八年级数学菱形课件.ppt

合集下载

菱形的判定-课件(用)

菱形的判定-课件(用)

例2
已知菱形的底为6cm,高为 4cm,求菱形的面积。

根据公式1,面积 = (6cm × 4cm) ÷ 2 = 24cm² ÷ 2 =
12cm²
04
菱形在几何图形中的应用
在生活中的实际应用
01
02
03
建筑学
菱形图案在建筑设计中常 被用作装饰元素,如在地 毯、墙纸和窗户设计中。
时尚
菱形图案在服装、配饰和 鞋履设计中也经常出现, 增添时尚感。
02
例如,一个正方形就是一个满足 这个条件的菱形。
判定条件二:对角线垂直且互相平分
如果一个四边形的对角线互相垂直并 且互相平分,那么这个四边形是菱形 。
这个判定条件可以用来证明某些四边 形是菱形,例如筝形。
判定条件三:邻边垂直
如果一个四边形的所有邻边都垂直,那么这个四边形是菱形 。
这个判定条件可以用来证明某些四边形是菱形,例如筝形。
05
菱形与其他几何图形的关系
与其他几何图形的相似之处
菱形与矩形的相似性
菱形和矩形都有四条相等的边和四个 直角,因此它们在某些性质上是相似 的。
菱形与正方形的相似性
正方形何图形的不同之处
菱形与矩形的不同
虽然菱形和矩形都有四条相等的边和四个直角,但菱形的对角线互相垂直且平 分,而矩形的对角线不一定互相垂直。
菱形的判定-课件
• 菱形的定义 • 菱形的判定方法 • 菱形面积的计算 • 菱形在几何图形中的应用 • 菱形与其他几何图形的关系
目录
01
菱形的定义
菱形的定义和特性
定义:菱形是一个四边形, 其中相对的两边相等且平行。
特性
01
1. 对角线互相垂直且平分。

八年级数学下册教学课件《菱形的判定》

八年级数学下册教学课件《菱形的判定》
第十八章 平行四边形
菱形的判定
类比导入
前面我们学习平行四边形和矩形时,都可以用性 质得出相应的判定,那么我们学习菱形的判定时是否 也可以反推菱形的性质来得到它的判定呢? 我们大家 一起来尝试一下吧!
类比导入
图形 性质定理
判定定理
对边平行
两组对边分别平行的四边形是平行四边形
平行 对边相等 四边 对角相等
A
D
F B EC
∴∠B=∠D. 又∠AEB=∠AFD=90°,AE=AF,
∴△ABE≌△ADF(AAS),
∴AB=AD,∴四边形ABCD是菱形.
例题精析
例2 如图,在▱ABCD中,BF平分∠ABC交AD于点
F,AE⊥BF于点O,
A
F
D
交BC于点E,连接EF.
O
(1)求证:四边形ABEF是菱形;
B
E
解:如图,由题意得:AB=9, AC= 6 5, BD=12. A
O
C
∵四边形ABCD为平行四边形,
∴AO=
1 2
AC=
3
5
,BO=
1
2 BD=6.
∴ AB2 AO2 BO2 .
∴△OAB是直角三角形.
B
∴AC⊥BD.
∴ ABCD是菱形.

S菱形ABCD
=
1 2
AC
BD
36
5.
新知探究
探究点2 四条边相等的四边形是菱形.
∵BE∥AF,∴四边形ABEF是平行四边形.
又AB=AF,∴▱ABEF是菱形.
例题精析
(2)解:如图,过点F作FG⊥BC于点G.
∵四边形ABEF是菱形, AE=6, BF=8,

菱形的判定PPT课件

菱形的判定PPT课件

四条边相等的四边形是菱形.
B
O
A
C
D
∴△AOB≌△COB,∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:菱形的判定定理:
对角线互相垂直的平行四边形是菱形
几何语言: 在平行四边形ABCD中, ∵AC⊥BD,
B
O
A
C
∴平行四边形ABCD是菱形.
D
新知导入 课程讲授 随堂练习 课堂小结
新知导入 课程讲授 随堂练习 课堂小结
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,∠FAE=∠BDE,
∵E是AD的中点,∴AE=DE,
∴△AFE≌△DBE.
∵AD是BC边上的中线,∴BD=CD,
∴AF=BD,∴AF=DC.
(2)解:四边形ADCF是菱形,理由如下:
由(1)知AF∥BC,AF=DC,
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:判定一个四边形是菱形的方法与思路是: 有四条边相等 菱形
四边形 对角线互相垂直平分 菱形 对角线互相垂直 菱形
平行四边形 一组邻边相等 菱形
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
练一练:下列条件中,能判定四边形是菱形的是( D ) A. 对角线互相垂直 B. 对角线互相平分 C. 对角线相等 D. 对角线互相垂直平分
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:菱形的判定定理: 四条边相等的四边形是菱形 几何语言: 在四边形ABCD中, ∵ AB=BC=CD=AD, ∴四边形ABCD是菱形.
B
A
C

人教版八年级数学下册《菱形》课件

人教版八年级数学下册《菱形》课件


20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。
Hale Waihona Puke •6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?

7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。
菱形
1.什么叫做平行四边形? 2.什么叫矩形? 3.平行四边形和矩形之间的关系 是什么?
矩形
一 . 定义
平行四边形
邻边相等
菱形
有一组邻边相等的平行四边形叫做菱形.
感受
生活
三菱越野汽车欣赏
菱形就在我们身边
菱形是特殊的平行四边形,它具有平 行四边形的一切性质.即
边:菱形的对边平行且相等. 角:菱形的对角相等. 对角线:菱形的对角线互相平分.
求:(1)∠ABC的度数 (2)对角线AC、BD的长;
(3)菱形ABCD的面积。
D
C
O
A
B
E
回味无穷
这 堂 课 你 学 到 了 什 么?
作业
课本 60 页 5、11题

1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。

2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
A
O
B
D
C
课堂检测
1.已知菱形的周长是12cm,那 么它的边长是______.

华东师大版八年级下册数学19.菱形的判定课件

华东师大版八年级下册数学19.菱形的判定课件

∴ ABCD是菱形.(菱形的定义)
如图,AD平分∠BAC,DE∥AC交AB于点E, DF∥AB交AC于点F.求证:四边形AEDF是菱形。
A
E F
B
D
C
总结梳理 内化目标
三个角是直角
四边形
一组对边平行且相等 两组对边分别相等
两组对边分别平行
两组对角分别相等 对角线互相平分
平行四边形
四条边都相等
矩形 菱形
菱形的判定
创设情景 明确目标
我们学习了矩形的定义、性质和判定,如下表 .你 能发现矩形的三条判定定理分别是从哪个角度得到的吗?
矩形的 定义 有一个角是直角的平行四边形叫做矩形
A
D
具有平行四边形的所有性质
矩形的 对角线相等
O
性质 四个角都是直角
有一个角是直角的平行四边形是矩形
B
C 矩形的
判定 对角线相等的平行四边形是矩形
如图,四边形ABCD中,AB=BC=CD=DA. 求证:四边形ABCD是菱形.
B
A
C
D
菱形的
D
定义 一组邻边相等的平行四边形叫做菱形
具有平行四边形的所有性质 菱形的 对角线互相垂直且平分每一组对角 A O C 性质 菱形的四条边都相等
一组邻边相等的平行四边形是菱形
B
? 菱形的 对角线互相垂直的平行四边形是菱形 判定
2.经历菱形判定定理的探究过程,渗透类比思想, 体会研究图形判定的一般思路.
பைடு நூலகம்
探究点一 菱形的判定
定求理证1:对角线互相垂直的平行四边形是菱形。
如图, ABCD中,对角线AC,BD相交于点O,且 AC⊥BD.求证: ABCD是菱形。

八年级数学下册 19章课件9菱形的定义、性质 课件新人教版

八年级数学下册 19章课件9菱形的定义、性质 课件新人教版
(2)从图中你能得到哪些 从图中你能得到哪些 结论?并说明理由 并说明理由. 结论 并说明理由
提示:从边、 对角线、 提示 从边、角、对角线、 从边 面积等方面来探讨
菱形的性质: 菱形的性质:
菱形是特殊的平行四边形, 菱形是特殊的平行四边形,具有平行四 边形的所有性质. 边形的所有性质
由于平行四边形的对边相等, 由于平行四边形的对边相等, 对边相等 而菱形的邻边相等 邻边相等, 而菱形的邻边相等, 菱形的性质1: 故: 菱形的性质 : 菱形的四条边都相等 四条边都相等。 菱形的四条边都相等。 又:
【菱形的面积公式】 菱形的面积公式】
A 菱形是特殊的平行四边形 菱形是特殊的平行四边形, 特殊的平行四边形 那么能否利用平行四边形 面积公式计算菱形的面积吗? 面积公式计算菱形的面积吗 D
菱形
B
O E
C
S菱形=BC●AE
为 什 么 ?
思考:计算菱形的面积除了上式方法外 利 思考 计算菱形的面积除了上式方法外,利 计算菱形的面积除了上式方法外 计算菱形的面积公式吗? 用对角线能 计算菱形的面积公式吗
相等的线段: 相等的线段: AB=CD=AD=BC
5
A
1 2
7 8
D
O
6 3 4
OA=OC OB=OD
B
C
∠ ∠ ∠ 相等的角: 相等的角: DAB=∠BCD ∠ABC =∠CDA ∠AOB=∠DOC=∠AOD=∠BOC =90° ∠ ∠ ∠ ° ∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8 ∠ ∠ ∠ ∠ ∠ ∠
A
B
O
D
C
19
四边形


P98练习题 P98练习题 习题19.2 习题19.2

菱形(第二课时 菱形的判定)(课件)

菱形(第二课时 菱形的判定)(课件)
故选:C.

菱形的判定
如图,、、、分别是四边形ABCD四条边的中点,要使四边形EFGH为菱形,则四边形
ABCD应具备的条件是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.一组对边平行而另一组对边不平行
【详解】
解:连接AC,BD,
∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,
D
1
2
做法:分别以A、C为圆心,以大于 AC
的长为半径作弧,两条弧分别相交于点B ,
D,依次连接A、B、C、D四点.
A
C
[思考]得到的这个四边形是菱形吗?
B
探索与证明
四条边都相等的四边形是菱形
A

B

已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD
∴AB=CD,BC=AD
∴四边形ABCD是平行四边形
又∵AB=BC
∴四边形ABCD是菱形
判定1:四条边都相等的四边形是菱形
探索与证明
对角线互相垂直的的平行四边形是菱形
已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O ,AC⊥BD.
求证:▱ABCD是菱形.
B
证明: ∵四边形ABCD是平行四边形
A.3个
B.4个
C.1个
D.2个
【详解】
解:∵四边形ABCD是平行四边形,
∴①当AB=BC时,四边形ABCD是菱形;故符合题意;
②当AC⊥BD时,四边形ABCD是菱形;故符合题意;
③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;

浙教版数学八年级下册 5.2.1 菱形 说课课件(共27张PPT)

浙教版数学八年级下册 5.2.1 菱形 说课课件(共27张PPT)

关系.
2.探索并证明菱形的性质定理: 符号语言).
2.探索并证明菱形的性质 菱形的四条边相等.
2.学生能说出菱形的四条边相等,并
定理:菱形的四条边相等, 3.探索并证明菱形的性质定理: 给出证明.
对角线互相垂直.
对角线互相垂直,并每条对角 3. 猜想、验证、证明、归纳出菱形
3.探索菱形的轴对称性. 线平分一组对角.
对角线互相垂直,并每条对角线平分
4.探索菱形的轴对称性.
一组对角.
4.学生通过折、剪、拼明确菱形是轴
对称图形,并能说出它的对称轴.
03 教 学 问 题 诊 断 分 析
已经具备的基础
三角形的分类 和特殊三角形
的性质
平行四边形和 矩形的性质、 判定、应用
能够从边和角 考虑图形的特 殊化,知道从 边、角、对角 线和对称性研 究图形性质.
线平分一组对角.
分一组对角.
4.探索菱形的轴对称性.
菱形轴对称性难以理解
课时目标
1.理解菱形的概念, 以及菱形与平行四边 形的关系.
2.探索并证明菱形的 性质定理:菱形的四 条边相等.
3.探索并证明菱形的 性质定理:对角线互 相垂直,并且每条对 角线平分一组对角.
可能问题
教师引导
忽视菱形作为平 行四边形所具备 的一般性质.
Байду номын сангаас定性判 应 义质定 用
菱形
本节课的教学重点:探索并证明菱形的性质
02目标及目标解析
对照 课标 要求
目标确定
课标要求
课时目标
目标解析
1.理解菱形的概念,以及 1.理解菱形的概念,以及菱形 1.学生能说出菱形与平行四边形的关
菱形与平行四边形之间的 与平行四边形的关系.

人教版八年级下册18.2.2 菱形 课件(共30张PPT)

人教版八年级下册18.2.2 菱形 课件(共30张PPT)

D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E F G H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形 ABCD各边中点,得到四边形EFGH是什么四边形?
拓展1 如图,顺次连接平行四边形ABCD各
边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
E
B
A
∵点E、F、G、H为各边中点,
F
E F G H 1 2 B D , F G E H 1 2A C , D
小刚的作法对吗? 猜想:四条边相等的四边形是菱形.
证一证 已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD;
B
∴AB=CD , BC=AD.
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
解:四边形EFGH是菱形.

菱形的判定ppt人教版八年级数学下册

菱形的判定ppt人教版八年级数学下册

: 平行四边形
∵ 四边形ABCD是平行四边形
A
D
又∵AC⊥BD于点O;
∴□ ABCD是菱形
O
B
C
A
证明:∵ AO=3,BO=4,AB=5 B
O
D
∴AO2+BO2=32+42=25,AB2=25
∴AB2=AO2+BO2
C
∴△OAB是直角三角形
∴AC⊥BD于点O
又∵四边形ABCD是平行四边形
∴四边形ABCD是菱形
D.
的 四边形是菱形
有一组邻边相等的平行四边形是菱形.
菱形
D.
∠DOA=∠DOC
∴四边形EFGH是菱形
的四边形是菱形;
∴∠DOA=∠DOC=90°
菱形的对角线 ∴四边形ABCD是菱形
∴四边形ABCD是平行四边形 ∴四边形AEDF是平行四边形
互相平分
对角线互相垂的 平行四边形是菱形
求证:四边都相等 四边形
∵AB=CD,AD=BC
一边长为5cm平行四边形的两条对角线的长分别为6cm和8cm,则这个平行四边形为 ,其面积为
∴四边形ABCD是平行四边形 ∴四边形AFCE是平行四边形
∴四边形AEDF是平行四边形
又∵AB=AD,
∴四边形ABCD是菱形
D
C

四边形
在四边形ABCD中
A
D
∵AB=BC=CD=DA
∵四边形ABCD是平行 四边形,AB=BC
∴四边形ABCD是菱形
A B
D C
菱形的特殊性质
逆命题
(2)对角线互相垂直平分的四边形是菱形; 在四边形ABCD中
四条边都相等
9、已知:如图,□ ABCD的对角线AC的垂直平分线与边AD,BC分别交于E,F.

八年级数学下册教学课件《菱形的性质》

八年级数学下册教学课件《菱形的性质》

在Rt△AOB中,由勾股定理得
D
AB= AO2 BO2 =5,
∴菱形的周长为20,菱形的面积为24.
对应训练
2. 小雨在参观故宫博物院时,被太和殿窗棂的三 交六椀菱花图案所吸引,他从中提取出一个含60° 角的菱形ABCD(如图).若AB的长度为2,求菱形 ABCD的面积.
A
B 60°
D
C
对应训练
和平行四边形相比,有什么特殊之处?
菱形在平行四边形的基础上多了邻
边相等的条件.
探究点1
菱形的性质
将一个菱形分别沿它的两条对角线对折,然后打开.
观察图形,回答下列问题:
(3)平行四边形的两组对边分别相
等,那么菱形的四条边有怎样的关系
呢? 由于菱形是有一组邻边相等的平行四边形,由平行
四边形对边相等的性质容易发现菱形的四条边都相等
课后作业
4. 如图,在菱形ABCD中,AB=4a,E在BC上,
EC=2a, ∠BAD=120°,点P在BD上,则PE+PC
的最小值是 2 3a .
A
D
120P°
B E 2a C
一组对角. 综合来看,这两条性质可用下面的几何语言来表示:
几何语言:∵四边形ABCD是菱形,
∴AB=BC=CD=AD ,AC⊥BD ,
B
AC平分∠BAD ,CA平分∠BCD ,
BD平分∠ABC,DB平分∠ADC.
A
O
D
C
对应训练
1. 菱形不具有的性质是( B )
A. 四条边都相等 C. 是轴对称图形
第十八章 平行四边形
菱形的性质
情境导入
拿一个活动的平行四边形教具,移动它的一条边,使这条 边与邻边的长度相等,这时它是什么图形?

菱形菱形的判定课件人教版数学八年级下册

菱形菱形的判定课件人教版数学八年级下册

所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.

华东师大版数学八年级下册19.菱形的判定课件

华东师大版数学八年级下册19.菱形的判定课件

二.探究新知 (一)探究:菱形的判定1(四边相等的四边形是菱形)
已知:如图,四边形ABCD的边长,AB=BC=CD=AD
求证:四边形ABCD是菱形
A
证明: ∵AB=BC=CD=AD 即AB=DC,BC=AD
∴ 四边形ABCD是平行四边形
BБайду номын сангаас
D
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)
2
2
4
三.课堂小结
菱形的判定:间接判定
有一组邻边相等的平行四边形为菱形 对角线互相垂直的平行四边形为菱形
直接判定
四条边相等的四边形为矩形
对角线互相垂直、平分的四边形为菱形(简答题不能直接使用)
解: ∵AD的垂直平分线交AB于点E,交AC于点F
A
∴AE=DE ,AF=DF 即∠EAD= ∠EDA, ∠FAD =∠ FDA
又∵AD平分∠BAC
E
∴ ∠EAD= ∠FAD, ∠EDA =∠ FDA
F
∴△AED全等于△AFD(ASA)
∴AE=AF=DF=DE
B
D
C ∴四边形ABED为菱形(四条边相等的四边形为菱形)
∵AC+BD=q
O
∴ AO+DO=0.5q
C
A
∴ 有勾股定理得:( AO DO)2 AO2 DO 2 2AO • DO AD2 2AO • DO p2 2AO • DO q2
4
4
即2 AO • DO q2 - p2
B
4
∴ S菱形 1 AC • BD 1 2AO 2DO 2AO • DO q2 - p2
第19章 矩形、菱形与正方形
19.2.2 菱形的判定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊的平行四边形 菱形(1)
四条相等的木条
∵AB=CD AD=BC ∴ 四边形ABCD是平行四边形
(两组对边分别相等的四边形是平行四边形)
A
D
B
C
有一组邻边相等的平行四边形叫做菱形;
□ABCD
AB=BC
四边形ABCD是菱形
A
D
B
C
有一组邻边相等的平行四边形叫做菱形;
□ABCD
AB=BC
求证:AB=BC=CD=AD
B
证明:∵四边形ABCD是菱形
D C
∴ AB=CD AD=BC (平行四 边形的两组对边分别相等)
AB=AD (菱形的定义)
∴ AB=BC=CD=AD
命题:菱形的对角线互相垂直平分, 并且每一条对角线平分一组对角;
已知:菱形ABCD的对角线AC和BD相交于点O,如下图,
4
BD = 2BO ≈34.64(m)
C
1
花坛的面积 S菱形ABCD = 2 AC·BD≈346.4 ( m2)
练习:
1、 四边形ABCD是菱形,O是两条对角线 的交点,AB=5cm,AO=4cm,求两条对角线 AC和BD 的长。
2、菱形的两条对角线的长分 别是6cm和8cm,求菱形的周 长和面积。
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
已知四边形ABCD是菱形
3、等腰三角形有: B
A
D
12
7 8
O
5
4
6
3
C
△ABC △ DBC △ACD △ABD
已知四边形ABCD是菱形 4、直角三角形有:
A
D
12
7 8
5
B
6
O
4 3
C
Rt△AOB Rt△BOC Rt△COD Rt△DOA
A
D
已知四边形ABCD是菱形
轴?分别是什么?对称轴间有什么关系?
已知四边形ABCD是菱形
1、相等的线段:
A
D
12
7 8
5
B
6
O
4 3
C
AB=CD=AD=BC OA=OC OB=OD
A
D
已知四边形ABCD是菱形 2、相等的角:
12
7 8
5
B
6
O
4 3
C
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
求证:AC⊥BD ; AC平分∠BAD和∠BCD ;BD平分∠ABC和∠ADC
证明:∵四边形ABCD是菱形
A
D
பைடு நூலகம்
∴AB=AD(菱形的四条边都相等)
在△ABD中,
又∵BO=DO ∴AC⊥BD,AC平分∠BAD B
O C
同理: AC平分∠BCD; BD平分∠ABC和∠ADC
【菱形的面积公式】
A
菱形
B
O
E
请你动脑筋
把两张等宽的纸条交叉重叠在一起,你 能判断重叠部分ABCD的形状吗?
A
D
B
C
A
D
F
BE
C
四边形ABCD是菱形
请同学们拿出准备好的矩形纸片按照下 图对折、再对折,然后沿图中的虚线剪下, 打开即可得到一个菱形。
A
D
已知四边形ABCD是菱形
12
7 8
O
1、图中有哪些相等的线段? 5
4
2、图中有哪些相等的角? B
6
3
C
3、图中有哪些等腰三角形?
4、图中有哪些直角三角形?
5、菱形是轴对称图形吗?它有几条对称
12
7 8
O
5
B
6
4 3
C
5、菱形是轴对称图形吗?它有几条对
称轴?分别是什么?对称轴之间有什么
位置关系
是 两条 AC、BD所在的直线 互相垂直
命题: 菱形的四条边都相等。
D
A
B
C
命题:菱形的对角线互相垂直平 A
D
分, 并且每一条对角线平分一组
对角;
O
B
C
命题: 菱形的四条边都相等。 A
已知:如图,四边ABCD是菱形
O
D
E
2、菱形的两条对角线互相垂直, C
并且每一条对角线平分一组对角。
3、菱形是轴对称图形,对角线所在的直 线是对称轴。
4、菱形的面积=底×高=对角线乘积 的一半
如图,菱形花坛ABCD的周长为80m,
∠ABC=60°,沿着菱形的对角线修建了
两条小路AC和BD,求两条小路的长和花
坛的面积( 分别精确到0.01m和 2
0.解0:1∵m花坛AB)CD是菱形

AC⊥BD, ∠ABO =
12∠ABC =
×160°=30°
2
AB
=
BC
=
CD
=
AD
=
1 4
×80
=
20
(m)
A
在Rt△OAB中,AO=
1 2
AB=12
×20=10(m)
BO= AB2 AO2 202 102 ≈17.32(m)B
O
D
∴ 花坛的两条小路长
1
AC = 2AO = 20 (m)
C
菱形是特殊的平行四边形,
那么能否利用平行四边形 面积公式计算菱形的面积吗?
D
S菱形=BC× AE
想一想:已知菱形的两条对角线的长,能求出它
的面积吗?
S S = S = 菱形ABCD
△ABD+ △BCD
1 2 AC×BD
菱形的面积=底×高=对角线乘积的一半
菱形的性质:
1、菱形的四条边相等 B
A
菱形
相关文档
最新文档