角平分线、线段的垂直平分线定理专题复习
专题02 垂直平分线与角平分线(解析版)八年级数学下册期末综合复习专题提优训练(北师大版)
2020-2021学年八年级数学下册期末综合复习专题提优训练(北师大版)专题02 垂直平分线与角平分线【典型例题】1.如图,△ABC 中,△ABC =25°,△ACB =55°,DE ,FG 分别为AB ,AC 的垂直平分线,E ,G 分别为垂足; (1)直接写出△BAC 的度数;(2)求△DAF 的度数;(3)若BC 的长为30,求△DAF 的周长.【答案】(1)100BAC ∠=︒;(2)20DAF ∠=︒;(3)30DAF C =【分析】 (1)由题意直接根据三角形内角和定理计算,得到答案;(2)由题意根据线段垂直平分线的性质、等腰三角形的性质计算;(3)根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:(1)△△ABC +△ACB +△BAC =180°,△△BAC =180°﹣25°﹣55°=100°;(2)△DE 是线段AB 的垂直平分线,△DA =DB ,△△DAB =△ABC =25°,△FG 是线段AC 的垂直平分线,△AF =CF ,△△F AC =△ACB =55°,△△DAF =△BAC ﹣△DAB ﹣△F AC =100°﹣25°﹣55°=20°;(3)△BC =30,由(2)可知, AD =BD ,F A =FC ,△C △DAF =AD +DF +F A =BD +DF +FC =BC =30.【点睛】本题考查的是线段的垂直平分线的性质以及三角形内角和定理,等腰三角形性质,熟练掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.【专题训练】一、选择题1.如图,在Rt ABC 中,90,B AD ∠=︒平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若1BD =,则DE 的长为( )A .12B .1C .2D .6【答案】B【分析】根据△B =90°,AD 平分△BAC ,DE △AC ,再根据角平分线的性质得到DE =BD =1.【详解】△90B ∠=︒,△DB AB ⊥,又△AD 平分BAC ∠,DA AC ⊥,△由角平分线的性质得1DE BD ==. 故选:B【点睛】本题主要考查了角平分线的性质,灵活运用角平分线的性质处理问题.2.如图,在ABC 中,直线ED 是线段BC 的垂直平分线,直线ED 分别交BC 、AB 于点D 、点E ,已知BD =3,ABC 的周长为20,则AEC 的周长为( )A .14B .20C .16D .12【答案】A【分析】 根据线段的垂直平分线的性质得到EC =EB ,BC =2BD =6,根据三角形的周长公式计算即可.【详解】△ED 是线段BC 的垂直平分线,△EC =EB ,BC =2BD =6,△△ABC 的周长为20,△AB +AC +BC =20,△AB +AC =14,△△AEC 的周长=AC +AE +EC =AC +AE +EB =AC +AB =14,故选:A .【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.如图,在ABC 中,AD BC ⊥,垂足为D ,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,BD DE =,若ABC 的周长为26cm ,5AF =cm ,则DC =( )A .8cmB .7cmC .10cmD .9cm【答案】A【分析】根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,能推出2DE+2EC=16,即可求解.【详解】解:△AD△BC,BD=DE,EF垂直平分AC△AB=AE=EC△△ABC周长是26cm,AF=5cm△AC=10cm△AB+BC=16cm△AB+BE+EC=16cm即2DE+2EC=16cm△DE+EC=8cm△DC=DE+EC=8cm故选A.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端的距离相等时解题的关键.4.如图,在Rt△ABC中,△ACB=90°,AC=3,BC=4,BE平分△ABC,CD△AB于D,BE与CD相交于F,则CF的长是()A.1B.43C.53D.2【答案】B【分析】过点E作EG△AB于点G,由EG△AB,CD△AB,可得EG△CD,由平行线的性质可得△GEB=△EFC;在Rt△ABC 中,由勾股定理求得AB的值;由HL判定Rt△EBC△Rt△EBG,由全等三角形的性质可得△CEB=△EFC及AG 的值,进而可判定CF=CE.设CF=EG=EC=x,则AE=3-x,在Rt△AEG中,由勾股定理得关于x的方程,解得x 的值即为CF 的长.【详解】解:过点E 作EG △AB 于点G ,如图:△CD △AB 于D ,△EG △CD ,△△GEB =△EFC ,△在Rt △ABC 中,△ACB =90°,△EC △CB ,又△BE 平分△ABC ,EG △AB ,△EG =EC .在Rt △ABC 中,△ACB =90°,AC =3,BC =4,△AB =5.在Rt △EBC 和Rt △EBG 中,EB EB EC EG=⎧⎨=⎩, △Rt △EBC △Rt △EBG (HL ),△CEB =△GEB ,BG =BC =4,△△CEB =△EFC ,AG =AB ﹣BG =5﹣4=1,△CF =CE .设CF =EG =EC =x ,则AE =3﹣x ,在Rt △AEG 中,由勾股定理得:(3﹣x )2=x 2+12,解得x =43△CF 的长是43.故选:B.【点睛】本题考查了勾股定理、角平分线的性质定理及等腰三角形的判定等知识点,数形结合并熟练掌握相关性质及定理是解题的关键.5.如图,在△ABC中,△B=15°,△C=30°,MN是AB的垂直平分线,PQ是AC的垂直平分线,已知S△ANQ则BC的长为()A B.3C.3D.2+【答案】B【分析】根据线段垂直平分线的性质得出AQ=CQ,BN=AN,根据等腰三角形的性质和已知条件得出△BAN=△B=15°,△CAQ=△C=30°,根据三角形外角性质得出△ANQ=△B+△BAN=30°,△AQN=△C+△CAQ=60°,求出△NAQ=90°,再根据三角形的面积求出AQ,最后求出BC即可.【详解】解:△MN是AB的垂直平分线,PQ是AC的垂直平分线,△AQ=CQ,BN=AN,△△B=15°,△C=30°,△△BAN=△B=15°,△CAQ=△C=30°,△△ANQ=△B+△BAN=15°+15°=30°,△AQN=△C+△CAQ=30°+30°=60°,△△NAQ=180°﹣△ANQ﹣△AQN=90°,△NQ=2AQ,AN==,△S△ANQ=,2△12⨯AQ 解得:AQ =1(负数舍去),即CQ =AQ =1,AN =BN NQ =2AQ =2,△BC =BN +NQ +CQ 2+1=3故选:B .【点睛】本题考查了含30°角的直角三角形的性质,线段垂直平分线的性质,勾股定理,三角形的面积,三角形的外角性质,等腰三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.二、填空题6.如图,在△ABC 中,△C =90°,AP 平分△CAB ,且PC =3,PB =5,则点P 到边AB 的距离是 ______________【答案】3【分析】作PH △AB 于H .直接根据角平分线的性质求解即可.【详解】解:作PH △AB 于H ,如图,△AP 平分△CAB ,且△C =90°,△3PH PC ==,即点P 到边AB 的距离是3.故答案为3.【点睛】此题主要考查了角平分线的性质,熟练掌握角平分线性质定理是解答此题的关键.7.如图,在△ABC 中,△C =90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E ,若△CAB =△B +28°,则△CAE=__.【答案】28︒【分析】先根据直角三角形的两锐角互余可得31,59B CAB ∠=︒∠=︒,再根据垂直平分线的性质可得AE BE =,然后根据等腰三角形的性质可得31B BAE ∠=∠=︒,最后根据角的和差即可得.【详解】解:△在ABC 中,90C ∠=︒,△90CAB B ∠+∠=︒,又△28CAB B ∠=∠+︒,△31,59B CAB ∠=︒∠=︒,△DE 垂直平分斜边AB ,△AE BE =,△31BAE B ∠=∠=︒,△593128CAE CAB BAE ∠=∠-∠=︒-︒=︒,故答案为:28︒.【点睛】本题考查了直角三角形的两锐角互余、等腰三角形的性质、线段垂直平分线的性质等知识点,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题关键.8.如图,在△ABC 中,AB =6,AC =8,BC =11,AB 的垂直平分线分别交AB ,BC 于点D 、E ,AC 的垂直平分线分别交AC ,BC 于点F 、G ,则△AEG 的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解△DE是线段AB的垂直平分线,△EA=EB,同理,GA=GC,△△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.9.如图,在四边形ABCD中,△A=90°,AD= 6,连接BD,BD△CD,△ADB=△C.若P是BC边上一动点,则DP长的最小值为__________.【答案】6【分析】根据垂线段最短得出当DP△BC时,DP的长度最小,求出△ABD=△CBD,根据角平分线的性质得出AD=DP=6,即可得出选项.【详解】解:△BD△CD,△△BDC=90°,△△C+△CBD=90°,△△A=90°△△ABD+△ADB=90°,△△ADB=△C,△△ABD=△CBD,当DP△BC时,DP的长度最小,△AD△AB,△DP=AD,△AD=6,△DP的最小值是6,故答案为:6.【点睛】本题考查了角平分线的性质,三角形内角和定理和垂线段最短等知识点,能知道当DP△BC时,DP的长度最小是解此题的关键.10.如图,等腰三角形ABC的面积为24,底边BC为12,点P在边BC上,且BP:PC=3:1,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDP周长的最小值为___________.【答案】8.【分析】如图作AH△BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DP+DC=AD+DP,可得当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,此时,△CDP周长的最小,求出AP的长即可.【详解】解:如图作AH△BC于H,连接AD.△EG垂直平分线段AC,△DA=DC,△DP+DC=AD+DP,△当A、D、P共线时,DP+DC的值最小,最小值就是线段AP的长,△12×12•AH=24,△AH=4,△AB=AC,AH△BC,△BH=CH=6,△BP:PC=3:1,△CP=PH=3,△AP5,△DP+DC的最小值为5.△△CDP周长的最小值为5+3=8;故答案为:8.【点睛】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质、勾股定理等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.三、解答题11.如图,在△ABC中,AB=AC,BE平分△ABC,DE△BC,交AB于点D,交AC于点E.(1)求证:BD=DE;(2)若△DEB=30°且DE=3,求AD的长度.【答案】(1)见解析;(2)3.【分析】(1)由BE平分△ABC,DE△BC可得△DBE=△DEB,可得结论;(2)通过证明△ADE为等边三角形,可得AD=DE=3.【详解】证明:(1)△BE平分△ABC,△△ABE=△EBC,△DE△BC,△△DEB=△EBC,△△DBE=△DEB,△BD=DE;(2)△△DEB=△DBE=30°=△EBC,△△ABC=60°,△AB=AC,△△ABC是等边三角形,△△ABC=△ACB=△A=60°,△DE△BC,△△ADE=△ABC=60°,△AED=△C=60°,△△ADE是等边三角形,△AD=DE=3.【点睛】本题考查了等腰三角形的性质,角平分线的性质,平行线的性质,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.,的垂直平分线交于点P.12.如图,ABC中,边AB BC==.(1)求证:PA PB PC(2)点P是否也在边AC的垂直平分线上?请说明理由.【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:△边AB、BC的垂直平分线交于点P,△P A=PB,PB=PC.△P A=PB=PC.(2)△P A=PC,△点P 在边AC 的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.13.如图,AD 为△ABC 的角平分线,DE △AB 于点E ,DF △AC 于点F ,连接EF 交AD 于点O .(1)求证:△DEF =△DFE ;(2)求证:AD 垂直平分EF .【答案】(1)见解析;(2)见解析【分析】(1)根据角平分线的性质证明即可得解;(2)根据已知条件证明Rt △AED △Rt △AFD (HL )和△△DEO DFO ≅即可得解;【详解】(1)△AD 为△ABC 的角平分线,DE △AB ,DF △AC ,△DE =DF ,△△DEF =△DFE ;(2)根据已知条件可得△AED =△AFD =90°,在Rt △AED 和Rt △AFD 中,DE DF AD AD=⎧⎨=⎩, △Rt △AED △Rt △AFD (HL ),△△ADE =△ADF ;在△DEO 和△DFO 中, DEO DFO DE DFEDO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△△DEO DFO ≅,△EO FO =,EOD FOD ∠=∠,△∠EOD +∠FOD =180°,△∠EOD =∠FOD =90°,△AD 垂直平分EF .【点睛】本题主要考查了角平分线的垂直平分线的判定与性质,结合等三角形证明是解题的关键.14.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于M ,交AC 于N .(1)若70ABC ∠=︒,求A ∠的度数;(2)连接NB ,若8cm AB =,NBC 的周长是14cm ,求BC 的长.【答案】(1)40°;(2)6cm【分析】(1)由AB =AC 可得△C =△ABC =70°,由三角形内角和可得△A =40°;(2)由(1)可知BN =AN ,由此可得BN +NC =AN +NC =AC =AB =8cm ,再由C △BNC =BN +CN +BC =14cm ,可得BC =14-8=6(cm ).【详解】解:(1)△AB =AC ,△△ABC =△ACB =70°,△△A =180°-70°-70°=40°;(2)MN 是AB 的垂直平分线,△AN =BN ,△BN +CN =AN +CN =AC ,△AB =AC =8cm ,△BN +CN =8cm ,△C △BNC =BN +CN +BC =14(cm ),△BC =14﹣8=6(cm ).【点睛】本题考查等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长,掌握等腰三角形性质,三角形内角和,线段垂直平分线性质,三角形周长是解题关键.15.如图,△ABC 中,AD 平分△BAC ,DG △BC 且平分BC ,DE △AB 于E ,DF △AC 于F .(1)求证:BE =CF ;(2)如果AB =8,AC =6,求AE ,BE 的长.【答案】(1)证明见解析,(2)AE =7,BE =1.【分析】(1)连接DB 、DC ,先由角平分线的性质就可以得出DE =DF ,再证明△DBE △△DCF 就可以得出结论; (2)由条件可以得出△ADE △△ADF 就可以得出AE =AF ,进而就可以求出结论.【详解】解:(1)证明:连接DB 、DC ,△DG △BC 且平分BC ,△DB =DC .△AD 为△BAC 的平分线,DE △AB ,DF △AC ,△DE =DF .在Rt △DBE 和Rt △DCF 中DB DC DE DF =⎧⎨=⎩, Rt △DBE △Rt △DCF (HL ),△BE =CF .(2)在Rt △ADE 和Rt △ADF 中AD AD DE DF =⎧⎨=⎩,△Rt△ADE△Rt△ADF(HL).△AE=AF.△AC+CF=AF,△AE=AC+CF.△AE=AB﹣BE,△AC+CF=AB﹣BE,△AB=8,AC=6,△6+BE=8﹣BE,△BE=1,△AE=8﹣1=7.即AE=7,BE=1.【点睛】本题考查了角平分线的性质的运用,中垂线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.16.如图,已知Rt△ABC中,△ACB=90°,CD△AB于点D,△BAC的平分线分别交BC,CD于点E、F.(1)试说明△CEF是等腰三角形;(2)若点E恰好在线段AB的垂直平分线上,猜想:线段AC与线段AB的数量关系,并说明理由;(3)在(2)的条件下,若AC=2.5,求△ABE的面积.【答案】(1)见解析;(2)AB=2AC,理由见解析;(3)12【分析】(1)求出△B=△ACD,根据三角形的外角性质求出△CFE=△CEF,根据等腰三角形的判定得出即可;(2)求出△B=△CAE=△BAE,根据三角形内角和定理求出△B=30°,再求出答案即可;(3)求出高EM的长,求出AB的长,再根据三角形的面积公式求出即可.【详解】解:(1)△CD△AB,△△CDB=90°,△△B+△BCD=90°,△△ACB=90°,△△ACD+△BCD=90°,△△ACD=△B,△AE平分△BAC,△△CAE=△BAE,△△ACD+△CAE=△B+△BAE,即△CFE=△CEF,△CF=CE,即△CEF是等腰三角形;(2)AB=2AC,理由是:△E在线段AB的垂直平分线上,△AE=BE,△△B=△BAE,△△CAE=△BAE,△ACB=90°,△3△B=90°,△△B=30°,△AB=2AC;(3)△AC=2.5,△AB=2AC=5,由(2)得,△CAB=60°,△AE平分△CAB,△△CEA =30°,设CE 为x ,则AE 为2x ,AC ,x ,过E 作EM △AB 于M ,△EM =CE =6,△△ABE 的面积S =12AB EM ⋅=12⨯5. 【点睛】本题考查勾股定理、等腰三角形的判定、含30°角的直角三角形的性质,解题关键是熟练运用所学知识,整合已知条件,解决综合问题.17.如图1,在△ABC 中,AD △BC ,垂足为D ,E 为AC 上一点,BE 交AD 于点F ,△ABC =45°,FD =CD . (1)请写出BE 与AC 的位置关系,并说明理由;(2)如图2,连接DE ,求证:△BED =△DEC ;(3)若AD =4,CD =2,在直线BC 上方的平面内是否存在点P ,使得△BFP 为等腰直角三角形.若存在,请直接写出点P 到直线BC 的距离.【答案】(1)BE △AC ,见解析;(2)见解析;(3)存在,4或6或3【分析】(1)证明△BDF △△ADC ,得到△DBF =△DAC ,由△BFD =△AFE 证得△BDF =△AEF =90°,即可得到结论;(2)过点D 作DM △AC ,DN △BE ,根据△BDF △△ADC ,得到BF =AC ,BDF ADC SS =,推出DM =DN ,证得ED 平分△BEC ,由此得到结论;(3)根据勾股定理求出AC 由△BDF △△ADC ,得到BF =AC =DF =DC =2,BD =AD =4,分三种情况:当△PBF =90°,BP =BF 时, 当△P ′FB =90°,P ′F =BF 时, 当△BP ″F =90°,BP ″=FP ″时, 根据等腰直角三角形的性质解答即可.【详解】(1)证明:如图①中,△AD △BC ,△△ADB =90°,△△ABC =45°,△△ABD =△BAD =45°,△BD =DA ,△DF =DC ,△BDF =△ADC =90°,△△BDF △△ADC (SAS ).△△DAC =△CBE ,△△BFD =△AFE ,△△BDF =△AEF =90°,△BE △AC .(2)解:如图,过点D 作DM △AC ,DN △BE ,△△BDF △△ADC ,△BF =AC ,BDF ADC SS =,△DM =DN ,△ED 平分△BEC ,△△BED =△DEC ;(3)解:如图2-1中,满足条件的点P 有3个.在Rt △ADC 中,△AD =4,CD =2,△AC ,△△BDF △△ADC ,△BF =AC =DF =DC =2,BD =AD =4,当△PBF =90°,BP =BF 时,作PM △CB 交CB 的延长线于M . 易证△PMB △△BDF ,△PM =BD =4,△点P 到直线BC 的距离为4;当△P ′FB =90°,P ′F =BF 时,作P ′H △BC 于H ,FG △P ′H 于G . 易证:P ′G =BD =4,GH =DF =2,△P ′H =4+2=6,△P ′到直线BC 的距离为6;当△BP ″F =90°,BP ″=FP ″时,作P ″N △BC 于N .易证P ″N =2PM DF +=3,△P″到直线BC的距离为3,综上所述,满足条件的点P到直线BC的距离为4或6或3.【点睛】此题考查全等三角形的判定及性质,等腰直角三角形的性质,勾股定理,角平分线的判定及性质,熟记各定理并熟练应用解决问题是解题的关键.18.在△ABC中,若AD是△BAC的角平分线,点E和点F分别在AB和AC上,且DE△AB,垂足为E,DF△AC,垂足为F(如图(1)),则可以得到以下两个结论:①△AED+△AFD=180°;②DE=DF.那么在△ABC中,仍然有条件“AD是△BAC的角平分线,点E和点F,分别在AB和AC上”,请探究以下两个问题:(1)若△AED+△AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则△AED+△AFD=180°是否成立?(只写出结论,不证明)【答案】(1)DE=DF,理由见解析;(2)不一定成立【分析】(1)过点D作DM△AB于M,DN△AC于N,DM=DN,△DME△△DNF,DE=DF;(2)如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立;【详解】(1)DE=DF.理由如下:过点D作DM△AB于M,DN△AC于N,△AD平分△BAC,DM△AB,DN△AC,△DM=DN,△△AED+△AFD=180°,△AFD+△DFN=180°,△△DFN=△AED,△△DME△△DNF(AAS),△DE=DF;(2)不一定成立.如图,若DE、DF在点D到角的两边的垂线段与顶点A的同侧则一定不成立,经过(1)的证明,若在垂线段上或两侧则成立,所以不一定成立..【点睛】本题主要考查角平分线的性质,难点在于熟练和灵活的应用角平分线要点;19.根据图片回答下列问题.(1)如图①,AD平分△BAC,△B+△C=180°,△B=90°,易知:DB____DC.(2) 如图②,AD平分△BAC,△ABD+△ACD=180°,△ABD<90°,求证:DB=DC.(3)如图③,四边形ABCD中,△B=45°△C=135°,DB=DC AB−AC=________.【答案】(1)=;(2)见解析;(3)【分析】(1)利用HL判断出△ADC△△ADC,即可得出结论;(2)先构造出△ACD△△AED,得出DC=DE,△AED=△C,在判断出DE=DB,即可得出结论;(3)利用(2)结论得出DE=DB,再判断出△BDE=90°,利用勾股定理求出BE即可得出结论.【详解】解:证明:(1)△△B+△C=180°,△B=90°,△△C=90°,△AD平分△BAC,△△DAC=△BAD,△AD=AD,△△ACD△△ABD(AAS),△BD=CD;(2)如图②,在AB边上取点E,使AC=AE,△AD平分△BAC,△△CAD=△EAD,△AD=AD,AC=AE,△△ACD△△AED(SAS),△DC=DE,△AED=△C,△△C+△B=180°,△AED+△DEB=180°,△△DEB=△B,△DE=DB,△DB=DC;(3)如图③,连接AD,在AB上取一点E使AE=AC,同(2)的方法得,AE =AC ,CD =DE =BD =2,△△DEB =△B =45°,△△BDE =90°,根据勾股定理得,BE =,△AB -AC =BE =故答案为:【点睛】本题是四边形综合题,考查全等三角形的判定和性质,角平分线的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,属于中考常考题型.20.如图①,△ABC 中,△ABC ,△ACB 的平分线交于O 点,过O 点作BC 平行线交AB ,AC 于E ,F . (1)试说明:EO =BE ;(2)探究图①中线段EF 与BE ,CF 间的关系,并说明理由;(3)探究图②,△ABC 中若△ABC 的平分线与△ABC 的外角平分线交于O ,过点O 作BC 的平行线交AB 于E ,交AC 于F ,这时EF 与BE ,CF 的关系又如何?请直接写出关系,不需要说明理由.【答案】(1)证明见解析;(2)EF BE CF =+,理由见解析;(3)EF BE CF =-【分析】(1)由题意易得△EOB =△EBO ,△ABO =△OBC ,则有△EOB =△ABO ,进而问题得证;(2)由题意易得△FOC =△OCB ,△FCO =△OCB ,则有△FCO =△FOC ,然后可得CF =OF ,由(1)得BE =OE ,进而问题可求解;(3)同理(1)(2)可得:BE=OE,CF=OF,然后问题可求解.【详解】证明:(1)△EF△BC,△△EOB=△EBO,△BO平分△ABC,△△ABO=△OBC,△△EOB=△ABO,△BE=OE;=+,理由如下:(2)解:EF BE CF△EF△BC,△△FOC=△OCB,△CO平分△ACB,△△FCO=△OCB,△△FCO=△FOC,△CF=OF,由(1)得:BE=OE,△EF=BE+CF;(3)解:EF=BE-CF,理由如下:同理(1)(2)可得:BE=OE,CF=OF,△EF=OE-OF=BE-CF.【点睛】本题主要考查角平分线的定义及平行线的性质,熟练掌握角平分线的定义及平行线的性质是解题的关键,也要熟练掌握“双平等腰”模型.。
线段的垂直平分线与角平分线综合压轴题五种模型全攻略(学生版)--初中数学
线段的垂直平分线与角平分线综合压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一利用线段垂直平分线的性质求解】【考点二线段垂直平分线的判定】【考点三利用角平分线的性质求解】【考点四角平分线的判定】【考点五线段的垂直平分线与角平分线的综合问题】【过关检测】【典型例题】【考点一利用线段垂直平分线的性质求解】1(2023春·江苏淮安·七年级校考阶段练习)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB、AC于E,D,连接EC,则∠BEC=.【变式训练】1(2023·江苏·八年级假期作业)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点2(2023春·山东济南·七年级济南市章丘区第二实验中学校考阶段练习)如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.3(2023春·广东深圳·七年级校考期末)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=10cm,求△CMN的周长;(2)若∠MFN=65o,则∠MCN的度数为°.【考点二线段垂直平分线的判定】1(2023春·陕西西安·七年级校考阶段练习)如图,AD为三角形ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点O.(1)若BE=DE,∠BAC=60°,求∠CDF的度数;(2)写出AD与EF的关系,并说明理由;【变式训练】1(2023秋·广西河池·八年级统考期末)如图,在△ABC中,边AB,BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)求证:点P在线段AC的垂直平分线上.2(2023春·全国·八年级专题练习)如图,点D是等边△ABC外一点,∠BDC=120°,DB=DC,点E,F分别在AB,AC上,连接AD、DE、DF、EF.(1)求证:AD是BC的垂直平分线;(2)若ED平分∠BEF,BC=5,求△AEF的周长.【考点三利用角平分线的性质求解】1(2023春·山东威海·七年级统考期末)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AB= 8,DE=4,AC=6,则S△ABC=()A.14B.26C.56D.28【变式训练】1(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高所在直线的交点D.三角形三条中线的交点2(2023春·山西运城·七年级统考期末)如图,BD平分∠ABC,P是BD上一点,过点P作PQ⊥BC 于点Q,PQ=5,O是BA上任意一点,连接OP,则OP的最小值为.3(2023春·陕西榆林·七年级校考期末)如图,在四边形ABCD中,AD∥BC,∠D=90°,∠DAB的平分线与∠CBA的平分线相交于点P,且点P在线段CD上,∠CPB=30°.(1)求∠PAD的度数;(2)试说明PD=PC.【考点四角平分线的判定】1(2023·全国·八年级假期作业)如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.【变式训练】1(2023·广东惠州·校联考二模)如图,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1)求证:AC平分∠DAB;(2)若AE=10,DE=4,求AB的长.2(2023·江苏·八年级假期作业)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)请猜想AB+AC与AE之间的数量关系,并给予证明.【考点五线段的垂直平分线与角平分线的综合问题】1(2023秋·河北保定·八年级统考期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)连接CE,求证AD垂直平分CE.(3)若AB=10,AF=6,求CF的长.【变式训练】1(2023秋·河南洛阳·八年级统考期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC 于点F,连接EF.(1)求证:点D在EF的垂直平分线上;(2)若AB+AC=16,S△ABC=24,则DE的长为2(2023春·全国·八年级专题练习)如图,D为△ABC外一点,DG为BC的垂直平分线,分别过点D 作DE⊥AB,DF⊥AC,垂足分别为点E,F,且BE=CF.(1)求证:AD为∠CAB的角平分线;(2)若AB=8,AC=6,求AE的长.3(2023春·全国·八年级开学考试)如图1,射线BD交△ABC的外角平分线CE于点P,已知∠A= 78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.【过关检测】一、选择题1(2023春·四川成都·八年级统考期末)如图,在△ABC中,DE是AC边的垂直平分线,分别交BC、AC于D、E两点,连接AD,∠BAD=25°,∠C=35°,则∠B的度数为()A.70°B.75°C.80°D.85°2(2023春·四川达州·八年级统考期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论中,不正确的是()A.OM+ON的值不变B.∠PNM=∠POBC.MN的长不变D.四边形PMON的面积不变二、填空题3(2023春·山东青岛·七年级山东省青岛实验初级中学校考期末)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,AF是△ABC的中线,AB=16,AC=6,DE=5.则△ADF的面积为.4(2023春·湖南衡阳·七年级校联考期末)如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.三、解答题5(2023春·河南商丘·七年级统考阶段练习)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.6(2023春·黑龙江哈尔滨·七年级统考期末)在△ABC中,∠BAC=60°,线段BF、CE分别平分∠ABC、∠ACB交于点G.(1)如图1,求∠BGC的度数;(2)如图2,求证:EG=FG;(3)如图3,过点C作CD⊥EC交BF延长线于点D,连接AD,点N在BA延长线上,连接NG交AC于点M,使∠DAC=∠NGD,若EB:FC=1:2,CG=10,求线段MN的长.7(2023春·八年级课时练习)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,请指出AB与PB的数量关系,并说明理由.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.8(2023春·浙江宁波·七年级校考期末)角平分线性质定理描述了角平分线上的点到角两边距离的关系,小储发现将角平分线放在三角形中,有一些新的发现,请完成下列探索过程:【知识回顾】(1)如图1,P是∠BOA的平分线上的一点,PE⊥OB于点E,作PD⊥OA于点D,试证:PE=PD【深入探究】(2)如图2,在△ABC中,BD为∠ABC的角平分线交于AC于D点,其中AB+BC=10,AD=2,CD=3,求AB.【应用迁移】(3)如图3,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=4,S△BFP=20,则AB的长度为.9(2023·贵州遵义·校考三模)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.10(2023春·全国·八年级专题练习)【了解概念】如图1,已知A,B为直线MN同侧的两点,点P为直线MN的一点,连接AP,BP,若∠APM=∠BPN,则称点P为点A,B关于直线l的“等角点”.(1)【理解运用】如图2,在△ABC中,D为BC上一点,点D,E关于直线AB对称,连接EB并延长至点F,判断点B是否为点D,F关于直线AB的“等角点”,并说明理由;(2)【拓展提升】如图2,在(1)的条件下,若∠A=70°,AB=AC,点Q是射线EF上一点,且点D,Q关于直线AC的“等角点”为点C,请利用尺规在图2中确定点Q的位置,并求出∠BQC的度数;(3)【拓展提升】如图3,在△ABC中,∠ABC,∠BAC的平分线交于点O,点O到AC的距离为1,直线l垂直平分边BC,点P为点O,B关于直线l“等角点”,连接OP,BP,当∠ACB=60°时,OP+BP的值为.。
角平分线、线段垂直平分线、三线合一练习复习
角平分线、线段垂直平分线、三线合一练习例1.如图11所示,AD平分∠BAC,DE⊥AB于E, S∆ABC=28㎝2, AB=20㎝,AC=8㎝,求:DE例2.如图12,∠B=∠C=900,M是BC的中点,DM平分∠ADC,(1)求证:AM平分∠BAD;(2)试说明线段DM与AM又怎样的位置关系?例3.如图2,DE是AB的垂直平分线,AB=AC,C∆BCD=13,C∆ABC=20,求AC例4.如图14所示,在△ABC中,AB=AC,D是BC的中点,过D作DE⊥AB,DF⊥AC,①求证:DE=DF;②若∠A=600,BE=1,求C∆ABC.图2EDCBA例5.如图15,等边三角形ABC中,D是AC的中点,延长BC到E使CE=CD,过D作DF⊥BC,求证:F是BE的中点。
练习:1. 如图3,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB,若AB=8㎝,求C∆DEB2.如图5,OB 、OC 分别平分∠ABC 、∠ACB ,OD ⊥BC ,OD=3,C ∆CAB =12, 求S ∆ABC3. 如图9,△ABC 中∠C=900,AD 平分∠BAC ,AB=10,AC=8,求S ∆ABD :S ∆ADC 的值4.如图2, DE 是AB 的垂直平分线, AE=3,C ∆BCD =13,求C ∆ABC5.如图2, DE 是AB 的垂直平分线,BC=3,C ∆BCD =13,求ACOD 图5CBA图2EDCBA6.如图2,DE是AB的垂直平分线,AB=AC,C∆BCD=13,C∆ABC=20,求AB7.如图12,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,求证:AD=AE。
线段的垂直平分线和角平分线专题训练及答案
线段的垂直平分线和角平分线专题训练及答案一、选择题(本大题共7小题,共21.0分)1.如图是一块三角形草坪,现要在草坪上建一个凉亭供大家休息.若要使凉亭到草坪三条边的距离都相等,则凉亭应建在三角形草坪()A. 三条角平分线的交点处B. 三条中线的交点处C. 三条高的交点处D. 三条边的垂直平分线的交点处2.下列说法错误的是()A. 等腰三角形底边上的高所在的直线是它的对称轴B. 等腰三角形底边上的中线所在的直线是它的对称轴C. 等腰三角形顶角的平分线所在的直线是它的对称轴D. 等腰三角形一个内角的平分线所在的直线是它的对称轴3.如图,在Rt△ABC中,∠A=90°,BD是角平分线,DE垂直平分BC,AD=3,则AC的长为()A. 9B. 5C. 4D. 3√34.如图,在△ABC中,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,∠BAC=124°,则∠DAE的度数为()A. 68°B. 62°C. 66°D. 56°5.如图,在△ABC中,CD平分∠ACB,交AB于点D,DE⊥AC于点E,若BC=2m+6,DE=m+3,则△BCD的面积为()A. 2m2−18B. 2m2+12m+18C. m2+9D. m2+6m+96.如图,P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,则下列结论:①PM=PN;②AM=AN;③△APM≌△APN;④∠PAN+∠APM=90°.其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个7.如图所示,在△ABC中,AB=AC,AD是BC边上的高线,E,F是AD的三等分点,若△ABC的面积为12,则图中△BEF的面积为()A. 2B. 3C. 4D. 6二、解答题(本大题共10小题,共80.0分)8.直线OA,OB表示两条相互交叉的公路,点M,N表示两个蔬菜种植基地.现要建一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置.9.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC,交BC于点D,DE⊥AB于点E.已知AB=10cm,求△DEB的周长.10.如图,已知AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,且BE=CF,试判断BD和CD的数量关系,并说明理由.11.如图,要在街道旁修建一个奶站,向居民区A,B提供牛奶.奶站应建在什么地方才能使A,B到它的距离相等?12.A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等.请你利用尺规作图确定中转站的位置.13.如图,四边形ABCD为矩形台球桌面,现有一白球M和黑球N,应怎样去打白球M,才能使白球M撞击桌边AB后反弹击中黑球N?请你画出白球M经过的路线.14.如图,在△ABC中,AB=AC,M是BC的中点,D,E分别是AB,AC边上的点,且BD=CE.试说明MD=ME.15.如图,在Rt△ABC中,∠C=90°,BC=3.∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.(1)求∠B度数.(2)求DE的长.16.如图,已知∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等(保留作图痕迹,但不要求写作法).17.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=______.答案和解析1.【答案】A【解析】[分析]本题主要考查的是角平分线的性质在实际生活中的应用.由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到角两边的距离相等,可知是三角形三条角平分线的交点.由此即可确定凉亭位置.[详解]解:∵凉亭到草坪三条边的距离相等,∴凉亭应建在三角形草坪的三条角平分线的交点处.故选A.2.【答案】D【解析】[分析]本题考查了等腰三角形的性质,属于基础题,解题的关键是了解对称轴是一条直线,难度不大.根据等腰三角形性质分别判断后即可确定正确的选项.[详解]解:A.等腰三角形底边上的高所在的直线是对称轴,正确;B.等腰三角形底边上的中线所在的直线是对称轴,正确;C.等腰三角形顶角的平分线所在的直线是对称轴,正确;D.等腰三角形顶角的平分线所在的直线是对称轴,如果这个内角是底角,不一定是它的对称轴,错误.故选D.3.【答案】A【解析】[分析]根据角平分线性质得出AD=DE,证明Rt△ADB≌Rt△EDB(HL),得BE=AB,由DE 是BC的垂直平分线,得BC=2AB,所以∠C=30°,可得CD的长,从而得AC的长.本题考查了直角三角形的性质,线段垂直平分线的性质,角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.[详解]解:∵BD是角平分线,DE⊥BC,∠A=90°,∴DE=AD=3,在Rt△ADB和Rt△EDB中,∵{AD=DEBD=BD,∴Rt△ADB≌Rt△EDB(HL),∴BE=AB,∵DE是BC的垂直平分线,∴CE=BE,∴BC=2AB,∴∠C=30°,∴CD=2DE=6,∴AC=CD+AD=6+3=9,故选:A.4.【答案】A【解析】[分析]根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.[详解]解:∠B+∠C=180°−∠BAC=56°,∵AB的垂直平分线交BC于D,∴DA=DB,∴∠DAB=∠B,∵AC的垂直平分线交BC于E,∴EA=EC,∴∠EAC=∠C,∴∠DAE=∠BAC−(∠DAB+∠EAC)=124°−56°=68°.故选A.5.【答案】D【解析】[分析]过点D作DF⊥BC交CB的延长线于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形面积公式列式,然后根据多项式乘多项式法则进行计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出BC边上的高线是解题的关键.[详解]解:如图,过点D作DF⊥BC交CB的延长线于F,∵CD平分∠ACB,DE⊥AC,∴DE=DF,∴△BCD的面积=12·BC·DF=12(2m+6)(m+3)=m2+6m+9.故选D.6.【答案】A【解析】[分析]利用角平分线的性质结合全等三角形的判定与性质分析得出答案.此题主要考查了角平分线的性质,全等三角形的判定与性质,正确得出△APM≌△APN 是解题关键.[详解]解:∵P是∠BAC平分线上的点,PM⊥AB于M,PN⊥AC于N,∴∠MAP=∠NAP,∠AMP=∠ANP=90°,PM=PN,故①正确在△APM和△APN中{∠MAP=∠NAP ∠AMP=∠ANP AP=AP,∴△APM≌△APN(AAS),故③正确,∴AM=AN,故②正确,∠APM=∠APN,∵∠PAN+∠APN=90°,∴∠PAN+∠APM=90°,故④正确,综上所述:正确的有4个.故选A.7.【答案】A【解析】[分析]本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用△ABD和△ACD的面积相等是正确解答本题的关键.由图,根据等腰三角形是轴对称图形知,△ABD和△ACD的面积相等,再根据点E、F,依此即可求解.是AD的三等分点,可得△BEF的面积为△ACD的面积的13[详解]解:∵在△ABC中,AB=AC,AD是BC边上的高,S△ABC=12,BC,S△ABD=6,∴BD=CD=12∵点E、F是AD的三等分点,AD,∴EF=13S△BEF=1S△ABD=2.2故选A.8.【答案】解:如图:P为所求做的点.【解析】本题考查了基本作图,理解角的平分线以及线段的垂直平分线的作图是关键.连接MN,先画出∠AOB的角平分线,然后再画出线段MN的中垂线.这两条直线的交点即为所求.9.【答案】解:∵AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,∴CD=DE.又∵AD=AD,∴Rt△ACD≌△RtAED.∴AE=AC,∴△DEB的周长=DE+DB+EB=CD+DB+BE=BC+BE=AC+BE=AE+BE=AB=10cm.【解析】本题主要考查的是全等三角形的判定及性质,角平分线的性质等有关知识,由题意根据AD平分∠BAC交BC于D,DE⊥AB,∠C=90°,得到CD=DE,然后利用全等三角形的判定及性质得到AE=AC,最后利用三角形的周长公式进行求解即可.10.【答案】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠E=∠DFC=90°.在△BED和△DFC中,DE=DF,∠E=∠DFC,BE=CF,∴△BED≌△DFC(SAS),∴BD=CD.【解析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应边、对应角相等)是解题的关键.由角平分线的性质可得DE=DF,再结合条件可证明Rt△BED≌Rt△CFD,即可求得BE=CF.11.【答案】解:连接AB,作AB的垂直平分线,与街道的交点为P,点P即为所求作的点.【解析】本题考查线段垂直平分线的性质,根据线段垂直平分线上的点到线段两端点的距离相等,可知此点P在AB的垂直平分线上即可解答,12.【答案】解:如图,【解析】此题主要考查了应用设计与作图,正确掌握线段垂直平分线的性质是解题关键.利用线段垂直平分线的性质进而得出AB,AC的垂直平分线进而得出交点,得出M即可.13.【答案】解:如图所示,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.【解析】此题考查了轴对称作图,作点N于AB的对称点N′,连接N′M,与AB相交于点O,连接MO,NO,就是白球路线.14.【答案】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【解析】本题主要考察等腰三角形的性质和全等三角形的判定与性质.根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.15.【答案】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∴∠B=30°;(2)∵AD平分∠CAB,DE⊥AB,CD⊥AC,BD,∴CD=DE=12∵BC=3,∴CD=DE=1.【解析】本题主要考查线段垂直平分线的性质,熟悉掌握是关键.(1)由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°;(2)根据角平分线的性质即可得到结论.16.【答案】解:如图,△PBD即为所求作的三角形【解析】【分析】本题考查尺规作图.根据角平分线的性质及线段垂直平分线的性质作图即可.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.作∠ABC的平分线与线段BD的垂直平分线交于点P,则△PBD为所求作的等腰三角形.【解答】解:∵点P到∠ABC两边的距离相等,∴点P在∠ABC的平分线上,∵线段BD为等腰△PBD的底边,∴PB=PD,∴点P在线段BD的垂直平分线上,∴点P是∠ABC的平分线与线段BD的垂直平分线的交点.17.【答案】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE//BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,设DE=CE=x,则AE=6−x,∴x4=6−x6,解得:x=125,即DE=125,故答案为:12.5【解析】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE//BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.。
专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法-学习文档
专题训练(四) 有关线段的垂直平分线和角的平分线的四种解题方法►方法一直接根据相关性质定理解题1.如图4-ZT-1所示,在四边形ABCD中,AC,BD相交于点O,AB=BC=CD=DA.求证:AC与BD互相垂直平分.图4-ZT-1►方法二连线构造全等三角形2.如图4-ZT-2,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.图4-ZT-23.如图4-ZT-3,在△ABC中,AB=2AC,∠BAD=∠CAD,AD=DB.求证:CD⊥CA.图4-ZT-3►方法三作垂线段得距离4.如图4-ZT-4,在△ABC中,∠BAC的平分线AD平分底边BC.求证:AB=AC.图4-ZT-45.如图4-ZT-5,在△ABC中,∠ABC与∠ACB的平分线相交于点O,OE⊥BC于点E,△ABC的周长为12,面积为6,求OE的长.图4-ZT-56.如图4-ZT-6所示,在△ABC中,AD是△ABC的角平分线,E,F分别是AB,AC上的点,并且有∠EDF+∠EAF=180°,DG⊥AB于点G.(1)试判断DE和DF的数量关系,并说明理由;(2)若△ADF和△AED的面积分别为50和39,求△EDG的面积.图4-ZT-67.如图4-ZT-7,DA⊥AB于点A,CB⊥AB于点B,P为AB边上一点,且DP平分∠ADC,CP平分∠DCB.求证:(1)P为AB的中点;(2)DC=AD+BC.图4-ZT-78.如图4-ZT -8,D 是△ABC 的边BC 的延长线上一点,BE 平分∠ABC,CE 平分∠ACD. 求证:(1)∠BAC=2∠BEC;(2)∠CAE+∠BEC=90°.图4-ZT -8► 方法四 作线段的延长线构造全等三角形9.如图4-ZT -9,在△ABC 中,∠BAC =90°,AB =AC ,CD 垂直于∠ABC 的平分线BD 于点D ,BD 交AC 于点E.求证:BE =2CD.图4-ZT -9详解详析1.证明:∵AB =DA ,BC =CD ,∴点A ,C 在线段BD 的垂直平分线上,即AC 垂直平分BD ,同理可证得BD 垂直平分AC.∴AC 与BD 互相垂直平分.2.证明:连接AD.在△ABD 与△ACD 中,∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD. 又∵DE ⊥AB ,DF ⊥AC ,∴DE =DF.3.[解析] 要证明CD ⊥CA ,只要使∠ACD =90°即可.由于AD =DB ,可在AB 边上取中点E ,连接DE ,由AB =2AC 及∠BAD =∠CAD ,得△ADE ≌△ADC ,从而得∠ACD =∠AED.由AD =DB 知DE 是AB 的垂直平分线,可得∠AED =90°.证明:在AB 边上取中点E ,连接DE.因为AD =DB ,E 为AB 的中点,所以ED ⊥AB.因为AB =2AC ,所以AE =12AB =AC. 在△ADE 和△ADC 中,⎩⎨⎧AE =AC ,∠DAE =∠DAC ,AD =AD ,所以△ADE ≌△ADC , 所以∠ACD =∠AED =90°,所以CD ⊥CA.4.[解析] 根据题意可知AD 是∠BAC 的平分线,可过点D 作∠BAC 两边的垂线段,根据角平分线的性质,并结合三角形的面积进行证明.证明:如图,分别过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F.因为AD 为∠BAC 的平分线,所以DE =DF.又因为AD 平分BC ,所以BD =CD ,所以S △ABD =S △ACD .又S △ABD =12AB ·DE ,S △ACD =12AC ·DF , 所以AB·DE =AC·DF ,所以AB =AC.5.[解析] 连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F ,则OE =OF =OM.由S △ABC =S △AOB +S △BOC +S △AOC 可求OE 的长.解:如图,连接OA ,过点O 作OM ⊥AC 于点M ,OF ⊥AB 于点F.∵BO 平分∠ABC ,OF ⊥AB ,OE ⊥BC ,∴OF =OE.同理OE =OM.∴OF =OE =OM.∵S △ABC =S △AOB +S △BOC +S △AOC ,∴12AB ·OF +12BC ·OE +12AC ·OM =6, ∴12OE ·(BC +AB +AC)=6. 又∵△ABC 的周长为12,即BC +AB +AC =12,∴OE =1.6.解:(1)DE =DF.理由:过点D 作DN ⊥AC 于点N.∵DG ⊥AB 于点G ,∴∠EGD =∠FND =90°.∵AD 平分∠BAC ,DG ⊥AB ,DN ⊥AC ,∴DG =DN(角平分线的性质).∵∠EAF +∠EDF =180°,∴∠AED +∠AFD =360°-180°=180°.∵∠AED +∠DEG =180°,∴∠DEG =∠NFD.在△EGD 和△FND 中,⎩⎨⎧∠GED =∠DFN ,∠DGE =∠DNF ,DG =DN ,∴△EGD ≌△FND(AAS),∴DE =DF.(2)由已知易证△ADG ≌△ADN.由(1)知△EGD ≌△FND ,∴S △ADG =S △ADN ,S △EGD =S △FND ,∴S △ADE +S △EGD =S △ADF -S △EGD ,即39+S △EGD =50-S △EGD ,∴S △EGD =5.5.7.证明:(1)如图,过点P 作PE ⊥DC 于点E.∵DP 平分∠ADC ,PA ⊥AD ,PE ⊥DC ,∴PA =PE.同理PB =PE.∴PA =PB ,∴P 为AB 的中点.(2)在△ADP 与△EDP 中,∵DP 平分∠ADC ,∴∠ADP =∠EDP.又∵∠PAD =∠PED =90°,DP =DP ,∴△ADP ≌△EDP ,∴AD =ED.同理BC =EC.∵DC =DE +EC ,∴DC =AD +BC.8.证明:(1)∵∠ACD =∠BAC +∠ABC ,CE 平分∠ACD ,∴∠ECD =12∠ACD =12(∠BAC +∠ABC). ∵BE 平分∠ABC ,∴∠EBC =12∠ABC. ∴∠ECD =∠BEC +∠EBC =∠BEC +12∠ABC , ∴∠BEC +12∠ABC =12(∠BAC +∠ABC), ∴∠BEC =12∠BAC ,即∠BAC =2∠BEC. (2)过点E 作EM ⊥BD 于点M ,EN ⊥BA 支BH 的延长线于点N ,EG ⊥AC 于点G. ∵CE 平分∠ACD ,EM ⊥BD ,EG ⊥AC ,∴EG =EM.∵BE 平分∠ABC ,EM ⊥BD ,EN ⊥BA ,∴EN =EM ,∴EG =EN ,∴AE 平分∠CAN ,∴∠CAE =12∠CAN =12(180°-∠BAC), ∴∠CAE +∠BEC =12(180°-∠BAC)+12∠BAC =90°. 9.[解析] 要证BE =2CD ,想到要构造等于2CD 的线段,结合角平分线, 利用轴对称的性质把△CBD 沿BD 翻折,使BC 重叠到BA 所在的直线上,构造全等三角形,然后证明BE 和CF(2CD)所在的三角形全等.证明:如图,延长BA ,CD 交于点F.∵BD ⊥CF(已知),∴∠BDC =∠BDF =90°.∵BD 平分∠ABC(已知),∴∠1=∠2.在△BCD 和△BFD 中,⎩⎨⎧∠2=∠1(已证),BD =BD (公共边),∠BDC =∠BDF (已证),∴△BCD ≌△BFD(ASA),∴CD =FD ,即CF =2CD.∵∠5=∠4=90°,∠BDF =90°,∴∠3+∠F =90°,∠1+∠F =90°,∴∠1=∠3.在△ABE 和△ACF 中,⎩⎨⎧∠4=∠5,AB =AC ,∠1=∠3(已证),∴△ABE ≌△ACF(ASA),∴BE =CF ,∴BE =2CD.。
250.角平分线和线段垂直平分线(二)
E D C A G NCF B D E A角平分线和线段垂直平分线【要点梳理】知识点1. 角的平分线的性质及判定定理: 1.如图∵OP 平分∠AOB ,点P 在射线OP上,PC ⊥OA 于C ,PD⊥OB 于D ∴ ( )2.∵PC ⊥OA 于C ,PD ⊥OB 于D ,PC = PD ,∴ ( ) 知识点 2. 线段的垂直平分线的性质及判定定理:1.线段垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的 .2.线段垂直平分线的判定:与一条线段两个端点 的点,在这条线段的垂直平分线上. 3.线段的垂直平分线是到这条线段两端点距离相等的点的集合.知识点 3. 角的平分线和线段的垂直平分线的应用:1.三角形的三条 交于一点,并且这一点到三条边的距离相等。
2.三角形的 交于一点,这点到三角形三个顶点的距离相等。
3.如图,321l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( ) A 、一处 B 、二处 C 、三处 D 、四处4.如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .下列推理中正确的个数是 . ①AD 上任意一点到点C ,B 的距离相等; ②AD 上任意一点到AC ,AB 的距离相等; ③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF【例题选析】例1 如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).例2.如图,∠A =∠B =90°,M 是AB 的中点,DM 平分∠ADC ,求证:CM 平分∠BCDMDBCA例3.如图,BE 和CD 是△ABC 的两条高,在BE 上截取BF =CA ,延长CD •至点H ,使HC =AB . 求证:①AF =AH ;②AF ⊥AH 。
专题19 角平分线与线段垂直平分线-2021年中考数学二轮复习专项训练
专题19 角平分线与线段垂直平分线一、单选题(共10题;共20分)1.如图,的垂直平分线交于点D,若,则的度数是()A. 25°B. 20°C. 30°D. 15°2.P、Q为∠AOB内两点,且∠AOP=∠POQ=∠QOB=∠AOB,PM⊥OA于M,QN⊥OB于N,PQ⊥OP,则下面结论正确的是()A. PM>QMB. PM=QNC. PM<QND. PM=PQ3.下列说法错误的是()A. 已知两边及一角只能作出唯一的三角形B. 到△ABC的三个顶点距离相等的点是△ABC的三条边垂直平分线的交点C. 腰长相等的两个等腰直角三角形全等D. 点A(3,2)关于x轴的对称点A坐标为(3,﹣2)4.利用直尺和圆规作出一个角的角平分线的作法,其理论依据是全等三角形判定方法()A. SASB. ASAC. AASD. SSS5.如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC=8cm,CA=6cm,则点O到边AB的距离为()A. 2cmB. 3cmC. 4cmD. 5cm6.如图,四边形ABCD中,对角线AC⊥BD于点O,且AO=BO=4,CO=8,∠ADB=2∠ACB,则四边形ABCD 的面积为()A. 48B. 42C. 36D. 327.已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A. ①②③B. ①③④C. ①②④D. ①②③④8.如图,线段AB,DE的垂直平分线交于点C,且∠ABC=∠EDC=62°,∠AEB=82°,则∠EBD的度数为()A. 108°B. 118°C. 138°D. 144°9.正三角形ABC所在的平面内有一点P,使得△PAB,△PBC,△PCA都是等腰三角形,则这样的P点有()A. 1个B. 4个C. 7个D. 10个10.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形ABCD,使AB边落在AC上,点B落在点H处,折痕AE分别交BC于点E,交BO于点F,连结FH,则下列结论正确的有几个()⑴AD=DF;(2)= ;(3)= ﹣1;(4)四边形BEHF为菱形.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共11分)11.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE 的中点,且S△ABC=4cm2,则S△BEF=________cm212.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F,则∠DFC的度数为________.13.如图,在△ABC中,∠ACB=75°,∠ABC=45°,分别以点B、C为圆心,大于BC的长为半径作弧,两弧相交于点M、N。
垂直平分线和角平分线典型题
知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
八年级上学期数学期末专题:点段垂直平分线与角平分线综合(原题和解析)
【期末压轴题】专题04:线段的垂直平分线与角平分线综合(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC 中,CD 是AB 边上的高,BE 平分△ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积是( )A .9B .7C .10D .18 2.如图,△ABC 中,△A =△ACB ,CP 平分△ACB ,BD ,CD 分别是△ABC 的两外角的平分线,下列结论中:△CP △CD △△P =12A ∠△BC =CD △01902D A ∠=-∠△PD //AC ,其中正确的结论有( )A .1个B .2个C .3个D .4个 3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接P A 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .85.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A .1△1△1B .2△3△4C .1△2△3D .3△4△5 6.在下列各原命题中,逆命题是假命题的是( )A .两直线平行,同旁内角互补;B .如果两个三角形全等,那么这两个三角形的对应边相等;C .如果两个三角形全等,那么这两个三角形的对应角相等;D .两个相等的角是对顶角.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△ 8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个 9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°10.如图,在△ABC 中,△BAC 和△ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD △BC 于D ,下列三个结论:△△AOB =90°+△C ;△当△C =60°时,AF +BE=AB ;△若OD=a ,AB +BC +CA =2b ,则S △ABC =ab .其中正确的个数是( )A .1个B .2个C .3个D .0个 11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .112.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =二、填空题 13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△ 17.如图,反比例函数k y x=的图象经过点(-1,-,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC时,点A 的坐标是____________.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)19.如图,在ABC 中,AB 、AC 的垂直平分线分别交BC 于D 、E 两点,并且相交于点F ,且70DFE ∠=︒,则DAE ∠的度数是______.20.如图,AP ,BP 分别平分△ABC 内角△CAB 和外角△CBD ,连接CP ,若△ACP =130°,则△APB =___.三、解答题21.已知,如图1,射线PE 分别与直线AB 、CD 相交于E 、F 两点,△PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设△PFM =α,△EMF =β,且2(35)αβα-+-0=.(1)α=____ °,β=______ °;直线AB 与CD 的位置关系是_______ ;(2)如图2,若点G 是射线MA 上任意一点,且△MGH=△PNF ,试找出△FMN 与△GHF 之间存在的数量关系,并证明你的结论:(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 和点N ,时,作△PMB 的角平分线MQ 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由. 22.如图1,将线段AB 平移至CD ,使A 与D 对应,B 与C 对应,连AD 、BC .(1)填空:AB 与CD 的关系为__________,B 与D ∠的大小关系为__________. (2)如图2,若60B ∠=︒,F 、E 为BC 的延长线上的点,∠=∠EFD EDF ,DG 平分CDE ∠交BE 于G ,求FDG ∠.(3)在(2)中,若B α∠=,其它条件不变,则FDG ∠=__________.23.如图1所示,已知点E 在直线AB 上,点F ,G 在直线CD 上,且EFG FEG ∠=∠,EF 平分AEG ∠.(1)判断直线AB 与直线CD 是否平行,并说明理由.(2)如图2所示,H 是AB 上点E 右侧一动点,EGH ∠的平分线GQ 交FE 的延长线于点Q ,设Q α∠=,EHG β∠=.△若40HEG ∠=︒,20QGH ∠=︒,求Q ∠的度数.△判断:点H 在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.24.如图,已知△ABC 和△CDE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,(1)求证:BD =AE , 并求出△DOE 的度数;(2)判断△CFG的形状并说明理由;(3)求证:OA+OC=OB;(4)判断下列两个结论是否正确,若正确请说明理由:△OC平分△FOG;△CO平分△FCG.25.在平面直角坐标系中,已知点A(0,a),B(b,0),其中a,b满足:(x+b)(x +2)=x2+ax+6(a,b为常数).(1)求点A,B的坐标;(2)如图1,D为x轴负半轴上一点,C为第三象限内一点,且△ABC=△ADC=90°,AO=DO,DB平分△ADC.过点C作CE△DB于点E,求证:DE=OB;(3)如图2,P为y轴正半轴上一动点,连接BP,过点B在x轴下方作BQ△BP,且BQ=BP,连接PC,PQ,QC.在(2)的条件下,设P(0,p),求△PCQ的面积(用含p的式子表示).26.在△ABC中,AB=CD△AB于点D,CD.(1)如图1,当点D是线段AB中点时,△AC的长为;△延长AC至点E,使得CE=AC,此时CE与CB的数量关系为,△BCE与△A 的数量关系为.(2)如图2,当点D不是线段AB的中点时,画△BCE(点E与点D在直线BC的异侧),使△BCE=2△A,CE=CB,连接AE.△按要求补全图形;△求AE的长.27.如图1,已知线段AC△y轴,点B在第一象限,且AO平分△BAC,AB交y轴于点D,连接OB,OC.(1)可以判断AOD的形状为三角形(直接写答案);(2)若OE平分△AOB且△B=2△BAO,证明:AO=BE+OB;(3)如图2,若点B,C关于y轴对称,AO△BO,点M为OA上一点,且△ACM=45°,点B的坐标为(3,1),求点M的坐标.28.如图,已知点B(-2,0),C(2,0),A为y轴正半轴上一点,点D为第二象限内的一个动点,M在BD的延长线上,CD交AB于点F,且△ABD=△ACD.(1)求证:△BDC=△BAC;(2)求证:DA平分△CDM;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,△BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出△BAC的度数?【期末压轴题】专题04:线段的垂直平分线与角平分线综合(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在△ABC中,CD是AB边上的高,BE平分△ABC,交CD于点E,BC=6,DE=3,则△BCE的面积是()A.9B.7C.10D.18【标准答案】A【思路点拨】作EH△BC于点H,根据角平分线的性质得出EH=DE,最后根据三角形的面积公式进行求解.【精准解析】如图,作EH△BC于点H,△BE平分△ABC,CD是AB边上的高,EH△BC,△EH=DE=3,△1163922BCES BC EH=⋅=⨯⨯=△.故选A.【名师指导】本题考查角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.2.如图,△ABC中,△A=△ACB,CP平分△ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:△CP△CD△△P=12A∠△BC=CD△01902D A∠=-∠△PD//AC,其中正确的结论有()A.1个B.2个C.3个D.4个【标准答案】D【思路点拨】根据邻补角平分线性质可判断△;根据三角形外角与角平分线定义列出等式2△PBG=△A+2△PCB,△PBG=△P+△PCB,可判断△,根据外角性质与角平分线定义,结合三角形内角和△BCD+△CBD=12BCF∠+12CBE∠=1902A︒+∠可判断△,利用等腰三角形性质与外角性质,可得△DBC=△A,可得△D=90°12DBC-∠,得出2△D+△DBC=180°,当△A=60°时,△D=△DBC=60°成立,可判断△,根据△DBC=△A=△ACB,利用平行线判定定理可判断△.【精准解析】解:△△BCA+△BCF=180°,CP平分△ACB,CD平分△FCB,△△PCB=12BCA∠,△DCB=12BCF∠,△△PCD=△PCB+△DCB =12BCA∠+()11118090 222BCF BCA BCF∠=∠+∠=⨯︒=︒,△CP△CD;故△正确;延长CB到G,△BD平分△CBE,△△EBD=△DBC,△△EBD=△PBA,△CBD=△PBG,△△PBA =△PBG,△△ABG=2△GBP,△△ABG=△A+△ACB,即2△PBG=△A+2△PCB,△PBG=△P+△PCB,△△PBG=12△A+△PCB,△△P=12△A,△CD 平分△BCF ,△△BCD =12BCF ∠, △DBC =12CBE ∠, △△BCD +△CBD =12BCF ∠+12CBE ∠, =()()1122A ABC A ACB ∠+∠+∠+∠, =()1122A ABC ACB A ∠+∠+∠+∠, =1902A ︒+∠, △△D=180°-(△BCD +△CBD )=180°-11909022A A ︒-∠=︒-∠, 故△正确;△AB =BC ,△△BAC =△ACB ,△2△DBC =△EBC =△A +△ACB =2△A ,△△DBC =△A ,△△D =90°12DBC -∠, △2△D +△DBC =180°,当△A =60°时,△D =△DBC =60°,△BC =CD ,故△不正确,△△DBC =△A =△ACB ,△PD△AC ,故正确的结论有4个.故选D .【名师指导】本题考查三角形内角与外角平分线,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定,掌握三角形内角与外角平分线定义,等腰三角形性质,三角形外角性质,三角形内角和,平行线判定是解题关键.3.如图,ABC 中,CAB ∠和CBA ∠的角平分线交于点P ,连接PA 、PB 、PC ,若PAB △、PBC 、PAC △的面积分别为1S 、2S 、3S ,则( )A .123S S S <+B .123S S S =+C .123S S S >+D .无法确定1S 与()23S S +的大小【标准答案】A【思路点拨】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,运用三角形面积公式,三角形三边关系定理判断即可.【精准解析】过点P 分别作PD △AB ,PE △BC ,PF △AC ,垂足分别为D ,E ,F ,△CAB ∠和CBA ∠的角平分线交于点P ,△PD =PE =PF =h ,△1S =1h 2AB ,2S =1h 2BC ,3S =1h 2AC ,△23()S S +=1h 2BC +1h 2AC =1()h 2AC BC +, △AC +BC >AB ,△23()S S +>1S ,△123S S S <+,△A 符合题意,B ,C ,D 都不符合题意,故选A .【名师指导】本题考查了角的平分线的性质定理,三角形的面积公式,三角形的三边关系定理,灵活运用角的平分线的性质和三角形三边关系定理是解题的关键.4.如图,AD 是ABC 中BAC ∠的角平分线,DE AB ⊥于点E ,26ABC S =△,4DE =,7AB =,则AC 长是( )A .5B .6C .7D .8【标准答案】B【思路点拨】 作DF △AC 于F ,如图,根据角平分线定理得到DE =DF =4,再利用三角形面积公式和S △ADB +S △ADC =S △ABC 得到12×4×7+12×4×AC =26,然后解一次方程即可.【精准解析】解:作DF △AC 于F ,如图,△AD 是△ABC 中△BAC 的角平分线,DE △AB ,DF △AC ,△DE =DF =4,△S △ADB +S △ADC =S △ABC , △12×4×7+12×4×AC =26,△AC =6,故选:B .【名师指导】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,三角形的面积公式等知识,解题的关键是学会添加常用辅助线,学会利用面积法构建方程解决问题. 5.如图,ΔABC 的三边AB 、BC 、CA 的长分别为20,30,40,其三条角平分线将ΔABC 分为三个三角形,则S ΔABO △S ΔBCO △S ΔAOC 等于( )A.1△1△1B.2△3△4C.1△2△3D.3△4△5【标准答案】B【思路点拨】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【精准解析】解:过点O作OD△AC于D,OE△AB于E,OF△BC于F,△点O是内心,△OE=OF=OD,△S△ABO:S△BCO:S△CAO=12•AB•OE:12•BC•OF:12•AC•OD=AB:BC:AC=2:3:4,故选:B.【名师指导】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高是相等的,这点是非常重要的.6.在下列各原命题中,逆命题是假命题的是()A.两直线平行,同旁内角互补;B.如果两个三角形全等,那么这两个三角形的对应边相等;C.如果两个三角形全等,那么这两个三角形的对应角相等;D.两个相等的角是对顶角.【标准答案】C【思路点拨】先写出逆命题,再根据相关性质,定义判断即可.【精准解析】解:A逆命题是同旁内角互补,两直线平行,是真命题,△A不符合题意;B 逆命题是如果两个三角形的对应边相等,那么这两个三角形全等,是真命题,△B 不符合题意;C 逆命题是如果两个三角形的对应角相等,那么这两个三角形全等,是假命题,△C 符合题意;D 逆命题是如果两个角是对顶角,那么这两个角相等,是真命题,△D 不符合题意;故选C .【名师指导】本题考查了命题,互逆命题,命题的真假,熟练确定逆命题,灵活运用相关知识判断是解题的关键.7.如图,已知AF AB =,60FAB ∠=︒,AE AC =,60EAC ∠=︒,CF 和BE 交于O 点,则下列结论::△CF BE =;△120COB ∠=︒;△OA 平分FOE ∠;△OF OA OB =+.其中正确的有( )A .△△B .△△△C .△△△△D .△△△【标准答案】C【思路点拨】 证明ABE AFC ∆≅∆,由全等三角形的性质得到BE CF =,可得AEB ACF ∠=∠,则60CON CAE MOB ∠=∠=︒=∠,得出180120BOC CON ∠=︒-∠=︒;ABE AFC S S ∆∆=,得到AP AQ =,利用角平分线的判定定理得AO 平分EOF ∠,在OF 上截取OD OB =,根据SAS 可证明FBD ABO ∆≅∆,得出DF OA =,由此可以解决问题.【精准解析】解:△AB AF =,AC AE =,60FAB EAC ∠=∠=︒,FAB BAC EAC BAC ∴∠+∠=∠+∠,即FAC BAE ∠=∠,在ABE ∆与AFC ∆中,AB AF BAE FAC AE AC =⎧⎪∠=∠⎨⎪=⎩,()ABE AFC SAS ∴∆≅∆,BE FC ∴=,AEB ACF ∠=∠,故△正确,180EAN ANE AEB ∠+∠+∠=︒,180CON CNO ACF ∠+∠+∠=︒,ANE CNO ∠=∠,60CON CAE MOB ∴∠=∠=︒=∠,180120BOC CON ∴∠=︒-∠=︒,故△正确,连接AO ,过A 分别作AP CF ⊥与P ,AM BE ⊥于Q ,如图1,ABE AFC ∆≅∆,ABE AFC S S ∆∆∴=, ∴1122CF AP BE AQ =,而CF BE =, ∴=AP AQ ,OA ∴平分FOE ∠,所以△正确,在OF 上截取OD OB =,60BOF ∠=︒,OBD ∴∆是等边三角形,BD BO ∴=,60DBO ∠=︒,FBD ABO ∴∠=∠,BF AB =,()FBD ABO SAS ∴∆≅∆,DF OA ∴=,OF DF OD OA OB ∴=+=+;故△正确;故选:C . 【名师指导】本题考查了等边三角形的性质、全等三角形的判定和性质、角平分线的判定定理等知识,利用全等三角形面积相等证明高相等是解决问题的关键.8.如图,点A ,B ,C 在一条直线上,ABD △,BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD 、BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:△ABE DBC ≌;△60DMA ∠=︒;△BPQ 为等边三角形;△MB 平分AMC ∠.其中结论正确的有( )A .1个B .2个C .3个D .4个【标准答案】D【思路点拨】 由等边三角形的性质得出AB =DB ,△ABD =△CBE =60°,BE =BC ,得出△ABE =△DBC ,由SAS 即可证出△ABE △△DBC ;由△ABE △△DBC ,得出△BAE =△BDC ,根据三角形外角的性质得出△DMA =60°;由ASA 证明△ABP △△DBQ ,得出对应边相等BP =BQ ,即可得出△BPQ 为等边三角形;由△ABE △△DBC 得到△ABE 和△DBC 面积等,且AE =CD ,从而证得点B 到AE 、CD 的距离相等,利用角平分线判定定理得到点B 在角平分线上.【精准解析】解:△△ABD 、△BCE 为等边三角形,△AB =DB ,△ABD =△CBE =60°,BE =BC ,△△ABE =△DBC ,△PBQ =60°,在△ABE 和△DBC 中,AB DB ABE DBC BE BC =⎧⎪∠=∠⎨⎪=⎩△△ABE △△DBC (SAS ),△△正确;△△ABE △△DBC ,△△BAE =△BDC ,△△BDC +△BCD =180°-60°-60°=60°,△△DMA =△BAE +△BCD =△BDC +△BCD =60°,△△正确;在△ABP 和△DBQ 中,60BAP BDQ AB DB ABP DBQ ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩△△ABP △△DBQ (ASA ),△BP =BQ ,△△BPQ 为等边三角形,△△正确;△△ABE △△DBC△AE =CD ,S △ABE =S △DBC ,△点B 到AE 、CD 的距离相等,△B 点在△AMC 的平分线上,即MB 平分△AMC ;△△正确;故选:D .【名师指导】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、角平分线的判定定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.9.如图,在△ABC 中,AB =AC ,△BAC =46°,△BAC 的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF .将△C 沿EF 折叠,点C 与点O 恰好重合时,则△OEC 的度数( )A .90°B .92°C .95°D .98°【标准答案】B【思路点拨】 仔细分析题意,可连接BO ,CO ,根据角平分线性质和中垂线性质不难得到△OAB =△OBA ;然后结合三角形内角和定理以及等边对等角可得△ABC 的度数;接下来根据全等三角形的判定易得△ABO △△ACO ,进而结合全等三角形的性质可得△OCB 的度数;最后根据折叠变换的性质得出EO =EC ,由等边对等角以及三角形内角和定理的知识即可求出△OEC 的度数.【精准解析】解:连接BO ,CO ,△△BAC=46°,△BAC的平分线与AB的中垂线交于点O,△△OAB=△OAC=23°,△OD是AB的垂直平分线,△OA=OB,△OA=OB,△OAB=23°,△△OAB=△ABO=23°,△AB=AC,△△ABC=△ACB=67°,△△OBC=△ABC-△ABO=67°-23°=44°,△AB=AC,△OAB=△OAC,AO=AO,△△ABO△△ACO(SAS),△BO=CO,△△OBC=△OCB=44°,△点C沿EF折叠后与点O重合,△EO=EC,△△EOC=△OCE=44°,△△OEC=180°-△EOC-△OCE=180°-2×44°=92°,故选:B.【名师指导】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.10.如图,在△ABC中,△BAC和△ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD△BC于D,下列三个结论:△△AOB=90°+△C;△当△C=60°时,AF+BE=AB;△若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A .1个B .2个C .3个D .0个【标准答案】B【思路点拨】 由角平分线的定义结合三角形的内角和的可求解△AOB 与△C 的关系,进而判定△;在AB 上取一点H ,使BH =BE ,证得△HBO △△EBO ,得到△BOH =△BOE =60°,再证得△HAO △△F AO ,得到AF =AH ,进而判定△正确;作OH △AC 于H ,OM △AB 于M ,根据三角形的面积可证得△正确.【精准解析】解:△△BAC 和△ABC 的平分线相交于点O ,△△OBA =12△CBA ,△OAB =12△CAB ,△△AOB =180°−△OBA −△OAB =180°−12△CBA −12△CAB=180°−12(180°−△C )=90°+12△C ,△错误;△△C =60°,△△BAC +△ABC =120°,△AE ,BF 分别是△BAC 与ABC 的平分线,△△OAB +△OBA =12(△BAC +△ABC )=60°,△△AOB =120°,△△AOF =60°,△△BOE =60°,如图,在AB 上取一点H ,使BH =BE ,△BF 是△ABC 的角平分线,△△HBO =△EBO ,在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,△△HBO △△EBO (SAS ),△△BOH =△BOE =60°,△△AOH =180°−60°−60°=60°,△△AOH =△AOF ,在△HAO 和△F AO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△HAO △△F AO (ASA ),△AF =AH ,△AB =BH +AH =BE +AF ,故△正确;作OH △AC 于H ,OM △AB 于M ,△△BAC 和△ABC 的平分线相交于点O ,△点O 在△C 的平分线上,△OH =OM =OD =a ,△AB +AC +BC =2b△S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,△正确. 故选:B .【名师指导】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO △△EBO ,得到△BOH =△BOE =60°,是解决问题的关键.11.如图,正ABC 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个△60AFB ∠=︒ △连接FC ,则CF 平分BFD ∠ △3BF DF = △BF AF FC =+A .4B .3C .2D .1【标准答案】A【思路点拨】根据“手拉手”模型证明BCE ACD ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=︒,即可证明△;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN ≌,结合角平分线的判定定理即可证明△;利用面积法表示BCF △和DCF 的面积,然后利用比值即可证明△;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ 为等边三角形,再结合“手拉手”模型推出BCF ACQ ≌即可证明△.【精准解析】解:△△ABC 和CDE △均为等边三角形,△60ACB ECD ∠=∠=︒,AC BC =,EC DC =,△ACB ACE ECD ACE ∠+∠=∠+∠,△BCE ACD ∠=∠,在BCE 和ACD △中, BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩△()BCE ACD SAS ≌,△CBE CAD ∠=∠,△AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,△60AFB ACB ∠=∠=︒,故△正确;△如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=︒,△BCE ACD ≌,△CEM CDN ∠=∠,在CEM 和CDN △中,CME CND CEM CDN CE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CEM CDN AAS ≌,△CM CN =,△CF 平分BFD ∠,故△正确;△如图所示,作FP BD ⊥于P 点, △1122BCF S BF CM BC FP ==,1122DCF S DF CN CD FP ==, △11221122BCFDCF BF CM BC FP S S DF CN CD FP ==, △CM CN =,△整理得:BF BC DF CD=, △3BC CD =,△33BF CD DF CD==, △3BF DF =,故△正确;△如图所示,在AD 上取点Q ,使得FC FQ =,△60AFB ACB ∠=∠=︒,CF 平分BFD ∠,△120BFD ∠=︒,1602CFD BFD ∠=∠=︒, △FCQ 为等边三角形,△60FCQ ∠=︒,CF CQ =,△60ACB ∠=︒,△ACB ACF FCQ ACF ∠+∠=∠+∠,△BCF ACQ ∠=∠,在BCF △和ACQ 中,BC AC BCF ACQ CF CQ =⎧⎪∠=∠⎨⎪=⎩△()BCF ACQ SAS ≌,△BF AQ =,△AQ AF FQ =+,FQ FC =,△BF AF FC =+,故△正确;综上,△△△△均正确;故选:A .【名师指导】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.12.如图,在ABC 中,BC AC =,90ACB ∠=︒,AD 平分BAC ∠,BE AD ⊥交AC 的延长线于F ,垂足为E .则下列结论不正确的是( )A .AD BF =B .CF CD =C .AC CD AB +=D .BE CF =【标准答案】D【思路点拨】 A.根据BC AC =,90ACB ∠=︒可知45CAB ABC ∠=∠=︒,再由AD 平分BAC ∠可知22.5BAE EAF ∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,可求出EAF FBC ∠=∠,由BC AC =可求出Rt ADC Rt BFC ∆≅∆,故可求出AD BF =;B.由选项A中Rt ADC Rt BFC ∆≅∆可直接得出结论;C.由选项A中Rt ADC Rt BFC ∆≅∆可知,CF CD =,故AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,根据45CAB ∠=︒可知,18067.5ABF EAF CAB ∠=︒-∠-∠=︒,即可求出AF AB =,即AC CD AB +=;D.由选项C可知,ABF ∆是等腰三角形,由于BE AD ⊥,故12BE BF =,在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B中22.5CBF ∠=︒相矛盾,故BE CF ≠;【精准解析】解:A.BC AC =,90ACB ∠=︒,45CAB ABC ∴∠=∠=︒, AD 平分BAC ∠,22.5BAE EAF ∴∠=∠=︒,在Rt ACD ∆与Rt BFC ∆中,90EAF F ∠+∠=︒,90FBC F ∠+∠=︒,EAF FBC ∴∠=∠,BC AC =,EAF FBC ∠=∠,BCF AEF ∠=∠,Rt ADC Rt BFC ∴∆≅∆,AD BF ∴=;故选项A 正确; B.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,故选项B 正确; C.选项A 中Rt ADC Rt BFC ∆≅∆,CF CD ∴=,AC CD AC CF AF +=+=,22.5CBF EAF ∠=∠=︒,∴在Rt AEF ∆中,9067.5F EAF ∠=︒-∠=︒,45CAB ∠=︒,18018067.54567.5ABF F CAB ∴∠=︒-∠-∠=︒-︒-︒=︒,AF AB ∴=,即AC CD AB +=,故C 正确;D.由选项C 可知,ABF ∆是等腰三角形,BE AD ⊥,12BE BF ∴=, 在Rt BCF ∆中,若BE CF =,则30CBF ∠=︒,与选项B 中22.5CBF ∠=︒相矛盾,故BE CF ≠,故选项D 错误;故选:D .【名师指导】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.二、填空题13.如图,△ABC 的外角△DBC 、△ECB 的角平分线交于点M ,△ACB 的角平分线与BM 的反向延长线交于点N ,若在△CMN 中存在一个内角等于另一个内角的2倍,则△A 的度数为 _______【标准答案】60︒或90︒或120︒【思路点拨】根据ECB ∠,DBC ∠的角平分线交于点M ,可求得1902M A ∠=︒-∠,延长 CB 至F ,根据BM 为ABC ∆的外角DBC ∠的角平分线,可得 BN 是ABC ∆的外角ABF ∠的平分线, 根据CN 平分 ACB ∠,得到2ACB NCB ∠=∠,则有NBF NCB N ∠=∠+∠,可得 2ABF ACB N ∠=∠+∠,可求得12N A ∠=∠;再根据NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠90=︒,分四种情况:△290MCN N ∠=∠=︒;△ 290MCN M ∠=∠=︒;△2M N ∠=∠;△2N M ∠=∠,分别讨论求解即可. 【精准解析】 解:外角ECB ∠,DBC ∠的角平分线交于点 M ,()12MCB MBC ECB DBC ∴∠+∠=∠+∠ ()11801802ACB ABC =︒-∠+︒-∠ ()13602ACB ABC =︒-∠-∠ ()13601802A =︒-︒+∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒△()11180180909022M MCB MBC A A ⎛⎫∠=︒-∠+∠=︒-︒+∠=︒-∠ ⎪⎝⎭; 如图示,延长CB 至F ,BM 为ABC ∆的外角DBC ∠的角平分线,BN ∴是ABC ∆的外角ABF ∠的平分线,2ABF NBF ∴∠=∠, CN 平分ACB ∠,2ACB NCB ∴∠=∠,NBF NCB N ∠=∠+∠,222NBF NCB N ∴∠=∠+∠,即2ABF ACB N ∠=∠+∠,又ABF ACB A ∠=∠+∠,△2ACB N ACB A ∠+∠=∠+∠2A N ∴∠=∠,即12N A ∠=∠; NCM NCF BCM ∠=∠+∠1122ACB BCE =∠+∠ 11802=⨯︒ 90=︒;如果CMN ∆中,存在一个内角等于另一个内角的2倍,那么分四种情况:△290MCN N ∠=∠=︒,则45N ∠=︒, 290A N ∠=∠=︒;△290MCN M ∠=∠=︒,则45M ∠=︒, 45N ∠=︒,290A N ∠=∠=︒;△2M N ∠=∠,则1190222A A ︒-∠=⨯∠,解得 60A ∠=︒;△2N M ∠=∠,则1129022A A ⎛⎫∠=︒-∠ ⎪⎝⎭,解得 120A ∠=︒. 综上所述,A ∠的度数是60︒或90︒或120︒.【名师指导】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.14.已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么△BOC 和△BPC 的数量关系是___.【标准答案】4360BPC ∠-︒【思路点拨】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【精准解析】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠ 1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠ 1902BAC =︒+∠, 即2180BAC BPC ∠=∠-︒;如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【名师指导】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.15.如图,在四边形ABCD 中,//AD BC ,AB AC =,6BC =,DBC △面积为18,AB 的垂直平分线MN 分别交AB ,AC 于点M ,N ,若点P 和点Q 分别是线段MN 和BC 边上的动点,则PB PQ +的最小值为______.【标准答案】6【思路点拨】连接AQ ,过点D 作DH BC ⊥于H .利用三角形的面积公式求出DH ,由题意得: PB PQ AP PQ AQ +=+≥,求出AQ 的最小值,AQ 最小值是与DH 相等,也就是AQ BC ⊥时,根据面积公式求出DH 的长度即可得到结论.【精准解析】解:连接AQ ,过点D 作DH BC ⊥于H .△DBC △面积为18,BC =6, △1182BC DH =, △6DH =,△MN 垂直平分线段AB ,△PA PB =,△PB PQ AP PQ AQ +=+≥,△当AQ 的值最小时,PB PQ +的值最小,根据垂线段最短可知,当AQ BC ⊥时,AQ 的值最小,△//AD BC ,△AQ =DH =6,△PB PQ +的最小值为6.故答案为:6.【名师指导】本题考查轴对称最短问题,平行线的性质,三角形的面积,线段的垂直平分线的性质等知识,把最短问题转化为垂线段最短是解题关键.16.如图,AB 为等腰直角ABC 的斜边,E 为AB 的中点,F 为AC 延长线上的一个动点(F 与点C 不重合),线段FB 的垂直平分线交线段CE 于点O ,D 垂足.当F 点运动时,给出下列四个结论.其中一定正确的结论有______(请填写正确序号).△点O 到ABF 三个顶点的距离相等;△⊥OF OB ;FC AB +=;△AEC BOF S S <△△【标准答案】△△△【思路点拨】如图,连接AO ,根据等腰三角形的性质得到CE △AB ,求得OA =OB ,根据线段垂直平分线的性质得到OF =OB ,得到点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,根据全等三角形的性质得到△CAO =△CBO ,求得△CAO =△CFJ ,得到△JOB =△JCF =90°,根据垂直的定义得到OF △OB ,故△CE =AC ,AC +CF =AF ,显然AF不一定等于AB 、故△错误;根据等腰直角三角形的性质得到AE =CE =BE =12AB ,CE △AB ,求得△ACE 面积为12AE •CE =12BE 2,得到△BOF 面积为12OF •OB =12OB 2,于是得到S △AEC <S △BOF ,故△正确.【精准解析】解:如图,连接AO ,△CA =CB ,AE =EB ,△CE △AB ,△OA =OB ,△OD 垂直平分线段BF ,△OF =OB ,△OA =OF =OB ,△点O 到△ABF 三个顶点的距离相等,故△正确;设BC 交OF 于J ,在△ACO 与△BCO 中,AC BC CO CO AO BO =⎧⎪=⎨⎪=⎩, △△ACO △△BCO (SSS ),△△CAO =△CBO ,△OA =OF ,△△CAO =△CFJ ,△△CFJ =△OBJ ,△△CJF =△OJB ,△△JOB =△JCF =90°,△OF △OB ,故△正确;CE =AC ,AC +CF =AF ,显然AF 不一定等于AB 、故△错误;△△ABC 为等腰直角三角形,E 为AB 中点,△AE =CE =BE =12AB ,CE △AB ,△△ACE 面积为12AE •CE =12BE 2,△OF △OB ,OF =OB ,△△BOF 面积为12OF •OB =12OB 2,在Rt △OBE 中,OB 为斜边,BE 为直角边,△OB >BE , △12BE 2<12OB 2,△S △AEC <S △BOF ,故△正确.故答案为:△△△.【名师指导】本题考查了全等三角形的判定和性质,线段垂直平分线的性质,三角形的面积公式,正确的识别图形是解题的关键.17.如图,反比例函数k y x =的图象经过点(-1,-),点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分△ABC 时,点A 的坐标是____________.【标准答案】)2 【思路点拨】把点(-1,-)代入反比例函数k y x=,求出k . 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,则有△AOE △△OCF ,进而可得出AE =OF 、OE =CF ,根据角平分线的性质及三角形面积可得出AP CP =,易证APE CPF ,利用三角形性质可得出CF AE =即OE AE =A 的坐标为(a (a >0),由OE AE =可求出a 值,进而得到点A 的坐标.【精准解析】解:把点(-1,-k y x=得: k=−1×(-△y = 连接OC ,过点A 作AE △x 轴于E ,过点C 作CF △x 轴于F ,如图所示.△△ABC 为等腰直角三角形,△OA =OC ,OC △AB ,△△AOE +△COF =90°.△△COF +△OCF =90°,△△AOE =△OCF .在△AOE 和△OCF 中,90AEO OFC AOE OCF OA OC ∠∠︒⎧⎪∠∠⎨⎪⎩==== , △△AOE △△OCF (AAS ),△AE =OF ,OE =CF .设点P 到AB 的距离为h ,△BP 平分△ABC ,△h PC =,△1·21·2ABP CBP h AB S AP AB CP S BC PC BC ==== △,APE CPF AEP CFP ∠=∠∠=∠,△APECPF , △CF CP AE AP ==, △OE AE =. 设点A的坐标为(a , 解得:a或a =(舍去),2=, △点A的坐标为)2, 故答案为:)2.【名师指导】本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质、三角形的面积、相似三角形的判定与性质以及等腰直角三角形,构造全等三角形,利用全等三角形的对应边相等是解题的关键.18.如图,在ABC 中,△ACB =45°,AD △BC ,BE △AC ,AD 与BE 相交于点F ,连接并延长CF 交AB 于点G ,△AEB 的平分线交CG 的延长线于点H ,连接AH ,则下列结论:△△EBD =45°;△AH =HF ;△ABD △CFD ;△CH =AB +AH ;△BD =CD ﹣AF .其中正确的是 ___.(只填写序号)【标准答案】△△△△△【思路点拨】△根据45ACB ∠=︒,BE AC ⊥,即可得解;△先证明EH 是AF 的垂直平分线,根据垂直平分线的性质即可得结论;△根据“边角边”即可证明ABD CFD ≌;△根据ABD CFD ≌可得AB CF =,再结合CH CF FH =+进而可以判断CH AB AH =+; △由DF AD AF =-结合△即可得结论.【精准解析】解:△△BE AC ⊥,90BEA BEC ∴∠=∠=︒,45ACB =︒∠,9045EBD ACB ∴∠=︒-∠=︒,故△正确;△EH 是AEB ∠的角平分线,1452HEB HEA AEB ∴∠=∠=∠=︒, 45HEB EBC ∴∠=∠=︒,//EH BC ∴,AD BC ⊥,AD EH ∴⊥,90AOE FOE ∴∠=∠=︒,9045OAE HEA ∴∠=︒-∠=︒,9045OFE HEB ∠=︒-∠=︒,45OAE OFE ∴∠=∠=︒,AE FE ∴=,又EH 平分AEB ∠,EH ∴是AF 的垂直平分线,AH HF ∴=,故△正确;。
角平分线、中垂线性质定理专题复习 (原卷)
【期末复习】浙教版八年级上册提分专题:角平分线、中垂线性质定理【角平分线】1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC 的大小为()A.110°B.120°C.130°D.150°2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD 的平分线交于点A2010,得∠A2010,则∠A2010=.3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA= ,∠DAE= .第3题第4题第5题第6题4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.25.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为()A.10°B.20°C.30°D.60°6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.30°B.40°C.50°D.60°7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB=5,BC=8,CA=7,则△AMN的周长为.8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.3:4:5D.2:3:49.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB 的长为()A.6B.8C.5D.4第8题第9题第10题第12题10.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=()A.8B.7C.6D.911.到三角形的三条边距离相等的点()A.是三条角平分线的交点B.是三条中线的交点C.是三条高的交点D.以上答案都不对12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是()A.∠AOP=∠BOP B.∠OPC=∠OPDC.PO垂直平分CD D.PD=CD13.如图,在△ABC中,∠A=90°,AB=3,AC=4,BC=5,∠ABC与∠ACB的平分线交于点O,过点O作OD ⊥AB于点D,则AD的长为第13题第14题第15题第16题14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB垂直,若AD=8,则点P到BC的距离是15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE的周长等于16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm217.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于点E,交AC于点F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有第17题第18题第19题第20题18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为.19.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为.20.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为.(填写结论的编号)21.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.22.如图1,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若AB=4,AC=5,求△AEF的周长.(2)过点O作OH⊥BC于点H,连接OA,如图2.当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.23.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC的长.24.在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是(直接写出结论,不需证明).【线段垂直平分线】1.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE、AF,若△AEF的周长为2,则BC的长是()A.2B.3C.4D.无法确定第1题第2题第3题2.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.83.如图,在△ABC中,BC边上两点D、E分别在AB、AC的垂直平分线上,若BC=24,则△ADE的周长为()A.22B.23C.24D.254.如图,已知∠B=20°,∠C=25°,若MP和QN分别垂直平分AB和AC,则∠P AQ等于()A.80°B.90°C.100°D.105°第4题第5题第7题5.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.116.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点7.如图,在Rt△ABC中,∠BAC=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若DE=3,AE =5,则△ACE的周长为.8.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=68°,则∠B的度数为.第8题第9题第10题9.如图,△ABC中,已知∠C=90°,DE是AB的垂直平分线,若∠DAC:∠DAB=1:2,那么∠BAC=度.10.如图,已知△ABC的面积为8cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为cm2.11.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠F AC=∠B.12.在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.。
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)
中考数学复习----《角的平分线与线段的垂直平分线》知识点总结与专项练习题(含答案解析)知识点总结1.角平分线的定义:角的内部把角平均分成两个相等的角的射线叫做角的平分线。
2.角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
3.角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
4.角平分线的尺规作图:具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
5.线段的垂直平分线的定义:过线段的中点且与线段垂直的直线是这条线段的垂直平分线。
6.垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
7.垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
8.垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②练习题1、(2022•鄂尔多斯)如图,∠AOE=15°,OE平分∠AOB,DE∥OB交OA于点D,EC⊥OB,垂足为C.若EC=2,则OD的长为()A.2 B.2C.4 D.4+2【分析】过点E作EH⊥OA于点H,根据角平分线的性质可得EH=EC,再根据平行线的性质可得∠ADE的度数,再根据含30°角的直角三角形的性质可得DE的长度,再证明OD=DE,即可求出OD的长.【解答】解:过点E作EH⊥OA于点H,如图所示:∵OE平分∠AOB,EC⊥OB,∴EH=EC,∵∠AOE=15°,OE平分∠AOB,∴∠AOC=2∠AOE=30°,∵DE∥OB,∴∠ADE=30°,∴DE=2HE=2EC,∵EC=2,∴DE=4,∵∠ADE=30°,∠AOE=15°,∴∠DEO=15°,∴∠AOE=∠DEO,∴OD=DE=4,故选:C.2、(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S △ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.3、(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.4、(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25 B.22 C.19 D.18【分析】根据题意可知MN垂直平分BC,即可得到DB=DC,然后即可得到AB+BD+AD =AB+DC+AD=AB+AC,从而可以求得△ABD的周长.【解答】解:由题意可得,MN垂直平分BC,∴DB=DC,∵△ABD的周长是AB+BD+AD,∴AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选:C.5、(2022•湖北)如图,在矩形ABCD中,AB<BC,连接AC,分别以点A,C为圆心,大于AC的长为半径画弧,两弧交于点M,N,直线MN分别交AD,BC于点E,F.下列结论:①四边形AECF是菱形;②∠AFB=2∠ACB;③AC•EF=CF•CD;④若AF平分∠BAC,则CF=2BF.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,EF垂直平分AC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∴AE=AF=CF=CE,即四边形AECF是菱形,故①结论正确;∵∠AFB=∠FAO+∠ACB,AF=FC,∴∠FAO=∠ACB,∴∠AFB=2∠ACB,故②结论正确;∵S四边形AECF=CF•CD=AC•OE×2=AC•EF,故③结论不正确;若AF平分∠BAC,则∠BAF=∠FAC=∠CAD=90°=30°,∴AF=2BF,∵CF=AF,∴CF=2BF,故④结论正确;故选:B.33.(2022•鄂尔多斯)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是.【分析】根据线段垂直平分线的性质可得BD=CD,进一步即可求出△ADC的周长.【解答】解:∵边BC的垂直平分线DE交AB于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC的周长为AD+CD+AC=AB+AC=6,故答案为:6.34.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=10°,则∠C的度数是.【分析】根据线段垂直平分线的性质可得AE=EC,从而可得∠EAC=∠C,然后利用三角形内角和定理可得∠EAC+∠C=80°,进行计算即可解答.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.。
线段的垂直平分线和角平分线的复习
https://
REPORTING
目录
• 垂直平分线与角平分线基本概念 • 垂直平分线相关定理与推论 • 角平分线相关定理与推论 • 垂直平分线与角平分线在几何图形中应用 • 解题技巧与策略总结 • 练习题与答案解析
PART 01
垂直平分线与角平分线基 本概念
对称性等。
角平分线在多边形中可用于求解 角度和线段长度,如利用角平分 线性质求解多边形中的角度和边
长。
垂直平分线和角平分线的交点在 多边形中可用于求解多边形的内 切圆和外接圆以及与这些圆相关
的性质。
PART 05
解题技巧与策略总结
REPORTING
WENKU DESIGN
观察图形特征,选择合适方法
03
2. 题目
在△ABC中,AD是∠BAC的平分 线,DE⊥AB于点E,DF⊥AC于 点F,交BC于点G,且 DE=DF. 求证:△ABC是等腰三 角形.
04
解析
根据角平分线的性质“角的平分 线上的点到角的两边的距离相等” 可得点D在∠BAC的平分线上,再 根据等腰三角形的性质“等边对 等角”以及平角的性质证明 ∠B=∠C即可。
练习题三:证明四边形性质
题目
四边形ABCD中,AB=CD,AD=BC, E、F分别是BD、AC的中点,求证: EF垂直平分AC。
解析
连接AE、CE,由于AB=CD,AD=BC, BD=BD,所以△ABD≌△CDB,从而 ∠ABD=∠CDB,又因为E是BD的中点,所以 AE=CE,又因为F是AC的中点,所以EF垂直平 分AC。
两者关系与区别
关系
垂直平分线和角平分线都是几何学中的基本概念,它们都与距离和角度有关。
角平分线、中垂线性质定理专题复习(解析版)
【期末复习】浙教版八年级上册提分专题:角平分线、中垂线性质定理【角平分线】1.如图,△ABC的∠ABC和∠ACB的角平分线BE,CF相交于点O,∠A=60°,则∠BOC的大小为()A.110°B.120°C.130°D.150°【分析】根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.【解答】解:∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC=,,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=60°,∴∠OBC+∠OCB=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故选:B.2.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC 的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【分析】根据三角形的外角定理可知∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线定义得∠ACD =2∠A1CD,∠ABC=2∠A1BC,代入∠ACD=∠A+∠ABC中,与∠A1CD=∠A1+∠A1BC比较,可得∠A1==,由此得出一般规律.【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.3.如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,则∠BOA= ,∠DAC= .【分析】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=∠BAC=25°,∠ABO=∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.故答案为:∠AOB°=125°,∠CAD=20°4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3B.4C.3.5D.2【分析】根据△ABC中,∠ABC和∠ACB的平分线相交于点F.判断出∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,判断出∠DFB=∠DBF,∠CFE=∠BCF,即BD=DF,FE=CE,然后利用等量代换即可求出线段CE的长.【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.5.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°.则∠FEC的度数为()A.10°B.20°C.30°D.60°【分析】根据AD∥BC,∠DAC+∠ACB=180°,再由∠DAC=120°,得出∠ACB=60°,由∠ACF=20°,得∠BCF的度数,根据CE平分∠BCF,得∠BCE=∠ECF,因为EF∥AD,则EF∥BC,∠FEC=∠BCE,即可得出∠FEC=∠FCE.【解答】解:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,∵∠ACF=20°,∴∠BCF的=40°,∵CE平分∠BCF,∴∠BCE=∠ECF=20°,∵EF∥AD,∴EF∥BC,∴∠FEC=∠BCE,∴∠FEC=∠FCE=20°.故选:B.6.如图,在△ABC中,∠B+∠C=100°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.30°B.40°C.50°D.60°【分析】首先利用三角形的内角和求得∠BAC,进一步求得∠BAD,利用DE∥AB求得∠ADE=∠BAD得出答案即可.【解答】解:∵在△ABC中,∠B+∠C=100°,∴∠BAC=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:B.7.如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC相交于点M,N,若AB=5,BC=8,CA=7,则△AMN的周长为12.【分析】根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.【解答】解:∵BO平分∠ABC,∴∠MBO=∠CBO,∵MN∥BC,∴∠MOB=∠CBO,∴∠MOB=∠MBO,∴OM=BM,同理CN=NO,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=5+7=12,故答案为:12.8.如图,Rt△ABC的两直角边AB、BC的长分别是9、12.其三条角平分线交于点O,将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.3:4:5D.2:3:4【分析】过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,根据角平分线的性质可知:OD=OE =OF,根据勾股定理可求解AC的长,再利用三角形的面积公式计算可求解.【解答】解:过O点作OD⊥AB,OE⊥BC,OF⊥AC,垂足分别为D,E,F,∵△ABC的三条角平分线交于点O,∴OD=OE=OF,在Rt△ABC中,AB=9,BC=12,∴AC=,∴S△ABO:S△BCO:S△CAO=,故选:C.9.如图,在△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若BC=10,点D到AB的距离为4,则DB 的长为()A.6B.8C.5D.4【分析】过点D作DE⊥AB于E,根据角平分线的性质定理得到DC=DE=4,结合图形计算,得到答案.【解答】解:过点D作DE⊥AB于E,∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DC=DE=4,∴BD=BC﹣DC=10﹣4=6,故选:A.10.如图,AB∥CD,∠CAB和∠ACD的平分线相交于H点,E为AC的中点,若EH=4.则AC=()A.8B.7C.6D.9【分析】先根据平行线的性质得出∠BAC+∠ACD=18°,再由角平分线的性质可得出∠HAC+∠ACH=90°,根据三角形内角和定理即可得出,△AHC是直角三角形.所以根据直角三角形斜边上中线等于斜边的一半解答.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠BAC的平分线和∠ACD的平分线交于点H,∴∠HAC+∠ACH=(∠BAC+∠ACD)=90°,∴∠AHC=180°﹣90°=90°,∴△AHC是直角三角形.∵E为AC的中点,EH=4,∴AC=2EH=8.故选:A.11.到三角形的三条边距离相等的点()A.是三条角平分线的交点B.是三条中线的交点C.是三条高的交点D.以上答案都不对【分析】根据三角形三条角平分线的性质可直接求解.【解答】解:∵三角形三条角平分线交于一点,这点到三角形的三边的距离相等.∴到三角形的三条边距离相等的点是三条角平分线的交点,故选:A.12.如图,点P是∠AOB内的一点,PC⊥OA于点C,PD⊥OB于点D,连接OP,CD.若PC=PD,则下列结论不一定成立的是()A.∠AOP=∠BOP B.∠OPC=∠OPDC.PO垂直平分CD D.PD=CD【分析】依据角平分线的性质、三角形内角和定理以及线段垂直平分线的性质,即可得出结论.【解答】解:∵PC⊥OA于点C,PD⊥OB于点D,PC=PD,∴点P在∠AOB的平分线上,即OP平分∠AOB,∴∠AOP=∠BOP,故A选项正确;∵∠PCO=∠PDO=90°,∠AOP=∠BOP,∴∠OPC=∠OPD,故B选项正确;∵∠OPC=∠OPD,PC⊥OA于点C,PD⊥OB于点D,∴OC=OD,∴点O在CD的垂直平分线上,又∵PC=PD,∴点P在CD的垂直平分线上,∴PO垂直平分CD,故C选项正确;∵∠PDC的度数不一定是60°,∴△CDP不一定是等边三角形,∴PD=CD不一定成立,故D选项错误;故选:D.13.如图,在△ABC中,∠A=90°,AB=3,AC=4,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,则AD的长为【分析】过O点作OE⊥AC于E,OF⊥BC于F,如图,根据角平分线的性质得到OE=OF=OD,在利用勾股定理计算出BC=5,接着利用面积法求出OD=1,然后证明四边形ADOE为正方形,从而得到AD的长.【解答】解:过O点作OE⊥AC于E,OF⊥BC于F,如图,∵BO平分∠ABC,CO平分∠ACB,∴OD=OF,OE=OF,即OE=OF=OD,∵∠A=90°,AB=3,AC=4,∴BC==5,∵S△OAB+S△OAC+S△OBC=S△ABC,∴×3×OD+×4×OE+×5×OF=×4×3,∴OD=1,∵∠DAE=∠ADO=∠AEO=90°,∴四边形ADOE为矩形,∵OD=OE,∴四边形ADOE为正方形,∴AD=OD=1.故答案为:1.14.如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P,且与AB 垂直,若AD=8,则点P到BC的距离是【分析】过点P作PE⊥BC于E,根据角平分线的性质得到PE=AP,PE=PD,根据AD=8计算,得到答案.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BP平分∠ABC,P A⊥AB,PE⊥BC,∴PE=AP,同理可得:PE=PD,∴PE=AD,∵AD=8,∴PE=4,即点P到BC的距离是4,故答案为:4.15.如图,Rt△ABC中,∠C=90°,AC=BC=6,AD为∠BAC的平分线,DE⊥AB垂足为E,则△DBE的周长等于【分析】根据勾股定理求出AB,根据线段垂直平分线的性质得到DE=DC,进而求出BE,根据三角形的周长公式计算,得到答案.【解答】解:在Rt△ABC中,∠C=90°,AC=BC=6,由勾股定理得:AB==6,∵AD为∠BAC的平分线,DE⊥AB,∠C=90°,∴DE=DC,∴AE=AC=6,∴BE=AB﹣AE=6﹣6,∴△DBE的周长=BD+DE+BE=BD+DC+BE=BC+BE=6﹣6+6=6,故答案为:6.16.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP =S△ECP,推出S△PBC=S△ABC,代入求出即可.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×9cm2=4.5cm2,故选:C.17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°﹣∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则,其中正确的结论有①③④(填序号).【分析】①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC 可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;③根据三角形内心的性质即可得出结论;④连接AG,根据三角形的面积公式即可得出结论.【解答】解:①∵∠ABC和∠ACB的平分线相交于点G,∴∠EBG=∠CBG,∠BCG=∠FCG.∵EF∥BC,∴∠CBG=∠EGB,∠BCG=∠CGF,∴∠EBG=∠EGB,∠FCG=∠CGF,∴BE=EG,GF=CF,∴EF=EG+GF=BE+CF,故本小题正确;②∵∠ABC和∠ACB的平分线相交于点G,∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BGC=180°﹣(∠GBC+∠GCB)=180°﹣(180°﹣∠A)=90°+∠A,故本小题错误;③∵∠ABC和∠ACB的平分线相交于点G,∴点G是△ABC的内心,∴点G到△ABC各边的距离相等,故本小题正确;④连接AG,∵点G是△ABC的内心,GD=m,AE+AF=n,∴S△AEF=AE•GD+AF•GD=(AE+AF)•GD=nm,故本小题正确.故答案为①③④.18.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,已知CD=4.则AC的长为4+4.【分析】依据角平分线的性质可证明DC=DE,接下来证明△BDE为等腰直角三角形,从而得到DE=EB=4,然后依据勾股定理可求得BD的长,然后由AC=BC=CD+DB求解即可.【解答】解:∵AD是△ABC的角平分线,DC⊥AC,DE⊥AB,∴DE=CD,∵CD=4,∴DE=4,又∵AC=BC,∴∠B=∠BAC,又∵∠C=90°,∴∠B=45°,∴∠BDE=90°﹣45°=45°,∴BE=DE=4,在等腰直角三角形BDE中,由勾股定理得,BD==4,∴AC=BC=CD+BD=4+4,故答案为:4+4.19.如图,已知△ABC,∠BAC=80°,∠ABC=40°,若BE平分∠ABC,CE平分外角∠ACD,连接AE,则∠AEB的度数为30°.【分析】过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,利用角平分线的性质得到EF=EP,∠ABE=∠ABC=×40°=40°,EH=EP,则EF=EH,再根据角平分线的性质定理的逆定理可判断AE平分∠F AC,则可计算出∠F AE=50°,然后根据三角形外角性质可计算出∠AEB的度数.【解答】解:过E点作EF⊥AB于F,EH⊥AC于H,EP⊥BD于P,如图,∵BE平分∠ABC,∴EF=EP,∠ABE=∠ABC=×40°=40°,∵CE平分外角∠ACD,∴EH=EP,∴EF=EH,∴AE平分∠F AC,∵∠BAC=80°,∴∠F AC=180°﹣80°=100°,∴∠F AE=∠F AC=50°,∵∠F AE=∠ABE+∠AEB,∴∠AEB=50°﹣20°=30°.故答案为30°.20.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为①②③.(填写结论的编号)【分析】①作PD⊥AC于D.根据角平分线性质得到PM=PN,PM=PD,得到PM=PN=PD,于是得到点P 在∠ACF的角平分线上,故①正确;②根据三角形的判定和性质得到AD=AM,∠APM=∠APD,CD=CN,∠NPC=∠DPC,于是得到∠APC=MPN,故②正确;③根据四边形的内角和得到∠ABC+90°+∠MPN+90°=360°,求得∠ABC+∠MPN=180°,于是得到∠APC=90°﹣∠ABC,故③正确;④根据角平分线定义得到∠ACF=∠ABC+∠BAC,∠PCN=∠ACF=∠BPC+∠ABC,得到∠BPC=∠BAC,根据全等三角形的性质得到S△APM+S△CPN=S△APC.故④不正确.【解答】解:①作PD⊥AC于D.∵PB平分∠ABC,P A平分∠EAC,PM⊥BE,PN⊥BF,∴PM=PN,PM=PD,∴PM=PN=PD,∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),故①正确;②∵PB平分∠ABC,CP平分∠ACF,∴∠ABC=2∠PBC,∠ACF=2∠PCF,∵∠ACF=∠ABC+∠BAC,∠PCF=∠PBF+∠BPC,∴∠BAC=2∠BPC,∴∠BPC=∠BAC,故②正确;③∵PM⊥AB,PN⊥BC,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,∴∠APC=90°﹣∠ABC,故③正确;④∵S△APD=S△APM,S△CPD=S△CPN,∴S△APM+S△CPN=S△APC,故④不正确.综上所述,①②③正确.故答案为:①②③.21.如图,已知∠ABC、∠ACB的平分线相交于点O,EF过点O且EF∥BC.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠BOC=130°,∠1:∠2=3:2,求∠ABC、∠ACB的度数.【分析】(1)由角平分线的定义可求解∠OBC=25°,∠OCB=30°,再利用三角形的内角和定理可求解;(2)由已知条件易求∠1,∠2的度数,根据平行线的性质即可得∠OBC,∠OCB的度数,利用角平分线的定义可求解.【解答】解:(1)∵∠ABC和∠ACB的平分线BO与CO相交于点O,所以∠EBO=∠OBC=,∠FCO=∠OCB=,又∠ABC=50°,∠ACB=60°,∴∠OBC=25°,∠OCB=30°,∴∠BOC=180°﹣∠OBC﹣∠OCB=125°;(2)∵∠BOC=130°,∴∠1+∠2=50°,∵∠1:∠2=3:2,∴,,∵EF∥BC,∴∠OBC=∠1=30°,∠OCB=∠2=20°,∵∠ABC和∠ACB的平分线BO与CO相交于点O,∴∠ABC=60°,∠ACB=40°.22.如图1,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,交AB于点E,交AC于点F.(1)若AB=4,AC=5,求△AEF的周长.(2)过点O作OH⊥BC于点H,连接OA,如图2.当∠BAC=60°时,试探究OH与OA的数量关系,并说明理由.【分析】(1)证明∠EOB=∠CBO得到EB=EO,同理可得FO=FC,然后利用等线段代换得到△AEF的周长=AB+AC;(2)过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,根据角平分线的性质得到OH=OG,OH=OQ,则OG =OQ,根据角平分线的性质定理的逆定理可判断OA平分∠BAC,所以∠GAO=30°,利用含30度的直角三角形三边的关系得到OG=OA,从而得到OH=OA.【解答】解:(1)∵OB平分∠ABC,∴∠CBO=∠ABO,∵EF∥BC,∴∠EOB=∠CBO,∴△EBO为等腰三角形,∴EB=EO,同理可得FO=FC,∴△AEF的周长=AE+EF+AF=AE+EO+FO+AF =AB+AC=4+5=9;(2)OH=OA.理由如下:过O点作OG⊥AE于G,OQ⊥AC于Q,如图2,∵OB平分∠ABC,OH⊥BC,OG⊥AB,∴OH=OG,∵OC平分∠ACB,∴OH=OQ,∴OG=OQ,∴OA平分∠BAC,∴∠GAO=∠BAC=30°,∴OG=OA,∴OH=OA.23.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,BD=4,∠B=30°,S△ACD=7,求AC的长.【分析】过点D作DF⊥AC于F,根据直角三角形的性质求出DE,根据角平分线的性质求出DF,根据三角形的面积公式计算,得到答案.【解答】解:过点D作DF⊥AC于F,在Rt△BDE中,BD=4,∠B=30°,∴DE=BD=2,∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE=2,∵S△ACD=7,∴×AC×2=7,解得:AC=7.24.在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的关系是∠DEF=(∠C﹣∠B)(直接写出结论,不需证明).【分析】(1)依据角平分线的定义以及垂线的定义,即可得到∠CAD=∠BAC,∠CAE=90°﹣∠C,进而得出∠DAE=(∠C﹣∠B),由此即可解决问题.(2)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B).(3)过A作AG⊥BC于G,依据平行线的性质可得∠DAG=∠DEF,依据(1)中结论即可得到∠DEF=(∠C﹣∠B)不变.【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠BAC,∵AE⊥BC,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=∠BAC﹣(90°﹣∠C)=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=∠C﹣∠B=(∠C﹣∠B),∵∠B=50°,∠C=70°,∴∠DAE=(70°﹣50°)=10°.(2)结论:∠DEF=(∠C﹣∠B).理由:如图2,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B).(3)仍成立.如图3,过A作AG⊥BC于G,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,由(1)可得,∠DAG=(∠C﹣∠B),∴∠DEF=(∠C﹣∠B),故答案为∠DEF=(∠C﹣∠B).【线段垂直平分线】1.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE、AF,若△AEF的周长为2,则BC的长是()A.2B.3C.4D.无法确定【分析】根据线段的垂直平分线的性质得到EA=EB,F A=FC,根据三角形的周长公式即可求出BC.【解答】解:∵AB的垂直平分线交BC于点E,∴EA=EB,∵AC的垂直平分线交BC于点F.∴F A=FC,∴BC=BE+EF+FC=AE+EF+AF=△AEF的周长=2.故选:A.2.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是()A.2B.4C.6D.8【分析】根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.【解答】解:∵DE是AB的垂直平分线,AE=4,∴EB=EA=4,∴BC=EB+EC=4+2=6,故选:C.3.如图,在△ABC中,BC边上两点D、E分别在AB、AC的垂直平分线上,若BC=24,则△ADE的周长为()A.22B.23C.24D.25【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算,得到答案.【解答】解:∵点D、E分别在AB、AC的垂直平分线上,∴DA=DB,EA=EC,∴△ADE的周长=DA+DE+EA=DB+DE+EC=BC=24,故选:C.4.如图,已知∠B=20°,∠C=25°,若MP和QN分别垂直平分AB和AC,则∠P AQ等于()A.80°B.90°C.100°D.105°【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到P A=PB,QA=QC,根据等腰三角形的性质得到∠P AB=∠B,∠QAC=∠C,结合图形计算,得到答案.【解答】解:∵∠B=20°,∠C=25°,∴∠BAC=180°﹣∠B﹣∠C=135°,∵MP和QN分别垂直平分AB和AC,∴P A=PB,QA=QC,∴∠P AB=∠B=20°,∠QAC=∠C=25°,∴∠P AQ=∠BAC﹣∠P AB﹣∠QAC=135°﹣20°﹣25°=90°,故选:B.5.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()cmA.3B.4C.7D.11【分析】根据线段垂直平分线的性质得到NA=NB,根据三角形的周长公式计算,得到答案.【解答】解:∵MN是线段AB的垂直平分线,∴NA=NB,∵△BCN的周长是7cm,∴BC+CN+BN=7(cm),∴BC+CN+NA=7(cm),即BC+AC=7(cm),∵AC=4cm,∴BC=3(cm),故选:A.6.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最合适.故选:D.7.如图,在Rt△ABC中,∠BAC=90°,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若DE=3,AE =5,则△ACE的周长为16.【分析】根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是AB的垂直平分线,∴EA=EB=5,DE⊥AB,∵DE=3,∴AD==4,∴AB=2AD=8,∵∠BAC=∠BDE=90°,∴DE∥AC,∴BE=CE=5,∴AC=2DE=6,BC=10,∴△ACE的周长=AC+EC+EA=AC+EC+EB=AC+BC=AC+BC=16,故答案为:16.8.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=68°,则∠B的度数为68°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A=FD,根据等腰三角形的性质得到∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入计算即可.【解答】解:∵AD平分∠BAC,∴∠CAD=∠BAD,设∠CAD=∠BAD=x,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=68°,∴∠F AD=∠F AC+∠CAD=68°+x,∵∠FDA=∠B+∠BAD=∠B+x,∴68°+x=∠B+x,∴∠B=68°,故答案为:68°.9.如图,△ABC中,已知∠C=90°,DE是AB的垂直平分线,若∠DAC:∠DAB=1:2,那么∠BAC=54度.【分析】设∠DAB=2x,则∠DAC=x,根据线段垂直平分线的性质得到DA=DB,则∠B=∠DAB=2x,再利用三角形内角和得到90°+2x+2x+x=180°,解方程求出x,然后计算3x即可.【解答】解:设∠DAB=2x,则∠DAC=x,∵DE是AB的垂直平分线,∴DA=DB,∴∠B=∠DAB=2x,∵∠C+∠B+∠CAB=180°,∴90°+2x+2x+x=180°,解得x=18°,∴∠BAC=x+2x=3x=54°.故答案为:54.10.如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为5cm2.【分析】延长AP交BC于E,根据全等三角形的性质得到S△ABP=S△BEP,AP=PE,得到△APC和△CPE等底同高,求得S△APC=S△PCE,设△ACE的面积为m,于是得到结论.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,在△ABP与△BEP中,,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE﹣S△ACE=5(cm2).故答案为:5.11.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠F AC=∠B.【分析】根据线段垂直平分线得出AF=DF,推出∠F AD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.【解答】证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠F AD=∠FDA,∵∠F AD=∠F AC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠F AC=∠B.12.在△ABC中,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)如图(1),连接AM、AN,求∠MAN的度数;(2)如图(2),如果AB=AC,求证:BM=MN=NC.【分析】(1)由在△ABC中,∠BAC=130°,可求得∠C+∠B的度数,然后由AB、AC的垂直平分线分别交BC于点M、N,根据线段垂直平分线的性质,可得BM=AM,CN=AN,即可得∠CAN=∠C,∠BAM=∠B,继而求得∠CAN+∠BAM的度数,则可求得答案;(2)先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【解答】(1)解:∵∠BAC=120°,∴∠B+∠C=60°,由(1)证得BM=AM,CN=AN,∴∠C=∠CAN,∠B=∠BAM,∴∠CAN+∠BAM=∠C+∠B=60°,∴∠MAN=120°﹣60°=60°;(2)证明:∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC.。
线段的垂直平分线、角平分线经典习题及答案
线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。
证毕。
例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。
例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。
证毕。
例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。
例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。
例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。
根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。
垂直平分线与角平分线综合 练习题(带答案))
垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。
完整版)中考数学尺规作图专题复习(含答案)
完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。
以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。
2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。
3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。
4.等长的线段的画法:直接用圆规量取即可。
5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。
需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。
在作图时,如果有多个要求,应逐个满足并取公共部分。
例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。
以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。
作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。
例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。
作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。
例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。
作法如下:作出AB的垂直平分线,与BC交于点P。
线段的垂直平分线角平分线
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB于点D , ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,图1图2图4∵点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,且PC=PD,∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___.例2、已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE.【跟踪练习】已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角C∠B的大小为_______________。
线段的垂直平分线与角平分线
线段的垂直平分线与角平分线【知识框架】1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1.∵ CD ⊥AB.且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2.∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点.并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形.则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形.则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形.则它三边垂直平分线的交点在三角形外部. 反之.也成立。
4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4.∵ OE 是∠AOB 的平分线.F 是OE 上一点.且CF ⊥OA 于点C.DF ⊥OB 于点D. ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形.它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5.∵点P 在∠AOB 的内部.且PC ⊥OA 于C.PD ⊥OB 于D.且PC =PD.图1图2图4∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系.(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点.并且这一点到三边的距离相等.定理的数学表示:如图6.如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线.那么:① AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F.则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.【典型例题】例1、如图1.在△ABC 中.BC =8cm.AB 的垂直平分线交AB 于点D.交边AC 于点E.△BCE 的周长等于18cm.则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图.AB=AC=14cm,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果△EBC 的周长是24cm.那么BC=_________;(2)如图.AB=AC=14cm,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果BC=8cm.那么△EBC 的周长是______;(3)如图.AB=AC,AB 的垂直平分线交AB 于点D.交AC 于点E. 如果∠A=28度.那么∠EBC=___.例2、已知: AB=AC.DB=DC.E 是AD 上一点.求证:BE=CE.【跟踪练习】已知:在△ABC 中.ON 是AB 的垂直平分线,OA=OC.求证:点O 在BC 的垂直平分线.例3、在△ABC 中.AB=AC.AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°.△ABC 的底角∠B的大小为_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
图1
D
A B
C
m 图2
D A B C
j i
k
图3O
B C A
图5C D O A B
P E
F
I
R
Q
A 图4C D O A
B F E 角平分线定理、线段垂直平分线定理专题复习
一、知识梳理:
(一)线段垂直平分线的性质: 1、(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD , 若点C 在直线m 上,则AC =BC. 定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.
2、线段垂直平分线性质定理的逆定理
(1)线段垂直平分线的逆定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,
且AD =BD ,若AC =BC ,则点C 在直线m 上.
定理的作用:证明一个点在某线段的垂直平分线上.
3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:
三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂 直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC. 定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.
(二)角平分线的性质定理: 1、角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的数学表示:如图4,已知OE 是∠AOB 的平分线,F 是OE 上一点, 若CF ⊥OA 于点C ,DF ⊥OB 于点D ,则CF =DF. 定理的作用:①证明两条线段相等;②用于几何作图问题;
角是一个轴对称图形,它的对称轴是角平分线所在的直线.
2、角平分线性质定理的逆定理:
角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上.
定理的数学表示:如图5,已知点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D , 若PC =PD ,则点P 在∠AOB 的平分线上.
定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线 注意:角平分线的性质定理与逆定理的区别和联系.
3、关于三角形三条角平分线的定理:
(1)关于三角形三条角平分线交点的定理:
三角形三条角平分线相交于一点,并且这一点到三边的距离相等.
定理的数学表示:如图6,如果AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、∠ABC 、∠ACB 的平分线,那么: ① AP 、BQ 、CR 相交于一点I ;
② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI.
定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. (2)三角形三条角平分线的交点位置与三角形形状的关系: 三角形三个内角角平分线的交点一定在三角形的内部.
A (1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.
二、典型例题:
例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边 AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm
及时练习:
(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;
(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;
(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___. 例2、已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE.
及时练习:
已知:在△ABC 中,ON 是AB 的垂直平分线,OA=OC. 求证:点O 在BC 的垂直平分线.
例3、在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。
及时练习:
在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,则底角B 的大小为________________。
例4、如图8,已知AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.
C
A
P
B
F E C
例5、已知:如图,点B 、C 在∠A 的两边上,且AB=AC ,P 为∠A 内一点,PB=PC ,PE ⊥AB ,PF ⊥AC ,垂足分别是E 、F 。
求证:PE=PF
及时练习:
已知: PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 平分线,它们交于P ,PD ⊥BM 于D ,PF ⊥BN 于F ,求证:BP 为∠MBN 的平分线。
例6、如图10,已知在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,E 为BC 中点,连接AE 、DE ,DE 平分∠ADC ,求证:AE 平分∠BAD.
及时练习:
如图所示,AB=AC ,BD=CD ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE=DF 。
例7、如图11,已知在四边形ABCD 中,对角线BD 平分∠ABC ,且∠BAD 与∠BCD 互补, 求证:AD =CD.
三、课堂练习:
1.如图,AC=AD ,BC=BD ,则( )
A. CD 垂直平分AD
B. AB 垂直平分CD
C. CD 平分∠ACB
D. 以上结论均不对
2.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是( ) A.直角三角形B.锐角三角形 C.钝角三角形 D.等边三角形
图
7E D A C B 3. △ABC 中,AB 的垂直平分线交AC 于D ,如果AC=5 cm ,BC=4cm ,那么△DBC 的周长是( ) A.6 cm B.7 cm C.8 cm D.9 cm
4. 如图所示,AB//CD ,O 为∠A 、∠C 的平分线的交点,OE ⊥AC 于E , 且OE=2,则AB 与CD 之间的距离等于______________。
5. 已知,如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC , 求证:AO ⊥B C.
6. 如图7,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 边的长.
7. 已知:如图所示,∠ACB ,∠ADB 都是直角,且AC=AD ,P 是AB 上任意一点,求证:CP=DP .
8. 如图,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB .
(1)如果BE 平分∠ABC ,求证:点E 是
DC 的中点; (2)如果E 是DC 的中点,求证:BE 平分∠ABC .
C A B D
P
9. 如图,在△ABC中,AB=BC=AC,AD⊥BC于D,E、F分别为AB、AC中点.求证:DA平分∠EDF.
10. 如图,在直线MN上找一点P,使点P到直线AB和射线OC的距离相等.
四、课外作业:
1.下列命题中正确的命题有()
①线段垂直平分线上任一点到线段两端距离相等;
②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;
④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;
⑤过线段上任一点可以作这条线段的中垂线.
A.1个
B.2个
C.3个
D.4个
2. △ABC中,AB=AC,AC的中垂线交AB于E,△EBC的周长为20cm,AB=2BC,则腰长为________________。
,,表示三条互相交叉的公路,现在要建一个货物中转站,要求它到三条公路的3. 如图所示,直线l l l
123
距离相等,则可供选择的地址有()
A. 一处
B. 二处
C. 三处
D. 四处
4.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC、AB于点M、N.
求证:CM=2BM.
5. 如右图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.
6. 如图,△ABC中,∠ABC=1000,∠ACB的平分线交AB于E,在AC上取一点D,使∠CBD=200,连结DE.求∠CED的度数.。