向量法求空间距离
用向量法求空间距离

G
x
F
A
D
C
E
果断地用坐标法处理.
y
B
例 2: 如图,已知正方形 ABCD 的边长为 4,E、F 分 别是 AB、AD 的中点,GCቤተ መጻሕፍቲ ባይዱ平面 ABCD,且 GC=2, z 求点 B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). EF (2, 2,0), EG (2, 4, 2), D C
y
B
2 11 答:点 B 到平面 EFG 的距离为 . 11
练习(用向量法求距离): 1.如图, ABCD 是矩形, PD 平面 ABCD , PD DC a , AD 2a , M 、N 分别是 AD 、PB 的中点,求点 A 到平面 MNC 的距离.
P
D N C B
M
A
解:如图,以D为原点建立空间直角坐标系D-xyz a ,0),C(0, a ,0),P(0,0, a) 则D(0,0,0),A(2a ,0,0),B( 2a ,
距离
用向量法求空间距离
教学目标:
借助空间向量来解决立体几何中的两种距离 1、两点间的距离 2、点到平面间距离
一、如何用向量法求解两点间的距离呢?
B(x2,y2,z2) A(x1,y1,z1)
AB ( x2 x1 ) ( y2 y1 ) ( z2 z1 )
2 2
2
例1、已知A(-1,2,-6), B(5,-2,3),求A,B两点之间的距离。
∵ PO ⊥ , n , ∴ PO ∥ n . ∴cos∠APO=|cos PA, n |.
用向量法求空间距离

用向量法求空间距离湖南省冷水江市七中(417500) 李继龙在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离.例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点,DQ=41DB ,求P 、Q 两点间的距离.解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则0)4141(Q )21021(,,、,,P , 所以)21-4141(-,,=.46=,即P 、Q 两点的距离为46. 二、 求点到直线之间的距离已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d .则有><⋅=⋅cos ,所以cos >=<故><⋅=∠⋅==QP PQO PQ PO d sin sin=⋅==xa图2例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2).所以0)32-(AC 2)02-(AO 1,,,,,==. 故d =13286213168=-= 所以点O 1到直线AC 的距离为132862. 三、 求点到平面的距离如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量在方向上的射影长就是点A 到平面α的距离d,所以d ==><⋅=cos .例3 如图5,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB=2,AF=1,M 是线段EF 的中点,N 为AC 与BD 的交点,求点B 到平面CMN 的距离. 解 如图5,以CE CB CD 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz.因为AB=2,AF=1,所以)12222(CM ,,=,)02222(CN ,,=)02(0CB ,,=设平面CMN 的法向量为)(x z y ,,=,则有图4yxx⎪⎩⎪⎨⎧=⋅=⋅0n CM 即⎪⎪⎩⎪⎪⎨⎧=+=++0222202222y x z y x 令x=1,得y=-1,z=0,所以)01(1,,-=.所以点B 到平面CMN的距离1==d .四、 求异面直线间的距离如图6,假设a 、b 是异面直线,平移直线a 至a ′且交b 于点A ,那么直线a ′和b 确定平面α,且直线a ∥α,设n ⊥a ,n ⊥b ,即n 为异面直线a 、b 的公垂线的方向向量.所以异面直线a 的b 的距离等于直线a 上任意一点至平面α的距离.若F ∈a ,E ∈b ,则异面直线a 、b之间的距离d =⋅=><⋅=cos ,即为异面直线a 、b 之间的距离.例4 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求异面直线A 1C 1与B 1C 的距离. 解 如图7所示,以1DD DC DA 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则有1)01-(C B 0)11-(C A 111-,,,,,==.设B C A 111与的公垂线的方向向量为)(x z y ,,=,则⎪⎩⎪⎨⎧=⋅=⋅0B 0111C n C A n 即⎩⎨⎧=--=+-00z x y x 令x=1,得y=1,z=-1,所以)11(1-=,,又)010(11,,=B A ,x所以A 1C 1与B 1C的距离3331===d . 五、 求直线与它平行平面及求两个平行平面之间的距离求直线与它平行平面及两个平行平面之间的距离可以转化为求点到平面的距离,即运用d =求它们之间的距离.例5 如图8,设正方体ABCD-A 1B 1C 1D 1的棱长为1,M 、N 、E 、F 分别是A 1B 1、A 1D 1、B 1C 1 C 1D 1的中点.求平行平面AMN 与平面EFDB 的距离. 解 以1CC 、、所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系C-xyz ,则0)0(1)121(0)1021(,,,,,,,,=-=-=.设平面EFDB 的法向量为)(x n z y ,,=,则有⎪⎩⎪⎨⎧=⋅=⋅0即⎪⎩⎪⎨⎧=+-=+-021021z y z x 取1=z ,则2==y x ,所以)12(2,,=,所以平行平面AMN 与平面EFDB的距离32==d .x。
用向量法求空间距离

ABC Dmn1图向量法求空间距离向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。
1.异面直线n m 、的距离分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在上的射影长,即||n d =证明:如图1,设CD 为公垂线段,取b a ==,||||)(⋅=⋅∴⋅++=⋅∴++=||||||n n AB d ⋅==∴2平面外一点P 到平面α的距离如图2,先求出平面α的法向量,在平面内任取一定点A ,则点p 到平面α的距离d 等于在上的射影长,即||n d =因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。
再通过向量的代数运算,达到计算或证明的目的。
一般情况下,选择共点且不共面的三个已知向量作为基向量。
[例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2,底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。
图2A BC M N1A 1B1C 图3几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 ,、)0,0,0(A)81,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则)2,0,0(),0,43,43(),81,41,43(1==-=AA AM MN ,设向量),,(z y x n =与平面AMN 垂直,则有)0()1,1,3(8),81,83(81830434********>-=-=∴⎪⎪⎩⎪⎪⎨⎧-==⇒=⎪⎪⎭⎪⎪⎬⎫=+=++-⇒⎪⎭⎪⎬⎫⊥⊥z zz z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是5521)1()3(|)1,1,3()2,0,0(||||,cos |||22201011011=+-+-⋅==><⋅=AA n AA AA d [例2]如图5,在正四棱柱1111D C B A ABCD -中,已知2=AB ,,51=AA E 、F 分别为D D 1、B B 1上的点,且.11==F B DE (Ⅰ)求证:⊥BE 平面ACF ;(Ⅱ)求点E 到平面ACF 的距离.分析:题中几何体易找到共点且相互垂直的三个基向量,故可通过建立空间直角坐标系来达到解题目的。
空间向量各种距离求法

空间向量各种距离求法在空间中,有多种方法可以计算向量之间的距离,其中一些常用的方法包括:1. 欧几里德距离(Euclidean Distance):欧几里德距离是最常见的距离度量方式,它是两个向量之间的直线距离。
对于两个n维向量X和Y,欧几里德距离的计算公式如下:d(X, Y) = sqrt((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2)2. 曼哈顿距离(Manhattan Distance):曼哈顿距离又称为城市街区距离,它是两个向量在每个维度上差值的绝对值之和。
对于两个n维向量X和Y,曼哈顿距离的计算公式如下:d(X, Y) = |x1-y1| + |x2-y2| + ... + |xn-yn|3. 切比雪夫距离(Chebyshev Distance):切比雪夫距离是两个向量在所有维度上差距的最大值。
对于两个n维向量X和Y,切比雪夫距离的计算公式如下:d(X, Y) = max(|x1-y1|, |x2-y2|, ..., |xn-yn|)4. 闵可夫斯基距离(Minkowski Distance):闵可夫斯基距离是欧几里德距离和曼哈顿距离的一般化,参数p控制了距离的形状。
对于两个n维向量X和Y,闵可夫斯基距离的计算公式如下:d(X, Y) = (|x1-y1|^p + |x2-y2|^p + ... + |xn-yn|^p)^(1/p)5. 向量余弦相似度(Cosine Similarity):向量余弦相似度用于衡量两个向量之间的夹角。
对于两个n维向量X和Y,向量余弦相似度的计算公式如下:similarity(X, Y) = (X·Y) / (||X|| * ||Y||)其中,X·Y表示向量的点积,||X||和||Y||表示向量的模长。
以上是几种常见的空间向量距离度量方法,根据不同的应用场景和需求,选择合适的距离度量方法进行计算即可。
向量法求空间距离---说课市公开课一等奖省赛课微课金奖课件

第一部分: 内容分析
❖ 教学重点难点
❖
重点: 掌握由向量数量积推
导距离公式。
❖
难点: 空间向量射影了解,
数形结合思想灵活利用,空间
直角坐标系建立,求法向量,
向量选取。
7/29
第一部分: 内容分析
❖ 教学方法: 采取启发诱导式教 学,并结合实践探索,互动 教学。
❖ 教学伎俩: 因为要充分表达数 形结合,有大量图形对比引 导,以多媒体展示作为黑板 板书补充。
复习引入 新课讲解
公式推导 形成思绪
距离=射影长度
d
|
aos
a,
n
|
|
a
•
n
|
|n|
当n为单位向量时,d
|
a
•
n
|
怎么用?
— —必须求数量积,除了定 义之外,可以通过坐标表示
20/29
第三部分: 教学过程
复习引入 新课讲解
公式推导 形成思绪
建系 求坐标
求数量积,法向量模
求解
21/29
第三部分: 教学过程
复习引入 新课讲解
利用 例题讲解
例: 已知正方体ABCDA1B1C1D1棱长为1,
求:(1)点D1到平面AB1C距离;
(2)体对角线BD1与面对角线
B1C距离。
z
D1
C1
A1
B1
D
y
C
A
B
x
回到一开始问题2, 尝试用向量数
量积求解, 起到前呼后应作用
22/29
第三部分: 教学过程
理念 华罗庚: “把一个比较复杂问题
“退”成最简单最原始问题,把 这最简单最原始问题想通了,想 透了,然后再……来一个飞跃上 升”。 牢切记住学校教材和实际经验二者 相互联络必要性,使学生养成一 个态度,习惯于寻找这两方面接 触点和相互关系。
向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
向量法求空间点到平面的距离(经典实用)

向量法求空间点到平面的距离(经典实用)
空间点到平面的距离是衡量两个物体之间距离的重要方式。
本文介绍基于向量法求空间点到平面的距离的方法。
关于向量法求空间点(P)到平面(S)的距离,首先,我们要了解的是,平面的方程可以描述为:
Ax+By+Cz+D=0
其中A、B、C、D是常数,x、y和z分别是空间中的点的坐标值。
接下来,利用向量法求解空间点到平面的距离,我们需要得到两个向量,一个是向量NP(由空间点到原点,即(0,0,0)的向量),另一个是平面的法向量N(由平面上任意一点至原点之间的单位向量),由此可知,距离d=|NP*N|/|N|
此外,可以注意到,有时正距离和负距离可以表示一个点到平面的关系。
正距离表示这个点在平面的一边,而负距离表示这个点在平面的另一边。
也就是说,若d>0时,表示点P在平面S的正侧;若d<0时,表示点P在平面S的反侧;当d=0时,代表点P在平面S上。
因此,基于向量法求解空间点到平面的距离需要考虑到空间点和平面法向量,并利用向量积运算计算出距离d,其中,若距离d>0,表示空间点在平面的正侧,若距离d<0,表示空间点在平面的反侧;当d=0时,表示空间点在平面上。
用向量法求空间距离课件

在某些情况下,向量法求空间距离可 能会遇到奇异点,即某些点的坐标值 可能为无穷大或不确定。对于这些点 ,应采取适当的处理方式,如排除或 进行特殊处理。
实际应用中的考虑因素
坐标系选择
在实际应用中,应根据问题的具体情 况选择合适的坐标系,如笛卡尔坐标 系、极坐标系等。不同的坐标系可能 会影响向量法求空间距离的结果。
03
向量法求空间距离的实例解析
点到直线的距离实例
总结词
利用向量法求点到直线的最短距离
详细描述
首先,我们需要确定直线和点在三维空间中的坐标。然后,通过向量的点积和向量的模长,我们可以计算出点到 直线的向量。最后,利用向量法公式,我们可以求出点到直线的最短距离。
点到平面的距离实例
总结词
利用向量法求点到平面的最短距离
未来研究的方向与展望
1 2
深入研究向量法的理论基础
进一步探讨向量法的数学基础和原理,提高其理 论水平。
拓展向量法的应用领域
发掘向量法在其他领域的应用价值,如机器学习 、数据分析和人工智能等。
3
开发向量法的算法优化
针对向量法的计算过程进行优化,提高其计算效 率和精度。
THANKS
感谢观看
用向量法求空间距离课件
目 录
• 向量法求空间距离的基本概念 • 向量法求空间距离的公式推导 • 向量法求空间距离的实例解析 • 向量法求空间距离的注意事项 • 总结与展望
01
向量法求空间距离的基本概念
向量的概念
向量
既有大小又有方向的量。
向量的表示
用有方向的线段表示向量,线段的长度表示向量 的大小,箭头表示向量的方向。
向量法求空间距离的优势与局限性
• 适用范围广:向量法不仅可以用于求解空间距离,还可以 用于解决其他几何问题。
向量法求空间距离

解:以 A 为坐标原点,AB、AC、AA1 所在直线分别为 x 轴、y 轴、z 轴,建立如图所示空 间直角坐标系.∵B1B⊥平面 ABC,∴∠B1CB 为 B1C 与平面 ABC 所成角,∴∠B1CB=30°, Rt△B1BC 中,BB1=1,∴BC= 3,又 AB=1,Rt△BAC 中,AC= 2, z A1(0,0,1) 1(0, 2,1) 1=(0, 2,0) ,C ,A1C , A1 B1(1,0,1) ,C(0, 2,0) (-1, 2,-1) ,B1C , B1 且A1B1=(1,0,0) , 设=(x,y,z)为异面直线 A1C1 与 B1C 公垂线的一个方向向量, n x 则 ·A 1=0, ·B1C=0 n n 1C
.
F B
C
【思考】若 G、H 分别为 D1D,AA1 中点,如何求平面 A1D1E 与平面 HGB 距离? D A
G C
B E D1 B1 C1
H A1
注: ①用向量求点面距离可避免了过点向面作 垂线的麻烦.②注意面面距离与点面距离的转化.
【知识点四】求异面直线间的距离. l1,l2 为异面直线,AB 为 l1,l2 公垂线估,C、D 分别为 l1,l2 上任意两点,则 |CD· | n |=|CD |·|cos<CD ·>|= n 异面直线 l1,l2 的距离 d=|AB | | n
例 2 如图,在 60°的二面角的棱上,有 A、B 两 点,线段 AC、BD 分别在二面角的两个面内,且都 垂直于 AB,已知 AB=4,AC=6,BD=8,求 CD 的长度.
C Bβ D α
注: 使用向量法对此题计算时, 由于考虑到未知条件 CD, AC BD 故应用已知的AB, , 三个向量将未知向量CD表示出来, 再利用|CD| 2=CD2 这一知识解题.
用向量方法求空间中的距离 课件

||||cos∠
.
||
如果令平面 α 的法向量为 n,考虑到法向量的方向,可以得到点 B
到平面 α 的距离为|| =
|·|
.
||
因此要求一个点到平面的距离,可以分以下几步完成:(1)求出该
平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应
|·|
||
=
3 3
5
=
3 15
.
5
错因分析:错误的根本原因是忽视了求点面距时,应是用平面内
一点与该点构成的向量与平面的法向量来求.实际上本例中 O∉平面
MBC,选择求点A 到平面 MBC 的距离是错误的,应选向量(或
, ).
正解:(接错解)又 = (0,0,2 3),
则点 A 到平面 MBC 的距离 d=
解:建立坐标系如图,则 A(1,0,0),F(1,1,0),C(0,0,1).
(1)∵CM=BN=a(0<a< 2), 且四边形ABCD,ABEF 为正方形,
∴
2
2
,0,1-
2
2
2
2
, ,0
2
2
,
,
2
2
∴ = 0,
,
-1 .
2
2
∴|| = 2 - 2 + 1,
即 MN 的长为 2 - 2 + 1.
的向量;(3)求出法向量与斜线段对应的向量的数量积的绝对值再除
以法向量的模,即可求出点到平面的距离.因为 =n0 可以视为平面
||
的单位法向量,所以点到平面的距离实质就是平面的单位法向量与
从该点出发的斜线段对应的向量的数量积的绝对值,即 d=| ·n0|.
向量法求解空间距离与空间角

向量法求解空间距离与空间角要求能掌握用向量法解决空间距离与空间角问题。
一、 空间向量与空间距离由向量的数量积||||cos AB b AB b θ⋅=⋅可知,向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是||cos ||AB b AB b θ⋅=,也就是说向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是线段AB 在直线l 上射影线段的长。
1、 点面距离公式:平面α的法向量为n ,P 是平面α外一点,点M 为平面α内任一点,则P 到平面α的距离d 就是MP在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
2、 线面距离公式: 平面α∥直线l ,平面α的法向量为n ,P ∈直线l ,点M 为平面α内一点,则直线l 与平面α的距离d 就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
3、 面面距离公式:平面α∥平面β,平面α的法向量为n,点M 为平面α内一点,点P 为β平面β内一点,则平面α与平面β的距离d就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
4、向量法求解距离问题的步骤: ① 建立适当的空间直角坐标系;② 将相应线段及平面的法线等用向量或坐标表示出来; ③ 利用向量的相应距离公式求解。
5、典例评析: 例1、(03广东)已知四棱柱ABCD -A 1B 1C 1D 1中,AB=1,AA 1=2,点E 是CC 1的中点,F 是BD 1中点。
(1)证明:EF 是BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离。
二、 空间向量与空间的角 1、 异面直线所成的角:异面直线a 、b 的方向向量分别为m 、n,其向量的夹角为θ,直线a 、b 的所成的角为α,(0,]2πα∈,则||cos |cos |||||m n m n αθ⋅== ,即||cos ||||m n arc m n α⋅=。
向量法求空间距离教案

一、教案基本信息1. 向量法求空间距离教案2. 适用课程:高等数学、空间解析几何等3. 教学目标:让学生掌握向量法求空间两点间的距离公式培养学生运用向量知识解决实际问题的能力提高学生对空间几何概念的理解和运用二、教学内容及课时安排1. 第一课时:向量法求空间两点间的距离公式介绍向量的概念回顾空间直角坐标系介绍两点间的向量表示距离公式的推导2. 第二课时:向量法求空间距离的例题讲解与练习利用距离公式解决简单问题引导学生运用向量法解决实际问题课堂练习与讨论3. 第三课时:向量法求空间距离在实际问题中的应用利用向量法求空间直线、平面与其他几何体的距离引导学生运用向量法解决实际工程问题课堂练习与讨论4. 第四课时:向量法求空间距离的拓展与应用空间向量的其他运算向量法在空间解析几何中的应用课堂练习与讨论5. 第五课时:总结与复习回顾本节课的主要内容巩固向量法求空间距离的知识点布置课后作业三、教学方法与手段1. 采用讲授法、案例分析法、讨论法等教学方法,引导学生主动探究、积极思考。
2. 利用多媒体课件、黑板、模型等教学手段,直观展示空间几何图形,帮助学生更好地理解向量法求距离的过程。
四、教学评价1. 课后作业:检查学生对向量法求空间距离公式的掌握程度。
2. 课堂练习:观察学生在实际问题中运用向量法的熟练程度。
3. 学生互评:鼓励学生之间相互讨论、交流,提高解决问题的能力。
五、教学资源1. 教材:高等数学、空间解析几何等相关教材。
2. 多媒体课件:展示空间几何图形,直观地呈现向量法求距离的过程。
3. 模型:用于直观展示空间几何图形,帮助学生更好地理解向量法求距离的概念。
4. 课后作业:提供一定数量的练习题,巩固学生对向量法求空间距离的掌握程度。
六、教学过程设计导入新课通过一个实际问题引入:在空间中,如何计算两点之间的距离?回顾已学的传统方法(如坐标差求和后开方),并提出向量方法作为一种更一般的解决方案。
探究新知介绍向量表示两点间的距离,即使用坐标表示的向量差来求距离。
3.2.3空间距离的向量求法

DB (2,2,0), DN (0,1,2),
设平面BDMN的一个法向量为
z
n ( x, y, z), 则
2 x 2 y 0 n (2, 2,1), y 2z 0
x
O
y
| AB n | | 2 (2) | 4 d . 2 2 2 n 3 2 (2) 1
P d O
n
PA n ( PO OA) n PO n,
| PA n || PO n || PO || n |
| PA n | | PA n | PO , 即d n n
例1.已知正方形ABCD的边长为4,CG⊥平面ABCD, CG=2,E、F分别是AB、AD的中点,求点B到平面GEF 的距离。
n
| PA n | ★所以计算公式还是: d n
例2.
如图,正方体ABCD-A1B1C1D1的棱长为2,E,F,M,N 分别为A1B1,A1D1,B1C1,C1D1 的中点. 求平面AEF和平面BDMN的距离.
解: (2)如图建立空间直角坐标系,则A(2,0,0), B(2, 2,0), N (0,1, 2), AB (0, 2,0),
解:∵BD//平面C1MN, ∴只需求点B与 平面C1MN的距离, 如图建立直角坐标系,则B(2,2,0), M (1, 2,0), N (0,1,0), C1 (0, 2, 2),
NM (1,1, 0), NC1 (0,1, 2) BM (1, 0, 0)
z
y x
x y 0 x 2z , 令z 1, 则n (2, 2,1), y 2 z 0 y 2 z | n BM | | (1) 2 | 2 d . |n| 22 (2) 2 12 3
用空间向量求距离

二、直线到平面的距离
l
P
n
d
d
| AP n | n
A
O
其中 AP 为斜向量, n 为法向量。
三、平面到平面的距离
P
n
d
| AP n | n
d
A
O
四、异面直线的距离 | AP n | d n
AP ?
n
a
b
A P
n?
A、P分别是直线a、b上的任意两点;
n 是与 a, b 都垂直的向量
1 解: A1 E=(-1, ,0), A1 B=(0,1,-1) 2
设n ( x, y, z)为面A1BE的法向量,则
z
E
1 D 1 x y 0, n A E 0, 1 y 2 x, 2 即 z 2 x, A1 n A1B 0, y z 0,
A B
D
C
例2.已知正方形ABCD的边长为4, CG 平面ABCD, CG 2, E、F分别是AB、AD的中点,求点B到平面 GEF的距离. z G
x
F
A
D
C
E
B
y
例 3: 如图,已知正方形 ABCD 的边长为 4,E、F 分别 是 AB、AD 的中点,GC ⊥平面 ABCD ,且 GC =2,求 点 B 到平面 EFG 的距离.
1 解: A1 E=(-1, ,0), A1 B=(0,1,-1) 2
设n ( x, y, z)为面A1BE的法向量,则
z
E
1 D 1 x y 0, n A E 0, 1 y 2 x, 2 即 z 2 x, A1 n A1B 0, y z 0,
高中数学课件-第9讲 向量法求空间距离、折叠及探索性问题

第9讲 向量法求空间距离、折叠及探索性问题1.会求空间中点到直线、点到平面的距离.2.会用向量法探考试要求究空间几何体中线、面的位置关系、角的存在条件与折叠问题.01聚焦必备知识知识梳理3.线面距离、面面距离都可以转化为点到平面的距离.1.思考辨析(在括号内打“ √”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( )(2)点到直线的距离也就是该点到直线上任一点连线的长度.( )(3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( )(4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( )夯基诊断××√×2.回源教材(1)已知平面ABC的一个法向量为n=(1,2,1),向量=(0,,0),则点F到平面ABC的距离为________.(3)已知棱长为1的正方体ABCD -A1B1C1D1,则平面AB1C与平面A1C1D 之间的距离为________.02突破核心命题考 点 一利用空间向量求距离考向 1点到直线的距离例1 如图,在棱长为1的正方体ABCD -A1B1C1D1中,O为平面A1ABB1的中心,E为BC的中点,求点O 到直线A1E的距离.用向量法求点到直线的距离的一般步骤(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.反思感悟例2 如图,已知四边形ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,CG 垂直于正方形ABCD 所在的平面,且CG =2,则点B 到平面EFG的距离为________.2点到平面的距离用向量法求点面距离的步骤(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.反思感悟训练1 如图,在正三棱柱ABC -A1B1C1中,各棱长均为4,N是CC1的中点.(1)求点N到直线AB的距离;(2)求点C1到平面ABN的距离.考 点 二折叠问题(1)当AB∥平面PCD时,求PD的长;(2)当三棱锥P -COD的体积最大时,求平面OPD与平面CPD夹角的余弦值.反思感悟翻折问题中的解题关键是要结合图形弄清翻折前后变与不变的关系,尤其是隐含的垂直关系.一般地翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.训练2 (2024·泉州模拟)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,以CD为折痕把△ACD折起,使点A到达点P的位置,且∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点(如图②).图① 图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.(2)因为CD⊥DB,CD⊥DP,DB∩DP=D,所以CD⊥平面DBP.如图,过点D作直线垂直平面BDC,作空间直角坐标系,设PD=DB=DC=2,例4 (2024·山东省实验中学月考)如图,在三棱柱ABC -A 1B 1C 1中,△AB 1C 为等边三角形,四边形AA 1B 1B 为菱形,AC ⊥BC ,AC =4,BC=3.考 点 三探索性问题图①解:(1)证明:连接A 1B 与AB 1相交于点F ,连接CF ,如图①所示.∵四边形AA 1B 1B 为菱形,∴F 为AB 1的中点,BF ⊥AB 1.∵△AB 1C 为等边三角形,∴CF ⊥AB 1,又BF ,CF ⊂平面BFC ,BF ∩CF =F ,∴AB 1⊥平面BFC .又A 1C ⊂平面BFC ,∴AB 1⊥A 1C .(2)设O,G分别为AC,AB的中点,连接B1O,OG,由(1)可知AB1⊥BC,又AC⊥BC,AB1,AC⊂平面AB1C,AB1∩AC=A,∴BC⊥平面AB1C.又OG∥BC,∴OG⊥平面AB1C.∵△AB1C为等边三角形,∴B1O⊥AC,故OG,OC,OB1两两垂直.图②1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.反思感悟又AC⊥PB,PB∩AB=B,且PB,AB⊂平面PAB,所以AC⊥平面PAB.又AC⊂平面ABCD,所以平面PAB⊥平面ABCD.(2)假设存在Q,使得平面BEQF⊥平面PAD.取AB的中点为H,连接PH,则PH⊥AB,因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,所以PH⊥以A为坐标原点,AB,AC所在直线分别为x,y轴,建立如图所示的空间直角坐标系.03限时规范训练(五十五)(1)求PD的长;(2)求点C到平面PEB的距离.解:(1)由题意知DP,DA,DC三线两两垂直.如图所示,以D为坐标原点,DA,DC,DP分别为x轴、y轴、z轴建立空间直角坐标系,则D(0,0,0),B(2,2,0),E(1,0,0).。
用向量法求空间距离ppt课件

1
上节课,我们学习了用立几的方法求距离,我
们来简单回忆一下:
点到平面的距离 直线到与它平行平面的距离
两个平行平面的距离 异面直线的距离
2
如何用向量法求解点到平面的距离呢?
已知点P和面ABCD, 用向量法求解就得构造向量,比如说 AP
过P点作PH垂直平面并交平面于点H,则PH的长为所求
A x x
A
Cy B
B
1200
y C
接下来我们要求面SBC的法向量了
SB (a, 3a, 3a), SC (0, 2 3a, 3a)
n (x, y, z), n SB, n SC
ax 3ay 3az 0, 2 3ay 3az 0
一个平面的法向量有很多,只要满足 上面的这个等式即可,为了计算的方 便,我们通常会要相对简洁的数字组 成的法向量,可以令z=1,则得到平 面SBC的一个法向量了:
首先我们建立空间直角坐标系,求出两异面直线的法向量
A D
A1
D1
B C
B1
AC (1,1, 0), A1D (1, 0,1) n (1, 1, 1)
则两异面直线间的距离d为:
C1
d A1A n (0, 0,1) (1, 1, 1) 3
n
3
3
经过了上面几道例题,我们已经熟悉并掌握了用向量法求空间距
P
我们发现,PH 垂直平面ABCD,
我们可以理解成面ABCD的法向量 n
AP, PH
AP, n
PH AP COS AP, PH
A
B AP COS AP, n
AP n
H
AP AP n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量法求空间距离(教师用)
淄博五中 孙爱梅
一.重点:掌握空间各种距离概念,并能进行他们之间的转化,能通过向量计算求出这些距离.
二.难点:异面直线及点面距离求法.
三.知识点及例题
【知识点一】 两点的距离公式应用
空间中两点的距离公式:A (x 1,y 1,z 1),B (x 2,y 2,x 2),
则|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.
〖例1〗如图,在正方体OABC -O ′A ′B ′C ′中,棱长为1,|AN |=2|CN |, |BM |=2|MC ′|,求MN 的长.
解:由题意得A (1,0,0),B (1,1,0),C (0,1,0),C ′(0,1,1)
∵|AN |=2|CN |,∴N (13,23,0),又∵|BM |=2|MC ′|,∴M (13,1,23
) ∴|MN |=(13-13)2+(1-23)2+(23-0)2=53,即MN 的长为53. 注:此类题目直接套用公式,准确、迅速找到空间两点坐标是解题关键.
【知识点二】通过向量求空间线段的长.
|a →|=a →2
〖例2〗如图,在60°的二面角的棱上,有A 、B 两点,线段AC 、BD 分别在二面角的两个面内,且都垂直于AB ,已知AB =4,AC =6,BD =8,求CD 的长度.
解:∵<AC →,BD →>=60°,∴<CA →,BD →>=120°,又∵CD →=CA →+AB →+BD →, 故有|CD →|2=CD →2=(CA →+AB →+BD →)·(CA →+AB →+BD →)
=CA →2+AB →2+BD →2+2CA →·AB →+2AB →·BD →+2CA →·BD →
∵CA ⊥AB ,BD ⊥AB ,则CA →·AB →=0,AB →·BD →=0,
∴|CD →|2=62+42+82-2×6×8×12
=68,∴|CD →|=217.
注:使用向量法对此题计算时,由于考虑到未知条件CD ,故应用已知的AB →,AC →,BD
→三个向量将未知向时CD →表示出来,再利用|CD →|2=CD →2这一知识解题.
【知识点三】求点到平面距离
|AB →|=|OA →||c os <OA →,n →>|=|OA →·n →||n →|
=|OA →,e →|(其中n →为α的一
→.
〖例3〗正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、CD 的中点,求点F 到平面A 1D 1E
的距离.
解:以D 1为坐标原点,D 1A 1,D 1C 1,D 1D 所在直线分别x 轴、y 轴、z 轴建立空间直角坐标系D 1-xyz . F (0,1,2),D 1(0,0,
0),A 1(2,0,0),E (2,2,1),
D 1A →=(2,0,0),D 1
E →=(2,2,1).
设n →=(x ,y ,z )为平面A 1D 1E 的一个法向量,则n →·D 1A →=0,且n →·D 1E →=0, ⎩⎨⎧2x =0 2x +2y +z =0
,则x =0,令z =2,y =-1,即n →=(0,-1,2), 又D 1F →=(0,1,2),∴点F 到平面A 1D 1E 的距离.
【思考】若G 、H 分别为D 1D ,AA 1中点,如何求平面A 1D 1与平面HGB 距离? 思路:易证平面A 1D 1E ∥平面HGB ,只须求B 到平面AD 1E 的距离就可.
d =|D 1F →·n →| |n →|
=|(0,1,2)·(0,-1,2)|12+22
=35=355,即F 到面A 1D 1E 的距离为355
. 注:①用向量求点面距离可避免了过点向面作距离的麻烦.②注意面面距离与点面距离的转化.
l 1,l 2为异面直线,AB 为l 1,l 2公垂线估,C 、D 分别为l 1,l 2上任意两点,则异面直线
l 1,l 2的距离d =|AB →|=|CD →|·|c os <CD →·n →>|=|CD →·n →| |n →|
=|CD →·e →|(其中n →为公垂线AB 的一个方向向量,e →为公垂线AB 的一个单位方向向量). 〖例4〗在直三棱柱ABD -A 1B 1C 1中,∠BAC =90°,AB =BB 1=1,直线B 1C 与平面ABC 所成的角为30°,试求异面直线A 1C 1与B 1C 距离.
解:以A 为坐标原点,AB 、AC 、AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.
∵B 1B ⊥平面ABC ,∴∠B 1CB 为B 1C 与平面ABC 所成角,∴∠B 1CB =30°, Rt △B 1BC 中,BB 1=1,∴BC =3,又AB =1,Rt △BAC 中,AC
A 1(0,0,1),C 1(0,1,1),
A 1C 1→=(0,1,0),
B 1(1,0,1),
C (0,1,0),B 1C →(-1,1,-1),
且A 1B 1→=(1,0,0),
设n →=(x ,y ,z )为异面直线A 1C 1与B 1C 公垂线的一个方向向量,
则n →·A 1C 1→=0
,n →·B
1C →
=0
⎩⎨⎧y =0 -x +y -z =0,∴y =0,令x =1,则z =-1,∴n →=(1,0,-1), 则两异面直线A 1C 1与B 1C 是距离
d =|A 1B 1→·n →| |n →|
=|(0,1,2)·(0,-1,2)|2=22. 注:用向量求异面直线距离可避免做异面直线的公垂线段麻烦.
课堂测试
1、在棱长为1的正方体ABCD -A 1B 1C 1D 1中,F 是BD 的中点,G 在棱CD 上,且CG =14
CD ,E 为C 1G 的中点,则EF 的长为( ) A .58 B .12 C .23 D .418
,∠=A .62 B .6 C .12 D .144
3、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线AC 与BC 1间距离.
4、正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,点E为CC1中点,求点D1到BDE 的距离.
1、如图,建立空间直角坐标系
D-xyz,已知正方体ABCD-A1B1C1D1的棱长为1,点
P是正方体对角线D1B的中点,点Q在棱CC1上.
①当2|C1Q|=|QC|时,求|PQ|.
②当点Q在棱CC1上移动时,探究|PQ|的最小值.
2、在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2,
⑴求证:平面A1BC1∥平面ACD1;⑵求⑴中两个平面距离.。