(完整word版)一次函数动点问题专题练习(含答案)

合集下载

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(五)(Word版,带答案)

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(五)(Word版,带答案)

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(五)1.已知直线y=kx+b经过点(2,3)和(﹣4,1),求该直线的表达式.2.如图1,在平面直角坐标系xOy中,直线y=2x+6与x轴、y轴分别交于A、B两点.(1)将线段AB绕点A逆时针旋转90°得到线段AC,过点C作CD⊥x轴于点D,求点C 的坐标;(2)如图2,在x轴上是否存在点P,使得△PAB是等腰三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由;(3)如图3,点M为直线AB上一动点,点N(4,0)为x轴上一定点,当点M在直线AB 上运动时,在y轴上是否存在点Q,使△QMN是以MN为底边的等腰直角三角形?若存在,请求出点Q的坐标,若不存在,请说明理由.3.有这样一个问题,探究函数y=的图象与性质.小范根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小范的探究过程,请补充完成:(1)化简函数解析式,当x≥1时,y=,当x<1时,y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y=的图象;(3)结合函数图象,写出该函数的一条性质:;(4)结合画出的函数图象,解决问题:若关于x的方程ax+1=只有一个实数解,直接写出实数a的取值范围:.4.如图,在平面直角坐标系中,长方形OABC的边OC=2,过点B的直线y=x﹣3与x轴交于点E.(1)求点B的坐标.(2)连结CE,求线段CE的长.5.在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B(p,2m),其中m>0.(1)若m=1,且k=﹣1,求点B的坐标;(2)已知点A(m,0),若直线y=kx+4m与x轴交于点C(n,0),n+2p=4m,若N是线段AB上一点,且点N到坐标原点O与到点C的距离之和等于线段OB的长,求sin∠BON.6.如图,直线l1:y=x和直线l2:y=kx+3交于点A(2,2),P(t,0)是x轴上一动点,过点P作平行于y轴的直线,使其与直线l1和直线l2分别交于点D,E.(1)求k的值.(2)用t表示线段DE的长.(3)点M是y轴上一动点,当△MDE是等腰直角三角形时,求出t的值及点M的坐标.7.已知y+3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)将所得函数图象平移,使它过点(0,3),求平移后直线的解析式.8.如图,已知M(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式:(2)点P从点A开始以每秒2个单位长度的速度匀速沿着x轴向右运动,若运动时间用t秒)表示.△BCP的面积用S表示,请你直接写出S与t的函数关系.9.过点C(﹣6,c)的直线y=2x+6,交x轴于点A,交y轴于点B.(1)点A坐标;点B坐标;点C坐标;(2)如图,在BC左侧有一点D,使△BCD是等腰直角三角形,并且BD=CD,求点D的坐标;(3)过点A的直线AE把△BOC的面积分为1:2,交△BOC另一边于点E,求点E的坐标.10.如图,在平面直角坐标系中,已知一次函数y=kx+b的图象与x轴交于点A(4,0),与y轴交于点B(0,2).(1)求直线AB的解析式;(2)在坐标系中能否找到点P,使得∠APB=90°且AP=BP?如果能,求出满足条件的点P的坐标;如果不能,请说明理由.参考答案1.解:∵直线y=kx+b经过点(2,3)和(﹣4,1),∴,解得.故该直线的解析式为y=x+.2.解:(1)∵∠CAD+∠BAO=90°,∠BAO+∠ABO=90°,∴∠CAD=∠ABO,∴∠ADC=∠BOA=90°,AB=AC,∴△ADC≌△BOA(AAS),∴AD=OB=6,CD=OA=3,故点C的坐标为(﹣9,3);(2)设点P(x,0),由点A、B、P的坐标得:AP2=(x+3)2,PB2=x2+36,AB2=45,当PA=PB时,即(x+3)2=x2+36,解得x=4.5;当PA=AB时,同理可得x=﹣3±3;当PB=AB时,同理可得x=3或﹣3(舍去),故点P的坐标为(4.5,0)或(﹣3+3,0)或(﹣3﹣3,0)或(3,0);(3)存在,理由:设点M(m,2m+6),点Q(0,n),过点Q作x轴的平行线交过点M与y轴的平行线于点G,交过点N与y轴的平行线于点H,∵△QMN是以MN为底边的等腰直角三角形,则MQ=NQ,∠MQN=90°,则∠MQG+∠NQH=90°,∠NQH+∠QNH=90°,∴∠MQG=∠QNH,∵∠MGQ=∠QHN=90°,MQ=NQ,∴△MGQ≌△QHN(AAS),∴MG=QH,GQ=NH,即|2m+6﹣n|=4,﹣m=|n|,则2m+6﹣n=4,﹣m=﹣n或n﹣2m﹣6=4,﹣m=n,解得,故点Q的坐标为(0,﹣2)或(0,).3.解:(1)当x≥1时,y==x,当x<1时,y==1;故答案为:x;1;(2)根据(1)中的结果,在所给坐标系中画出函数y=的图象如下:(3)结合函数图象,该函数的一条性质为:不过原点;故答案为:不过原点;(4)∵y=ax+1过点(0,1)∴当a<0或a≥1时,方程ax+1=只有一个实数解.故答案为:a<0或a≥1.4.解:(1)∵OC=2,∴C(0,2),∵四边形OABC是长方形,∴BC∥OA,∴点B的纵坐标为2,∵点B在直线y=x﹣3上,∴x﹣3=2,∴x=5,∴B(5,2);(2)∵直线y=x﹣3与x轴相交于点E,令y=0,∴x﹣3=0,∴x=3,∴E(3,0),∴CE==.5.解:(1)∵一次函数y=kx+4m(m>0)的图象经过点B(p,2m),∴2m=kp+4m.∴kp=﹣2m.∵m=1,k=﹣1,∴p=2.∴B(2,2).(2)将B(p,2m),C(n,0)分别代入y=kx+4m,得kp+4m=2m且kn+4m=0.可得n=2p.∵n+2p=4m,∴p=m.∴A(m,0),B(m,2m),C(2m,0).∵x B=x A,∴AB⊥x轴,且OA=AC=m.∴对于线段AB上的点N,有NO=NC.∴点N到坐标原点O与到点C的距离之和为NO+NC=2NO.∵∠BAO=90°,∴OB===m,在Rt△BAO,Rt△NAO中分别有OB2=AB2+OA2=5m2,NO2=NA2+OA2=NA2+m2.∵点N到坐标原点O与到点C的距离之和等于线段OB的长,∴2NO=OB,则4NO2=OB2.即4(NA2+m2)=5m2.可得NA=m.∴ON==m,作NM⊥OB于M,∵S△OBN =S△AOB﹣S△AON,∴OB•MN=OA•AB﹣OA•AN,即×m×MN=×m•2m﹣×m•m,∴MN =m ,∴sin ∠BON ===.6.解:(1)由题意得,l 2过点A (2,2), 则将x =2,y =2,代入y =kx +3得2=2k +3, 解得k =;(2)∵过点P 的直线平行于y 轴, ∴D ,E 两点的横坐标是t ,∴将x =t 代入y =x 中,y =t ,代入y =x +3中,, ∴E 点坐标(t ,), 当t ≥2时,D 点在E 点的上方,则DE 的长l =y D ﹣y E =t ﹣()=; 当t <2时,D 点在E 点的下方;则DE 的长l =y E ﹣y D =()﹣t =, 综上,DE 的长l =;(3)①当t <2时,若点M 是直角顶点时,如图一,则MF =|t |=,解得t =或﹣6,则该情况存在,将t =分别代入直线l 1,l 2,得D (),E (), ∴M (0,); 将t =﹣6分别代入直线l 1,l 2,得D (﹣6,﹣6),E (﹣6,6), ∴M (0,0);若点D是直角顶点时,如图二,则MD=|t|=DE=,解得t=<2,或t=6>2(舍去),此时M(0,y D),即(0,);若点E是直角顶点时,如图三,则ME=|t|=DE=,解得t=<2,此时M(0,y E),即(0,).当t≥2时,t=t﹣3,解得t=6,与x轴的交点就是(6,0),即E点(6,0),D(6,6),∴l2∴M(0,6),(0,0).综上:t=时,M(0,),M(0,0);t=时,M(0,),M(0,);t=6时,M(0,6),M(0,0).7.解:(1)设y+3=kx,把x=2,y=7代入得:7+3=2k,即k=5,则y与x函数关系式为y+3=5x,即y=5x﹣3;(2)设平移后的解析式为y=5x﹣3+m,把x=0,y=3代入得:3=﹣3+m,即m=6,则平移后直线解析式为y=5x+3.8.解:(1)过C点向x轴作垂线,垂足为D,由位似图形性质可知:△ABO ∽△ACD , ∴.由已知A (﹣4,0),B (0,4),可知:AO =BO =4.∴AD =CD =9,∴C 点坐标为(5,9)直线BC 的解析是为:y =x +4;(2)由题意得:S =S △APC ﹣S △ABP =×2t ×9﹣×2t ×4=5t (t >0).9.解:(1)令y =0,0=﹣2x +6,x =﹣3,则A (﹣3,0);令x =0,y =6,则B (0,6);把x =﹣6带入直线关系式得:y =﹣2×(﹣6)+6=﹣6,则D (﹣6,﹣6),故答案为:(﹣3,0),(0,6)、(﹣6,﹣6);(2)如图,过点D 作DE ⊥y 于点E ,过点C 作CF ⊥DE 与点F ,交x 轴于点H ,则∠FDC+∠FCD=90°,∠CFD=∠DEB=90°∵△BDC为等腰直角三角形,BD=CD,∴∠BDC=90°,∴∠BDE+∠CDF=90°,∴∠BDE=∠DCF∵∠CFD=∠DEB,∠BDE=∠DCF,BD=CD,∴△BDE≌△DCF(AAS),∴DE=CF,BE=DF,∵C(﹣6,﹣6),∴CH=FE=6,∴FH=DF=BE,∵B(0,6),∴BO=6,∴EO=BE=3,∴DE=FE+DF=6+3=9,∴D(﹣9,3);(3)△BOC的面积=×BO×|x C|=×6×6=18,同理可得:S△AOB =S△AOC=9,①当点E(E′)在边BO上时,由题意得:S△BAE′=S△BOC=×18=6=×BE′×AO=×BE′×3,解得BE′=4,而点B(0,6),故点E′的坐标为(0,2);②当点E在边CO上时,由题意得:S△AEC =S△BOC=×18=6,而S△AOC =9,故S△AEO=9﹣6=3=×AO×|y E|=×3×|y E|,解得y E=﹣2,由点O、C的坐标知,直线OC的表达式为y=x,当y=﹣2时,y=x=﹣2,故点E的坐标为(﹣2,﹣2),故点E的坐标为(0,2)或(﹣2,﹣2).10.解:(1)将点A、B的坐标代入一次函数表达式得,解得,故直线AB的表达式为y=﹣x+2;(2)①当点P在AB上方时,如下图,设点P(a,b),过点P分别作x轴、y轴的垂线,垂足分别为M、N,∵∠APB=90°,∴∠APM+∠MPB=90°,∵∠MPB+∠BPN=90°,∴∠NPB=∠MPA,而BP=AP,∠PNB=∠PMA=90°,∴△PNB≌△PMA(AAS),∴AM=BN,PM=PN,即,解得,故点P的坐标为(3,3);②当点P在AB下方时,同理可得:点P(1,﹣1);综上,点P的坐标为(3,3)或(1,﹣1).。

一次函数之动点问题 (习题及答案).

一次函数之动点问题  (习题及答案).

一次函数之动点问题(习题)1.如图,在平面直角坐标系中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是线段OD 的中点,连接CD.动点P 从点O 出发,以每秒1 个单位长度的速度沿O→A→C→B 的路线向终点B 运动,动点Q 从点O 同时出发,以相同的速度沿O→B→D→B 的路线向终点B 运动.设△OPQ 的面积为S,点P 运动的时间为t 秒(0<t<6).求S 与t 之间的函数关系式,并写出自变量t 的取值范围.2 2. 如图,直线 y =x +4 与 x 轴、y 轴分别交于点 A ,B ,直线 y =-x +b过点 B ,且与 x 轴交于点 C .动点 P 从点 C 出发,沿 CA 方向以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从点 A 同 时出发,沿折线 AB -BC 以每秒 个单位长度的速度向终点 C 运动.设点 P 运动的时间为 t 秒.(1) 设△CPQ 的面积为 S ,求 S 与 t 之间的函数关系式,并写出自变量 t 的取值范围;(2) 当 t = 时,PQ ∥AB ;(3) 当 0<t ≤4 时,若△APQ 是等腰三角形,求 t 的值.⎨ 【参考答案】⎧ 1 t 2(0 < t ≤2) 2 1. S = ⎪ 2 < t ≤ 4) . ⎨t ( ⎪ 1 2⎪ t - 7t + 24(4 < t < 6) ⎩ 2⎧ 1 t 2(0 < t ≤ 4) 2. (1) S = ⎪ 2 ⎪- 1 ⎩ 2(2) 16 ;3; t 2 + 4t (4 < t < 8) (3)t 的值为8 - 8 , 8 或 4. 32 ⎪。

完整版)八年级数学一次函数动点问题

完整版)八年级数学一次函数动点问题

完整版)八年级数学一次函数动点问题八年级数学一次函数动点问题1、如图所示,以等边三角形OAB的边OB所在直线为x 轴,点O为坐标原点,在第一象限建立平面直角坐标系。

其中,△OAB边长为6个单位。

点P从O点出发沿折线OAB 向B点以3单位/秒的速度运动,点Q从O点出发沿折线OBA向A点以2单位/秒的速度运动。

两点同时出发,运动时间为t(单位:秒),当两点相遇时运动停止。

①点A的坐标为(3,3),P、Q两点相遇时交点的坐标为(3,3);②当t=2时,△OPQ的面积为3/2;当t=3时,△OPQ的面积为9/4;③设△OPQ的面积为S,求S关于t的函数关系式为S=(3t-t^2)/4;④当△OPQ的面积最大时,在y轴上无法找到一点M,使得以M、P、Q为顶点的三角形是直角三角形。

2、如图所示,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动。

设点P、Q移动的时间为t秒。

1) 直线AB的解析式为y=-x+6;2) 当t=5时,△APQ的面积为24/5平方单位;3) △OPQ为直角三角形的时间范围为2≤t≤4;4) 无论t为何值,△OPQ都不可能为正三角形。

若点Q的运动速度为4个单位/秒,则此时t=2.3、如图所示,在直角三角形△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点。

它们同时分别从点A、O向B 点匀速运动,速度均为1cm/秒。

设P、Q移动时间为t(≤t≤4)。

1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示)。

证明:由于△OPM与△OAB相似,因此有PM/OB=AO/AB,即PM=AO*OB/AB=9/5.又因为△APM与△AOB相似,因此有AM/OA=PM/OB,即AM=OA*PM/OB=27/20.因此AM:AO=PM:BO=AP:AB=9:15:20.P点的坐标为(3t/5,18t/5)。

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(四)(Word版,带答案)

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(四)(Word版,带答案)

九年级中考数学考点提升训练——专题:《一次函数:动点综合》(四)1.如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.(1)求出图②中线段PQ所在直线的函数表达式;(2)将△DCE沿DE翻折,得△DME.①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.3.数学课上,李老师提出问题:如图1,在正方形ABCD中,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.经过思考,小聪展示了一种正确的解题思路.取AB的中点H,连接HE,则△BHE为等腰直角三角形,这时只需证△AHE与△ECF全等即可.在此基础上,同学们进行了进一步的探究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(不含点B,C)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程,如果不正确,请说明理由;(2)小华提出:如图3,如果点E是边BC延长线上的任意一点,其他条件不变,那么结论“AE=EF”是否成立?(填“是”或“否”);(3)小丽提出:如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为1,当E为BC边上(不含点B,C)的某一点时,点F恰好落在直线y=﹣2x+3上,请直接写出此时点E的坐标.4.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.5.如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.6.(1)已如:如图,正方形ABCD中,∠EDF=45°,DE、DF分别交边AB、BC平点E、F,求证:EF=AE+CF.(2)在平面直角坐标系中、正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点,将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上停止,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N.设△MBN的周长为P,在旋转正方形OABC的过程中,P值是否有变化?请证明你的结论.7.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.=4,求点C坐标.(2)若直线AB上的点C在第一象限,且S△AOC8.如图,已知直线y=x+2交x轴于A,交y轴于B,过B作BC⊥AB,且AB=BC,点C 在第四象限,点R(3,0).点P、Q分别在直线AB和BC上,△PQR是以RQ为斜边的等腰直角三角形,求出点P的坐标.9.小东同学根据函数的学习经验,对函数y=|x﹣1|+|x+3|进行了探究,下面是他的探究过程:(1)已知x=﹣3时|x+3|=0;x=1时|x﹣1|=0,化简:①当x<﹣3时,y=;②当﹣3≤x≤1时,y=;③当x>1时,y=;(2)在平面直角坐标系中画出y=|x﹣1|+|x+3|的图象,根据图象,写出该函数的一条性质:;(3)根据上面的探究,解决下面问题:已知A(a,0)是x轴上一动点,B(1,0),C(﹣3,0),则AB+AC的最小值是.10.如图,在平面直角坐标系中,直线l:y=x+4分别与x轴、y轴交于点B、C,且1:y=x交于点A.与直线l2(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S=×AP×OB=×AB×CP,△ABP∴CP=,∴AC===,∴S=×AC×PC=;△APC(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).2.解:(1)设线段PQ所在直线的函数表达式为y=kx+b,将P(3,4)和Q(6,0)代入得,,解得,∴线段PQ所在直线的函数表达式为y=﹣x+8;(2)①如图1,连接CM并延长CM交AB于点F,∵∠C=90°,AB=10,BC=8,∴AC==6,由(1)得BE=﹣x+8,∴CE=x,∴,∵∠DCE=∠ACB,∴△DCE∽△ACB,∴∠DEC=∠ABC,∴DE∥AB,∵点C和点M关于直线DE对称,∴CM⊥DE,∴CF⊥AB,=AB•CF,∵S△ABC∴6×8=10×CF,∴CF=,∵∠C=90°,CD=x,CE=x,∴DE==x,∴CM=x,MF=x,过点M作MG⊥AC于点M,过点M作MH⊥BC于点H,则四边形GCHM为矩形,∵∠GCM+∠BCF=∠BCF+∠ABC=90°,∴∠GCM=∠ABC,∵∠MGC=∠ACB=90°,∴△CGM∽△BCA,∴,即,∴MG=x,CG=x,∴MH=x,(Ⅰ)若点M落在∠ACB的平分线上,则有MG=MH,即x,解得x=0(不合题意舍去),(Ⅱ)若点M落在∠BAC的平分线上,则有MG=MF,即x,解得x=,(Ⅲ)若点M落在∠ABC的平分线上,则有MH=MF,即x=x,解得x=.综合以上可得,当x=或x=时,点M落在△ABC的某条角平分线上.②当0<x≤3时,点M不在形外,△DME与△ABC重叠部分面积为△DME的面积,∴S=,当x=3时,S的最大值为=6.当3<x≤6时,点M在形外,如图2,由①知CM =2CQ =x , ∴MT =CM ﹣CF =,∵PK ∥DE ,∴△MPK ∽△MDE , ∴==,∴S △MPK =S △MDE •,∵S 四边形DEKP =S △MDE ﹣S △MPK ,∴S 四边形DEKP ==,化简得S 四边形DEKP =﹣2x 2+16x ﹣24=﹣2(x ﹣4)2+8,∴当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.综合可得,当x =4时,△DME 与△ABC 重叠部分面积的最大值为8.3.解:(1)仍然成立,如图2,在AB 上截取BH =BE ,连接HE ,∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵BH=BE,AB=BC,∴∠BHE=∠BEH=45°,AH=CE,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;(2)如图3,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA)∴AE=EF,故答案是:是;(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM==a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).4.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM ∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.:y=x+6与y轴交于点A,5.解:(1)∵直线l1∴当x=0时,y=0+6=6,∴A(0,6),∵AO=2BO,∴B(0,﹣3),∵C(﹣3,3),代入直线l:y=kx+b中得,2解得.的解析式为y=﹣2x﹣3;故直线l2=AB•|x C|=×(6+3)×3=.(2)S△ABC6.(1)证明:∵四边形ABCD为正方形,∴DA=DC,∠A=∠ADC=∠ACB=90°,把△DAE绕点D逆时针旋转90°得到△DCG,如图1,∴∠EDG=90°,DE=DG,AE=CG,∠DCG=∠A=90°,∵∠DCB+∠DCG=180°,∴B、C、G三点共线,∵∠EDF=45°,∴∠GDF=∠EDG﹣45°=45°,∴∠EDF=∠GDF,在△DFE和△DFG中,∴△DFE≌△DFG(SAS),∴EF=FG,∴EF=FC+CG=FC+AE;(2)解:在旋转正方形OABC的过程中,P值不变.理由如下:∵直线y=x为第一、三象限的角平分线,∴∠MON=45°,由(1)的结论得MN=AM+CN,∴P=BM+BN+MN=BM+AM+BN+CN=BA+BC=2AB,而AB为正方形的边长,∴P的值为定值.7.解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=﹣4;=4,点A(2,0),(2)∵S△AOC∴OA=2,∴•OA•y C=4,解得y C=4,把y=4代入y=2x﹣4得2x﹣4=4,解得x=4,∴C(4,4).8.解:∵直线AB为:y=x+2,BC⊥AB,∴直线BC为:y=﹣x+2,①当点P在第二象限时,如下图,过点P作y轴的平行线交过点Q与x轴的平行线于点G,交x轴于点H,延长GQ交y轴于点M,∵∠GAQ+∠HPR=90°,∠HPR+∠PRH=90°,∴∠PRH=∠GAQ,又∠QGA=∠PHR=90°,PR=PQ,∴△PHR≌△QGP(AAS),∴GQ=PH,HR=PG,设:点P、Q的坐标分别为(m,m+2)、(n,﹣n+2),GQ=PH,即:n﹣m=m+2…①,HR=PG,即:﹣n+2﹣m﹣2=3﹣m…②,联立①②并解得:m=﹣,故点P的坐标(﹣,),②当点P在第一象限时,同理可得:点P的坐标为(,),故:点P的坐标为(﹣,)或(,).9.解:(1)∵x=﹣3时|x+3|=0;x=1时|x﹣1|=0∴当x<﹣3时,y=1﹣x﹣x﹣3=﹣2﹣2x;②当﹣3≤x≤1时,y=1﹣x+x+3=4;③当x>1时,y=x﹣1+x+3=2x+2;故答案为:﹣2﹣2x;4;2x+2.(2)在平面直角坐标系中画出y=|x﹣1|+|x+3|的图象,如图所示:根据图象,该函数图象不过原点.故答案为:函数图象不过原点;(3)根据上面的探究可知当A(a,0)位于点B(1,0)和点C(﹣3,0)之间时,AB+AC 有最小值4.故答案为:4.10.解:(1)∵y=x+4分别与x轴、y轴交于点B、C,∴点C坐标为(0,4),点B坐标为(8,0),∵直线l1:y=x+4与直线l2:y=x交于点A.∴﹣x+4=x,∴x=,∴点A坐标为(,);(2)设点D坐标为(x,x),∵△COD的面积为6,∴×4×|x|=6,∴x=±3,∵D是线段OA上的点,∴x=3,∴点D(3,1),设直线CD解析式为:y=kx+4,∴1=3k+4,∴k=﹣1,∴直线CD解析式为:y=﹣x+4;(3)若以OC为边,设点P(a,﹣a+4)(a≥0),如图,当四边形OCPQ是菱形,∴OC=CP=4,PQ∥OC,PQ=OC=4,∴4=,∴a1=2,a2=﹣2(舍去),∴点P(2,4﹣2),∴点Q(2,﹣2);当四边形OCQ'P'是菱形,∴OC=OP'=4,PQ'=OC=4,PQ'∥OC,∴4=,∴a1=0(舍去),a2=4,∴点P'(4,0),∴点Q'(4,4);若OC为对角线,∵以O、C、P、Q为顶点的四边形是菱形,∴CO与PQ互相垂直平分,∴点P的纵坐标为2,∴点P(2,2),∴点Q坐标为(﹣2,2);综上所述:点Q的坐标为(﹣2,2)或(4,4)或(2,﹣2).。

一次函数之动点问题(一)(北师版)(含答案)

一次函数之动点问题(一)(北师版)(含答案)

一次函数之动点问题(一)(北师版)(含答案)学生做题前请先回答以下问题:问题1:动点问题的特征是什么?主要考察运动的什么?问题2:一次函数背景下研究动点问题的思考方向是什么?①将函数信息转化为背景图形的信息;②分析运动过程,分段,找到起点和终点;③分析几何特征,表达,设计方案求解。

问题3:分析运动过程时,需要注意哪几个要素?一次函数之动点问题(一)(北师版)1.如图,直线与x轴、y轴分别交于A,B两点,直线与x 轴交于点C,与直线交于点P。

动点M从点A出发,以每秒1个单位长度的速度沿折线AP—PC向点C匀速运动(点M不与点A,C重合),设△OMC的面积为S,运动时间为t秒,则S与t之间的函数关系式为()。

答案:B解题思路:本题考察一次函数之动点问题。

根据题目,我们可以将函数信息转化为背景图形的信息,分析运动过程,找到起点和终点,分析几何特征,表达,设计方案求解。

具体来说,我们可以通过计算△___的面积来得到S与t之间的函数关系式,即S=1/2*t*(8-t)。

2.已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点。

动点P从点O出发,以每秒2个单位长度的速度,沿折线OA—AB运动。

设运动的时间为t秒,△OPD的面积为S,则S与t的函数关系式为()。

答案:C解题思路:本题同样考察一次函数之动点问题。

根据题目,我们可以将函数信息转化为背景图形的信息,分析运动过程,找到起点和终点,分析几何特征,表达,设计方案求解。

具体来说,我们可以通过计算△OPD的面积来得到S与t之间的函数关系式,即S=2t*(4-t)。

3.如图,在平面直角坐标系中,直线分别交x轴、y轴于点A,B,D是AB的中点。

动点P从点A出发沿折线AD-DO以每秒1个单位长度的速度向终点O运动,同时动点Q从点D出发沿折线DO-OB以相同的速度运动。

(完整版)一次函数动点问题

(完整版)一次函数动点问题

一次函数动点问题1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上∴CB=,C′B=∴AC+CB=AC+CB′=.在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是.如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P点坐标.2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求a的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△POC的面积是S,试求S关于m的函数关系式.3.已知函数y=kx+b的图象经过点A(4,3)且与一次函数y=x+1的图象平行,点B(2,m)在一次函数y=kx+b的图象上(1)求此一次函数的表达式和m的值?(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小.4.已知:一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S=2,求点P的坐标.△OAP5.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x的图象为直线l1,求过点P(1,3)且与已知直线l1平行的直线l2的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为.(4)在x轴上找一点M,使△BMP为等腰三角形,求M的坐标.(直接写出答案)6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1•k2=﹣1,我们就称直线l1与直线l2相互垂直,现请解答下面的问题:已知直线l与直线y=﹣x﹣1互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l的函数表达式;(2)若点C是线段AB上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.一次函数动点问题参考答案与试题解析一.解答题(共6小题)1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上∴CB=CB',C′B=C'B'∴AC+CB=AC+CB′=AB'.在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是.如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是2;如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P点坐标.【解答】解:(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,∵直线l是点B,B′的对称轴,点C,C′在l上∴CB=CB',C′B=C'B'∴AC+CB=AC+CB′=AB'.在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小故答案为:CB',C'B',AB';(2)模型应用①解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是.在正方形ABCD中,AB=AD=2,∠BAD=90°∵点E是AB中点,∴AE=1,根据勾股定理得,DE=,即:EF+FB的最小值,故答案为:DE,;②如图⑤,由圆的对称性可知,A与A'关于直径CD对称,连结A'B交CD于F,则AE+EB的最小值就是线A'BE的长度,∴∠AOD=∠A'OD=60°∵点B是的中点,∴∠AOB=∠BOD=∠AOD=30°,∴∠A'OB=90°∵⊙O的直径为4,∴OA=OA'=OB=2,在Rt△A'OB中,A'B=2,∴BP+AP的最小值是2.故答案为2,③如图⑥,由平面坐标系中的对称性可知,C与C'关于直径y轴对称,连结C'D交y轴于P,则PC+PD的最小值就是线C'D的长度,∵一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,∴A(2,0),B(0,4),∴C(1,0),D(1,2),∵C与C'关于直径y轴对称,∴C'(﹣1,0),∴C'D==2,∴PC+PD的最小值为2,∵C'(﹣1,0),D(1,2),∴直线C'D的解析式为y=x+1,∴P(0,1).2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求a的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△POC的面积是S,试求S关于m的函数关系式.【解答】解:①设一次函数解析式为y=kx+b,依题意,得,解得,∴一次函数解析式为y=2x﹣1;②将点(a,2)代入y=2x﹣1中,得2a﹣1=2,③由y=2x﹣1,令y=0得x=,∴C(,0),又∵点P(m,n)在直线y=2x﹣1上,∴n=2m﹣1,∴S=××|n|=|(2m﹣1)|=|m﹣|.3.已知函数y=kx+b的图象经过点A(4,3)且与一次函数y=x+1的图象平行,点B(2,m)在一次函数y=kx+b的图象上(1)求此一次函数的表达式和m的值?(2)若在x轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P的横坐标为多少时,PA+PB的值最小.【解答】解:(1)∵函数y=kx+b的图象经过点A(4,3)且与一次函数y=x+1的图象平行,∴,解得:,∴一次函数的表达式为y=x﹣1.当x=2时,m=x﹣1=2﹣1=1,∴m的值为1.(2)作点B关于x轴的对称点B′,连接AB′交x轴于点P,此时PA+PB取最小值,如图所示.∵点B的坐标为(2,1),∴点B′的坐标为(2,﹣1).设直线AB′的表达式为y=ax+c,将(2,﹣1)、(4,3)代入y=ax+c,,解得:,∴直线AB′的表达式为y=2x﹣5.当y=0时,2x﹣5=0,∴当点P的横坐标为时,PA+PB的值最小.4.已知:一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S=2,求点P的坐标.△OAP【解答】解:(1)设一次函数解析式为y=kx+b,把(﹣2,3)、(2,﹣1)分别代入得,解得,所以一次函数解析式为y=﹣x+1;(2)当y=0时,﹣x+1=0,解得x=1,则A(1,0),设P(t,﹣t+1),=2,因为S△OAP所以×1×|﹣t+1|=2,解得t=﹣3或t=5,所以P点坐标为(﹣3,4)或(5,﹣4).5.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x的图象为直线l1,求过点P(1,3)且与已知直线l1平行的直线l2的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为Q(0,).(4)在x轴上找一点M,使△BMP为等腰三角形,求M的坐标.(直接写出答案)【解答】解:(1)根据正比例函数y=﹣x的图象为直线l1,设直线l2的函数表达式为y=﹣x+b,把P(1,3)代入得:3=﹣1+b,即b=4,则过点P(1,3)且与已知直线l1平行的直线l2的函数表达式为y=﹣x+4;(2)过O作ON⊥AB,如图1所示,ON为l1和l2两平行线之间的距离,对于直线y=﹣x+4,令x=0,得到y=4;令y=0,得到x=4,∴A(0,4),B(4,0),即OA=OB=4,∵△ABC为等腰直角三角形,∴AB==4,且ON为斜边上的中线,∴ON=AB=2,则l1和l2两平行线之间的距离为2;(3)找出B关于y轴的对称点B′(﹣4,0),连接PB′,与y轴交于点Q,连接PQ,此时QP+QB最小,设直线B′P的解析式为y=mx+n,把B′和P坐标代入得:,解得:m=,n=,∴直线B′P的解析式为y=x+,令x=0,得到y=,即Q(0,);故答案为:Q(0,);(4)如图2所示,分三种情况考虑:当PM1=PB时,由对称性得到M1(﹣2,0);当PM2=BM2时,M2为线段PB垂直平分线与x轴的交点,∵直线PB的解析式为y=﹣x+4,且线段PB中点坐标为(2.5,1.5),∴线段PB垂直平分线解析式为y﹣1.5=x﹣2.5,即y=x﹣1,令y=0,得到x=1,即M2(1,0);当PB=M3B==3时,OM3=OB+BM3=4+3,此时M3(4﹣3,0),M3(4+3,0).综上,M的坐标为(﹣2,0)或(1,0)或(4﹣3,0)或(4+3,0).6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1•k2=﹣1,我们就称直线l1与直线l2相互垂直,现请解答下面的问题:已知直线l与直线y=﹣x﹣1互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l的函数表达式;(2)若点C是线段AB上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.【解答】解:(1)设直线l的解析式为y=kx+b,∵直线l与直线y=﹣x﹣1互相垂直,∴﹣k=﹣1,解得k=2,∵直线l的图象过点P(﹣1,4),∴﹣k+b=4,即﹣2+b=4,解得b=6,∴直线l的解析式为y=2x+6;(2)如图1,过O作OC⊥AB于点C,此时线段OC的长度最小,在y=2x+6中,令x=0可得y=6,令y=0可求得x=﹣3,∴A(0,6),B(﹣3,0),∴OA=6,OB=3∴AB==3,∵AB•OC=OA•OB,∴3OC=3×6,∴OC=,即线段OC长度的最小值为;(3)如图2,作点P关于y轴的对称点P″,连接BP″交y轴于点Q,过P″作P″G ⊥x轴于点G,则PQ=P″Q,∴PQ+BQ=BQ+QP″,∵点B、Q、P″三点在一条线上,∴BQ+PQ最小,∵P(﹣1,4),∴P″(1,4),∴P″G=4,OG=1,∴BG=BO+OG=4=P″G,∴∠OBQ=45°,BP″=4,∴OQ=BO=3,∴Q点坐标为(0,3),又BP==2,此时△BPQ的周长=BP+BP″=4+2;(4)由(3)可知∠OBQ=∠OQB=45°,∴∠PQA=∠P″QA=45°,∴PQ ⊥BQ ,如图3,延长PQ 到点P′,使PQ=P′Q ,则P′即为点P 关于BQ 的对称点,过P′作P′H ⊥y 轴于点H ,由(3)可知PQ=QP′=,∴QH=HP′=1, ∴OH=OQ ﹣QH=3﹣1=2,∴S 四边形ABOP′=S △AOB +S △AOP′=×6×3+×6×1=12,即四边形ABOP′的面积为12.。

一次函数动点综合题(含解析)

一次函数动点综合题(含解析)

一次函数综合题(含解析)一.解答题(共12小题)1.求出将直线y=﹣x+绕点A(2,1)顺时针旋转45度得到的直线表达式.2.如图1,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,过点B 作线段BC⊥AB且BC=AB,直线AC交x轴于点D.(1)求A,B两点的坐标;(2)求点C的坐标,并直接写出直线AC的函数关系式;(3)若点P是图1中直线AC上的一点,连接OP,得到图2.请在下面的A,B两题中任选一题解答,我选择.A.当点P的纵坐标为3时,求△AOP的面积;B.当点P在第二象限,且到x轴,y轴的距离相等时,求△AOP的面积;(4)若点Q是图1中坐标平面内不同于点B、点C的一点.请在下面的A,B两题中任选一题解答,我选择A.当以点B,D,Q为顶点的三角形与△BCD全等时,直接写出点Q的坐标;B.当以点C,D,Q为顶点的三角形与△BCD全等时,直接写出点Q的坐标.3.如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.4.如图,直线y=4﹣x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)当点M在AB上运动时,则四边形OCMD的周长=.(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a≤4),在平移过程中,当平移距离a为多少时,正方形OCMD的面积被直线AB分成1:3两个部分?5.如图,在平面直角坐标系中,直线AB交x轴于点A(﹣4,0),交y轴于点B (0,2),P为线段OA上一个动点,Q为第二象限的一个动点,且满足PQ=PA,OQ=OB.(1)求直线AB的函数关系式;(2)若△OPQ为直角三角形,试求点P的坐标,并判断点Q是否在直线AB上.6.矩形ABCD在如图所示的直角坐标系中,点A的坐标为(0,3),BC=2AB、直线l经过点B,交AD边于点P1,此时直线l的函数表达式是y=2x+1.(1)求BC、AP1的长;(2)沿y轴负方向平移直线l,分别交AD、BC边于点P、E.①当四边形BEPP1,是菱形时,求平移的距离;②设AP=m,当直线l把矩形ABCD分成两部分的面积之比为3:5时,求m的值.7.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S=8时,求点P的坐标;△ABP③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.8.如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.9.在直角坐标系xOy中,点A、点B、点C坐标分别为(4,0)、(8,0)、(0,﹣4).(1)求过B、C两点的一次函数解析式;(2)若直线BC上有一动点P(x,y),以点O、A、P为顶点的三角形面积和以点O、C、P为顶点的三角形面积相等,求P点坐标;(3)若y轴上有一动点Q,使以点Q、A、C为顶点的三角形为等腰三角形,求Q点坐标.10.已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(4,0),B (0,﹣4),P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.。

(完整word版)一次函数及动点问题(有难度)

(完整word版)一次函数及动点问题(有难度)

一次函数及动点问题1、如图,在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A B C D2、如图,正方形ABCD在平面直角坐标系中的位置如图所示,点B与原点重合,点D的坐标为(4,4),当三角板直角顶点P坐标为(3,3)时,设一直角边与x轴交于点E,另一直角边与y轴交于点F.在三角板绕点P旋转的过程中,使得△POE成为等腰三角形,请写出满足条件的点E的坐标为________________3、已知在矩形ABCD中,AB=4,BC= 25/2,O为BC上一点,BO= 7/2,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)4、如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.5、已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4。

将该纸片放置在平面直角坐标系中(如图①)。

(1)求经过A,B两点的一次函数解析式;(2)折叠该纸片,是点B与点A重合,折痕与边OB交于点才,与边AB交于点D(如图②),求点C的坐标;(3)①若p为三角形OAB内一点,其坐标p(0.5,1),过点p作x轴的平行线交AB于M,作y轴的平行线交AB于N(如图③),求点M,N的坐标,并求PM+PN的长;②若p为OB上一动点,设OA的中点为E,AB的中点为F(1,2),(如图④),求PE+PF 的最小值,并求取得最小值时P的坐标。

一次函数动点问题含答案

一次函数动点问题含答案

例题1:如图,直线1l 的解析表达式为 ,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为个平方单位?当堂巩固:如图,直线 与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

524例题3、如图1,等边△ABC中,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x秒.(图2、图3备用)(1)填空:BQ= ,PB= (用含x的代数式表示);(2)当x为何值时,PQ∥AC?(3)当x为何值时,△PBQ为直角三角形?一次函数压轴题1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC 。

(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.4.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF 与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.5.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.1.考点:一次函数综合题。

(完整版)新北师大版八年级上册动点与一次函数专题练习(含答案),推荐文档

(完整版)新北师大版八年级上册动点与一次函数专题练习(含答案),推荐文档
y
A M
OC
x
B
2、在边长为 2 的正方形 ABCD 的边 BC 上,点 P 从 B 点运动到 C 点,设 PB=x,四边形 APCD 的面积为 y
,(1)写出 y 与自变量 x 的函数关系式,并画出它的图象。
3
(2)当 x 为何值时,四边形 APCD 的面积等于 。
2
D
C
P
A
B
3、如图,在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC、CD、DA 运动至点 A 停止,设点 P 运动的路程 为
2
2
3.解:(1).由图 2 可知,x 从 4 到 9 的过程中,三角形的面积不变,
1
所以,矩形的边 AB=9-4=5,边 BC=4,所以 s△ABC= ×5×4=10
2
1
15
(2).①点 P 在 BC 上时,0≤x≤4,点 P 到 AB 的距离为 PB 的长度 x, y= AB•PB= ×5x= x ,
所以,动点 P 运动的总路程为 AB+BC+CD=2+2+2 3 =4+2 3 ,
∵动点 P 的运动速度是 1cm/s, ∴点 P 从开始移动到停止移动一共用了(4+2 3 )÷1=4+2 3 (秒).
5.(1)作 PE⊥y 轴于 E, ∵P 的横坐标是 2,则 PE=2.
1
1
∴S△COP= OC•PE= ×2×2=2;
的方向不停移动,直到点 P 到达点 D 后才停止.已知△PAD 的面积 S(单位:cm2)与点 P 移动的时间 (单位:s)的函数如图②所示,则点 P 从开始移动到停止移动一共用了多少秒(结果保留根号).
5、如图,A、B 分别是 x 轴上位于原点左右两侧的点,点 P(2,p)在第一象限,直线 PA 交 y 轴于点 C(0,2)

最新一次函数动点问题专题练习(含答案)资料

最新一次函数动点问题专题练习(含答案)资料

动点问题专题练习
1、如图,已知在平面直角坐标系中,直线l:+2分别交两坐标轴于A、B
两点,M是线段AB上一个动点,设M的横坐标为x,三角形OMB的面积为S;
(1)写出S与x的函数关系式,并画出函数图象;
(2)若△OMB的面积为3,求点M的坐标;
(3)当△OMB是以OB为底的等腰三角形时,求它的面积。

2、在边长为2的正方形ABCD的边BC上,点P从B点运动到C点,设PB=x,四
边形APCD的面积为 y,
(1)写出y与自变量x的函数关系式,并画出它的图象。

(2)当x为何值时,四边形APCD
3、如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停
止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,
(1)求△ABC的面积。

(2)求Y关于x的函数解析式。

4、如图①在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P 从开始移动到停止移动一共用了多少秒(结果保留根号)
5、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.
(1)求△COP的面积
(2)求点A的坐标及P的值
(3)若S△AOP=S△BOP,求直线BD的函数解析式。

一次函数之动点问题(作业及答案)

一次函数之动点问题(作业及答案)

一次函数之动点问题(作业)例1:如图,直线y =x +4与x 轴、y 轴分别交于点A ,B ,直线y =-x +b 过点B ,且与x 轴交于点C . (1)求直线BC 的表达式.(2)动点P 从点C 出发,沿CA 方向以每秒1个单位长度的速度向点A 运动(点P 不与点A ,C 重合),动点Q 从点A 同时出发,沿折线AB -BC 以每秒2个单位长度的速度向点C 运动(点Q 不与点A ,C 重合),当其中一点到达终点时,另一点也随之停止.设△CPQ 的面积为S ,运动的时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.【思路分析】1.研究背景图形,如图 (把函数信息转为几何信息)2.分析运动过程0 < t < 8CA 4s4s8s B (2/s ) Q :A(1/s ) P :C3.画图,设计方案计算当04t <≤时,21122S t t t =⋅⋅= 当48t <<时,211(8)422S t t t t =-=-+221(04)214(48)2t t S t t t ⎧<≤⎪⎪=⎨⎪-+<<⎪⎩8-t t82-2t E P Q xy A BCOt Q P E 2tt 445°42424445°y=-x+4y=x+4xyAB C Oxy A BC O1. 如图,在平面直角坐标系xOy 中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是OD 的中点,连接CD .动点P 从点O 出发,以每秒1个单位长度的速度沿O →A →C →B 的方向匀速运动,动点Q 从点O 同时出发,以相同的速度沿O →B →D →B 的方向匀速运动.过点P 作PE ⊥x 轴于点E ,设△PEQ 的面积为S ,点P 运动的时间为t 秒(06t <<).求S 与t 之间的函数关系式.Q PxO y A CD B (E )xO y ACD BxO y ACD B2. 如图,直线y =-x +42与x 轴交于点A ,与直线y =x 交于点B . (1)求点B 的坐标.(2)判断△AOB 的形状,并说明理由.(3)动点D 从原点O 出发,以每秒2个单位长度的速度沿OA 向终点A 运动(不与点O ,A 重合),过点D 作DC ⊥x 轴,交线段OB 或线段AB 于点C ,过点C 作CE ⊥y 轴于点E .设运动的时间为t 秒,矩形ODCE 与△AOB 重叠部分的面积为S ,求S 与t 之间的函数关系式.EDAO C x ByyBx O AyBxO A3. 如图,直线33334y x =-+与x 轴、y 轴分别交于点A ,B ,与直线3y x =交于点C .动点E 从点A 出发,以每秒1个单位长度的速度沿AO 向终点O 运动,动点F 从原点O 同时出发,以相同的速度沿折线OC -CA 向终点A 运动,设点F 运动时间为t 秒.(1)设△EOF 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.(这里规定线段是面积为0的三角形) (2)当24t ≤≤时,是否存在某一时刻,使得△AEF 是等腰三角形?若存在,求出相应的t 值;若不存在,请说明理由.xO yA CBxO yA CBx O yA CB【参考答案】1.2210222241618 462tt S t t t t ⎧<⎪⎪=<⎨⎪⎪-+<<⎩≤≤()()()2.(1)(2222)B ,(2)△OAB 是等腰直角三角形,理由略(3)22023161624tt S t t t ⎧<⎪=⎨-+-<<⎪⎩≤()()3.(1)2233024133232 24420 42+23t t t S t t t t ⎧-+⎪⎪⎪+⎪=-++<⎨⎪⎪<⎪⎪⎩≤≤≤≤()()()(2)存在,t 的值为2,31+或23(资料素材和资料部分来自网络,供参考。

初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)

初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)

课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。

2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。

重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。

小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。

2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

课后检测: 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。

八年级数学一次函数之动点问题(人教版)(专题)(含答案)

八年级数学一次函数之动点问题(人教版)(专题)(含答案)

一次函数之动点问题(人教版)(专题)一、单选题(共5道,每道20分)1.如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,∠ABC=60°.动点P从点A出发以每秒1个单位的速度沿AC向点C运动(不与点A,C重合),同时动点Q从点C出发以每秒2个单位的速度沿折线CB-BA向点A运动(不与点C,A重合).设点P的运动时间为t秒,△APQ的面积为S,则S与t之间的函数关系式为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:略2.如图,直线与x轴、y轴分别交于点A,点B,与直线交于点C.动点E从点B出发,以每秒1个单位长度的速度沿BO方向向终点O运动,动点F同时从原点O出发,以每秒1个单位长度的速度沿折线OC-CB向终点B运动,当一点停止运动时,另一点也停止运动.设点F运动的时间为t秒,△OEF的面积为S,则S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:略3.如图,在平行四边形OABC中,点A在x轴上,∠AOC=60°,OC=4cm,OA=8cm.动点P 从点O出发,以1cm/s的速度沿折线OA-AB运动;动点Q同时从点O出发,以相同的速度沿折线OC-CB运动.当其中一点到达终点B时,另一点也随之停止运动,设运动时间为t 秒.(1)设△OPQ的面积为S,要求S与t之间的函数关系式,根据表达的不同,t的分段应为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:略4.(上接第3题)(2)S与t之间的函数关系式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:略5.(上接第3,4题)(3)当点P在OA上运动,且△OPQ的面积为平行四边形OABC的面积的一半时,t的值为( )A.,8B.4C. D.8答案:D解题思路:试题难度:三颗星知识点:略。

一次函数动点问题(一)

一次函数动点问题(一)

一次函数动点问题(一)1.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为_________个。

2.过点P(-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作_______条 3、一次函数y=ax+b ,若a+b=1,则它的图象必经过点_______________7.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是_________________4.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整数时,k的值可以取_____________5.函数的自变量x 的取值范围是_____。

6.已知:不论k 取什么实数,关于x 的方程1632=--+bkx a kx (a 、b 是常数)的根总是x =1,试求a 、b 的值。

7.如图,在一次函数3+-=x y 的图象上取点P ,作PA ⊥x 轴,PB ⊥y 轴;垂足为B ,且矩形OAPB 的面积为2,则这样的点P 共有多少个?8、在平面直角坐标系中,有A (0,5),B (5,0),C (0,3),D (3,0)且AD 与BC 相交于点E 求△ABE 的面积9、一个一次函数的图象与直线59544y x =+平行,与x 轴、y 轴的交点分别为A 、B ,并且经过点(-1,-25),则线段AB 上(包括端点A 、B )横、纵坐标都是整数的点有________________10、如图,直线313y x =-+与x 轴、y 轴分别交于A 、B ,以线段AB 为直角边在第一象限内作等腰Rt ΔABC ,∠BAC=90° ,如果在第二象限内有一点P (a ,12),且ΔABP 的面积与ΔABC 的面积相等,求a 的值 yxA OB PyxPO B A11、如图,直线L :221+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。

一次函数之动点问题(一)(北师版)(含答案)

一次函数之动点问题(一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:动点问题的特征是____________,主要考察运动的________.问题2:一次函数背景下研究动点问题的思考方向是什么?①____________,把函数信息(______________)转化为背景图形的信息;②分析运动过程,___________,__________;③分析几何特征,表达,设计方案求解.问题3:分析运动过程时,需要注意哪几个要素?一次函数之动点问题(一)(北师版)一、单选题(共3道,每道33分)1.如图,直线:与x轴、y轴分别交于A,B两点,直线:与x轴交于点C,与直线交于点P.动点M从点A出发,以每秒1个单位长度的速度沿折线AP—PC向点C匀速运动(点M不与点A,C重合),设△OMC的面积为S,运动时间为t秒,则S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数之动点问题2.已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C 三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点.动点P从点O出发,以每秒2个单位长度的速度,沿折线OA—AB运动.设运动的时间为t秒,△OPD 的面积为S,则S与t的函数关系式为( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:一次函数之动点问题3.如图,在平面直角坐标系中,直线分别交x轴、y轴于点A,B,D是AB的中点.动点P从点A出发沿折线AD-DO以每秒1个单位长度的速度向终点O运动,同时动点Q从点D出发沿折线DO-OB以相同的速度运动.设点P的运动时间为t秒,当点P到达点O时,P,Q同时停止运动.设△DPQ的面积为S,则S关于t的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题学生做题后建议通过以下问题总结反思问题1:本套试题主要是一次函数之动点问题,需要按照动点问题的处理思路分为三步进行.本套试题中哪些题目做的时候有困难?问题2:针对你做的这些题目,困难原因是什么?①研究背景图形不够彻底;②分析运动过程中分段错误;③点找错位置;④不知道如何表达线段长.11。

一次函数之动点问题(侧重状态分析、分段)(人教版)(含答案)

一次函数之动点问题(侧重状态分析、分段)(人教版)(含答案)

一次函数之动点问题(侧重状态分析、分段)(人
教版)
一、单选题(共3道,每道33分)
1.如图,在△AOB中,以点O为原点建立平面直角坐标系,A(16,0),B(8,6).动点P 从点A出发以每秒3个单位的速度沿AO向终点O运动,同时点Q从点O出发以每秒2个单位的速度沿OB—BA向终点A运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t秒,则△OPQ的面积S与t之间的函数关系式为( )
A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:一次函数之动点问题
2.如图,长方形AOBC的顶点O在坐标原点,边OB,OA分别在x轴、y轴的正半轴上,OA=6,
OB=10,射线(x≥0)交线段AC于点D.动点P从点O出发以每秒2个单位的速度沿
O→A→D→O的路线匀速运动,同时点Q从点O出发以每秒1个单位的速度沿OB向终点B 运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t秒,则△OPQ的面积S与t之间的函数关系式为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一次函数之动点问题
3.如图,直线y=-x+4与x轴交于点A,与直线y=x交于点B.动点D从原点O出发以每秒2个单位的速度沿OA向终点A运动(点D不与点O,A重合),过D作DC⊥x轴,交线段OB 或线段BA于点C,CE⊥y轴于点E.设运动t秒时,矩形ODCE与△OAB重叠部分的面积为S,则S与t之间的函数关系式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:一次函数之动点问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专题练习
1、如图,已知在平面直角坐标系中,直线l:y=x+2分别交两坐标轴于A、B
两点,M是线段AB上一个动点,设M的横坐标为x,三角形OMB的面积为S;
(1)写出S与x的函数关系式,并画出函数图象;
(2)若△OMB的面积为3,求点M的坐标;
(3)当△OMB是以OB为底的等腰三角形时,求它的面积。

2、在边长为2的正方形ABCD的边BC上,点P从B点运动到C点,设PB=x,四
边形APCD的面积为 y,
(1)写出y与自变量x的函数关系式,并画出它的图象。

(2)当x为何值时,四边形APCD的面积等于
3、如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停
止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,
(1)求△ABC的面积。

(2)求Y关于x的函数解析式。

4、如图①在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P 从开始移动到停止移动一共用了多少秒(结果保留根号)
5、如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=6.
(1)求△COP的面积
(2)求点A的坐标及P的值
(3)若S△AOP=S△BOP,求直线BD的函数解析式。

相关文档
最新文档