的细线到达竖直位罝时,MNPQ回路中的电流强度大小及MN两端的电势差大小;(2)MN与导轨接触的瞬间流过PQ的电荷量;(3)MN与导轨短暂接触时回路中产生的焦耳热。

针对训练3-2:(浙江2016年4月选考)某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示.竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向里的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭.在Δt时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体.当燃烧室下方的可控喷气孔打开后,喷出燃气进一步加速火箭.(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0; (不计空气阻力)(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv.(提示:可选喷气前的火箭为参考系)针对训练3-3:(浙江2017年4月选考)间距为l的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图所示.倾角为θ的导轨处于大小为B1、方向垂直导轨平面向上的匀强磁场区间Ⅰ中.水平导轨上的无磁场区间静止放置一质量为3m的“联动双杆”(由两根长为l的金属杆cd和ef,用长度为L的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大于L.质量为m、长为l的金属杆ab从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab与“联动双杆”发生碰撞,碰后杆ab和cd合在一起形成“联动三杆”.“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出.运动过程中,杆ab、cd和ef与导轨始终接触良好,且保持与导轨垂直.已知杆ab、cd和ef电阻均为R=0.02 Ω,m=0.1 kg,l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦阻力和导轨电阻,忽略磁场边界效应.求:(1)杆ab在倾斜导轨上匀速运动时的速度大小v0;(2)“联动三杆”进入磁场区间Ⅱ前的速度大小v;(3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q.针对训练3-4:某同学设计了一个电磁击发装置,其结构如图所示。

相关文档
最新文档