小学奥数几何六大模型及例题19317
小学奥数--几何模型分类总结汇总版(鸟头、燕尾、风筝、一般模型等)
目录目录 (1)模型一——《等积变换》 (2)一、知识点梳理 (2)二、例题精讲 (3)三、自我提升 (5)四、答案与解析 (7)模型二——《一半模型》 (11)一、知识点梳理 (11)二、例题精讲 (13)三、自我提升 (15)四、答案与解析 (16)模型三——《鸟头(共角)模型》 (19)一、知识点梳理 (19)二、例题精讲 (20)三、自我提升 (22)四、答案与解析 (24)模型四——《蝴蝶模型》 (25)一、知识点梳理 (25)二、例题精讲 (26)模型五——《沙漏模型》 (32)一、知识点梳理 (32)二、例题精讲 (32)三、自我提升 (35)四、答案与解析 (36)模型六——《燕尾模型》 (38)一、知识点梳理 (38)二、例题精讲 (39)三、自我提升 (41)四、答案与解析 (43)模块七——《长、正方体、圆柱、圆锥》 (45)一、知识点梳理 (45)二、例题精讲 (46)三、自我提升 (48)四、自我提升答案 (50)模型八——《圆、扇形》 (52)一、知识点梳理 (52)二、例题精讲 (53)三、自我提升 (55)四、答案与解析 (57)模型一——《等积变换》一、知识点梳理二、例题精讲三、自我提升四、答案与解析模型二——《一半模型》一、知识点梳理一半模型其实是等积变换模型的延伸,只是将三角形和平行四边形进行了整合与综合考查,但是学生往往遇到此类题目之后很难想到用等积变换,所以我们专门提炼出一半模型,帮助学生加深此部分知识点的理解,提高应用能力。
21b a ba ⨯⨯====⨯=∆∆∆∆BCP S BCD S BCF S BCE S ABCD S 口 平行四边形同理不规则图形ba 21b2b1a 21b2a 21b1a 21b2a 21b1a 21ba ⨯=+⨯=⨯⨯+⨯=+=⨯⨯=⨯=⨯=∆∆∆∆)(阴影;口BCE S ADE S BCE S ADE S ABCD S 拓展图形(比例应用)ba 41b2b1a 41b2221b1221b2221b1221b41b 221⨯=+⨯=⨯⨯+⨯⨯=+=⨯⨯=⨯⨯=⨯=⨯⨯==∆∆∆∆∆)(阴影;右图:左图:阴影a a BEG S AFG S aBEG S a AFG S a a BFE S常见图形的认识二、例题精讲例1如图所示,四边形ABCD与AEGF都是平行四边形,请你证明它们的面积相等.例2如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长BG为10厘米,那么长方形的宽为几厘米?例3如图,正方形ABCD的边长为6,AE=1.5,CF=2.长方形EFGH的面积为.例4图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.A BG CEFDHGFEDCBAGFED CBA例5正方形ABCD 和正方形CEFG ,且正方形ABCD 边长为10厘米,则图中阴影面积为多少平方厘米?例6如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积例7 如图,有三个正方形的顶点D 、G 、K 恰好在同一条直线上,其中正方形GFEB 的边长为10厘米,求阴影部分的面积.E BA KEBA三、自我提升1、右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC 的面积.2、如图,ABCD 与AEFG 均为正方形,三角形ABH 的面积为6平方厘米,图中阴影部分的面积为 .3、长方形ABCD 的面积是2011平方厘米.梯形AFGE 的顶点F 在BC 上,D 是腰EG 的中点.试求梯形AFGE 的面积.G4AB CDEF A B C D E FG H4、已知正方形ABCD 边长为10,正方形BEFG 边长为6,求阴影部分的面积.5、右图中,ABCD 和CGEF 是两个正方形,AG 和CF 相交于H ,已知CH 等于CF 的三分之一,三角形CHG 的面积等于6平方厘米,求五边形ABGEF 的面积.6、如图,正方形ABCG 和正方形FCDE 并排放置,BE 与FC 相交于点H ,已知AB=6厘米,则阴影部分的面积是_________________平方厘米? 四、答案与解析1、【分析】如图所示,连接AD ,则BC 平行AD ,三角形ABC 和三角形BCD 等底等高,因此三角形ABCJIHGA BCD EF HG F E D C B A的面积就等于小正方形的面积的一半,据此即可得解.解:据分析可知:4×4÷2=8(平方厘米);答:三角形ABC的面积是8平方厘米.2、【分析】方法一:如图所示,连接AF和BD,则AF平行BD,三角形FAD与三角形FAB等底等高,即面积相同。
六大几何模型.等积变形(动图版)(课堂PPT)
作者:Flora和一只叫81的肥猫
六大几何模型
等积变形 一半模型
1Байду номын сангаас
鸟头模型
2
蝴蝶模型
3
燕尾模型
4
相似模型
5
6
2
01 等积变形模型
1
等积变形 习题
2 等积变形模型说明: 等积变形中的“积”指的是面积,三角形作为最基本图形,任何直线型图形都 可分解成若干个三角形,等积变形里主要研究的是三角形面积变换。
巩固2:已知正方形ABCD的边长为10,正方形BEFG的边长为6,求阴影部分面积? 答案:20
12
THANKS
13
5
结论一的应用: 例:正方形ABCD与正方形GCEF,且正方形ABCD的边长为10cm,求三角形BDF 的面积是多少平方厘米?
6
结论一的应用: 例:正方形ABCD与正方形GCEF,且正方形ABCD的边长为10cm,求三角形BDF 的面积是多少平方厘米?
7
例:图中正方形GCEF的面积为8,求三角形GAE的面积?
3 等积变形模型实际应用中,常用的3个结论:
A
D
B
C
A
D
BE
C
A
B
D
C
3
结论一的典型应用: 夹在一组平行线间的两个三角形若同底,则面积相同。
A
D
B
C
主要应用场景:正方形、长方形、平形四边行、梯形等
4
结论一的应用: 例:正方形ABCD与正方形GCEF,且正方形ABCD的边长为10cm,求三角形BDF 的面积是多少平方厘米?
8
例:图中正方形GCEF的面积为8,求三角形GAE的面积?
小学奥数常规几何模型
小学奥数中的几何模型——等积,鸟头,蝶形,相似,共边知识点拨一、等积模型①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCBA图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方S 2S 1DC BAS 4S 3S 2S 1O DCBA A BC DO ba S 3S 2S 1S 4面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题O FED C BA【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 ._H_G_F_E_D_C_B_ A _A_B_C_D_E_ F_G_H_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ DB【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .BB【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC DE FG【例 6】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCD E【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【例 9】 如图所示的四边形的面积等于多少?DB13131212【例 10】 如图所示,ABC∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 11】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【例 13】 如图,三角形ABC的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FEDCBA33321F EDC BAABCDEF【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?yB CDEGEDCBAEDCBA【例14】四边形ABCD的对角线AC与BD交于点O(如图所示).如果三角形ABD 的面积等于三角形BCD的面积的13,且2AO=,3DO=,那么CO的长度是DO的长度的_________倍.AB CDO HGAB CDO【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积;⑵:AG GC=?B【例15】如图,平行四边形ABCD的对角线交于O点,CEF△、OEF△、ODF△、BOE△的面积依次是2、4、4和6.求:⑴求OCF△的面积;⑵求GCE△的面积.OGFEDCBA【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCDEF GABCD EF G【例 17】 如图,正方形ABCD面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【巩固】在下图的正方形ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1平方厘米,那么正方形ABCD 面积是 平方厘米.ABCDEF【例18】已知ABCD是平行四边形,:3:2BC CE ,三角形ODE的面积为6平方厘米.则阴影部分的面积是平方厘米.BB【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.BB【巩固】右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米.BB【例19】如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为___________平方厘米.?852O A B CDEF?852O A BCD EF【例 20】 如图,ABC∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 .E【例 22】 如图, ABC △中,DE ,FG,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行, AD D F FM M P PB ====,则 ::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形 . 【例 23】 如图,已知正方形ABCD 的边长为4,F 是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDBM GFAEDCBGFAEDCB【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG ∆的面积.QEG NM F P AD C BMHGF E DCBAA【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS的面积为多少?CACA【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI H G FEDCBA【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【巩固】如图,ABC ∆中2BD D A =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCCB【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC边的三等分点,那么四边形JKIH 的面积是多少?K JI HABC D EF GKJI HA BC D EFG【例 29】 右图,ABC △中,G是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.C BAGCB【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.CBGCBA课后练习: 练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GED CB AAB CDEFGH练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDCB AMH GFEDCBA练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBABCA'C'EDA练习5. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是_____平方厘米.EDED练习6. 如图,ABC ∆中,点D 是边AC 的中点,点E 、F 是边BC 的三等分点,若ABC ∆的面积为1,那么四边形CDMF 的面积是_________.FABCDEM NFABCDE MN练习7. 如右图,三角形ABC 中,:::4:3AF FB BD DC CE AE ===,且三角形ABC 的面积是74,求角形GHI 的面积.IH G FEDCBA IH G FEDCBA月测备选【备选1】按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【备选2】如图所示,矩形ABCD 的面积为36平方厘米,四边形PMON 的面积是3平方厘米,则阴影部分的面积是 平方厘米.【备选3】如图,已知3BD DC =,2EC AE =,BE 与CD 相交于点O ,则ABC △被分成的4部分面积各占ABC △ 面积的几分之几?OE DCBA13.54.59211213O E D CBA【备选4】如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【备选5】如图,:2:3BD DC =,:5:3AE CE =,则:AF BF =GF EDCBA【备选6】如图在ABC △中,13DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FED C B AI H G F E D C B A。
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学奥数几何六大模型及例题整理
SABO : SACO SOBD : SOCD SABD : SACD BD : CD
金字塔、沙漏模型 所谓的金字塔、沙漏模型,就是指形状相同,大小不同
的两个三角形,一切对应线段的长度成比例的模型,如图 所示:
勾股定理 我国最早发现在直角三角形中两条直角边的平方和等于
例题5 如图,已知三角形ABC面积为1,延长AB至D,使BD=AB, 延长BC至E,使CE=2BC,延长CA至F,使AF=3AC,求三 角形DEF的面积。
例题6 如图1,正六边形的面积为6,那么阴影部分的面积是多少?
例题7 如图1,△ABC中,BD=2DA,CE=2EB,AF=2FC,那么 △ABC的面积是阴影三角形面积的 倍。
例题8 正六边形 分别是正六边形各边的中点,那么图中阴影六边 形的面积是 平方厘米。
斜边的平方,把这一特性叫做勾股定理或勾股弦定理,外 国称为毕达哥拉斯定理。如右图 在直角三角形 ABC中有c2 a2 b2
例题1 (2008年第一届“陈省身杯”六年级2试) 如图,BC=45,AC=21,△ABC被分成9个面积相等的小三 角形,那么DI+FK为多少?
例题2 如图1,并排放有三个正方形,其中正方形GBEF的边长为 10厘米,连接GK,交EF于O,连接DE,交BG于Q,连接 DG,求阴影部分的面积。
等积变形
等积变形这里的积指的是面积,因为任何直线型图形都可分解成
若干个三角形,所以三角形是最基本图形,等积变形里主要研究的 是三角形面积变换。
三角形面积=底×高÷2 决定三角形面积的大小,取决于底和高这两个量。 等底等高:如果两个三角形等底等高,则这两个三角形面积相同 (如图1);(典型的夹在一组平行线间的,两个三角形若同底,则 面积相同) 同底看高:如果两个三角形等底,但高不等,则面积比等于高的 比(如图2); 同高看底:如果两个三角形等高,但底不等,则面积比等于底的 比(如图3)。
人教版六年级下册数学小升初奥数:几何五大模型模型(课件)
02 三角形:燕尾模型
A
O
B
D
A
F
E O
B D
S△ABD:S△ACD=BD:CD S△OBD:S△OC?B:D?:CD
C
S△ABO:S△CBO=AE:CE S△ACO:S△BCO=AF:BF S△ABO:S△ACO=BD:CD
C
02 三角形:燕尾模型
(1)
例、如图,已知 BD=DC,EC=2AE,三角形 是 30,求阴影部分面积?
01 长方形:一半模型(犬齿模型)
(1)
1 S阴影 2 S长方形
例 、(长郡系)如图,ABFE 和 CDEF 都是矩形,AB 的长是 4 厘米, BC 的长是 3 厘米,那么图中阴影部分的面积是多少平方厘米。
解题思路: 将大长方形分成若干个小长方形;
每个阴影面积都=对应长方形的一半; 全部阴影面积=长方形ABCD的一半; S阴影=3×4÷2=6cm2;
几何五大模型
二、鸟头(共角)定理模型
1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点
则有:S△ABC:S△ADE=(AB×AC):(AD×AE)
ABC
的面积
1 G①
③ ②
③ ⑥③
解题思路: 构建完整燕尾模型,利用份数思维;
AE:CE=1:2
BD:CD=1:1
2
AE:CE=1:2
设S△AEF为1份,则S△CEF为2份 S△ABF:S△ACF=1:1,S△ABF为3份 S△ABF:S△CBF=1:2,S△CBF为6份
小学奥数几何六大模型及例题19317
可以简记为 左边:右边=左和:右和
梯形中蝴蝶模型 梯形 的对应份数为 可以简记为: 上下平方,左右相乘。
燕尾模型 从三角形一个顶点向对边上任意一点的画线段,在线段 上任取一点组成的图形面积也会有如下关系:
例题7 如图1,△ABC中,BD=2DA,CE=2EB,AF=2FC,那么 △ABC的面积是阴影三角形面积的 倍。
例题8 正六边形 分别是正六边形各边的中点,那么图中阴影六边 形的面积是 平方厘米。
SABO : SACO SOBD : SOCD SABD : SACD BD : CD
金字塔、沙漏模型 所谓的金字塔、沙漏模型,就是指形状相同,大小不同 的两个三角形,一切对应线段的长度成比例的模型,如图 所示:
勾股定理 我国最早发现在直角三角形中两条直角边的平方和等于 斜边的平方,把这一特性叫做勾股定理或勾股弦定理,外 国称为毕达哥拉斯定理。如右图 在直角三角形 ABC中有c2 a2 b2
一半模型 阴影图形占整个图形面积的一半。 一般在平行四边形中常见一半模型,任取一点与其四个 顶点连线,所构成的三角形占平行四边形面积的一半。当 然在梯形中也常见一半模型。
最下面三个图,边上的点都为中点。
鸟头模型(共角模型) 两个三角形中有一个角相等或互补,这两个三角形叫做 共角三角形。 共角三角形常见图形,如下图
例题1 (2008年第一届“陈省身杯”六年级2试) 如图,BC=45,AC=21,△ABC被分成9个面积相等的小三 角形,那么DI+FK为多少?
例题2 如图1,并排放有三个正方形,其中正方形GBEF的边长为 10厘米,连接GK,交EF于O,连接DE,交BG于Q,连接 DG,求阴影部分的面积。
小学奥数平面几何六种面积模型
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨一、1等积变形模型①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比;如右图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 2一半模型阴影图形占整个图形面积的一半。
一般在平行四边形中常见一半模型,任取一点与其四个顶点连线,所构成的三角形占平行四边形面积的一半。
当然在梯形中也常见一半模型。
b a S 2S 1DC BA最下面三个图,边上的点都为中点 二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵三、蝶形定理任意四边形中的比例关系(“蝶形定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++ 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =;A BCDO ba S 3S 2S 1S 4③S 的对应份数为()2a b +.四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===;②22:ADE ABC S S AF AG =△△:.所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形. 五、共边定理(燕尾模型和风筝模型)在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=. 上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径. 典型例题【例 1】 如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【解析】 连接DE ,DF ,则长方形EFGH 的面积是三角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积,66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH_H_G_F_E_D_C_B_ A _A_B_C_D_E_F_G_HS 4S 3S 2S 1O DCBA OFEDC BA面积为33.【巩固】如图所示,正方形ABCD 的边长为8厘米,长方形EBGF 的长BG 为10厘米,那么长方形的宽为几厘米?【解析】 本题主要是让学生会运用等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形).三角形面积等于与它等底等高的平行四边形面积的一半. 证明:连接AG .(我们通过ABG △把这两个长方形和正方形联系在一起).∵在正方形ABCD 中,G12AB S AB AB =⨯⨯△边上的高, ∴12ABGABCDS S =△(三角形面积等于与它等底等高的平行四边形面积的一半)同理,12ABG EFGB S S =△.∴正方形ABCD 与长方形E F G B 面积相等. 长方形的宽88106.=⨯÷=(厘米).【例 2】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?E【解析】 解法一:寻找可利用的条件,连接BH 、HC ,如下图:E可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=_ A _ B_ G_ C _ E _ F_ D_ A _ B_ G_ C_ E_ F_ D即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=; 而EHB BHF DHG EBFS S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影解法二:特殊点法.找H 的特殊点,把H 点与D 点重合,那么图形就可变成右图:GE (H )这样阴影部分的面积就是DEF ∆的面积,根据鸟头定理,则有:11111113636363613.52222222ABCD AED BEF CFD S S S S S ∆∆∆=---=-⨯⨯-⨯⨯⨯-⨯⨯=阴影.【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米.(法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【例 3】 如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .B【解析】 利用图形中的包含关系可以先求出三角形AOE 、DOG 和四边形EFGO 的面积之和,以及三角形AOE 和DOG 的面积之和,进而求出四边形EFGO的面积.由于长方形ABCD 的面积为158120⨯=,所以三角形BOC 的面积为1120304⨯=,所以三角形AOE 和DOG 的面积之和为312070204⨯-=;又三角形AOE 、DOG 和四边形EFGO 的面积之和为111203024⎛⎫⨯-= ⎪⎝⎭,所以四边形EFGO 的面积为302010-=.另解:从整体上来看,四边形EFGO 的面积=三角形AFC 面积+三角形BFD 面积-白色部分的面积,而三角形AFC 面积+三角形BFD 面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即1207050-=,所以四边形的面积为605010-=.【巩固】如图,长方形ABCD 的面积是36,E 是AD 的三等分点,2AE ED =,则阴影部分的面积为 .BB【解析】 如图,连接OE .根据蝶形定理,1:::1:12COE CDE CAE CDE ON ND S S S S ∆∆∆∆===,所以12OE N O EDS S ∆∆=; 1:::1:42BOE BAE BDE BAE OM MA S S S S ∆∆∆∆===,所以15OEM OEA S S ∆∆=.又11334OEDABCD S S ∆=⨯=矩形,26OEA OED S S ∆∆==,所以阴影部分面积为:1136 2.725⨯+⨯=.【例 4】 已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【解析】 因为D 、E 、F 分别为三边的中点,所以DE 、DF 、EF 是三角形ABC 的中位线,也就与对应的边平行,根据面积比例模型,三角形ABN 和三角形AMC 的面积都等于三角形ABC 的一半,即为200.根据图形的容斥关系,有ABC ABN AMC AMHN S S S S S ∆∆∆-=+-丙,即400 200200AMHN S S -=+-丙,所以AMHN S S =丙. 又ADF AMHN S S S S S ∆+=++乙甲阴影,所以1143400434ADF S S S S S ∆=++-=-⨯=乙甲丙阴影.【例 5】 如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BAABC DE FG【解析】 连接AF ,BD .根据题意可知,571527CF =++=;715628DG =++=;所以,1527BE CBF F S S ∆∆=,1227BE CBF C S S ∆∆=,2128AEG ADG S S ∆∆=,728AED ADG S S ∆∆=, 于是:2115652827ADG CBFS S ∆∆+=;712382827ADG CBF S S ∆∆+=; 可得40ADG S ∆=.故三角形ADG 的面积是40.【例 6】 如图在ABC△中,,D E分别是,AB AC上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCBAEDCBA【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(7A D E A B C S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?EDCBAABCD E【解析】 连接BE .∵3EC AE =∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E DCBAABCDE甲乙【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【例 7】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCBAEDCB A【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25A D E A B C S S =⨯⨯+=△△,设6A D E S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 8】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.HGAB CD EFHGAB CD EF【解析】 连接AC 、BD .根据共角定理∵在ABC △和BFE △中,ABC ∠与FBE ∠互补,∴111133ABC FBES AB BC S BE BF⋅⨯===⋅⨯△△.又1ABC S =△,所以3FBE S =△.同理可得8GCF S =△,15DHG S =△,8AEH S =△.所以8815+3+236EFGH AEH CFG DHG BEF ABCD S S S S S S =++++=++=△△△△. 所以213618ABCDEFGHS S ==.【例 9】 如图所示的四边形的面积等于多少?DB13131212【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【例 10】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【例 11】 如图,以正方形的边AB为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ), 所以1 2.52OBE BDE S S ∆∆==(2cm ).【例 12】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FEABDCGFEABDC【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【例 13】 如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC =,AD 与BE 交于点F .则四边形DFEC 的面积等于 .FEDCBA33321F E DC BAABCDEF【解析】 方法一:连接CF ,根据燕尾定理,12ABF ACF S BD S DC ==△△,1ABF CBF S AE S EC ==△△, 设1BDF S =△份,则2DCF S =△份,3ABF S =△份,3AEF EFC S S ==△△份,如图所标所以551212DCEF ABC S S ==△ 方法二:连接DE ,由题目条件可得到1133ABD ABC S S ==△△,11212233ADE ADC ABC S S S ==⨯=△△△,所以11ABD ADE S BF FE S ==△△, 111111122323212DEF DEB BEC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211323CDE ABCS S =⨯⨯=△△.所以则四边形DFEC 的面积等于512. 【巩固】如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?y B CD EGE D CBAEDB A 【解析】 设1DEF S =△份,则根据燕尾定理其他面积如图所示551212BCD S S ==△阴影平方厘米.【例 14】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍.ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形.看到题目中给出条件:1:3ABD BCD S S =,这可以向模型一蝶形定理靠拢,于是得出一种解法.又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比.再应用结论:三角形高相同,则面积之比等于底边之比,得出结果.请老师注意比较两种解法,使学生体会到蝶形定理的优势,从而主观上愿意掌握并使用蝶形定理解决问题. 解法一:∵::1:3ABD BDC AO OC S S ∆∆==,∴236OC =⨯=,∴:6:32:1O C O D ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G .∵13ABD BCD S S ∆∆=,∴13AH CG =,∴13AODDOC S S ∆∆=, ∴13AO CO =,∴236OC =⨯=,∴:6:32:1OC OD ==.【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC =?B【解析】 ⑴根据蝶形定理,123BGCS⨯=⨯,那么6BGCS=;⑵根据蝶形定理,()():12:361:3AG GC =++=.【例 15】 如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE△的面积.OGFEDCBA【解析】 ⑴根据题意可知,BCD △的面积为244616+++=,那么BCO △和CDO ∆的面积都是1628÷=,所以OCF △的面积为844-=;⑵由于BCO △的面积为8,BOE △的面积为6,所以OCE △的面积为862-=,根据蝶形定理,::2:41:2COE COF EG FG S S ∆∆===,所以::1G C E G C F S S E G F G ∆∆==,那么11221233GCE CEF S S ∆∆==⨯=+.【例 16】 如图,长方形ABCD 中,:2:3BE EC =,:1:2DF FC =,三角形DFG 的面积为2平方厘米,求长方形ABCD 的面积.ABCDEF GABCD EF G【解析】 连接AE ,FE .因为:2B E EC=,:1:2DF FC =,所以3111()53210DEFABCD ABCD SS S =⨯⨯=长方形长方形. 因为12AED ABCD S S =长方形,11::5:1210AG GF ==,所以510AGD GDF S S ==平方厘米,所以12AFD S =平方厘米.因为16AFD ABCD S S =长方形,所以长方形ABCD 的面积是72平方厘米.【例 17】 如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.CBA【解析】因为M是AD边上的中点,所以:1:2AM BC=,根据梯形蝶形定理可以知道22:::1:12:12:21:2:2:4AMG ABG MCG BCGS S S S=⨯⨯=△△△△()(),设1A G MS=△份,则123M C DS=+=△份,所以正方形的面积为1224312++++=份,224S=+=阴影份,所以:1:3S S=阴影正方形,所以1S=阴影平方厘米.【巩固】在下图的正方形ABCD中,E是BC边的中点,AE与BD相交于F点,三角形BEF的面积为1平方厘米,那么正方形ABCD面积是平方厘米.AB CDEF【解析】连接DE,根据题意可知:1:2BE AD=,根据蝶形定理得2129S=+=梯形()(平方厘米),3ECDS=△(平方厘米),那么12ABCDS =(平方厘米).【例18】已知ABCD是平行四边形,:3:2BC CE=,三角形ODE的面积为6平方厘米.则阴影部分的面积是平方厘米.BB【解析】 连接AC .由于ABCD 是平行四边形,:3:2BC CE =,所以:2:3CE AD =,根据梯形蝶形定理,22:::2:23:23:34:6:6:9COE AOC DOE AOD S S S S =⨯⨯=,所以6AOC S =(平方厘米),9AOD S =(平方厘米),又691A B C A C D S S ==+=(平方厘米),阴影部分面积为61521+=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【分析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,4936OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故236OCD S ∆=, 所以6OCD S ∆=(平方厘米).【巩固】右图中ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是 平方厘米.BB【解析】 连接AE .由于AD 与BC 是平行的,所以AECD 也是梯形,那么OCD OAE S S ∆∆=.根据蝶形定理,2816OCD OAE OCE OAD S S S S ∆∆∆∆⨯=⨯=⨯=,故216OCD S ∆=,所以4OCD S ∆=(平方厘米).另解:在平行四边形ABED 中,()111681222ADE ABEDS S∆==⨯+=(平方厘米), 所以1284AOE ADE AOD S S S ∆∆∆=-=-=(平方厘米),根据蝶形定理,阴影部分的面积为8244⨯÷=(平方厘米).【例 19】 如图,长方形ABCD 被CE 、DF 分成四块,已知其中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC 的面积为___________平方厘米.?852O A BCDEF?852O A BC DEF【解析】 连接DE 、CF .四边形EDCF 为梯形,所以EOD FOC S S ∆=,又根据蝶形定理,EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅,所以2816EOD FOC EOF COD S S S S ∆∆∆∆⋅=⋅=⨯=,所以4EOD S ∆=(平方厘米),4812ECD S ∆=+=(平方厘米).那么长方形ABCD 的面积为12224⨯=平方厘米,四边形OFBC 的面积为245289---=(平方厘米).【例 20】 如图,ABC ∆是等腰直角三角形,DEFG 是正方形,线段AB 与CD 相交于K 点.已知正方形DEFG 的面积48,:1:3AK KB =,则BKD ∆的面积是多少?BB【解析】 由于DEFG 是正方形,所以DA 与BC 平行,那么四边形ADBC 是梯形.在梯形ADBC 中,BDK ∆和ACK ∆的面积是相等的.而:1:3AK KB =,所以ACK∆的面积是ABC ∆面积的11134=+,那么BDK ∆的面积也是ABC ∆面积的14.由于ABC ∆是等腰直角三角形,如果过A 作BC 的垂线,M 为垂足,那么M 是BC 的中点,而且AM DE =,可见ABM ∆和ACM ∆的面积都等于正方形DEFG 面积的一半,所以ABC ∆的面积与正方形DEFG 的面积相等,为48.那么BDK ∆的面积为148124⨯=.【例 21】 下图中,四边形ABCD 都是边长为1的正方形,E 、F 、G 、H 分别是AB ,BC ,CD ,DA 的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数m n,那么,()m n +的值等于 .E【解析】 左、右两个图中的阴影部分都是不规则图形,不方便直接求面积,观察发现两个图中的空白部分面积都比较好求,所以可以先求出空白部分的面积,再求阴影部分的面积.如下图所示,在左图中连接EG .设AG 与DE 的交点为M .左图中AEGD 为长方形,可知AMD ∆的面积为长方形AEGD 面积的14,所以三角形AMD 的面积为21111248⨯⨯=.又左图中四个空白三角形的面积是相等的,所以左图中阴影部分的面积为111482-⨯=.BEE如上图所示,在右图中连接AC 、EF .设AF 、EC 的交点为N . 可知EF ∥AC 且2AC EF =.那么三角形BEF 的面积为三角形ABC 面积的14,所以三角形BEF 的面积为21111248⨯⨯=,梯形AEFC 的面积为113288-=.在梯形AEFC 中,由于:1:2EF AC =,根据梯形蝶形定理,其四部分的面积比为:221:12:12:21:2:2:4⨯⨯=,所以三角形EFN 的面积为3118122424⨯=+++,那么四边形BENF 的面积为1118246+=.而右图中四个空白四边形的面积是相等的,所以右图中阴影部分的面积为111463-⨯=.那么左图中阴影部分面积与右图中阴影部分面积之比为11:3:223=,即32m n=,那么325m n +=+=.【例 22】 如图, ABC △中,DE ,FG ,BC 互相平行,AD DF FB ==,则::ADE DEGF FGCB S S S =△四边形四边形 .EGF A D CB【解析】 设1ADE S =△份,根据面积比等于相似比的平方,所以22::1:4ADE AFG S S AD AF ==△△,22::1:9ADE ABC S S AD AB ==△△, 因此4AFG S =△份,9ABC S =△份,进而有3DEGF S =四边形份,5FGCB S =四边形份,所以::1:3:5ADE DEGF FGCB S S S =△四边形四边形【巩固】如图,DE 平行BC ,且2AD =,5AB =,4AE =,求AC 的长.A ED CB【解析】 由金字塔模型得:::2:5AD AB AE AC DE BC ===,所以42510AC =÷⨯=【巩固】如图, ABC △中,DE ,FG ,MN ,PQ ,BC 互相平行,AD DF FM MP PB ====,则::::ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形. 【解析】 设1ADE S =△份,22::1:4ADE AFG S S AD AF ==△△,因此4AFG S =△份,进而有3D E G F S =四边形份,同理有5F G N M S =四边形份,7MNQP S =四边形份,9PQCB S =四边形份.所以有Q E GNMFPA DCB::::1:3:5:7:9ADE DEGF FGNM MNQP PQCB S S S S S =△四边形四边形四边形四边形【例 23】 如图,已知正方形ABCD 的边长为4,F是BC 边的中点,E 是DC 边上的点,且:1:3DE EC =,AF 与BE 相交于点G ,求ABG S △GFAEDC BM GFAEDCBGFAEDCB【解析】 方法一:连接AE ,延长AF ,DC 两条线交于点M ,构造出两个沙漏,所以有::1:1AB CM BF FC ==,因此4CM =,根据题意有3CE =,再根据另一个沙漏有::4:7GB GE AB EM ==,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△. 方法二:连接,AE EF,分别求4224ABF S =⨯÷=△,4441232247AEF S =⨯-⨯÷-⨯÷-=△,根据蝶形定理::AB F A EFS S BG G E ==△△,所以4432(442)471111ABG ABE S S ==⨯⨯÷=+△△.【例 24】 如图所示,已知平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点, BF 交EC 于M ,求BMG ∆的面积.MHGF E DCBAA【解析】 解法一:由题意可得,E 、F 是AB 、AD 的中点,得//EF BD ,而::1:2FD BC FH HC ==, ::1:2EB CD BG GD ==所以::2:3CH CF GH EF ==,并得G 、H 是BD 的三等分点,所以BG GH =,所以::2:3BG EF BM MF ==,所以25BM BF =,11112224BFD ABD ABCDS S S ∆∆==⨯=;又因为13BG BD =,所以1212113535430BMG BFD S S ∆∆=⨯⨯=⨯⨯=. 解法二:延长CE 交DA 于I ,如右图,可得,::1:1AI BC AE EB ==,从而可以确定M 的点的位置, ::2:3BM MF BC IF ==,25BM BF =,13BG BD =(鸟头定理),可得2121115353430BMG BDF ABCDS S S ∆∆=⨯=⨯⨯=【例 25】 如图,ABCD 为正方形,1cm AM NB DE FC ====且2cm MN =,请问四边形PQRS 的面积为多少?CACA 【解析】 (法1)由//AB CD ,有MP PC MNDC=,所以2PC PM =,又MQ MB QC EC =,所以12MQ QC MC ==,所以111236PQ MC MC MC =-=,所以SPQR S 占AMCF S 的16,所以121(112)63SPQR S =⨯⨯++=2(cm ).(法2)如图,连结AE ,则14482ABE S ∆=⨯⨯=(2cm ),而RB ER AB EF =,所以2RB AB EF EF ==,22168333ABR ABE S S ∆∆==⨯=(2cm ). 而1134322MBQ ANS S S ∆∆==⨯⨯⨯=(2cm ),因为MN MP DC PC=,所以13MP MC =,则11424233MNP S ∆=⨯⨯⨯=(2cm ),阴影部分面积等于164233333ABR ANS MBQ MNP S S S S ∆∆∆∆--+=--+=(2cm ).【例 26】 如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【巩固】如右图,三角形ABC 中,:3:4BD DC =,:5:6AE CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::3:415:20AOB AOC S S BD CD ===△△::5:615:18AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:20:1810:9:AOC BOC S S AF FB ===△△【巩固】如右图,三角形ABC 中,:2:3BD DC =,:5:4EA CE =,求:AF FB .O F EDCBA【解析】 根据燕尾定理得::2:310:15AOB AOC S S BD CD ===△△::5:410:8AOB BOC S S AE CE ===△△(都有AOB △的面积要统一,所以找最小公倍数) 所以:15:8:AOC BOC S S AF FB ==△△【点评】本题关键是把AOB △的面积统一,这种找最小公倍数的方法,在我们用比例解题中屡见不鲜,如果能掌握它的转化本质,我们就能达到解奥数题四两拨千斤的巨大力量!【例 27】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形ABC 的面积是1,则三角形ABE 的面积为______,三角形AGE 的面积为________,三角形GHI 的面积为______.I HGFEDCBAI H G FEDCBA【分析】 连接AH 、BI 、CG .由于:3:2CE AE =,所以25AE AC =,故2255ABE ABC S S ∆∆==;根据燕尾定理,::2:3ACG ABG S S CD BD ∆∆==,::3:2BCG ABG S S CE EA ∆∆==,所以::4:6:9ACG ABG BCG S S S ∆∆∆=,则419ACG S ∆=,919BCG S ∆=; 那么2248551995AGE AGC S S ∆∆==⨯=; 同样分析可得919ACH S ∆=,则::4A C G AC HE GE H S S ∆∆==,::4:19ACG ACB EG EB S S ∆∆==,所以::4:5:1E G G H H B =,同样分析可得::10:5A G G I I D =,所以5521101055BIE BAE S S ∆∆==⨯=,55111919519GHI BIE S S ∆∆==⨯=.【巩固】 如右图,三角形ABC 中,:::3:2AF FB BD DC CE AE ===,且三角形GHI的面积是1,求三角形ABC 的面积.IH G FEDCBAIH G FEDCBA【解析】 连接BG ,AGCS △=6份根据燕尾定理,::3:26:4AGC BGC S S AF FB ===△△,::3:29:6ABG AGC S S BD DC ===△△得4BGC S =△(份),9ABG S =△(份),则19ABC S =△(份),因此619AGCABCS S =△△, 同理连接AI 、CH 得619ABHABCS S =△△,619BIC ABC S S =△△,所以1966611919GHI ABC S S ---==△△三角形GHI 的面积是1,所以三角形ABC 的面积是19【巩固】如图,ABC ∆中2BD DA =,2CE EB =,2AF FC =,那么ABC ∆的面积是阴影三角形面积的 倍.BCCB【分析】 如图,连接AI.根据燕尾定理,::2:1BCI ACIS S BD AD ∆∆==,::1:2BCI ABI S S CF AF ∆∆==,所以,::1:2:4ACI BCI ABI S S S ∆∆∆=,那么,221247BCI ABC ABC S S S ∆∆∆==++.同理可知ACG ∆和ABH ∆的面积也都等于ABC ∆面积的27,所以阴影三角形的面积等于ABC ∆面积的211377-⨯=,所以ABC ∆的面积是阴影三角形面积的7倍.【巩固】如图在ABC △中,12DC EA FB DBECFA===,求GHI ABC △的面积△的面积的值.IHG FEDCBAIHG FEDCB A【解析】 连接BG ,设BGC S △=1份,根据燕尾定理::2:1AGC BGC S S AF FB ==△△,::2:1ABG AGC S S BD DC ==△△,得2AGC S =△(份),4ABG S =△(份),则7ABC S =△(份),因此27AGC ABC S S =△△,同理连接AI 、CH 得27ABH ABC S S =△△,27BIC ABC S S =△△,所以7222177GHI ABC S S ---==△△ 【点评】如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线.【例 28】 如图,三角形ABC 的面积是1,BD DE EC ==,CF FG GA ==,三角形ABC被分成9部分,请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA【解析】 设BG 与AD 交于点P ,BG 与AE 交于点Q ,BF 与AD 交于点M ,BF 与AE交于点N .连接CP ,CQ ,CM ,CN . 根据燕尾定理,::1:2A B P C B P S S AG GC ==△△,::1:2ABP ACP S S BD CD ==△△,设1ABP S =△(份),则1225ABC S =++=△(份),所以15ABP S =△ 同理可得,27ABQ S =△,12ABN S =△,而13ABG S =△,所以2137535APQ S =-=△,1213721AQG S =-=△.同理,335BPMS =△121BDM S =△,所以1239273570PQMN S =--=四边形,13953357042MNEDS =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形【巩固】如图,ABC ∆的面积为1,点D 、E 是BC 边的三等分点,点F 、G 是AC边的三等分点,那么四边形JKIH 的面积是多少?K J IHABC D EF GKJI HABCD EFG【解析】 连接CK 、CI 、CJ.根据燕尾定理,::1:2ACK ABK S S CD BD ∆∆==,::1:2ABK CBK S S AG CG ∆∆==, 所以::1:2:4ACK ABK CBK S S S ∆∆∆=,那么111247ACK S ∆==++,11321AGK ACK S S ∆∆==. 类似分析可得215AGI S ∆=. 又::2:1ABJ CBJ S S AF CF ∆∆==,::2:1ABJ ACJ S S BD CD ∆∆==,可得14ACJ S ∆=. 那么,111742184CGKJS =-=. 根据对称性,可知四边形CEHJ 的面积也为1784,那么四边形JKIH 周围的图形的面积之和为172161228415370CGKJ AGI ABE S S S ∆∆⨯++=⨯++=,所以四边形JKIH 的面积为61917070-=.【例 29】 右图,ABC △中,G 是AC 的中点,D 、E 、F 是BC 边上的四等分点,AD 与BG 交于M ,AF 与BG 交于N ,已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米,则ABC △的面积是多少平方厘米?N M GA BCD EFNMGA BC D EF【解析】 连接CM 、CN .根据燕尾定理,::1:1ABM CBMS S AG GC ==△△,::1:3ABM ACM S S BD CD ==△△,所以15ABM ABC S S =△△;再根据燕尾定理,::1:1ABN CBN S S AG GC ==△△,所以::4:3ABN FBN CBN FBN S S S S ==△△△△,所以:4:3AN NF =,那么1422437ANG AFC S S =⨯=+△△,所以2515177428FCGNAFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意,有157.2528ABC ABC S S -=△△,可得336ABC S =△(平方厘米)【例 30】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求阴影部分面积.GC BACB【解析】 三角形在开会,那么就好好利用三角形中最好用的比例和燕尾定理吧!令BI 与CD 的交点为M ,AF 与CD 的交点为N ,BI 与AF 的交点为P ,BI 与CE 的交点为Q ,连接AM 、BN 、CP⑴求ADMI S 四边形:在ABC △中,根据燕尾定理,::1:2ABM CBM S S AI CI ==△△::1:2ACM CBM S S AD BD ==△△设1ABMS =△(份),则2CBM S =△(份),1ACM S =△(份),4ABC S =△(份),所以14ABM ACM ABC S S S ==△△△,所以11312ADM ABM ABC S S S ==△△△,112AIM ABC S S =△△,所以111()12126ABC ABC ADMI S S S =+=△△四边形,同理可得另外两个顶点的四边形面积也分别是ABC △面积的16⑵求DNPQE S 五边形:在ABC △中,根据燕尾定理::1:2ABN ACN S S BF CF ==△△::1:2ACN BCN S S AD BD ==△△,所以111133721ADN ABN ABC ABC S S S S ==⨯=△△△△,同理121BEQ ABC S S =△△在ABC△中,根据燕尾定理::1:2ABP ACP S S BF CF ==△△,::1:2ABP CBP S S AI CI ==△△所以15A BPA BCS S =△△,所以1111152121A B P ADNBED N P QE S S S S S ⎛⎫=--=--= ⎪⎝⎭△△△△△五边形 同理另外两个五边形面积是ABC△面积的11105,所以11113133610570S =-⨯-⨯=阴影【例 31】 如图,面积为l 的三角形ABC 中,D 、E 、F 、G 、H 、I 分别是AB 、BC 、CA 的三等分点,求中心六边形面积.GCBAGCBA【解析】 设深黑色六个三角形的顶点分别为N 、R 、P 、S 、M 、Q ,连接CR在ABC △中根据燕尾定理,::.2:1ABR ACR S S BG CG ==△△, ::1:2ABR CBR S S AI CI ==△△所以27ABR ABC S S =△△,同理27ACS ABC S S =△△,27CQB ABC S S =△△所以222117777RQS S =---=△,同理17MNP S =△根据容斥原理,和上题结果11131777010S =+-=六边形课后练习:练习1. 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【解析】 :():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米练习2. 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2C G F CD B S S =△△ 同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形 5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形 所以66513.2ABCD S =÷=四边形平方米练习3. 正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是 平方厘米.H GFEDCBAM H GFEDCBA【解析】 欲求四边形BGHF 的面积须求出EBG ∆和CHF ∆的面积.由题意可得到:::1:2EG GC EB CD ==,所以可得:13EBG BCE S S ∆∆=将AB 、DF 延长交于M 点,可得: :::1:1BM DC MF FD BF FC ===,而1::():3:22EH HC EM CD AB AB CD ==+=,得25CH CE =,而12CF BC =,所以121255CHF BCE BCE S S S ∆∆∆=⨯=11112030224BCE S AB BC ∆=⨯⨯=⨯=117730141515EBC EBC EBC EBC BGHF S S S S S ∆∆∆∆=--==⨯=四边形.EF ,确定H 的位置(也就是:FH HD )练习4. 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .DCEBABCA'C'EDA【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.。
小学奥数必学几何五大模型及例题解析
小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
几何模型(小学奥数必会6大模型)
模型一:等高模型定义:三角形面积的大小,取决于三角形底和高的乘积。
如果固定三角形的底(或高)不变,另一者变大(小)n 倍,三角形的面积也就变大(小)n 倍。
六种基本类型:两个三角形高相等,面积比等于底之比;两个三角形底相等,面积比等于高之比公式:DCBDS S ADC ABD =∆∆;FCEDS S ABC ABD =∆∆其中,BC=EF 且两三角形的高相等公式:1=∆∆DEFABCS S夹在一组平行线之间的等积变形公式:1==∆∆∆ABDABCBCD ACD S S等底等高的两个平行四边形面积相等(长方形和正方形可看作特殊的平行四边形)公式:1=CDEFABCDS S三角形面积等于与它等底等高的平行四边形面积的一半公式:ABCDEDC S S 21=∆两个平行四边形高相等,面积比等于他们底的比公式:EFABS S DEFG ABCD =例题:长方形ABCD 的面积为36cm 2,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?()5.135.418185.43681211836212136212121=-=-=∴=⨯=⨯⨯=+=++=⨯=++=++∴=++====∴===∴=∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆BEF BEF BEF DGH BFH BEH CDH BCH ABH DGH BFH BEH CDH BCH ABH ABCD CDH DGH BCH BFH ABH BEH CGHDGH CFH BFH BEHAEH S S BF BE S S S S S S S S S S S S S S S S S S S S S S S S S S S S EB AE HC BH 阴影阴影,,,,同理,、如图,连接模型二:相似模型定义:形状相同,大小不相同的两个三角形,一切对应线段的长度成比例的模型。
两种基本类型:(一)金字塔模型(二)沙漏模型①相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比;公式:AGAFBC DE AC AE AB AD ===②相似三角形的面积比等于他们相似比的平方;公式:22::AG AF S S ABC ADE =∆∆③连接三角形两边中点的线段叫做三角形的中位线。
六大几何模型.等积变形第1部分(动图版)x
2021/11/14
1
六大几何模型
等积变形 一半模型
1
鸟头模型
2
蝴蝶模型
3
燕尾模型
4
相似模型
5
6
2021/11/14
2
01 等积变形模型
1
等积变形 习题
2 等积变形模型说明: 等积变形中的“积”指的是面积,三角形作为最基本图形,任何直线型图形都 可分解成若干个三角形,等积变形里主要研究的是三角形面积变换。
2021/11/14
11
巩固1:三角形ABH的面积为6,求阴影部分面积? 答案:6
巩固2:已知正方形ABCD的边长为10,正方形BEFG的边长为6,求阴影部分面积? 答案:20
2021/11/14
12
THANKS
2021/11/14
13
3 等积变形模型实际应用中,常用的3个结论:
A
D
B
C
2021/11/14
A
D
BE
C
A
B
D
C
3
结论一的典型应用: 夹在一组平行线间的两个三角形若同底,则面积相同。
A
D
B
20பைடு நூலகம்1/11/14
C
主要应用场景:正方形、长方形、平形四边行、梯形等
4
结论一的应用: 例:正方形ABCD与正方形GCEF,且正方形ABCD的边长为10cm,求三角形BDF 的面积是多少平方厘米?
7
例:图中正方形GCEF的面积为8,求三角形GAE的面积?
2021/11/14
8
例:图中正方形GCEF的面积为8,求三角形GAE的面积?
2021/11/14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题5 如图,已知三角形ABC面积为1,延长AB至D,使BD=AB, 延长BC至E,使CE=2BC,延长CA至F,使AF=3AC,求三 角形DEF的面积。
例题6 如图1,正六边形的面积为6,那么阴影部分的面积是多少?
例题7 如图1,△ABC中,BD=2DA,CE=2EB,AF=2FC,那么 △ABC的面积是阴影三角形面积的 倍。
如上图中有 SADE AD AE SABC AB AC
共角三角形的面积比等于对应角(相等角或互补角)两 夹边的乘积之比。
蝴蝶模型
蝴蝶模型为我们提供了解决不规则四边形的面积问题的一个途径,
通过构造模型,一方面可以使不规则四边形的面积与四边形内的三 角形面积之间建立了相关的联系,得到与面积对应的对角线4 : S3或者S1 S3 S2 S4
AO : OC S1 : S4 S2 : S3 (S1 S2 ) : (S4 S3)
可以简记为 左边:右边=左和:右和
梯形中蝴蝶模型 梯形 的对应份数为
可以简记为: 上下平方,左右相乘。
燕尾模型 从三角形一个顶点向对边上任意一点的画线段,在线段
等积变形
等积变形这里的积指的是面积,因为任何直线型图形都可分解成
若干个三角形,所以三角形是最基本图形,等积变形里主要研究的 是三角形面积变换。
三角形面积=底×高÷2 决定三角形面积的大小,取决于底和高这两个量。 等底等高:如果两个三角形等底等高,则这两个三角形面积相同 (如图1);(典型的夹在一组平行线间的,两个三角形若同底,则 面积相同) 同底看高:如果两个三角形等底,但高不等,则面积比等于高的 比(如图2); 同高看底:如果两个三角形等高,但底不等,则面积比等于底的 比(如图3)。
上任取一点组成的图形面积也会有如下关系:
SABO : SACO SOBD : SOCD SABD : SACD BD : CD
金字塔、沙漏模型 所谓的金字塔、沙漏模型,就是指形状相同,大小不同
的两个三角形,一切对应线段的长度成比例的模型,如图 所示:
勾股定理 我国最早发现在直角三角形中两条直角边的平方和等于
例题3 如图1,梯形ABCD,下底BC上有一点E,梯形空白处的面 积比阴影△ADE得到面积多200平方厘米,又知梯形下底 BC比上底AD长20厘米。求这个梯形的高是多少?
例题4 将长16厘米,宽9厘米的长方形的长和宽都分成三等份, 长方形内任意一点O与分点及顶点连接,如图,则阴影部 分的面积是 平方厘米。
例题8 正六边形 分别是正六边形各边的中点,那么图中阴影六边 形的面积是 平方厘米。
斜边的平方,把这一特性叫做勾股定理或勾股弦定理,外 国称为毕达哥拉斯定理。如右图 在直角三角形 ABC中有c2 a2 b2
例题1 (2008年第一届“陈省身杯”六年级2试) 如图,BC=45,AC=21,△ABC被分成9个面积相等的小三 角形,那么DI+FK为多少?
例题2 如图1,并排放有三个正方形,其中正方形GBEF的边长为 10厘米,连接GK,交EF于O,连接DE,交BG于Q,连接 DG,求阴影部分的面积。
一半模型 阴影图形占整个图形面积的一半。 一般在平行四边形中常见一半模型,任取一点与其四个
顶点连线,所构成的三角形占平行四边形面积的一半。当 然在梯形中也常见一半模型。
最下面三个图,边上的点都为中点。
鸟头模型(共角模型) 两个三角形中有一个角相等或互补,这两个三角形叫做
共角三角形。 共角三角形常见图形,如下图