广东省2020年中考数学前最后一套押题卷含答案
2020广东中考最后押题一卷(数学)试卷
第 24 题图
25.如图,抛物线 y ax2 2ax 2 3 与 x 轴相交于点 A, B 两点,与 y 轴相交于点 C ,连接 BC ,已
知 tan CBO 3 ,抛物线的对称轴交 x 轴于点 D . 2
(1)求该抛物线的解析式;
(2)连接 CD ,能否在抛物线上找到一点 M ,使得 MCD 30 ,若有求 M 点的坐标,若没有说
(2)求∠CAD 的度数.
20.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计.统计
发现班上贫困家庭学生人数分别有 2 名,3 名,4 名,5 名,6 名,共五种情况.并将其制成了如
下两幅不完整的统计图,请回答下列问题:
(1)求该校一共有班级________个;在扇形统计图中,贫困家庭学生人数有 5 名的班级所对应扇
11.分式 2x 有意义,则 x 的取值范围是
.
1 x
12.分解因式 3x2 12 =
.
13.从 1 , 2 ,π,0, -3 这五个数中随机抽取一个数,恰好是无理数的概率是
3
14.关于 x 的一元二次方程(a﹣2)x2﹣2x﹣4+a2=0 有一个根是 0,则 a 的值为
. .
15.如图,矩形 ABCD 中,AC、BD 交于点 O,M、N 分别为 BC、OC 的中点.若 MN=4,则 AC 的长
为
.
16. 中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两
(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则马每匹价
两.
17.如图,在⊙O 中,半径 OA⊥OB,过点 OA 的中点 C 作 FD∥OB 交⊙O 于 D、F 两点,且 CD=
2020年广东省中考数学押题测试卷及答案
三、解答题(一)(本大题共 3 小题,每小题 6 分,共 18 分) 18.计算:-21+(-1)2020+2sin 30°-( 3- 2)0. 解:原式=12+1+2×12-1=12+1+1-1=32.
19.先化简,再求值:x+1 1-x-1 1÷1-2 x,其中 x=-2. 解:原式=x- x+11-xx-+11 ·1-2 x =xx-+11-xx--11·1-2 x=x+12x-1·x-2 1 =x+1 1, 当 x=-2 时,原式=-21+1=-1.
2020年广东省初中学业水平考试
押题测试卷
(本卷满分120分,考试时长90分钟)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小
题列出的四个选项中,只有一个是正确的.
1.在 0,2,-3,-21这四个数中,最小的数是( C )
A.0
B.2
C.-3
D.-12
2.天文单位是天文学中计量天体之间距离的一种单位,其数
解:(1)设小本作业本每本 x 元,则大本作业本每本(x+0.3)元, 依题意,得x+80.3=5x,解得 x=0.5, 经检验,x=0.5 是原方程的解,且符合题意, ∴x+0.3=0.8. 答:大本作业本每本 0.8 元,小本作业本每本 0.5 元.
(2)设大本作业本购买 m 本,则小本作业本购买 2m 本, 依题意,得 0.8m+0.5×2m≤15,解得 m≤235. ∵m 为正整数,∴m 的最大值为 8. 答:大本作业本最多能购买 8 本.
第 15 题图
16.如图,在扇形 OAB 中,∠AOB=90°,D,E 分别是半径 OA,OB 上的点,以 OD,OE 为邻边的▱ODCE 的顶点 C 在 上.若 OD=8,OE=6,则阴影部分图形的面积是 25π-48 (结果保留 π).
数学-(广州卷)2020年中考考前最后一卷(全解全析)
2021年中考考前最后一卷【广州卷】数学·全解全析一、选择题(本大题包括10小题,每小题3分,共30分。
在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑)1 2 3 4 5 6 7 8 9 10C BD B B C B A C A1.【分析】根据绝对值的意义即可进行求解.【解答】解:∵负数的绝对值等于它的相反数,∴﹣2021的绝对值为2021.故选:C.2.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.3.【分析】直接利用合并同类项法则以及积的乘方运算法则、单项式乘单项式、二次根式的乘法运算法则分别计算得出答案.【解答】解:A、x3+x4无法合并,故此选项错误;B、2x2•3x4=6x6,故此选项错误;C、(﹣3x2y)2=9x4y2,故此选项错误;D、×=,故此选项正确.故选:D.4.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数据从小到大排列,最中间的两个数是第15、16个数的平均数,所以全班30名同学的成绩的中位数是:=94;96出现了10次,出现的次数最多,则众数是96,所以这些成绩的中位数和众数分别是94分,96分.故选:B.5.【分析】先根据已知条件易求x+2y的值,再将所求代数式提取公因数2,最后把x+2y的值代入计算即可.【解答】解:根据题意得x+2y+1=3,∴x+2y=2,那么2x+4y+1=2(x+2y)+1=2×2+1=5.故选:B.6.【分析】根据平行线分线段成比例定理即可判断.【解答】解:∵EF∥BC,∴,,,故选:C.7.【分析】根据两直线平行,同位角相等可得∠3=∠1=75°,再根据平角等于180°,列式∠3+90°+∠2=180°,即可求得∠2的度数.【解答】解:∵直尺对边平行,∴∠3=∠1=75°,∴∠2=180°﹣75°﹣90°=15°,故选:B.8.【分析】设圆弧的圆心为O,过O作OC⊥AB于C,交于D,连接OA,先由垂径定理得AC=BC=AB =150,再由勾股定理求出OC=200,然后求出CD的长即可.【解答】解:设圆弧的圆心为O,过O作OC⊥AB于C,交于D,连接OA,如图所示:则OA=OD=250,AC=BC=AB=150,∴OC===200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m,故选:A.9.【分析】先利用x2﹣x﹣1=0得到x2=x+1,再利用x的一次式表示出x3和x4,则x4﹣2x3+3x化为2x,然后解方程x2﹣x﹣1=0得x=,从而得到x4﹣2x3+3x的值.【解答】解:∵x2﹣x﹣1=0,∴x2=x+1,∴x3=x•x2=x(x+1)=x2+x=x+1+x=2x+1,x4=x•x3=x(2x+1)=2x2+x=2(x+1)+x=3x+2,∴x4﹣2x3+3x=3x+2﹣2(2x+1)+3x=3x+2﹣4x﹣2+3x=2x,解方程x2﹣x﹣1=0得x1=,x2=,∵x>0,∴x=,∴x4﹣2x3+3x=2×=1+.故选:C.10.【分析】根据△DEF为直角三角形,运用勾股定理列出y与x之间的函数关系式即可判断.【解答】解:如图,连接DF,设AE=x,BF=y,方法一:则DE2=62+x2,EF2=(10﹣x)2+y2,DF2=(6﹣y)2+102;∵△DEF为直角三角形,∴DE2+EF2=DF2,即62+x2+(10﹣x)2+y2=(6﹣y)2+102,解得y=﹣x2+x=﹣(x﹣5)2+,根据函数关系式可看出A中的函数图象与之对应.方法二:∵∠A=∠B=90°,∠EAD=∠FEB,∴△ADE∽△BEF,∴=,设AE=x,BF=y,∴BE=10﹣x,∴=,解得y=﹣x2+x=﹣(x﹣5)2+,故选:A.二.填空题(共6小题,满分18分,每小题3分)11.【分析】直接找出公因式m,进而分解因式得出答案.【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).12.【分析】根据两个点关于原点对称时,它们的横坐标与纵坐标均互为相反数,即可得到a,b的值,进而得出ab的值.【解答】解:∵点A(a,2)与点B(6,b)关于原点对称,∴a=﹣6,b=﹣2,∴ab=12,故答案为:12.13.【分析】根据等腰三角形的性质和三角形内角和计算∠B的度数.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°.故答案为:70.14.【分析】分式方程去分母表示出解,根据解为非负数求出a的范围即可.【解答】解:去分母得:a=2x﹣8,解得:x=,由分式方程的解为非负数,得到≥0且≠4,解得:a≥﹣8且a≠0.故答案为:a≥﹣8且a≠0.15.【分析】连接OB,求出∠COB=∠DOB,根据平行线的性质求出∴∠COD+∠ODB=180°,∠COB=∠OBD,根据等腰三角形的性质得出∠ODB=∠OBD,求出∠COB=∠DOB=∠ODB,求出∠COB=60°,∠COD=120°,再根据扇形面积公式求出答案即可.【解答】解:连接OB,∵弧CD的中点是B,∴∠COB=∠DOB,∴OC∥BD,∴∠COD+∠ODB=180°,∠COB=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠COB=∠DOB=∠ODB,即3∠COB=180°,解得:∠COB=60°,∴∠COD=60°+60°=120°,∴扇形OCD的面积是=(平方米),故答案为:.16.【分析】根据△ABC是等边三角形,得到AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,解直角三角形得到A(,),C(1,0),根据等腰三角形的性质得到AA1=A1C,根据中点坐标公式得到A1(,),推出△A1B1C是等边三角形,得到A2是A1C的中点,求得A2(,),推出A2022,即可得到结论.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC=1,∠ABC=∠A=∠ACB=60°,∴A(,),C(1,0),∵BA1⊥AC,∴AA1=A1C,∴A1(,),∵A1B1∥OA,∴∠A1B1C=∠ABC=60°,∴△A1B1C是等边三角形,∴A2是A1C的中点,∴A2(,),同理A3(,),…∴A n(,),∴点A2021的坐标是,故答案为:.三.解答题(共9小题,满分72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2﹣②得:3y=15,解得:y=5,把y=5代入①得:x=,则方程组的解为.18.【分析】由“AAS”可证△ABE≌△ACD,可得AD=AE,再根据线段的差可得BD=CE.【解答】证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在△ABE和△ACD中,∴△ABE≌△ACD(AAS)∴AD=AE,又∵AB=AC,∴BD=CE.19.【分析】(1)根据分式的减法和除法可以化简P;(2)先求出不等式组的解集,然后写出符合要求的整数解,再将使得原分式有意义的整数代入化简后的式子,即可解答本题.【解答】解:(1)P=﹣÷=====;(2)由不等式组,得3≤x<6,∵x是不等式组的整数解,∴x=3,4,5,当x=3或x=4时原分式无意义,∴x=5,当x=5时,原式==.20.【分析】(1)根据概率公式直接得出答案;(2)根据题意先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娘五号)和D(天问一号)的结果数为2,根据概率公式求解可得.【解答】解:(1)小玲从中随机抽取一张卡片是“北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12个等可能的结果,其中抽到的两张卡片恰好是编号为A(嫦娘五号)和D(天问一号)的有2种结果,所以抽到的两张卡片恰好是编号为A(嫦娘五号)和D(天问一号)的概率为=.21.【分析】(1)设该市这两年旧房改造户数的平均年增长率为x,根据“从2020年底的3万户增长到2022年底的4.32万户,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设增加a户,申报投入费用为W元,根据总费用=人均费用×人数,即可得出W关于a的函数关系式,再利用二次函数的性质即可解决最值问题.【解答】解:(1)设该市这两年旧房改造户数的平均年增长率为x,根据题意,得3(1+x)2=4.32.解得x=20%(舍去负值).答:该市这两年旧房改造户数的平均年增长率为20%.(2)设增加a户,申报投入费用为W元,则W申报=(300+a)(20000﹣5a)=﹣50a2+5000a+6000000.当a=50时,W申报最高=6125000(元).答:旧房改造申报的最高投入费用是6125000元.22.【分析】(1)根据tan∠ABO=,求出CE,利用勾股定理即可求解.(2)将C坐标代入即可求解.(3)先求出点A坐标,即可求出直线AC解析式,联立解析式即可求出点D坐标,即可求解.【解答】解:(1)∵OB=8,OE=4,∴BE=4+8=12.∵CE⊥x轴于点.∴CE=6.∴BC==6.(2)由(1)得点C的坐标为C(﹣4,6).设反比例函数的解析式为.将点C的坐标代入,得m=﹣24,∴该反比例函数的解析式为y=﹣.(3)在Rt△ABO中,.得AO=4.即点A坐标为(0,4).设直线AC的解析式为y=kx+b.将A(0,4),B(8,0)代入解析式得解得.∴直线AC的解析式为y=﹣x+4.联立得点D坐标为(12,﹣2).则EF=OF+OE=16,DF=2.连接DE,过D点作DF⊥x轴于点F,在Rt△DEF中,.23.【分析】(1)证明△AMB∽△DNA,得出,可得出方程,求出t即可;(2)可得∠ABM=∠DAN,由直角三角形的性质可得∠AEB=90°,则结论得证;(3)①证明△AMB≌△DNA,可得出AM=DN,则解出t即可;②证明△AMB∽△DNA,可得出结论.【解答】解:(1)∵△AMB∽△DNA,∴,∴,解得t=.(2)AN⊥BM.证明:∵△AMB∽△DNA,∴∠ABM=∠DAN.∵∠DAN+∠BAN=90°,∴∠ABM+∠BAN=90°,∴∠AEB=90°,即AN⊥BM.(3)①∵∠AEB=90°,∴∠ABE+∠BAE=90°,∵∠DAN+∠BAN=90°,∴∠ABM=∠DAN,∵AD=AB,∠BAD=∠ADC=90°,∴△AMB≌△DNA(ASA),∴AM=DN,∴t=2﹣2t,∴.故答案为:;②由①知∠ABM=∠DAN,∠BAD=∠ADC=90°,∴△AMB∽△DNA,∵,∴,∴,∴.故答案为:.24.【分析】(1)想办法证明∠B+∠BAE=90°即可解决问题.(2)①连接OA,想办法证明OA⊥AG即可解决问题.②过点C作CH⊥AG于H.设CG=x,GH=y.利用相似三角形的性质构建方程组解决问题即可.【解答】(1)证明:∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=4,∴BE=10,∵BC⊥AD,∴=,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴=,∴AE2=4×10,∴AE=2,∴AH=AE=2,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴==,∴==,解得x=.25.【分析】(1)由题意可设抛物线的解析式为y=a(x﹣6)2﹣4,再将点A(4,0)代入,解得a的值,则可求得该抛物线的解析式;(2)由题意可得点N是以OD为直径的圆上的一动点,设以OD为直径的圆的圆心为点G,连接CG,交⊙G于点N',此时CN'即为最短的CN,过点N'作N'B⊥x轴于点B,判定△GBN'∽△GDC,从而得比例式,解得N'B=,GB=,根据OB=OG+GB,求得OB,则可得点N的坐标;(3)存在点P,使PM、CM的长度是2倍关系.分情况讨论:①当点P在抛物线的对称轴的右侧时,PM=2CM,△PCM∽△CAD,如图2,延长CP交x轴于点Q,设Q(m,0),则(m﹣4)2=(m﹣6)2+42,解得m的值,则可得点Q的坐标,用待定系数法求得直线CQ的解析式,将其与抛物线的解析式联立,即可解得点P的坐标;②当点P在抛物线对称轴的左侧时,CM=2PM,△PCM∽△ACD,如图3,过点A作AH⊥AC,交CP的延长线于点H,过点H作HK⊥x轴,交x轴于点K,判定△HCA∽△ACD,△AHK∽△CAD,用待定系数法求得直线CH的解析式,将其与抛物线的解析式联立,即可解得点P的坐标.【解答】解:(1)由题意可设抛物线的解析式为y=a(x﹣6)2﹣4,∵图象经过点A(4,0),∴a(4﹣6)2﹣4=0,∴y=(x﹣6)2﹣4=x2﹣12x+32,∴该抛物线的解析式为y=x2﹣12x+32;(2)如图1,∵点E、F在运动过程中始终保持DF⊥OE,∴点N是以OD为直径的圆上的一动点,设以OD为直径的圆的圆心为点G,连接CG,交⊙G于点N',此时CN'即为最短的CN,过点N'作N'B ⊥x轴于点B,由已知得OD=6,CD=4,∴GD=3,CG=5,∵N'B⊥x轴,CD⊥x轴,∴N'B∥CD,∴△GBN'∽△GDC,∴,∴N'B=,GB=,∴OB=OG+GB=3+=,∴点N的坐标为(,﹣);(3)存在点P,使PM、CM的长度是2倍关系.∵A(4,0),D(6,0),∵,∠ADC=90°,∴当PM、CM的长度是2倍关系时,△PCM与△ACD相似.①当点P在抛物线的对称轴的右侧时,PM=2CM,△PCM∽△CAD,如图2,延长CP交x轴于点Q,此时∠QCA=∠QAC,∴QA=QC,∴QA2=QC2,设Q(m,0),则(m﹣4)2=(m﹣6)2+42,解得m=9,∴Q(9,0),设直线CQ的解析式为y=kx+b(k≠0),将C(6,﹣4),Q(9,0)代入,得:,解得,∴y=x﹣12,联立,解得(舍去),,∴点P(,﹣);②当点P在抛物线对称轴的左侧时,CM=2PM,△PCM∽△ACD,如图3,过点A作AH⊥AC,交CP的延长线于点H,过点H作HK⊥x轴,交x轴于点K,由勾股定理得AC==2,∵AH⊥AC,PM⊥AC,∴AH∥PM,∴△PCM∽△ACH,∵△PCM∽△ACD,∴△HCA∽△ACD,∴=,∴,∴AH=,∵HK⊥x轴,AH⊥AC,∴∠HKA=∠ADC=∠HAC=90°,∴∠KAH+∠AHK=90°,∠CAD+∠KAH=90°,∴∠AHK=∠CAD,∴△AHK∽△CAD,∴,∴,∴AK=2,KH=1,∴H(2,﹣1),设直线CH的解析式为y=mx+n(m≠0),将C(6,﹣4),H(2,﹣1)代入,得:,解得,∴直线CH的解析式为y=﹣x+,联立,解得(舍去),,∴点P(,﹣);综上所述,满足条件的点P的坐标为(,﹣)或(,﹣).。
2020年广东省东莞市中考数学押题考试卷及答案解析
9.不等式组 中,不等式①和②的解集在数轴上表示正确的是( )
A. B.
C. D.
10.如图,已知直线y x与双曲线y (k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式 0的解集为x<﹣3或0<x<3;④若双曲线y (k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数( )
C.(a+b)3=a3+b3D.(﹣a3)4=a12
7.为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:
每天用零花钱(单位:元)
1
2
3
4Hale Waihona Puke 5人数24
5
3
1
则这15名同学每天使用零花钱的众数和中位数分别是( )
A.3,3B.5,2C.3,2D.3,5
8.如图,在Rt△ABC中,∠ACB=90°,BC=4,cosB ,点M是AB的中点,则CM的长为( )
19.(6分)先化简,再求值: ,其中x=3.
20.(6分)如图,在△ABC中
(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)
(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.
四.解答题(共3小题,满分24分,每小题8分)
A.2020B.﹣2020C. D.
【解答】解:2020的相反数是:﹣2020.
故选:B.
2.根据国家气象局统计,全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示为( )
A.1.6×108B.1.6×107C.16×106D.1.6×106
2024年中考押题预测卷(广东卷)数学试题及答案
绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前2.回答第Ⅰ卷时2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动干净后3.回答第Ⅱ卷时4.考试结束后一10小题3分30分的.1.下列实数中()A.πB.3C.-3D.02.中国信息通信研究院测算2020-2025年5G商用带动的信息消费规模将超过8万亿元经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1083.如图是我国几家银行的标志()A. B.C. D.4.如图c与直线a、b都相交.若a∥b,∠1=35°,∠2=()A.145°B.65°C.55°D.35°5.下列计算正确的是()A.-3ab22=6a2b4 B.-6a3b÷3ab=-2a2bC.a 2 3--a 3 2=0D.(a +1)2=a 2+16.不等式组x -1<0x +3≥2x 的解集是()A.无解B.x <1C.x ≥3D.1<x ≤37.若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是()A.k >-1且k ≠0B.k >-1C.k <-1D.k <1且k ≠08.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.349.如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =35°,则∠OCA 的度数是()A.35°B.55°C.65°D.70°10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,A -3,0 ,C 0,4 ,抛物线y =ax 2-8ax +c 经过点C ,且顶点M 在直线BC 上,则a 的值为()A.25B.12C.34D.23二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:x 2-x =.12.已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b =.13.设5-7的整数部分为a ,小数部分为b ,则32a +7b =.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两.问马、牛各价几何?”根据题意可得每匹马两.15.如图,已知△ABC在边长为1的小正方形的格点上,△ABC的外接圆的一部分和△ABC的边AB、BC组成的两个弓形(阴影部分)的面积和为.16.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=42,则△CEF的面积是.三、解答题(一):本大题共4小题,第17、18题各4分,第19、20题各6分,共20分.17.(1)计算:16+|2-2|+3-64-2(1+2)0.(2)已知y与x-1成正比例,当x=-1时,y=4,当x=-8时,求y的函数值.18.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,连接CA、CB,分别取CA、CB的中点D、E.若DE的长为36m,求A、B两地的距离.19.某社区积极响应正在开展的“创文活动”,安排甲、乙两个工程队对社区进行绿化改造.已知甲工程队每天能完成的绿化改造面积是乙工程队每天能完成的绿化改造面积的2倍,且甲工程队完成400m2的绿化改造比乙工程队完成400m2的绿化改造少用4天.分别求甲、乙两工程队每天能完成绿化改造的面积.20.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=45.求:(1)线段DC的长;(2)tan∠EDC的值.四、解答题(二):本大题共3小题,第21题8分,第22、23题各10分,共28分.21.如图,在矩形ABCD中,对角线BD=8.(1)实践与操作:作对角线BD的垂直平分线EF,与AB、CD分别交于点E、F(用尺规作图法,保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,连结BF,若∠BDC=30°,求△BFC的周长.22.为了使二十大精神深入人心,某地区举行了学习宣传贯彻党的二十大精神答题竞赛,试卷题目共10题,每题10分.现分别从三个小区中各随机取10名群众的成绩(单位:分),收集数据如下:锦绣城:90,70,80,70,80,80,80,90,80,100;万和城:70,70,80,80,60,90,90,90,100,90;龙泽湾:90,60,70,80,70,80,80,90,100,100.整理数据:分数人数小区60708090100锦绣城02a21万和城122141龙泽湾12322分析数据:平均数中位数众数锦绣城828080万和城82b90龙泽湾8280c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)比较这三组样本数据的平均数,中位数和众数,你认为哪个小区的成绩比较好?请说明理由;(3)为了更好地学习宣传贯彻党的二十大精神,该地区将给竞赛成绩满分的群众颁发奖品,统计该地区参赛的选手数为3000人,试估计需要准备多少份奖品?23.如图,一次函数y=kx+2k≠0的图象与反比例函数y=mx(m≠0,x>0)的图象交于点A2,n,与y轴交于点B,与x轴交于点C-4,0.(1)求k与m的值;(2)P a,0为x轴上的一动点,当△APB的面积为72时,求a的值.(3)请直接写出不等式kx+2>mx的解集.五、解答题(三):本大题共2小题,每小题12分,共24分.24.如图,ABCD是正方形,BC是⊙O的直径,点E是⊙O上的一动点(点E不与点B,C重合),连接DE,BE,CE.(1)若∠EBC=60°,求∠ECB的度数;(2)若DE为⊙O的切线,连接DO,DO交CE于点F,求证:DF=CE;(3)若AB=2,过点A作DE的垂线交射线CE于点M,求AM的最小值.25.综合运用:在平面直角坐标系中,点C的坐标为5,0,以OC长构建菱形OABC,cos∠BOC=45,点D是射线OB上的动点,连接AD,CD.(1)如图1,当CD⊥OC时,求线段BD的长度;(2)如图2,将点A绕着点D顺时针旋转90°,得到对应点A ,连接DA ,并延长DA 交BC边于点E,若点E 恰好为BC的中点,求BD的长度;(3)将点A绕着点D逆时针旋转一个固定角α,∠α=∠OCB,点A落在点A 处,射线DA 交x轴正半轴于点F,若△ODF是等腰三角形,请直接写出点F的横坐标.绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2020年广东省中考数学考前押题卷及答案解析
秘密★启用前2020年广东省中考数学考前押题卷姓名:成绩:一.选择题(共10小题,每题3分,共30分)1.﹣5的倒数是()A.﹣B.C.5 D.﹣52.中国是严重缺水的国家之一.若每人每天浪费的水量为0.4L,那么8 000 000人每天浪费的水量用科学记数法表示为()A.3.2×108L B.3.2×107L C.3.2×106L D.3.2×105L3.如图所示的几何体的主视图是()A.B.C.D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.菱形C.平行四边形D.直角三角形5.下列计算正确的是()A.a2+a3=a5B.3C.(x2)3=x5D.m5÷m3=m26.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,若∠BAC=20°,则∠ADC的度数是()A.90°B.100°C.110°D.130°7.已知p、q为方程的两根,则代数式的值为()A.16 B.±4 C.4 D.58.随着服装市场竞争日益激烈,广东省东莞市某品牌服装专卖店6月份一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A.a+B.a+C.b+D.b+9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在平面直角坐标系中,正方形ABCD的顶点A落在y轴上,点C落在x轴上,随着顶点C由原点O向x轴正半轴方向运动,顶点A沿y轴负半轴方向运动到终点O,在运动过程中OD的长度变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少一、填空题(本大题6小题,每小题4分,共24分),请将下列各题的正确答案填写在答题卡相应的位置上。
2020广东中考数学终极猜押B卷(含答案)
2020广东中考数学终极猜押B卷说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.这四个数中,最小的数是()1.在0,2,-3,-12A.0B.2C.-3D.-122.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,约为149 600 000 km.将数149 600 000用科学记数法表示为()A.14.96×107B.1.496×107C.14.96×108D.1.496×1083.如图是由7个相同的小正方体组合而成的几何体,则这个几何体的左视图是()A B C D4.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.35.下列图案中,是中心对称图形但不是轴对称图形的是()A B C D>x的解为()6.不等式3-x2A.x<1B.x<-1C.x>1D.x>-17.如图,D,E分别是△ABC的边AB,AC上的中点,若△ADE的周长是6,则△ABC的周长是()A.6B.12C.18D.24第7题图第8题图8.如图,AB∥CD,EF与AB,CD分别交于点G,H,∠CHG的平分线HM交AB于点M,若∠EGB=50°,则∠GMH的度数为()A.50°B.55°C.60°D.65°9.一元二次方程(x+1)(x-1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根10.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A B C D二、填空题(本大题共7小题,每小题4分,共28分)11.分解因式:x2y2-4x2= .12.已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是.13.已知一个正数的两个平方根分别是2a-2和a-4,则a的值是.14.已知a,b满足(a-1)2+√b+2=0,则a+b= .15.如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF,∠ADF=90°,∠ACB=21°,则∠ADE的大小为.第15题图第16题图第17题图16.如图,在扇形OAB中,∠AOB=90°,D,E分别是半径OA,OB上的点,以OD,OE为邻边的▱ODCE的顶点C在AB⏜上.若OD=8,OE=6,则阴影部分图形的面积是(结果保留π).17.如图,在平面直角坐标中,一次函数y=-4x+4的图象与x轴、y轴分别交于A,B两点.正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位长度后,顶点C恰好落在反比例函数的图象上,则n的值是.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:|-12|+(-1)2 020+2sin 30°-(√3-√2)0.19.先化简,再求值:(1x+1-1x-1)÷21-x,其中x=-2.20.如图,在四边形ABCD中,AB=AD,AD∥BC.(1)在图中,用尺规作线段BD的垂直平分线EF,分别交BD,BC于点E,F(保留作图痕迹,不写作法);(2)连接DF,证明:四边形ABFD为菱形.。
押题卷01-赢在中考之2020中考数学押题卷(广东广州卷)(解析版)
押题卷01-赢在中考之2020中考数学押题卷(广东广州卷)(解析版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020中考数学押题卷(广东广州卷)卷01一、选择题(本大题共10小题,每小题3分,共30分)1.实数-2020的相反数是 ( )A. -2020B. 2020C. -20201 D. 20201 【答案】B 【解析】根据相反数的定义,只有符号不同的两个数是互为相反数进行详解【详解】解:-2020的相反数是2020.故选:B .2. 如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( ) A. 主视图 B. 左视图 C. 俯视图 D. 主视图和左视图【答案】C【解析】本题根据几何体的三视图和中心对称图形的概念求解【详解】主视图和左视图都是一个“倒T”字型,不是中心对称图形;而俯视图是一个“田”字型,是中心对称图形,故选:C .3.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56, 58,56,这组数据的众数、中位数分别是 ( )A. 53,53B. 53,56C. 56,53D. 56,56【答案】D【解析】根据众数的定义,求出出现次数最多的数即是众数,根据中位数的定义,把一组数据按从小到大(也可以从大到小)的顺序排列,处在最中间位置上的一个数据,就是这组数据的中位数【详解】将数据重新排列51,53,53,56,56,56,58.位于最中间的数是56,出现次数最多的是56.故选:D .4.下列运算正确的是 ( )A. 632a a a =⋅B. 532a a a =+C. ()222b a b a +=+D. ()623a a =【答案】D【解析】结合各选项利用同底数幂的乘法、合并同类项法则、幂的乘方,整式的运算法则进行运算即可【详解】A.532a a a =⋅, B.2a 和3a 不是同类项, C.()2222b ab a b a ++=+ ,D.()623a a = 故选:D .5. 如图,OC 是∠AOB 的平分线,l ∥OB.若∠1=52°,则∠2的度数为 ( )A. 52°B. 54°C. 64°D. 69°【答案】C【解析】根据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得∠2的度数【详解】解:∵l ∥OB ∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC 是∠AOB 的平分线,∴∠BOC=64°又∵l ∥OB 且∠2与∠BOC 为同位角,∴∠2=64°,故选:C .6. 如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为 ( )A.30°B. 40°C. 50°D. 60°【答案】D【解析】由圆周角定理得到∠AOC=2∠ADC=60°,再由垂径定理和圆心角、弧、弦的关系求得∠BOC 的度数【详解】解:如图∵∠ADC=30°,∴∠AOC=2∠ADC=60°,又∵AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C, ∴⌒AB =⌒BC ,∴∠AOC=∠BOC=60°故选:D .7.中,对角线AC,BD 相交于点O ,OE ⊥BD 交AD 于点E BE. 若ABCD 的周长为28,则△ABE 的周长为 ( ) A. 28 B. 24 C. 21 D. 14【答案】D【解析】根据线段垂直平分线的性质,平行四边形的性质【详解】因为平行四边形的对角线互相平分,OE ⊥BD ,所以OE 垂直平分BD ,从而BE=DE,即△ABE AB+AD,即 ABCD 的周长的一半,所以△ABE 的周长为14.故选:D .8.若关于x 的一元二次方程022=-+k x x 有两个不相等的实数根,则k 的取值范围是 ( )A. k <-1B. k >-1C. k <1D. k >1【答案】B【解析】一元二次方程根的判别式及应用【详解】∵关于x 的一元二次方程022=-+k x x 有两个不相等的实数根∴△=()>0441422k k +=-⨯⨯-,∴k >-1故选:B .9.如图,一次函数)0(1≠+=k b kx y 的图象与反比例函数x m y =2(m 为常数且m ≠0)的图象都经过A(-1,2),B(2,-1).结合图象,则不等式 xm b kx >+ 的解集是( ) A. x<-1 B. -1<x<0C. x<-1或0<x<2D. -1<x<0或x>2【答案】C【解析】函数图象与不等式的关系【详解】解:由函数图象可知,当一次函数)0(1≠+=k b kx y 的图象与反比例函数xm y =2(m 为常数且m ≠0)的图象上方时,x 的取值范围是:-1<x 或2<<0x ,所以,不等式xm b kx >+的解集是-1<x 或2<<0x 。
2020年广东中考数学押题卷1到5卷
24.如图,在 Rt△ABC 中,∠ACB=90°,AO 是△ABC 的角平分线.以 O 为圆心, OC 为半径作⊙O.(1)求证:AB 是⊙O 的切线. (2)已知 AO 交⊙O 于点 E,延长 AO 交⊙O 于点 D,tanD= ,求 的值.
(3)在(2)的条件下,设⊙O 的半径为 3,求 AB 的长.
个“广”字中的棋子个数是________,第 n 个“广”字中的棋子个数是________
(A)这一天中最高气温是 24℃ (B)这一天中最高气温与最低气温的差为 16℃ (C)这一天中 2 时至 14 时之间的气温在逐渐升高 (D)这一天中只有 14 时至 24 时之间的气温在逐渐降低
16. 如图 8 是由一些相同长方体的积木块搭成的几何体的三视图, 则此几何体共由________块长方体的积木搭成
四、解答题(本大题共 3 小题,每题 7 分共 21 分)
20.某校学生利用双休时间去距学校 10km 的炎帝故里参观,一部分学生骑自行车先走,过了 20min 后, 其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的 2 倍,求骑车 学生的速度和汽车的速度.
1 版权所有,翻版必究
2020 年广东中考数学押题卷 1
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1.在 3,﹣1,0,﹣2 这四个数中,最大的数是( )
A.0
B.6 C.﹣2
D.3
2.下列图形中是中心对称图形的有( )个.
11.据民政部网站消息,截至 2014 年底,我国 60 岁以上老年人口已经达到 2.12 亿,
10
(C)
13
12
(D)
13
10. 如图 6,在 ABCD 中,AB=6,AD=9,∠BAD 的平分线交 BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足
2024年中考数学终极押题密卷(广东卷)数学试题及答案
广东省(统考新题型)2024年中考(新题型)猜题卷02数 学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的考生信息. 3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔描黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4−B .2−C .2D .42.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨B .101.0210×吨C .1010210×吨D .70.10210×吨3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .325a a a +=B .325a a a ⋅=C .()22242a a a +=++ D .()235a a −=6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .347.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×−C .300003000045003x x =×− D .300003000050034x x =− 10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm +第二部分(非选择题 共75分)二、填空题(共15分) 11.因式分解:2a 2﹣8= .12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 . 13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .15.如图,在正方形ABCD中,4AB=,点E是CD边的中点,ABE∠的平分线交AD于点F,连接EF,则tan DEF∠的值为.三、解答题(共75分)16.(511)2sin605π−−−°+.17.(5分)解方程组:7 22 x yx y−=+=①②18.(5分)如图,已知B C∠=∠,AD平分BAC∠,求证:ABD ACD△≌△.19.(5分)如图,点A是∠MON边OM上一点,AE//ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE的大小为________.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形ABCD ∽菱形AEFG ,如图3,5AD =,6AC =,AG 平分DAC ∠,点P 在射线AG 上,在射线AF 上截取AQ ,使得35AQ AP =,连接PQ ,QC ,当4tan 3PQC ∠=时,直接写出AP 的长.广东省(统考新题型)2024年中考(新题型)猜题卷02数 学全解全析一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4− B .2− C .2 D .4【答案】B【分析】本题考查了有理数的加法运算,理解有理数加法运算法则,根据题意列出算式计算即可.【详解】解:比3−大1的数为:312−+=−, 故选:B .2.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨 B .101.0210×吨 C .1010210×吨 D .70.10210×吨【答案】A【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:81.021.0210=×亿, 故选:A .3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形及中心对称图形,轴对称图形是沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形是绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意,B.是中心对称图形,不是轴对称图形,故该选项不符合题意,C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意,D.既是轴对称图形又是中心对称图形,故该选项符合题意,故选:D.4.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的方向:从正面看所得到的图形.根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选B.5.下列计算正确的是()A.325+=B.325a a a⋅=a a aC.()22+=++D.()235242a a a−=a a【答案】B【分析】本题考查了整式的混合运算,掌握整式的运算法则是解决本题的关键.利用整式的运算法则计算每一个,根据计算结果得结论.【详解】解:32a a不能合并,故选项A计算错误;,325⋅=,故选项B计算正确;a a a()22+=++,故选项C计算错误;244a a a()236a a −=,故选项D 计算错误;故选:B .6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .34【答案】A【分析】本题主要考查了树状图法或列表法求解概率.先列表得到所有等可能性的结果数,再找到他们选择的诗人相同的结果数,最后依据概率计算公式求解即可.【详解】解:王维、柳宗元、白居易、王勃四位唐代山西诗人分别用A 、B 、C 、D 表示,列表如下: 小明小颖A B C DA(),A A (),B A (),C A (),D AB(),A B (),B B (),C B (),D BC(),A C (),B C (),C C (),D CD(),A D (),B D (),B D (),D D由表格可知,一共有16种等可能性的结果数,其中他们选择的诗人相同的结果数有4种, ∴他们选择的诗人相同的概率为41164=, 故选:A .7.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−【答案】C 【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:426231x x −< +≥①② 解不等式①得:2x <,解不等式②得:1x ≥−,∴不等式组的解集为12x −≤<,故选:C .8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想【答案】D 【分析】本题考查了平面直角坐标系,根据平面直角坐标系使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题,即可确定答案.【详解】解:用代数的方法研究几何问题,可知这种研究方法体现了数形结合思想, 故选:D .9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×− C .300003000045003x x =×− D .300003000050034x x =− 【答案】D【分析】本题考查了列分式方程;设购进甲种品牌的自行车x 辆,则购进乙种品牌的自行车34x 辆,用总价除以单价表示出购进自行车的数量,根据两种自行车的数量相等列出方程求解即可.【详解】设购进甲种品牌的自行车x 辆,依题意得300003000050034x x =− 故选:D .10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm + 【答案】C 【分析】此题考查了矩形的性质,三角形内角和定理,过中间三角形的三个顶点分别向绿化带作垂线,首先根据题意得到1m AD BC MC GH GF DE ======,求出扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,然后利用绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形求解即可.【详解】如图所示,过中间三角形的三个顶点分别向绿化带作垂线,根据题意得,1m ADBC MC GH GF DE ======,四边形ADCB ,DEFG ,GHMC 是矩形 ∴90ADC BCD MCG CGH DGF GDE ∠=∠=∠=∠=∠=∠=° ∴180AEDCDG ∠=°−∠,180BCM DCG ∠=°−∠,180FGH DGC ∠=°−∠ ∵180∠+∠+∠=°CDG DCG DGC∴360BCM ADE HGF∠+∠+∠=° ∴扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,∴绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形2π1AD DC MC DC DE DC =⋅+⋅+⋅+×()2215π15πm =×+×=+. 故选:C .二、填空题(共15分)11.因式分解:2a 2﹣8= .【答案】2(a +2)(a -2).【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 .【答案】3−【分析】此题主要考查了解一元二次方程,以及根的定义.先把2x =代入原方程,求出k 的值,进而再将k 的值代入原方程,然后解方程即可求出方程的另一个根.【详解】解:∵2x =是方程260x kx +−=的一个根, ∴22260k +−=, 解得:1k =,将1k =代入原方程得:260x x +−=, 解得:122,3x x ==−,∴方程的另一个根为3−.故答案为:3−.13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .【答案】()4,3−−【分析】本题考查了作图—位似变换,对应顶点所在直线相交于一点即为位似中心,确定位似中心是解题的关键.连接'A A ,'B B 并延长交于一点,交点即为所求.【详解】解:如图,连接'A A ,'B B 并延长交于一点P ,点P 即为所求.由网格图形可知,点P 的坐标为()4,3−−. 故答案为:()4,3−−.14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .【答案】73/123【分析】本题主要考查了切线的性质,勾股定理,如图所示,连接OC ,设O 的半径为r ,则OC OB r ==,3OD r =+,由切线的性质可得90OCD ∠=°,则由勾股定理可得()22234r r +=+,解方程即可得到答案.【详解】解:如图所示,连接OC ,设O 的半径为r ,则OCOB r ==, ∴3OD r =+,∵CD 是O 的切线,∴90OCD ∠=°, 在Rt COD 中,由勾股定理得222OD OC CD =+,∴()22234r r +=+, 解得76r =, ∴O 的直径为723r =, 故答案为:73.15.如图,在正方形ABCD 中,4AB =,点E 是CD 边的中点,ABE ∠的平分线交AD 于点F ,连接EF ,则tan DEF ∠的值为 .【答案】33+【分析】本题考查正方形的性质,角平分线的性质定理,勾股定理,全等三角形的判定与性质,求角的正切值等,作FG BE ⊥于点G ,由角平分线的性质可得AF FG =,再证Rt BGF ≌()Rt HL BAF ,推出4BG AB ==,AF GF =,设AF GF x ==,用勾股定理解Rt EDF 和Rt EGF ,求出x 的值,再根据tan DF DEF DE∠=即可求解.【详解】解:如图,作FG BE ⊥于点G , 正方形ABCD 中,4AB =,点E 是CD 边的中点,∴90A C D ∠=∠=∠=°,4CD BC AD AB ====, 122CE DE CD ===, ∴BEBF 平分ABE ∠,FG BE ⊥,FA AB ⊥,∴AF FG =,在Rt BAF △和Rt BGF 中,AF FG BF BF = =, ∴Rt BGF ≌()Rt HL BAF ,∴4BG AB ==,AF GF =,∴4GE BE BG =−=,设AFGF x ==,则4FD AD AF x =−=−, 在Rt EDF 中,222DE DF EF +=,在Rt EGF 中,222EG FG EF +=, ∴2222EG FG DE DF +=+,即()()2222424x x +=+−, 解得2x =,∴()426FD =−=−∴tan 3DF DEF DE ∠=故答案为:3三、解答题(共75分)16.(5101)2sin 605π− −−°+ . 【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式125=−− 4=. 【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.(5分)解方程组:722x y x y −=+=①② 【答案】34x y = =− 【分析】本题考查的是二元一次方程组的解法,掌握解法步骤是解本题的关键,直接利用加减消元法解方程组即可.【详解】解:722x y x y −= +=①②, ①+②得39x =,解得3x =.将3x =代入②,得4y =−.所以 34x y = =− ,. 18.(5分)如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案. 【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠ ∠=∠ =, ()AAS ABD ACD ∴ ≌.19.(5分)如图,点A 是∠MON 边OM 上一点,AE//ON .(1)尺规作图:作∠MON 的角平分线OB ,交AE 于点B (保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE 的大小为________.【答案】(1)见解析;(2)156°【分析】(1)利用基本作图作OB 平分∠MON ;(2)先利用平行线的性质得到∠MON =∠MAE =48°,再根据角平分线的定义得到∠NOB =24°,接着根据平行线的性质得到∠OBA 的度数,然后利用邻补角的定义计算∠OBE 的度数.【详解】解:(1)如图,OB 为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=12∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°-∠OBA=180°-24°=156°.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.【答案】第一家网店每支签字笔的价格是10元【分析】本题主要考查了分式方程的应用等知识点,首先设第一家网店每支签字笔的单价是x 元,现在每支签字笔的价格是1.5x元,即可根据题意列出方程,解此分式方程即可求得答案,注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【详解】解:设第一家网店每支签字笔的单价是x元,现在每支签字笔的价格是1.5x元,依题意得:606021.5x x=+,解得:10x=,经检验:10x=是原方程的解,答:第一家网店每支签字笔的价格是10元.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.【答案】(1)40,54°(2)画图见解析(3)不少于1.5小时的学生有330人【分析】(1)根据统计图中的数据可以求得本次调查的学生数;根据A组的学生人数以及总人数即可求得A组对应的圆心角的度数;(2)求出C组的学生人数,补全条形统计图即可;(3)利用用样本估计总体的计算方法列式计算即可求得.【详解】(1)解:本次调查的学生人数为:1230%=40÷(人);A组(0.5小时)在扇形统计图中的圆心角α的大小为:6360=54°×°,40故答案为:40,54°;(2)解:C 组的人数为:40-6-12-8=14(人), 补全条形统计图如下:(3)解:14860033040+×=(人) 答:估计该校九年级每天自主学习时间不少于1.5小时的学生人数有330人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)【答案】653m【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,可得BF DE DF BE ==,,设m AE x =,则()320m BF DE x ==−,解Rt ABE △得到 2.7m AB x ≈,解Rt BCF 得到()6402m BC x =−,进而得到2.76402x x =−,解方程得到136m 184m AE BF ==,,再解直角三角形求出BE CF ,的长即可得到答案.【详解】解:如图所示,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,∴BF DEDF BE ==,, 设m AE x =,则()320m BF DE AD AE x ==−=−, 在Rt ABE △中, 2.7m sin AEABx ABE =≈∠,在Rt BCF 中,()6402m sin BF BC x C==−,∵AB BC =,∴2.76402x x =−, 解得136x ≈,∴136m184m AE BF ==,, 在Rt ABE △中,136340m tan 0.4AE BE ABE =≈=∠,在Rt BCF 中,313m tan BFCF C=≈, ∴653m CD DF CF =+=, ∴CD 的长约为653m .23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.【答案】(1)216k = (2)2x >【分析】本题考查反比例函数的图象与性质,全等三角形的判定与性质,解题的关键是灵活运用所学知识解决问题,(1)过点A 作y 轴的垂线,垂足为D ,证明ADC BOC ≌进而求出结论; (2)先求出()2,8A ,根据图象写出结论即可. 【详解】(1)解:过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC AC ∴=,又90BOC ADC ∠=∠=°;BCO ACD ∠=∠, ∴ADC BOC ≌, ∴DC OC =,设(),A x y ,点A 在第一象限, 则111142222x y x y ⋅=⋅=,即16xy =, ∴216k =.(2)因为2OB =, 所以()2,0B −,由ADC BOC ≌,得2ADOB ==, 所以,()2,8A .当120y y >>时,x 的取值范围是:2x >. 24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C 两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.【答案】(1)()212531616y x =−−+ (2)小华此次击球不能飞过球网 (3)小华击球高度取值范围大于1916m 小于12731024m【分析】本题考查了二次函数的实际应用,待定系数法求解析式,相似三角形的判定与应用,熟练掌握知识点是解题的关键. (1)待定系数法求解析式即可;(2)连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,由ANM BPM △△∽求得M 的坐标为()5,0,再代入函数解析式即可;(3)设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q ,可求67,08Q,将()5,1.5,67,08分别代入,得到174k =,218491024k =,再将将0x =分别代入即可.【详解】(1)解:根据题意,得()0,1D ,()3,C b ,()8,0B , 设此抛物线的解析式为()23y a x b =−+, 将点()0,1D ,()8,0B 代入,得19,025,a b a b =+=+解得1,1625.16a b=−=所以此抛物线的解析式为()212531616y x =−−+. (2)解:连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,如图所示.根据题意,得8AB =,4AN =, 2.4BP . ∵,BP l AN l ⊥⊥, ∴BP AN , ∴ANM BPM △△∽,452.43AM AN BM BP ∴===, 558AM AB ∴, 即点M 的坐标为()5,0.将点()5,0M 代入()212531616y x =−−+,得2116y =.2124 1.51616<=, ∴小华此次击球不能飞过球网.(3)解:∵小华仍从点A 处发球,且击球时的用力方向和大小不变,∴设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q .场地内边线距离场地中线的距离为6.7m,∴由(2)同理可得67,08Q.要求球越过球网且落在球场内边线内,∴将()5,1.5,67,08分别代入()21316y x k =−−+,得174k =,218491024k =.将0x =分别代入()211316y x k =−−+,()221316y x k =−−+, 得11916y =,212731024y =. ∴小华击球高度取值范围大于19m 16小于1273m 1024. 25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形。
2020年广州市中考数学押题卷及答案
广州市2020年中考数学押题卷
注意事项:
1. 本试卷共5页,满分120分,考试时间120分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。
第Ⅰ卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.6 的相反数是( )
A.
6
1
B. 6
C. -6
D. -
6
1
2. 下面四个几何体中,左视图是四边形的几何体共有( )
A.1 个B.2 个C.3 个D.4 个3.计算(﹣ab2)3的结果是()
A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab2 4.下列调查中,适合采用全面调查(普查)方式的是()
A.对长江水质情况的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某班40名同学体重情况的调查
D.对某类烟花爆竹燃放安全情况的调查
5.已知∠α=35°,那么∠α的余角等于()
A.35° B.55° C.65° D.145°6.不等式组的解集为()
A.x > B.x <﹣1 C.﹣1<x< D.x>﹣
第1 页共16 页。
2020广东中考数学终极押题卷(含答案)
2020广东中考数学终极押题卷说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.|-3|=( )A.3B.-3C.13D.-132.小明同学在某搜索引擎中输入“新型冠状病毒”,搜索到与之相关的结果条数为608 000,这个数用科学记数法表示为( )A.60.8×104B.6.08×105C.0.608×106D.6.08×1073.如图所示的几何体是由六个大小相同的小正方体组合而成的,它的俯视图为( )A B C D4.下面计算中,正确的是( )A.3a-2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.下列图形中,既是轴对称图形又是中心对称图形的是( )A.正三角形B.正五边形C.等腰直角三角形D.矩形6.√16的平方根是( )A.±4B.4C.±2D.27.在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数 2 3 9 8 5 3这些男生跳远成绩的众数、中位数分别是( )A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.058.点O,A,B,C 在数轴上的位置如图所示,O 为原点,AC=1,OA=OB.若点C 所表示的数为a,则点B 所表示的数为( )A.-(a+1)B.-(a-1)C.a+1D.a-1 9.已知α,β是一元二次方程x 2-6x+5=0的两个实数根,则α+β-αβ的值是( )A.3B.1C.-1D.-310.如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC 的中点,连接EF,BF,延长EF 交BC 的延长线于G.有下列结论:①∠ABC=2∠ABF;②EF=BF;③S 四边形DEBC =2S △EFB .其中结论正确的共有( )A.0个B.1个C.2个D.3个二、填空题(本大题共7小题,每小题4分,共28分)11.计算:|√83-1|-(12)-1= .12.如图,E 为△ABC 边CA 延长线上一点,过点E 作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B= .第12题图第13题图第15题图13.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的边长是.14.已知2a-3b=7,则8+6b-4a= .15.如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为海里(结果保留根号).16.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共块.17.如图,已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为4a+a(可以不合并);第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形;如此继续下去,第6次得到的长方形的周长为.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解不等式组:{4(x+1)≤7x+13, x-4<x-83.。
2020年广东省深圳市中考数学仿真模拟押题卷及答案解析
2020年深圳市中考数学仿真模拟押题卷 2020.7一.选择题(共12小题,满分36分,每小题3分)1.下列各数,最小的数是( )A .-2020B .0C.12020D .32020-2.如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和 都是7,则这个几何体的左视图为( )A .B .C .D .3.截至北京时间2020年7月17日7时17分,全球新冠肺炎累计确诊病例达到13920405例,累计死亡病例达到591640例。
美国新冠肺炎累计确诊病例全球最多,达到3682463例,累计死亡病例达到140977例。
下面是受疫情影响较大的四个国家国旗,其中是轴对称图形但不是中心对称图形的是( )A .韩国国旗B .澳大利亚国旗C .美国国旗D .瑞士国旗 4.如图是一个正方形的平面展开图,把展开图折叠成正方体后,“深”字一面相对面的字是( )A .中B .考C .数D .学5.我国高铁发展迅速,截止2019年底,全国高铁总里程突破3.5万千米,稳居世界第一,将3.5万千米 用科学记数法表示正确的是( )A .3.5×103米B .3.5×104米C .3.5×106米D .3.5×107米 6.下列计算正确的是( ) A .b 6÷b 3=b 2B .b 3•b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 67.如图,抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年深圳中考前2天,小明在自己的微信群中发祝福红包,一共有10名好友抢到红包,抢到红包的金额情况如下:金额(元) 4.50 4.60 4.65 4.70 4.75 4.80 人数(人)132121则10名好友抢到金额的众数、中位数分别是( )A .4.60 4.65B .4.60 4.675C .4.60 4.70D .4.70 4.6758.如右图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的 角平分线,且∠BDF =α,则以下∠A 与∠C 的关系正确的是( )A .∠A =∠C +αB .∠A =∠C +2α C .∠A =2∠C +αD .∠A =2∠C +2α9.如图,在△ABC 中,∠ACB =90°,∠B =28°.分别以点A ,B 为圆心大于12AB 的长为半径画弧,两弧交于点D 和E ,直线DE 交AB 于点F ,连结CF ,则∠AFC 的度数为( )A .62°B .60°C .58°D .56°10.一次函数y =ax +b 和反比例函数y =cx 在同一平面直角坐标系中的图象如图所示,则二次函数y =ax 2-bx +c 的图象可能是( )1 53圳 中 深考数 学ADEA .B .C .D .11.下列命题中真命题是( )A .若a 2=b 2,则a =b B.4的平方根是2C .两个锐角之和一定是钝角D .相等的两个角是对顶角12.如图,在矩形ABCD 中,E ,F 分别是AD ,BC 的中点,AF 与BE 相交于点M ,CE 与DF 相交于点N ,QM ⊥BE ,QN ⊥EC 相交于点Q ,PM ⊥AF ,PN ⊥DF 相交于点P , 若2BC =3AB ,记△ABM 和△CDN 的面积和为S ,则四边形MQNP 的面积为( ) A .12SB .58SC .916S D .34S二.填空题(共4小题,满分12分,每小题3分)13.因式分解:9x 2-81= .14.如右图,端午节是我国传统佳节,小明同学带了4个粽子(除粽馅不同外,其他均相同),其中,有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的 好朋友小丽,小丽拿到的两个粽子都是肉馅的概率是 .15.定义一种新运算:1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4,……计算:100!98!= .16.如右图,将反比例函数y =kx (k >0)的图象向左平移2个单位长度后记为 图象c ,c 与y 轴相交于点A ,点P 为x 轴上一点,点A 关于点P 的对称点 B 在图象c 上,以线段AB 为边作等边△ABC ,顶点C 恰好在反比例函数y =−kx (x >0)的图象上,则k = .三.解答题(共7小题,满分52分)17.(5分)计算:-12020+(2019-π)0-(−12)-3+|1−√3|-2sin 260°.18.(6分)先化简:(1+1a 2−1)÷aa−1,请在-1、0、1、2、3当中选一个合适的数a 代入求值。