10配位化合物

合集下载

配位化合物的结构和性质

配位化合物的结构和性质

2
3
sp
sp2
直线形
平面三角形
[Ag(NH3)2]+
[CuCl3]2-
4
sp3
d3s dsp2
四面体
四面体 平面正方形 三角双锥形 四方锥形
[Ni(NH3)4]2+
MnO4[Ni(CN)4]2Fe(CO)5 [TiF5]2-
5
dsp3 d4s
6
d2sp3
八面体
[Fe(CN)6]3-
6.2 价键理论
(3) 平行正方形场
在平行正方形配合物中,四个配体沿x,y轴正负方向与
中心离子接近。 在平行正方形配合物中,dx2-y2轨道的电子云极大值方向 指向配体,因此能级最高,高于Es能级;dxy 轨其也在xy平面上,所以
也要受到较大的排斥故能级也高于Es能级;dz2 轨道的能级 较低,低于Es能级;dyz和dxz轨道受到的排斥作用相同,是 简并的,能级最低。这样,在平面正方形场中,能级分裂为 四组。
由于△值通常从光谱确定,故称这个顺序为光谱化学序列。
分裂能和成对能
b) 当配体固定时,分裂能随中心离子的不同而不同,其
大小次序为:
Pt 4 Ir 3 Pd 4 Rh3 Mo3 Ru3 Co3 Cr 3 Fe 3 V 2 Co2 Ni 2 Mn2
中正负离子的静电作用;
中心离子在配体的静电作用下,使原来简并的d轨道分 裂成能级不同的几组轨道;
d电子在分裂的d轨道上重新排布,优先占据能量较低
的轨道,往往使体系的总能量有所降低,形成强场低自 旋、弱场高自旋的配合物。
二、d轨道在晶体场中的分裂
d原子轨道的角度分布图

无机化学第十章++配位化合物

无机化学第十章++配位化合物
● 配位实体的命名:配位体名称在前,中心原子名称在 后(例如[Cu(NH3)4]2+叫四氨合铜(II));不同配位体名称顺序与 化学式的书写顺序相同,相互之间以中圆点“· ”分开,最后 一种配位体名称之后缀以“合”字;配位体个数用倍数字头 “一”、“二” 等汉语数字表示,中心原子的氧化态用元素 名称之后置于括号中的罗马数字表示。
● 多齿配体: 含有多个配位原子的配体
螯合剂和螯合化合物
叶绿素是镁的大环
配合物,作为配位体的 卟 啉 环 与 Mg2+ 离 子 的 配 位是通过4个环氮原子实 现的。叶绿素分子中涉 及 包 括 Mg 原 子 在 内 的 4 个六元螯环。
血红素是铁卟啉化合物,是血
红蛋白的组成部分。 Fe原子从血红 素分子的下方键合了蛋白质链上的1 个N原子,圆盘上方键合的O2分子 则来自空气。
● 含络离子的配合物:阴离子名称在前,阳离子名称在 后,阴、阳离子名称之间加“化”字或“酸”字。例如 [Ag(NH3)2](OH) 和 [CrCl2(H2O)4]Cl 分 别 叫 氢 氧 化 二 氨 合 银 (I) 和一氯化二氯·四水合铬(III); 而[Cu(NH3)4]SO4叫硫酸四氨合 铜(II), 加“酸”字。
等量左旋异构体与右旋异构体混合后不具旋光性,这样的 混合物叫外消旋混合物。
三、配合物化学式的书写和命名原则
配位化合物的命名,显然离不开配体:
F- 氟, Cl- 氯, Br- 溴, I- 碘, O2- 氧, N3- 氮,
S2- 硫, OH- 羟基, C N- 氰, - NO2- 硝基,
பைடு நூலகம்
- ONO-
指导药物设计 Hard and soft acids and bases
除Ag+之外, 其他软酸金属离子的毒性都很强。例如, 汞中 毒可能是由于Hg2+(软酸)与蛋白质分子中的S2-(软碱)结合, 从而 改变了蛋白质分子的结构。由于Se是比S更软的原子(留意它们 在周期表中的位置), 从而对Hg显示出更强的结合力。根据这一 原理, 药物化学家有可能设计出含Se药物, 从汞中毒患者的蛋白 质S原子上除去Hg2+离子。这就是说, 尽管Se2-是个毒性很大的 软碱,但一定条件下却能产生有益的效应。

配位化合物的基本概念

配位化合物的基本概念

K[PtCl3NH3]
三氯·氨合铂(II)酸钾
(3) 同类配体(无机或有机类)按配位原子元素符号的
英文字母顺序排列。
[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III)
41
(4) 同类配体同一配位原子时,将含较少原子数的配体排在前 面。如:[Pt(NO2)(NH3)(NH2OH)(Py)]Cl
19
螯合物的稳定性
螯环的大小——一般五原子环
螯合物
或六原子环
稳定性
最稳定
螯环的多少——一个配体与中 心离子形成的 螯环数越多, 越稳定。
20
螯合物特性——显特征颜色
如 在弱碱性条件下,丁二酮肟与Ni2+形成 鲜红色的螯合物沉淀,用来鉴定Ni2+。
21
常见单齿配体
阴离子 F- Cl- Br- I- OH- CN- NO2配体 氟 氯 溴 碘 羟基 氰 硝基
+3
+5
Na[BF4 ]
NH4[P F6 ]
b. 不带电荷的金属原子,如Ni、Fe
0
[Ni(CO)4 ]
0
[Fe(CO)5 ]
13
2. 配位体和配位原子:能提供孤对电子
内界中与中心离子结合、含有孤电子对的中性分子 或阴离子叫配位体,配体中具有孤电子对并直接与中心 离子以配位键结合的原子称为配位原子。
(7) 俗名命名法:赤血盐,黄血盐,氯铂酸钾等。
42
配位化合物的类型及命名
类型
化学式
命名
配位 酸
H[BF4] H3[AlF6]
四氟合硼(Ⅲ)酸 六氟合铝(Ⅲ)酸
配位 [Zn(NH3)4](OH)2
氢氧化四氨合锌(II)

配位化合物

配位化合物

第十章配位化合物1.无水CrCl3和氨作用能形成两种配合物,组成相当于CrCl3•6NH3及CrCl3•5NH3。

加入AgNO3溶液能从第一种配合物水溶液中几乎所有的氯沉淀为AgCl,而从第二种配合物水溶液中仅能沉淀出相当于组成中含氯量2/3的AgCl,加入NaOH并加热时两种溶液都无NH3味。

试从配合物的形式推算出它们的内界和外界,并指出配离子的电荷数、中心离子的氧化数和配合物的名称。

答:第一种:[Cr(NH3)6]Cl3离子的电荷数3+:即[Cr(NH3)6]3+,Cr(Ⅲ),三氯化六氨合铬(Ⅲ)。

第二种:[CrCl(NH3)5]2+ , Cr(Ⅲ) , 二氯化一氯•五氨合铬(Ⅲ)。

2.命名下列配合物,并指出中心离子及氧化数,配位体及配位数。

(1)[Co(NH3)6]Cl2 (2)K2[PtCl6] (3)Na2[SiF6](4)[CoCl(NH3)5]Cl2(5)[Co(en)3]Cl3(6)[CoCl(NO2)(NH3)4]+答:命名中心离子氧化数配位体配位数(1)二氯化六氨合钴(Ⅱ) +2 NH3 6(2)六氯合铂(Ⅳ)酸钾+4 Cl- 6(3)六氟合硅(Ⅳ)酸钠+4 F- 6(4)二氯化一氯•五氨合钴(Ⅲ) +3 Cl- , NH3 6(5)三氯化三(乙二胺)合钴(Ⅲ) +3 En 6+3 Cl- , NO2- , NH3 6 (6)一氯•一硝基•四氨合钴(Ⅲ)配离子3.写出下列配合物的化学式(1)二硫代硫酸合银(Ⅰ)酸钠(2)三硝基三氨合钴(Ⅲ)(3)氯化二氯三氨一水合钴(Ⅲ)(4)二氯二羟基二氨合铂(Ⅳ)(5)硫酸一氯一氨二(乙二胺)合铬(Ⅲ)(6)二氯一草酸根一(乙二胺)合铁(Ⅲ)离子答:(1) Na3[Ag(S2O3)2] (2) [Co (NO2)3(NH3)3] (3) [CoCl2 (NH3)3(HO2)]Cl(4) [PtCl2(NH3)2(OH)2] (5) [CrCl(NH3)(en)2]SO4(6) [FeCl2(C2O4)(en)]-4.根据价键理论指出下列配离子的成键情况和空间构型(1) [Fe(CN)6]3-(2) [FeF6]3-(3) [CrCl(H2O)5]2+(4) [Ni(CN)4]2-答:(1)d2sp3杂化轨道成键,八面体。

配位化合物

配位化合物
配位平衡与沉淀平衡 若配体、沉淀剂都可以和Mn+结合,生成配 合物或沉淀物,那么两种平衡之间的关系的实质 就是配体和沉淀剂争夺,其结果与KSP,K稳大小有 关。

• 配位反应与氧化还原反应的关系 配位离解平衡与氧化还原平衡的关系,主 要体现在配位化合物的生成对电极电势的影 响。
根据能斯特方程: 若氧化型生成配位化合物,浓度减小,则E减小; 若还原型生成配位化合物,浓度减小,则E增大。
中心原子(阳离子或原子)与一定数目的配体(离子或 中性分子) ,通过配位键结合,并按一定组成和空间 构型形成的复杂离子称为配离子
例如, [Cu(H2O)4] 2+
含有配离子的化合物以及中性配位分子统称为 配合物。 例如, H[AuCl4] 、[Co(NH3)Cl3]
配位键 配体 中心原子
[Cu (NH3)4]SO4 [Cu (NH3)4]2+
• 当配位体接近中心离子时,为了增强成键 的能力,中心离子用能量相近的空轨道进 行杂化,形成数目相同,能量相等的具有 一定方向性的杂化空轨道,以容纳配位体 提供的电子形成配位键。配离子的空间构 型、配位数及稳定性等主要取决于杂化轨 道的数目和类型。 • M :L(L代表配位体)
第三节 配位化合物的离解平衡
中 心 离 子 配 位 配 体 位 原 子 配 位 数 离 子 电 荷
内界(配离子)
外界 SO42-
内界
在配合物化学式中用方括号表示内界。 配合物的内界能稳定地存在于晶体及水溶液中。 它是配合物的特征部分,它的结构和性质与其他离 子不同。 如: [ Cu (NH3) 4 ]2+
外界
不在内界的其他离子,如SO42- 构成配合物的外界。 写在方括号外,
单齿配体:一个配体中只有一个配位原子 例如: Ag+ 与NH3 结合

第十章金属配位化合物

第十章金属配位化合物

例: 硫酸一溴五氨合铬(Ⅲ)
配合物[CrBr(NH3)5]SO4,中心离子是__________,
Cr3+
配配位位体数是_N__H_3_、,___B配_r_-_离配子位的原电子荷是数_是___N__、__B__r____,
________
__________,
6
+2
中心离子的氧化数是
,内界是

__________
[Ag(NH3)2]+的结构 4d
5s
5p
sp杂化 5p
H3N NH3
结果: [Ag(NH3)2]+形成之前和之后, 中心原子的d电子排
布没有变化 。络合物是直线型,μ = 0
中心离子Ni2+的结构 3d [Ni(NH3)4]2+的结构 3d
4s
4p
sp3杂化
NH3 NH3 NH3
NH3
结果: [Ni(NH3)4]2+形成之前和之后, 中心原子的d电子
Cu(NH 3 ) 4 SO 4
K 3 Fe(NCS) 6
H 2 PtCl 6
Cu(NH 3 ) 4 (OH) 2
K PtCl 5 (NH 3 )
Zn(OH)(H
2 O) 3 NO 3
Co(NH 3 ) 5 (H 2 O) Cl 3
Fe(CO) 5
Co(NO 2 ) 3 (NH 3 ) 3
副篇内容
叶绿素(chlorophylls a)是镁的大环 配合物,作为配位体的卟啉环与Mg2+离 子的配位是通过4个环氮原子实现的。 叶绿素分子中涉及包括Mg原子在内的4 个六元螯环。
叶绿素是一种绿色色素, 它能吸收太阳光的

配位化合物

配位化合物
若硬水中加入少量三聚磷酸钠(Na5P3O10)将与水中 的Ca2+,Mg2+发生络合可防止锅垢的形成。
Ni2+可以利用丁二肟在氨溶液中与Ni2+配位生成桃红 色絮状螯合物沉淀物来鉴定。
首页
上一页
下一页
末页
32
利用硫氰根负离子可以与Co2+形成蓝紫色的四硫氰 根 合 钴 ( II ) [Co(SCN)4]2- 来 检 验 Co2+ 的 存 在 。 与 Fe3+形成血红色配合离子可供检验Fe3+的存在。
K4[Fe (CN)6]
六氰合铁(Ⅱ)酸钾
H4[Fe (CN)6]
六氰合铁(Ⅱ)酸
[Co(NH3)5H2O]Cl3
氯化五氨·水合钴(Ⅲ)
首页
上一页
下一页
末页
18
配合物的类型
(1)简单配合物 由单齿配体与中心原子直接配位而成的配位化合 物。
例:[Ag(NH3)2]+ BF4[Fe(H2O)6]Cl3 [CoCl3(NH3)3] 等
28Ni 3d84s2 3d
Ni2+
4s 4p
[Ni(CN)4]2-
dsp2杂化
CN- CN- CN-CN-
首页
上一页
下一页
末页
24
[NiCl4]2-的空间构型为四面体。
28Ni 3d84s2
3d
Ni2+
4s 4p
[NiCl4]2-
3d sp3杂化
4s
4p
Cl- Cl- Cl- Cl-
首页
上一页
下一页
首页
上一页
下一页
末页
38
配合物与配位作用用于医学

配位化合物

配位化合物
低温加压
[Cu(NH3)2]Ac + CO + NH3 ===== [Cu(NH3)2]Ac.CO
减压加热
H = -35kJ
Cu2+ + 5CN- = Cu(CN)43- + 0.5(CN)2 K稳 =2×1030 (极为稳定,加入H2S也无沉淀,Ksp=2.5×10-50))
Cu(CN)4 3 - + e == Cu + 4CNE = -1.27V Zn(CN)42- + 2e == Zn + 4CNE = -1.26V 这两个电对的电势值相近,所以镀黄铜(Cu-Zn合金)所 用的电镀液为上述混合物.
[AlCl4][BF4][AgI4]2- 从这些配离子你看出配位数有什么规律? 从这些配离子你看出配位数有什么规律?
二,化学键理论
维尔纳(Werner.A):Nobel Prize提出三点: 维尔纳( 提出三点: 提出三点 1,主价和副价 , 主价指氧化数,副价指配位数. 主价指氧化数,副价指配位数. 2,倾向于既要满足主价,又要满足副价. ,倾向于既要满足主价,又要满足副价. 3,副价指向空间的确定位置. ,副价指向空间的确定位置. 1,价键理论:中心离子和配位原子都是通过杂化了的共价配位键 ,价键理论: 结合的. 结合的. (1)配位键的本质: )配位键的本质: a,σ配位键: 配位键: , 配位键
2,复盐 ,
CsRh(SO4)2.4H2O + BaCl2 无沉淀出现. 无沉淀出现. [Rh(H2O)4(SO4)2]-(二硫酸根四水合铑(III)) 二硫酸根四水合铑( )) 二硫酸根四水合铑 KCl.MgCl2.6H2O不是配合物 不是配合物
3,组成 ,
(1)配位体:是含有孤电子对的分子和离子 )配位体:

第10配位化合物3(胡)

第10配位化合物3(胡)

反式(trans-) 同种配体处于对角位置
u>0
棕黄色 S=0.2523 g/100g水
u=0
淡黄色 S=0.,故无顺反异构。
正八面体 MAX2Y4 如:CoCl2(NH3)4
P228
2 旋光异构
P228
---能旋转偏振光的异构体 在单一 平面上振动的光称平面偏振光。 当偏振光通过旋光异构体时,偏振面会 旋转一定的角度。不同的异构体,旋转的方 向和角度不同。
外界是复杂阴离子,“某酸某”
配离子为阴离子
外界为氢离子 “某酸” H2[PtCl6]
外界为其它阳离子 K4[Fe(CN)6]
2.配离子的命名
“某酸某”
配体数→配体名称→合→中心离子(氧化数)
汉字大写
命名规则:
罗马数字
⑴先阴离子(先无机后有机,先简后繁)后 中性分子(先无机后有机)。
⑵同类配体,按配位原子元素符号的英文字 母顺序排列。NH3、H2O。 ⑶同类配体中,若配位原子相同,含原子数 少的配体在前。NH3、NH2OH。 ⑷若配位原子相同,配体原子数也相同,则 按结构式中与配位原子相连原子的元素符号 在英文字母中的顺序排列。NO2、NH2。 ⑸若配位原子不清楚,以书写顺序为序。
中心离子空轨道的杂化方式 (n-1)d,ns,np杂化 (内轨) (n-1)d,ns,np,nd
形成:d2sp3、dsp2、dsp3等
ns,np,nd杂化 (外轨)
形成:sp、sp2、sp3、sp3d2等
中心离子空轨道的杂化方式,既与中心离 子的电子层结构有关,也与配位体中配位原子 的电负性有关。
10.2.2 配合物的异构现象 化学式相同,结构不同,性质不同 立体异构—配体在中心原子周围因排列方式不 同而产生的异构现象。 1 顺反异构(常见于平面正方形、正八面体)

配位化合物

配位化合物

(二)配位体
在配合物中与形成体结合的离子或中性分子称为配位体, 简称配体,如[Co(NH3)4]2+中的NH3、在配体中提供孤对电
子与形成体形成配位键的原子称为配位原子,如配体NH3中
的N。常见的配位原子为电负性较大的非金属原子C、N、P、 O、S和卤素等原子。
根据一个配体中所含配位原子数目的不同,可将配体分为 单齿配体和多齿配体。 单齿配体:一个配体中只有一个配位原子,如NH3,OH-,X-,
第三节 螯 合 物
乙二胺分子是多齿配体,两个乙二胺分子与一 个Cu2+形成具有两个五元环的配位个体[Cu(en)2]2+:
H 2C H 2C H2N
NH 2
CH 2 CH 2
2
Cu
H2N
NH 2
由中心原子与多齿配体所形成的具有环状结构 的配位个体称为螯合个体。螯合个体为离子时称为 螯合离子,螯合离子与外界离子所组成的化合物称 为螯合物。不带电荷的螯合个体就是螯合物,通常 把螯合离子也称为螯合物。 能与中心原子形成螯合个体的多齿配体称为螯 合剂。
O H2N H3C N N N Co
+
O NH2 O
CH3
N N
CH3 CH3
CH3 O
Vitamin B12
(钴的配合物)
NH
O
NH2 CH3 CH3
O N P O HO N O H H H O H
HO
Co
Vitamin B12
的结构模型
K s{[Zn(NH 3 ) 4 ]2+ }
ceq {[Zn(NH 3 ) 4 ]2+ }/ c
[ceq (Zn 2+ ) / c ] [ceq (NH 3 ) / c ]4 1 8 5.0 10 (6.7 103 ) 4

大学无机化学第十章试题及答案解析

大学无机化学第十章试题及答案解析

第十章配位化合物本章总目标:1:掌握配合物的基本概念和配位键的本质2:掌握配合物的价键理论的主要论点,并能用此解释一些实例3:配离子稳定常数的意义和应用4:配合物形成时性质的变化。

各小节目标:第一节:配位化合物的基本概念1:掌握中心原子、配体、配位原子、配位键、配位数、螯合物等概念,○1配位单元:由中心原子(或离子)和几个配位分子(或离子)以配位键向结合而形成的复杂分子或离子。

○2配位化合物:含有配位单元的化合物。

○3配位原子:配体中给出孤电子对与中心直接形成配位键的原子。

○4配位数:配位单元中与中心直接成键的配位原子的个数。

2:学会命名部分配合物,重点掌握命名配体的先后顺序:(1)先无机配体后有机配体(2)先阴离子配体,后分子类配体(3)同类配体中,先后顺序按配位原子的元素符号在英文字母表中的次序(4)配位原子相同时,配体中原子个数少的在前(5)配体中原子个数相同,则按和配位原子直接相连的其它原子的元素符号的英文字母表次序;3:了解配合物的结构异构和立体异构现象第二节:配位化合物的价键理论1:熟悉直线形、三角形、正方形、四面体、三角双锥、正八面体构型的中心杂化类型。

2:会分辨内轨型和外轨型配合物。

可以通过测定物质的磁矩来计算单电子数μ=。

3:通过学习羰基配合物、氰配合物以及烯烃配合物的d p π-配键来熟悉价键理论中的能量问题。

第三节:配合物的晶体场理论1:掌握配合物的分裂能、稳定化能概念2:掌握配合物的晶体场理论。

3;了解影响分裂能大小的因素○1)晶体场的对称性0p t ∆>∆>∆○2中心离子的电荷数,中心离子的电荷高,与配体作用强,∆大。

○3中心原子所在的周期数,对于相同的配体,作为中心的过渡元素所在的周期数大,∆相对大些。

(4)配体的影响,配体中配位原子的电负性越小,给电子能力强,配体的配位能力强,分裂能大。

224232I Br SCN Cl F OH ONO C O H O NCS NH en NO CN CO -----------<<<<<<-<<<<<<<≈ 4:重点掌握(1)配合物颜色的原因之一——d-d 跃迁以及颜色与分裂能大小的关系;(2)高自旋与低自旋以及与磁矩的大小的关系。

配位化合物结构和性质

配位化合物结构和性质

第5页/共28页
2. 共价配键
共价配合物:中心离子的d电子重排,空出轨道,进行dsp内轨杂化,接受配位 体孤对电子,形成低自旋共价配合物。
在共价配键的形成中,可设想成几个部分:
(1)重排:中央离子为了尽可能多成键,往往发生电子重排,使之自旋配对,腾 出空轨道,以参加杂化。
(2)杂化:空出的d轨道与s、p轨道一起杂化。
➢ 配位体场对称性不同,分裂能不同
Oh 10Dq
Td
40 Dq 9
➢ 配位体场强度的影响
对于同一中心离子,同一对称性场,场 强增加,Δ0增大。
第15页/共28页
配位体场强的顺序可由络合物光谱化学实 验数据得到,故称这个顺序为光谱化学序列。
场强顺序:
I Br Cl F OH C2O42 H 2O EDTA NH 3 en SO32 NO2 CN
t2g
(dxy, dxz, d yz)
Δ0 -4Dq
八面体场
分裂能(△o):1个电子从较低能量d轨道跃 迁到较高能量d轨道所需的能量。习惯将Es取作0点
第10页/共28页
t2
t
4 9
o
Es
e
自由离子d 轨道
球形场
四面体场
Td场中d轨道能级的分裂图
可见
在四面体场中,d轨道分裂结果是:相对Es而言,t2轨道能量上升 了1.78Dq,而e轨道下降了2.67Dq。
➢ 中心离子所在周期的影响, n↑, △↑
[Co(H2O)6 ]3
[Rh(H
2O)6
]3
18600cm-1 后者的比前者增大了47% 27300cm-1
[RhCl6 ]3
[IrCl6
]3
20300cm-1 后者的比前者增大了23% 24900cm-1

配位化合物

配位化合物

配位数
2 3 4 4 5 5 6 6
中心 杂化方式
构型
实例
sp sp2 sp3 dsp2 dsp3 sp3d sp3d2 d2sp3
直线形 [ Ag( NH3)2 ]+ 三角形 [ Cu(CN)3 ]2- 四面体 [ Zn(NH3)4 ]2+ 正方形 [ N(i CN)4 ]2-
三角双锥 [ F(e CO)5 ] 三角双锥 [ Fe(SCN)5 ]2-
2 溶剂合异构
当溶剂分子取代配位基团而进入配离子的内界所
产生的溶剂合异构现象。与电离异构极为相似, 最熟悉 的例子是:
[Cr(H2O)6]Cl3 [Cr(H2O)5Cl]Cl2·H2O [Cr(H2O)4Cl2]Cl·2H2O 在配合物的内界,各含有6、5、4个配位水分子 和0、1、2个配位氯离子, 在配合物的外界各含有0、1 、2个溶剂合水分子和3、2、1个可电离的氯离子。这 些异构体在物理和化学性质上有显著的差异,如它们的 颜色分别为绿、蓝绿、蓝紫。
4p 4s
dsp2杂化
Ni(CN)24
八面体构型
对于F-,H2O等配体而言,配位原子F,O的电负性大, 不易给出孤对电子对,所以对中心体的3d轨道上的 电子不发生明显的影响,因此3d轨道上的电子排布 情况不发生改变 ,形成外轨型配合物。
对于CN-,CO等配位体而言,配位原子C的电负性小, 较易给出孤对电子对,对中心体的3d轨道发生重大 影响,从而使3d发生了电子重排,腾出能量较低的 内层(n-1)d轨道与ns,np轨道杂化,形成内轨型配合 物。
en
en
AACoe Nhomakorabea enCo
en
en
[Co(en)3])
A M

配位化合物命名

配位化合物命名

6
例1:[Fe(CN)5(NO)]2- 五氰·亚硝酰合铁(II)离子
例2:[Ni(phen)2(H2O)2]2+ 二水·二(1,10-菲罗啉)合镍(II)离子
例3:[Cu(acac)(bpy)(py)]+
乙酰丙酮根·吡啶·(2,2’-联吡啶)合铜(II)离子
精选2021版课件
7
3、含配阴离子的配合物:
(1)(NH4)3[SbCl6];
(2)[Co(en)3]Cl3
(3)[Cr(H2O)4Br2]Br ·2H2O
(4)[Cr(OH)(H2O)(C2O4)(en)]
(5)[Pt(Py)(NH3)ClBr]
(6) H2[PtCl 6]
(7) [Co(NH3)6]Cl3
(8) [Co(NH3)6]2(SO4)3
[Mn(H2O)6]2+ 六水合锰(II)离子
精选2021版课件
3
①配体名称置于中心原子之前
例1:[Fe(CN)6]4-
六氰合铁(II)离子
②不同配体名称间用 · 分开
例2:[Fe(CN)5(NO)]2- 五氰·亚硝酰合铁(II)离子 ③配体的数目用一二三四等表示
④在最后一个配体名称之前缀以“合”字 ⑤若配体名称较长或为复杂配体时,配体名称写在配 体数目后的括号中
在配阴离子与外界阳离子之间用酸字相连
例:K2[Fe(CN)6]
六氰合铁(III)酸钾
➢阴离子命名顺序: 阴离子配体→中性分子配体→合→中心离子 →酸。
如:K[PtCl3NH3], 三氯·一氨合铂(II)酸钾
精选2021版课件
8
4、含配阳离子的配合物
阴离子在前,配阳离子在后
例:[Cr(en)3](ClO4)3 高氯酸三(乙二胺)合铬(III)

配位化合物的基本概念

配位化合物的基本概念

如: Pt2+ + 2Cl + 2NH3 [Pt [Co(NH3)3(H2O)3] ③、定义配合物 配合分子和含有配离子的化合物统称配合物。 配合分子和含有配离子的化合物统称配合物。 如:[Cu( NH3)4]SO4、K2[HgI4]……
4
二、配合物的组成: 配合物的组成:
K2[HgI4]
返回3 返回3
15
例2: :
阴离子配体 ①按所带电荷分: 按所带电荷分: 配体分类: 配体分类: 单基( 单基(齿) ②按所能提供配位原子数目分: 按所能提供配位原子数目分: 多基(齿) 多基( 中性分子配体
返回6 返回6
16
11
[Cr(OH)3(H2O)(en )] 三羟基· 乙二胺合铬(III) 三羟基·水·乙二胺合铬(III) [CoCl 2•H2O• (NH3) 3]Cl 氯化二氯• 一水•三氨合钴( 氯化二氯• 一水•三氨合钴(Ⅲ) K[FeCl 2(C2O4)(en)] 二氯•草酸根•乙二胺合铁( 二氯•草酸根•乙二胺合铁(Ⅲ)酸钾 写出下列配合物的化学式 氯化一氯•硝基一水• 一氨• 胺合钴( ①、氯化一氯•硝基一水• 一氨•乙二 胺合钴(Ⅲ) 六氟合铝( 酸二氨合银( ②、六氟合铝(Ⅲ)酸二氨合银(Ⅰ) 答案: 答案:[CoCl •NO2•H2O•NH3•(en) ]Cl [Ag(NH3)2]3•[AlF6]
2
9-1 配位化合物的基本概念
一、配合物的定义和组成 1、定义:(又称为络合物) 定义: 又称为络合物)
[实验 : 实验]: 实验
①、定义配离子:由一个简单正离子与一定数 定义配离子: 目的中性分子或( 目的中性分子或(和)负离子以配位键键合而 成的复杂离子称为配离子。 成的复杂离子称为配离子。 ②、定义配合分子:由一个简单正离子(或原 定义配合分子:由一个简单正离子( 与一定数目的中性分子或( 负离子, 子)与一定数目的中性分子或(和)负离子, 以配位键结合形成的电中性的复杂分子称为配 3 合分子。 合分子。

配位化合物

配位化合物
例如:NH2-、NO2-
第二节 配位化合物的化学键理论
一、价键理论 (一)价键理论的基本要点 1.中心原子与配位体以配位键结合。配位 体的配位原子提供孤对电子,中心原子提供 空轨道容纳这些电子,形成配位键。
配位键 :M L
2. 成健过程中,中心原子外层能量相近 的轨道首先要进行轨道杂化,形成数 目相等、能量相同、具有一定伸展方 向的杂化轨道。
对价键理论的评价:
• 很好地解释了配合物的空间构型、
磁性、稳定性。
• 直观明了,使用方便。
• 无法解释配合物的颜色(吸收光谱)。
• 无法解释 [Cu (H2O)4 ]2 的稳定性。
Cu 2 (3d9 )
3d
4s
4p
[Cu (H2O)4 ]2
dsp2
第三节 配位平衡
一、配位平衡常数 配合物生成反应的平衡常数,称为配 合物的稳定常数 Ks (stability constant)。
inner sphere and outer sphere
中心原子和配位体组成配合物的内界, 用方括号表示内界,内界多为带电荷的配 离子,也有不带电荷地配位分子。配离 子以外的部分称为外界。
内外界之间以离子键结合 。
配合物的组成
配位键 配位原子 离子键
例:[ Cu ( N H 3 ) 4 ]
中心原子 配位体 配体数
第十二章 配位化合物
配位化合物简称配合物,是 一类非常广泛和重要的化合物。
在植物生长中起光合作 用的叶绿素,是一种含镁的 配合物;
叶绿素
含镁的 配合物
人和动物血液中起着输 送氧作用的血红素——含亚 铁的配合物;
血红素
含铁的 配合物
维生素B12——含钴的配 合物;

12第十章配位化合物温相如

12第十章配位化合物温相如

第十章 配位化合物学习要点配合物、配合物价键理论、sp 、sp 3、dsp 2、sp3d2、d2sp3杂化轨道、外轨型、内轨型配合物、磁矩、晶体场理论、分裂能、晶体场稳定化能(CFSE )、螯合物、配位平衡学习指南配合物是配位化合物的简称。

配离子或配位分子是由中心原子提供价层空轨道,配体中的配原子提供孤对电子,以配位键结合而成的难解离的复杂结构单元。

它是由中心原子和配体组成的。

中心原子往往是过渡金属离子,配体一般分为单齿配体和多齿配体,配体中直接与中心原子配位的原子称为配原子。

配离子或配位分子中配原子的数目称为中心原子的配位数。

配合物顺、反异构体的理化性质不同。

配合物的名称有俗名、商品名和系统命名,系统命名法是配合物内外界之间服从一般无机化学命名原则,内界命名的先后顺序所遵循的一般原则是配体数—配体名称—合—中心原子名称(中心原子氧化数),不同配体按阴离子—中性分子—阳离子顺序排列。

配合物的价键理论认为:中心原子与配体之间以配位键相结合,成键过程中,中心原子提供的价层空轨道首先进行杂化,形成杂化空轨道,配合物的空间构型,取决于中心原子价层空轨道的杂化类型。

常见的杂化方式有sp 、sp 2、sp 3、dsp 2、sp 3d 2、d 2sp 3等。

配合物的内、外轨型,可通过配合物的磁矩测定,结合中心原子的价层电子结构来判断,进一步可推断中心原子价层空轨道的杂化类型、配合物的空间构型、磁性及定性说明部分配合物的稳定性。

配合物的晶体场理论把中心原子和配体都看成点电荷,中心原子和配体之间靠静电作用力相结合,并不形成共价键。

在晶体场的作用下,中心原子d 轨道发生能级分裂,分裂能的大小与配合物的空间构型、配体场强、中心原子所带的电荷数和它所属周期等因素有关。

对于d 4~d 7电子构型的中心原子,其配合物有高、低自旋之分。

根据晶体场稳定化能的相对大小可以比较相同类型配合物的稳定性。

晶体场理论还可以较好地解释配合物的颜色。

10配位的钼

10配位的钼

10配位的钼
10配位的钼是指钼原子周围有10个配位位点可以与其他原子
或配体形成配位化合物。

在化学中,配位数指的是一个中心金属离子周围配位体的数目。

配位体可以是分子中的原子或离子,它们通过配位键与金属离子相连接。

几种常见的10配位的钼化合物包括:
1. 五面体配位型:在此配位型中,钼原子周围有五个配位位点可以与其他原子或配体形成五个配位键,配位体通常是配体的键的连接点。

例如,五氟合钼(IV)酸根离子([MoF5]2-)是一个
具有五面体配位型的例子。

2. 八面体配位型:在此配位型中,钼原子周围有八个配位位点可以与其他原子或配体形成八个配位键。

八面体型的配位体通常包括六个在八面体的脸上和两个在八面体的顶点上。

例如,八氟合钼(V)酸根离子([MoF8]4-)是一个具有八面体配位型的例子。

需要注意的是,10配位的钼化合物相对较少见,可能在特定
的条件下才会形成。

此外,还可以通过改变配体或金属离子的电荷状态来调整配位数。

《无机化学》第3版 宋天佑 第11章 配位化学基础

《无机化学》第3版 宋天佑 第11章 配位化学基础

黄褐色的硝基配位化合物 [ Co(NO2)(NH3)5 ] Cl2 红褐色的亚硝酸根配位化合物 [ Co(ONO)(NH3)5 ] Cl2
互为键合异构
(4) 配体异构
如果两个配位体互为异构体, 那么由它们分别形成的相应的配位 化合物互为配体异构。
1,2 — 二氨基丙烷
NH2CH2CHNH2CH3 和 1,3 — 二氨基丙烷
几种不同的配体之间加 “ • ” 隔开。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
Cu2 [ SiF6 ] 六氟合硅(IV)酸亚铜
中心后面加( ),内写罗 马数字表示中心的化合价。
3. 配体的先后顺序
在配位单元中,可能涉及多种 配体,所以要明确规定命名时配体 的次序。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
④ 配位原子相同,配体 中原子个数少的在前。
[ Pt(py)(NH3)(NO2)(NH2OH)] Cl 氯化硝基•氨•羟氨• 吡啶合铂(II)
⑤ 配体中原子个数相同, 则按和配位原子直接相连的配体 中的其他原子的元素符号的英文 字母表次序。
互为配位异构。
(3) 键合异构
配体中有两个配位原子,但 这两个原子并不同时配位,这样 的配体称两可配体。
两可配体可产生键合异构。
例如若 NO2- 以 N 为配位原子 时,则形成硝基配位化合物。
其中的配体硝基表示为 -NO2
例如若 NO2- 以 O 为配位原子 时,则形成亚硝酸根配位化合物。
其中的配体亚硝酸根表示为 - ONO
含有多个配位原子的配体称 多基配体(或多齿配体),
例如乙二胺四乙酸(EDTA)。
它的两个 N,4 个 -OH 中的 O 均 可以配位。

十配位化合物

十配位化合物

LOGO第十二章 配位化合物 ( coordination compound )第一节 配位化合物的基本概念一、配位化合物的定义CuSO4(蓝色溶液)+NaOH→Cu(OH)2(蓝色↓) +BaCl2 →BaSO4(白色↓ )CuSO4(蓝色溶液)+NH3(浓)→ 深蓝色溶液 蓝色晶体:1.没有氨臭→无游离的氨2. +NaOH: (-) →无游离的Cu2+ 3. +BaCl2 :(+) →有游离的SO42Cu2+与NH3形成了一种复杂离子[ Cu ( NH3 ) 4] 2+第一节 配位化合物的基本概念定义:配离子:由简单阳离子(或原子)和一定数 目的中性分子或阴离子配体通过 配位键结合,并按一定的组成和 空间构型所形成的复杂离子配合物:含有配离子的化合物或配分子第一节 配位化合物的基本概念二、配合物的组成 [ Cu ( NH3 ) 4] SO4(inner sphere)内界(离子键)外界(outer sphere) [ Cu ( NH3 ) 4]2+中心原子Cu2+ 配体NH3 配位原子:N 配位键:中心原子Cu2+提供空轨道 配位原子N提供孤对电子第一节 配位化合物的基本概念配合物的结构离子键 配位键K4+┆ [Fe┆(CN)6] 4中心原子 配体外界内界配合物第一节 配位化合物的基本概念中心原子(central atom):一般为副族元素 配体(ligand):一般为负离子或中性分子 如:H2O、CO、NH3 、 X- 、 OH- 、 CN、 NO2-、ONO-、SCN-、NCS-、乙二胺 等。

配位原子(donor atom):提供孤对电子的 原子。

1第一节 配位化合物的基本概念第一节 配位化合物的基本概念配位数(coordination number) =配位原子个数 ≠配体个数:一般为2,4,6单齿配体(monodentate ligand) :一个配体内一 个配位原子配位数=配位原子个数= 配体个数多齿配体(multidentate ligand) :一个配体内多 个配位原子配位数=配位原子个数≠ 配体个数第一节 配位化合物的基本概念乙二胺:H2NCH2CH2NH2 [Cu(en)2]SO4 配位数=4乙二胺四乙酸(EDTA):一个分子有六个配位原子HOOCCH 2 HOOCCH 2NCH 2CH 2NCH 2COOH CH 2COOH第一节 配位化合物的基本概念影响配位数的因素1.中心原子的体积和电荷 2.配体的体积和电荷 3.中心原子和配体的半径 4.配体的浓度和反应时温度第一节 配位化合物的基本概念三、配合物的命名1.配离子:配体数—配体名称—“合”—中心原 子名称(氧化数)(用罗马字表示)Cu(NH3)42+ 四氨合铜(II)配离子 2.多配体:先无机后有机,先阴后中,先简单 后复杂,最后以配位原子元素的英文字母顺 序先后排列[Co(OH)2(NH3)4]+ 二羟•四氨合钴(III)配离子第二节 配合物的化学键理论一、价键理论 (一)要点:1.中心原子与配体之间的化学键是配位键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外 界
中配配 心位位 离体体
子数
内界
上一页
下一页
5 本章目录
1.中心离子:配合物中占据中心位置 正离子或原子。又称形成体.
2. 配 位 体 : 与 中 心 离 子 配 合 的 离 子 或 分子称为配位体.
如H2O、NH3、CN- 、 Cl-、F- 等。
3. 配位原子:在配位体中,直接与中心 离子配位的原子称为配位原子。
上一页
下一页
40 本章目录
例:若使 0.1mol AgI 溶解于1升 KCN 溶液
中,KCN的浓度至少为 多少?
解: AgI(s)+ 2CN-
平衡:
y
[Ag (CN)2 ]- + I-
0.1
0.1
K
j
0.1 0.1 y2
8.5 1017
1.3 1021
1.1 105
Kj
c[Ag(NH3 )2 ]c(Cl c2(NH3 )
)
c( Ag c( Ag
) )
Kf
K sp(AgCl)
Kf 和Ksp越大,则Kj越大,沉淀越易溶解.
Kf 和Ksp越小,则Kj越小,沉淀越不易溶解.
上一页
下一页
38 本章目录
例:若使 0.1mol AgCl 溶解于1升氨水中, 氨水的浓度至少为多少?
上一页
下一页
32 本章目录
解: Ag+ + 2NH3
初始: 0
0
平衡: x
2x
[Ag (NH3)2 ]+ 0.1 mol·L-1 0.1- x
Kf
0.1 x x(2x)2
1.1 107
0.1-x ≈ 0.1
x3
0.1 4 1.1 107
1.31103mol L1
上一页
下一页
33 本章目录
配位数与配合物空间构型的关系 例:[Ag(NH3)2]+ 配位数为2,
H3N——Ag——NH3
直线型
[Cu (NH3)4 ]2+ 配位数为4,有平面四方型.
H3N Cu2+
NH3
H3N
NH3
上一页
下一页
15 本章目录
[Zn(NH3)4]2+ 配位数为4,正四面体.
[FeF6]3- 配位数为6,正八面体.
例:若使 0.1mol AgI 溶解于1升氨水中,氨
水的浓度至少为 多少?
解: AgI(s)+ 2NH3
平:
x
[Ag (NH3)2 ]+ + I-
0.1
0.1
Kj
0.1 0.1 x2
8.5 1017
1.1 107
9.4 1010
x
0.01 9.4 1010
3.3103 mol L1
AgI不能溶解于氨水。
Ag+ + 2CN-
初始: 0
0
平衡: y 2y
[Ag (CN)2 ]0.1 mol·L-1 0.1- y
0.1-y ≈ 0.1
y
3
0.1 4 1.3 1021
2.68108mol L1
34
上一页
下一页
本章目录
10.3.3 配位平衡的移动
1. 配位体浓度的影响
例:若在 0.1mol/L 的 [Ag (NH3)2 ]+ 中通入 氨,使氨的浓度为1mol/L,此时溶液中的 Ag+ 浓度是多少?
+
+
3OH- 6H+
[FeF6]3-
Fe(OH)3 6HF
上一页
下一页
36 本章目录
[FeF6]3- + 6H+
Fe3+ + 6HF
c(Fe 3 )c6 (HF) c6 (F )
1
Kj
c(FeF63 )c6 (H
)
c6(F )
Kf
K
6 a
Kf 和 Ka越小,则Kj越大,在酸性条件 下,配离子越易离解。
H2C—H2N Cu
H2C—H2N
两个五员环
NH2—CH2 NH2—CH2
上一页
下一页
9 本章目录
例:[Zn(EDTA)]2- (五个五员环)
CO
O
CH2
动画
CO—CH2
O
N
Zn
O
N
CO CH2
CH2 CH2 CH2
O
CO
上一页
下一页
10 本章目录
上一页
下一页
11 本章目录
螯合物:具有环状结构的配合物称为螯合物. 螯合物中的环称为螯环。多基配位体
上一页
下一页
18 本章目录
3、无外界配合物
[Pt(NH3)2Cl2]
二氯二氨合铂(Ⅱ)
[Co(NH3)3(NO2)3] 三硝基三氨合钴(Ⅲ)
[Fe(CO)5]
五羰基合铁
上一页
下一页
19 本章目录
﹡10.2 配位化合物的价键理论
10.2.1 价键理论的要点
1. 形成体(M):有空轨道 配位体(L):有孤对电子 二者形成配位键ML
反应: Cu2+ + 4NH3
[Cu (NH3)4 ]2+
平衡时
Kf
c[Cu(NH3 )42 ] c(Cu2 ) c4(NH3 )
Kf 称为配离子的稳定常数,Kf 越大, 配离子越稳定。
上一页
下一页
31 本章目录
1 Kf Kd
10.3.2 配位平衡的计算
例: 分别计 算 0.1mol/L [Ag(NH3)2]+中 和 0.1mol/L[Ag(CN)2]- 中Ag+ 的浓度,并说 明 [Ag(NH3)2]+ 和 [Ag(CN)2]- 的稳定性。
3d
4s 4p
Ni2+
[Ni(CN)4]2-
dsp2杂化
CN- CN- CN-CN-
上一页
下一页
25 本章目录
[Fe(CN)6]3- 为正八面体结构
3d
4s 4p
Fe3+
[Fe(CN)6]3d2sp3杂化 CN-CN- CN- CN-CN-CN-
上一页
下一页
26 本章目录
3. 形成外轨型或内轨型的影响因素
下一页
27 本章目录
(2) 配位体
CN – CO NO2 – 等,易形成内轨型。 F– 、H2O、OH-易形成外轨型 。 NH3、Cl-两种类型都可能形成,与中 心离子有关。
10.2.3 内外轨型配离子的某些差异
1. 离解程度
内轨型配离子比外轨型配离子更稳定, 离解程度小。
28
上一页
下一页
本章目录
解: Ag+ + 2NH3
初始:
1
平衡:x 1+2x
[Ag (NH3)2 ]+ 0.1 mol·L-1 0.1- x
上一页
下一页
35 本章目录
Kf
0.1 x x(1 2x)2
1.1107
0.1-x ≈0.1 , 1+2x≈1
x = 9.9×10-9 (mol·L-1) 2. 酸度的影响
Fe3+ + 6F-
H2O中的O ,NH3中的 N ,CN-中的C.
上一页
下一页
6 本章目录
单基配位体:配位体中只有一个原子与中心
离子配位。H2O、NH3、CN-、 Cl-、F- 等是单基配位体。
多基配位体:一个配位体中有两个或两个以 上的配位原子与中心离子配位, 称为多基配位体。
如C2O42--、乙二胺、乙二胺四乙酸(EDTA).
又称为螯合剂。中心离子与螯合剂个数之 比称为螯合比。
例:[Cu(en)2]2+ 中,螯合比 = 1︰2 [Zn(EDTA)]2-中,螯合比 = 1︰1
螯合物具有特殊的稳定性,其中又以 五员环、六员环最稳定,环越多越稳定。
上一页
下一页
12 本章目录
上一页
下一页
13 本章目录
例:稳定性 [Cu(EDTA)]2- > [Cu(en)2]2+ >[Cu(NH3)4]2+
上一页
下一页
17 本章目录
2. 配阳离子: 外界—配位体—合中心离子(氧化数)
例:[Cu (NH3)4 ]SO4 硫酸四氨合铜(Ⅱ) 配位体两种以上:先阴离子,后中性分子
先简单,后复杂。
例:K[Co(NH3)2Cl4] 四氯二氨合钴(Ⅲ)酸钾
[Co(NH3)4(H2O)Cl]Cl2 氯化一氯一水四氨合钴(Ⅲ)
解: AgCl(s)+ 2NH3
平衡:
x
[Ag (NH3)2 ]+ + Cl-
0.1
0.1
Kj
0.1 0.1 x2
1.8 1010
1.1107
1.98 10 3
x
0.01 1.98 10 3
2.2mol L3
氨水的初浓度= 2.2 + 0.2 =2.4 mol·L-3
上一页
下一页
39 本章目录
[Ag(NH3)2]+的空间构型为直线形。
4d
5s
5p
Ag+
上一页
下一页
22 本章目录
4d [Ag(NH3)2]+
sp杂化 5s 5p
NH3 NH3
[AgCl2]-,[CuCl2]- 与上述同类
[NiCl4]2-的空间构型为四面体.
[NiCl4]2-
3d sp3杂化
相关文档
最新文档