最新等差数列求和及练习题(整理)
(完整版)等差等比数列求和与差的练习题
![(完整版)等差等比数列求和与差的练习题](https://img.taocdn.com/s3/m/f82e0124a66e58fafab069dc5022aaea988f4141.png)
(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。
解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。
题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。
解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。
题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。
解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。
题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。
解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。
以上是关于等差数列求和与差的练题的完整版文档。
等差数列之和练习题
![等差数列之和练习题](https://img.taocdn.com/s3/m/2311a65c0a4e767f5acfa1c7aa00b52acfc79cf6.png)
等差数列之和练习题等差数列是高中数学中的一个重要概念,涉及到数列的求和问题。
在这篇文章中,我们将通过一些练习题来巩固和提高对等差数列求和的理解和运用。
题目一:求和公式已知等差数列的前n项和公式为Sn=n(a1+an)/2,其中n是项数,a1是首项,an是末项。
现给定等差数列的首项是a1=3,末项是an=17,求该数列的和。
解析:根据公式Sn=n(a1+an)/2,代入已知条件可以得到Sn=n(3+17)/2。
计算得到Sn=10n。
题目二:已知求末项已知等差数列的前n项和公式为Sn=n(a1+an)/2。
现给定等差数列的项数n=10,首项是a1=2,末项未知,且数列的和Sn=45,请求该数列的末项。
解析:根据公式Sn=n(a1+an)/2和Sn=45,代入已知条件可以得到45=10(2+an)/2。
化简得到90=20+10an。
继续化简得到an=7。
题目三:等差数列求和已知等差数列的首项是a1=1,公差是d=3,项数是n=6。
求该等差数列的和。
解析:根据等差数列求和公式Sn=n(a1+an)/2,代入已知条件可以得到Sn=6*(1+an)/2。
化简得到Sn=3(1+an)。
题目四:分段等差数列求和已知等差数列的首项是a1=1,公差是d1=2,项数是n1=4;另一段等差数列的首项是a2=7,公差是d2=3,项数是n2=3。
求这两段等差数列的和。
解析:根据等差数列求和公式Sn=n(a1+an)/2,分别代入第一段和第二段的已知条件可以得到第一段的和S1=4*(1+4)/2=10,第二段的和S2=3*(7+10)/2=51。
两段和相加得到总和S=S1+S2=10+51=61。
通过以上练习题的解析,相信大家对等差数列的求和方法有了更深入的理解。
等差数列求和是数学中的一个基本问题,掌握了求和的方法和公式,可以更好地解决相关问题。
希望大家能够通过不断的练习和巩固,提高自己的数学水平。
第004课 等差数列求和公式练习题
![第004课 等差数列求和公式练习题](https://img.taocdn.com/s3/m/cf8a04fcb4daa58da1114a79.png)
①心算
1.已知偶数列:2,4,6,8,…,198,200。
所有数的和是。
2.已知一个等差数列所有数的和是99,如果第一项与最后一项的和是33,一共有项。
3.已知一个等差数列一共有25项,所有数的和是625,那么第3项与第23项的和是。
②已知等差数列:12,23,34,45,…一共有99项,那么所有数的和是多少。
③已知等差数列共有77项,所有数的和是13013,如果第二项是21,那么倒数第二项是多少。
④沈阳地铁一号线的一辆列车共有6节车厢,已知后面每一个车厢的人数都比前一个车厢多6人,如果所有车厢的总人数是240,那么第6节车厢有多少人。
⑤小明进行加法珠算练习,用1 + 4 + 7 + 10 + 13…,当加到某个数时,和是173,在验算时发现重复加了一个数,这个数是多少。
高二等差数列求和练习题与答案
![高二等差数列求和练习题与答案](https://img.taocdn.com/s3/m/785ca73130b765ce0508763231126edb6f1a76c4.png)
高二等差数列求和练习题与答案等差数列是数学中的重要概念,也是高中数学中的基础知识点之一。
在高二的学习中,我们要掌握等差数列的求和公式,进一步巩固和应用这一概念。
下面将给出一些高二等差数列求和的练习题,并提供详细的解答。
练习题1:求等差数列1,3,5,7,9的和。
解:根据等差数列的求和公式,我们可以得知,等差数列的和等于首项与末项的和乘以项数再除以2。
这里,首项为1,末项为9,项数为5。
代入公式得:总和 = (首项 + 末项) ×项数 ÷ 2= (1 + 9) × 5 ÷ 2= 10 × 5 ÷ 2= 50 ÷ 2= 25所以,等差数列1,3,5,7,9的和为25。
练习题2:求等差数列2,5,8,11,...,101的和。
解:这是一个公差为3的等差数列,我们需要找到首项、末项和项数,然后代入求和公式进行计算。
首项 a = 2公差 d = 5 - 2 = 3末项 l = 101项数 n = (l - a) ÷ d + 1= (101 - 2) ÷ 3 + 1= 99 ÷ 3 + 1= 33 + 1= 34总和 = (首项 + 末项) ×项数 ÷ 2= (2 + 101) × 34 ÷ 2= 103 × 34 ÷ 2= 3502 ÷ 2= 1751所以,等差数列2,5,8,11,...,101的和为1751。
练习题3:已知等差数列的首项为7,公差为4,和为123。
求该等差数列的项数。
解:我们可以根据求和公式来解题,将已知的数据代入公式求解。
公式为:总和 = (首项 + 末项) ×项数 ÷ 2将已知数据代入得:123 = (7 + l) × n ÷ 2化简得:246 = (7 + l) × n由于等差数列的首项是7,公差是4,所以末项 l = 7 + 4 × (n - 1)。
等差数列求和练习题以及答案解析
![等差数列求和练习题以及答案解析](https://img.taocdn.com/s3/m/f1d370a86394dd88d0d233d4b14e852458fb3915.png)
等差数列求和练习题以及答案解析练题1已知等差数列的首项为5,公差为3,请求前10项的和。
解析根据等差数列求和公式:其中:a 是首项,d 是公差,n 是项数。
代入已知条件,得到:所以,前10项的和为245。
练题2一等差数列的首项为7,公差为2,已知前6项的和为90,请求这个等差数列的第7项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前6项的和为90,代入公式得到:90 = (6/2)(2a + (6-1)d)其中,a 是首项,d 是公差。
将已知条件代入方程中,得到:90 = 3(2a + 5d)进一步整理得到:2a + 5d = 30由已知条件可得到方程组:{a = 72a + 5d = 30}解方程组可得到 a = 7,d = 4。
根据等差数列的通项公式:其中,a 是首项,d 是公差,n 是项数。
代入已知条件,得到:an = a + (n-1)da7 = 7 + (7-1)4a7 = 7 + 6*4a7 = 7 + 24a7 = 31所以,该等差数列的第7项为31。
练题3已知等差数列的前15项的和为135,公差为1,请求该等差数列的首项。
解析可利用等差数列求和公式和已知条件来解答该问题。
根据等差数列求和公式:已知前15项的和为135,代入公式得到:135 = (15/2)(2a + (15-1)1)整理得到:270 = 15(2a + 14)进一步整理得到:2a + 14 = 18解方程可得到 a = 2。
所以,该等差数列的首项为2。
练题4一等差数列的首项为3,公差为4,已知该等差数列的前n项和为49n,请问 n 的值是多少?解析可利用等差数列的前n项和公式来解答该问题。
根据等差数列的前n项和公式:已知该等差数列的前n项和为49n,代入公式得到:49n = (n/2)(2a + (n-1)d)其中,a 是首项,d 是公差。
代入已知条件,得到:49n = (n/2)(2*3 + (n-1)*4)整理得到:49n = n(6 + 4n - 4)进一步整理得到:49n = n(4n + 2)解方程可得到 n = 7。
等差数列求和及练习题(整理).doc
![等差数列求和及练习题(整理).doc](https://img.taocdn.com/s3/m/22d1cf87580216fc710afd0b.png)
等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。
这个固定的数就叫做“公差”。
二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。
判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。
(完整版)等差数列练习题有答案
![(完整版)等差数列练习题有答案](https://img.taocdn.com/s3/m/6a685d3fb9d528ea81c779da.png)
数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。
11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。
{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。
n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。
1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。
n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。
n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。
数列求和方法(带例题和练习题)
![数列求和方法(带例题和练习题)](https://img.taocdn.com/s3/m/ad01e96ce45c3b3567ec8b91.png)
数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。
例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。
等差数列求和练习题
![等差数列求和练习题](https://img.taocdn.com/s3/m/d308147b42323968011ca300a6c30c225801f018.png)
等差数列求和练习题题目:等差数列求和练习题等差数列(Arithmetic Progression,简称AP)是数学中常见的一种数列。
在等差数列中,每个数与它的前一个数之差都是相等的,这个公差可以是正数、负数或零。
求和问题是等差数列中最常见的问题之一,本文将针对等差数列求和进行一系列练习题的解答,帮助读者加深对该概念的理解和计算能力。
第一题:已知等差数列的公差为d,首项为a₁,末项为aₙ,共有n项。
求该等差数列的和Sₙ。
解析:根据等差数列求和公式:Sₙ = (a₁ + aₙ) * n / 2,我们可以直接代入已知条件进行计算。
第二题:求等差数列 2, 5, 8, 11, ... 的前100项和S₁₀₀。
解析:首项a₁ = 2,公差d = 5 - 2 = 3,末项aₙ = a₁ + (n - 1) * d = 2 + 99 * 3 = 299。
根据上述公式可得:S₁₀₀ = (a₁ + aₙ) * n / 2 = (2 + 299) * 100 / 2 = 15100。
第三题:已知等差数列的和为Sₙ,首项为a₁,共有n项。
求等差数列的公差d。
解析:根据等差数列求和公式:Sₙ = (a₁ + aₙ) * n / 2,我们可以将aₙ用a₁和d表示:aₙ = a₁ + (n - 1) * d。
代入求和公式可得:Sₙ = (a₁ +a₁ + (n - 1) * d) * n / 2 = (2a₁ + (n - 1) * d) * n / 2 = a₁n + (n² - n) * d / 2。
由此可得:d = 2(Sₙ - a₁n) / (n² - n)。
通过以上三道等差数列求和的练习题,我们可以初步了解等差数列的性质和求和方法。
在实际应用中,等差数列的求和问题有着广泛的应用,尤其在数学、物理等学科中常常会用到。
因此,熟练掌握等差数列的求和公式和解题技巧,对于提高数学思维和解题能力具有重要意义。
数列求和专项练习(含答案)
![数列求和专项练习(含答案)](https://img.taocdn.com/s3/m/a838775d964bcf84b9d57bbe.png)
数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。
2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。
3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。
7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。
等差数列求和基础题
![等差数列求和基础题](https://img.taocdn.com/s3/m/77dbf818ccbff121dd3683bc.png)
等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =A.16B.24C.36D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于A.3B.5C.8D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为A. 90B. 45C. 30D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为A.10B.20C.25D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于A.6B. 7C.8D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于A.10B.12C.15D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A.138B.135C.95D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =A.2B.3C.6D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 =A.5:9B.9:5C.3:5D.5:313. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为A.33-=n a nB.n a n 3=C.2+=n a nD.1+=n a n14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于A.3B.4C.5D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A.23- B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为A.48B.54C.60D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于A.22B.21C.19D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是A.23B.24C.25D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于A.18B.27C.36D.4522. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于A.66B.99C.144D.29725. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为A.95B.100C.115D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 txjyA.80-B.76-C.75-D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于A.144B.72C.54D.3630. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是A.S 1B.S 9C.S 17D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则A.S 4<S 3B.S 4==S 2C.S 6<S 3D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为A.第6项B.第7项C.第8项D.第9项34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为A.130B.260C.156D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于A.297B.144C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为A. 2B. 4C. 6D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-==A.18B.36C.54D.7242. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2B. 2C.2D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于A.810B.840C.870D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为A.1B.2C.4D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为A.50B.45C.40D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T = A.21n + B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—2 51. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S S A.310 B.13 C.81 D.91 53. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为A.18B.17C.16D.1554. 若等差数列{}n a 的前5项和525S =,且23a =,则7a =A.12B.13C.14D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a 为整数的正整数n 的个数是A.3B.4C.5D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和 =a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为A.14B.16C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.2062. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16 B.24 C.36 D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为A.128B.80C.64D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.200765. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是A.15B.30C.31D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.1070. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是 A.2 B.3 C.4 D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.13 73. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是A.10SB.11SC.20SD.21S75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为A.20B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C.120D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是A.15SB.17SC.8SD.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12 B.24 C.36 D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是A.5B.6C.7D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是A.55B.95C.100D.不能确定82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是A.S 21B.S 20C.S 11D.S 10 83. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S 等于 A.1 B.-1 C.2 D.21 84. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S =A.100B.210C.380D.40087. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为A.5B.6C.7D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.20190. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为A.25B.50C.100D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是A.S 17B.S 15C.S 8D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是A .7B .8C .9D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75, a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于245D. C.12 445B. 6.A 97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是A .递增数列B . 递减数列C .常数列D . 摆动数列98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S 等于txjy A.-1 B. 21 C.1 D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19参考答案(仅供参考)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D C A B A D A C C B C B D A B16 17 18 19 20 21 22 23 24 25 26 27 28 29 30C D B D B C D A B C A C B B D31 32 33 34 35 36 37 38 39 40 41 42 43 44 45A B C C A C C A D D D B B B B46 47 48 49 50 51 52 53 54 55 56 57 58 59 60B B B D A B A D B B B B BC C61 62 63 64 65 66 67 68 69 70 71 72 73 74 75C D C A A C B B C D A C A C C76 77 78 79 80 81 82 83 84 85 86 87 88 89 90A B A B B B B A A B B A B A A91 92 93 94 95 96 97 98 99 100B C C C C A C C A C欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
等差数列前n项和公式基础训练题(含详解)
![等差数列前n项和公式基础训练题(含详解)](https://img.taocdn.com/s3/m/cc176e1f192e45361066f56b.png)
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.
高中数学练习题及讲解库数列
![高中数学练习题及讲解库数列](https://img.taocdn.com/s3/m/ca3a45168f9951e79b89680203d8ce2f006665f8.png)
高中数学练习题及讲解库数列### 高中数学练习题及讲解:数列#### 练习题1:等差数列的求和题目:设等差数列 \(\{a_n\}\) 的首项 \(a_1 = 2\),公差 \(d = 3\),求前10项的和 \(S_{10}\)。
解答:等差数列的前 \(n\) 项和公式为:\[ S_n = \frac{n}{2}(2a_1 + (n-1)d) \]将已知条件代入公式:\[ S_{10} = \frac{10}{2}(2 \times 2 + (10-1) \times 3) \]\[ S_{10} = 5(4 + 27) \]\[ S_{10} = 5 \times 31 \]\[ S_{10} = 155 \]所以,前10项的和为155。
#### 练习题2:等比数列的通项公式题目:设等比数列 \(\{b_n\}\) 的首项 \(b_1 = 5\),公比 \(q = 2\),求第5项 \(b_5\)。
解答:等比数列的通项公式为:\[ b_n = b_1 \times q^{(n-1)} \]将已知条件代入公式:\[ b_5 = 5 \times 2^{(5-1)} \]\[ b_5 = 5 \times 2^4 \]\[ b_5 = 5 \times 16 \]\[ b_5 = 80 \]所以,第5项 \(b_5\) 为80。
#### 练习题3:数列的递推关系题目:设数列 \(\{c_n\}\) 满足 \(c_1 = 1\),且 \(c_{n+1} = 2c_n + 1\),求 \(c_4\)。
解答:根据递推关系,我们可以逐步计算:\[ c_2 = 2c_1 + 1 = 2 \times 1 + 1 = 3 \]\[ c_3 = 2c_2 + 1 = 2 \times 3 + 1 = 7 \]\[ c_4 = 2c_3 + 1 = 2 \times 7 + 1 = 15 \]所以,\(c_4\) 为15。
等差数列与前n项和练习试题(可编辑修改word版)
![等差数列与前n项和练习试题(可编辑修改word版)](https://img.taocdn.com/s3/m/bcf2aafc80c758f5f61fb7360b4c2e3f5727256c.png)
等差数列与前n项和练习试题(可编辑修改word版)第1 讲等差数列及其前n 项和⼀、填空题1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=.2.设等差数列{a }的前n 项和为S ,若S4 -S3=1,则公差为.n n12 93.在等差数列{a n}中,a1>0,S4=S9,则S n取最⼤值时,n=.4.在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=. 5.设等差数列{a n}的公差为正数,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=.6.已知数列{a n}的前n 项和为S n=2n2+pn,a7=11.若a k+a k+1>12,则正整数k 的最⼩值为.7.已知数列{a n}满⾜递推关系式a n=2a n+2n-1(n∈N*),且a n+λ为等差数{ 2n }+1列,则λ的值是.8.已知数列{a n}为等差数列,S n为其前n 项和,a7-a5=4,a11=21,S k=9,则k=.10.已知f(x)是定义在R 上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成⽴.数列{a n}满⾜a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=.⼆、解答题1.已知等差数列{a n}的前三项为a-1,4,2a,记前n 项和为S n.(1)设S k=2 550,求a 和k 的值;(2)设b n=S n,求b +b +b +…+b 的值.3 7 114n-1n12.已知数列{a n}的通项公式为a n=2n,若a3,a5分别为等差数列{b n}的第3 项和第5 项,试求数列{b n}的通项公式及前n 项和S n.13.在等差数列{a n}中,公差d>0,前n 项和为S n,a2·a3=45,a1+a5=18.(1)求数列{a n}的通项公式;(2)令b n=S n(n∈N*),是否存在⼀个⾮零常数c,使数列{b n}也为等差数列?n+c若存在,求出c 的值;若不存在,请说明理由.第2 讲等⽐数列及其前n 项和⼀、填空题1.设数列{a n2}前n项和为S n,a1=t,a2=t2,S n+2-(t+1)S n+1+tS n=0,则{a n}是数列,通项a n=.解析由S n+2-(t+1)S n+1+tS n=0,得S n+2-S n+1=t(S n+1-S n),所以a n+2=ta,所以a n+2=t,⼜a2=t,n+1a n+1 a1所以{a n}成等⽐数列,且a n=t·t n-1=t n.答案等⽐t n2.等⽐数列{a }的前n 项和为S 8a +a =0,则S6=.n n, 2 5S34 2 2 2 8 8 解∵8a 2+a 5=8a 1q +a 1q 4=a 1q (8+q 3)=0 ∴q =-2∴S 6=1-q 6=1+q 3=-7.S 3 1-q 3 答案-73. 数列{a n }为正项等⽐数列,若 a 2=2,且 a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前 4 项和 S 4= .解析由 a 1q =2,a 1q n -1+a 1q n =6a 1q n -2,得 q n -1+q n =6q n -2,所以 q 2+q =6.⼜ q >0,所以 q =2,a 1=1.所以 S =a 11-q 4=1-24=15.1-q 1-2答案 154. 已知等⽐数列{a n }的前 n 项和 S n =t ·5n -2-1,则实数 t 的值为.5解析∵a 1=S 1=1t -1,a 2=S 2-S 1=4t ,a 3=S 3-S 2=4t ,∴由{a n }是等⽐数 5 5 5 列知 4t 2= 1t 1 ×4t ,显然 t≠0,所以 t =5.(5 ) (5- )5答案 55. 已知各项都为正数的等⽐数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满⾜ a n ·a n +1·a n +2≥1的最⼤正整数 n 的值为.8解析由等⽐数列的性质,得 4=a 2·a 4=a 32(a 3>0),所以 a 3=2,所以 a 1+a 2=14-a 3=12,于是由Error!解得Error!所以 a n =8·(1)n -1=(1)n -4. 于是由 a n ·a n +1·a n +2=a n +3 1=(1)3(n -3)=(1)n -3≥1,得 n -3≤1,即 n ≤4.33答案 46.在等⽐数列{a n }中,a n >0,若 a 1·a 2·…·a 7·a 8=16,则 a 4+a 5 的最⼩值为.解析由已知 a 1a 2·…·a 7a 8=(a 4a 5)4=16,所以 a 4a 5=2,⼜ a 4+a 5≥2 a 4a 5=2 2(当且仅当 a 4=a 5=答案 2 2时取等号).所以 a 4+a 5 的最⼩值为 2 2.7. 已知递增的等⽐数列{a }中,a +a =3,a ·a =2,则a 13=.n 2 8 3 7a 10解析∵{a n }是递增的等⽐数列,∴a 3a 7=a 2a 8=2,⼜∵a 2+a 8=3,∴a 2,a 8 是⽅程 x 2-3x +2=0 的两根,则 a 2=1,a 8=2,∴q 6= a 8=2,∴q 3=a 22,∴a 13=q 3= 2.a 10答案8. 设 1=a 1≤a 2≤…≤a 7,其中 a 1,a 3,a 5,a 7 成公⽐为 q 的等⽐数列,a 2,a 4,a 6成公差为 1 的等差数列,则 q 的最⼩值为.解析由题意知 a 3=q ,a 5=q 2,a 7=q 3 且 q ≥1,a 4=a 2+1,a 6=a 2+2 且a 2≥1,那么有 q 2≥2 且 q 3≥3.故 q ≥3 3,即 q 的最⼩值为3 3. 答案⼆、解答题11.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(1) 求数列{a n }的通项公式;(2) 设数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,求{b n }的前 n 项和 S n .解 (1)设等差数列{a n }的公差是 d .依题意 a 3+a 8-(a 2+a 7)=2d =-6,从⽽ d =-3.22nn由 a 2+a 7=2a 1+7d =-23,解得 a 1=-1. 所以数列{a n }的通项公式为 a n =-3n +2.(2)由数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,得 a n +b n =c n -1,即-3n +2+b n =c n -1,所以 b n =3n -2+c n -1.所以 S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1) =n3n -1+(1+c +c 2+…+c n -1). 2从⽽当 c =1 时,S =n 3n -1+n =3n 2+n . 2 2当 c ≠1 时,S n =n3n -1+1-c n . 2 1-c12. 设各项均为正数的等⽐数列{a n }的前 n 项和为 S n ,S 4=1,S 8=17.(1)求数列{a n }的通项公式;( 2)是否存在最⼩的正整数 m ,使得 n ≥m 时,a n >2 011恒成⽴?若存在,求15出 m ;若不存在,请说明理由.解 (1)设{a }的公⽐为 q ,由 S =1,S =17 知 q ≠1,所以得a1q 4-1=1, n48a 1q 8-1=17. q-1q -1相除得q 8-1=17,解得 q 4=16.所以 q =2 或 q =-2(舍去). q 4-1由 q =2 可得 a = 1 ,所以 a =2n -1.1n15 15 (2)由 a =2n -1>2 011,得 2n -1>2 011,⽽ 210<2 011<211,所以 n -1≥11, 1515即 n ≥12.2 011恒成⽴.因此,存在最⼩的正整数m=12,使得n≥m 时,a n>1513.已知公差⼤于零的等差数列{a n}的前n项和为S n,且满⾜a2·a4=65,a1+a5=18.(1)求数列{a n}的通项公式a n.(2)若1<i<21,a1,a i,a21是某等⽐数列的连续三项,求i 的值;(3)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)因为a1+a5=a2+a4=18,⼜a2·a4=65,所以a2,a4是⽅程x2-18x+65=0 的两个根.⼜公差d>0,所以a2<a4.所以a2=5,a4=13. 所以Error!解得a1=1,d=4.所以a n=4n-3.(2)由1<i<21,a1,a i,a21是某等⽐数列的连续三项,所以a1·a21=a2i,即1·81=(4i-3)2,解得i=3.(3)由(1)知,S n=n·1+n n-1·4=2n2-n.2假设存在常数k,使数列{ S n+kn}为等差数列,由等差数列通项公式,可设S n+kn=an+b,得2n2+(k-1)n=an2+2abn+b 恒成⽴,可得a=2,b=0,k=1.所以存在k=1 使得{ S n+kn}为等差数列.第3 讲等差数列、等⽐数列与数列求和⼀、填空题1.设{a n}是公差不为0 的等差数列,a1=2 且a1,a3,a6成等⽐数列,则{a n}的前 n 项和 S n = .解析由题意设等差数列公差为 d ,则 a 1=2,a 3=2+2d ,a 6=2+5d .⼜∵a 1,a 3,a 6 成等⽐数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得 2d 2-d =0.∵ d ≠0,∴d =1,∴S =na +n n -1d =n 2+7n .n 12 2 4 4答案 n 24 42. 数列{a n }的通项公式a n=1,若前 n 项的和为 10,则项数为.n + n +1解析∵a n =答案 1201= n + n +1n +1- n ,∴S n = n +1-1=10,∴n =120.3. 已知等差数列{a n }的前 n 项和为 S n ,a 5=5,S 5=15,则数列{ 1}的前 100a n a n +1项和为.解析∵a =5,S =15,∴5a 1+a 5=15,即 a =1.5512 ∴d =a 5-a 1=1,∴a =n .∴ 1 =1 =1- 1 .设数列 1 的前5-1n 项和为 T n .na n a n +1 n n +1 nn +1{a n a n +1}∴T 100=(1-1)+(1+…+(1 )=1- 1 =100.2 3 答案 100101100 101 101 1014.已知数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且 a 20+b 20=60.则{a n +b n } 的前 20 项的和为.解析由题意知{a n +b n }也为等差数列,所以{a n +b n }的前 20 项和为:S 20= 20a 1+b 1+a 20+b 20=20 × 5+7+60=720.2 22 -- 1c d n22 1 an a n+1答案7205.已知等⽐数列{a n}的前n项和S n=2n-1,则a12+a2+…+a n2=.解析当n=1 时,a1=S1=1,当n≥2 时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,⼜∵a1=1 适合上式.∴a n=2n-1,∴a n2=4n-1.∴数列{a n2}是以a21=1 为⾸项,以4 为公⽐的等⽐数列.∴a12+a2+…+a n2=1·1-4n=1(4n-1).答案1(4n-1)31-4 36.定义运算:|a b|=ad-bc,若数列{a}满⾜|a1 1|=1 且| 3 3 |=12(n∈N*),则a3=,数列{a n}的通项公式为a n=.解析由题意得a1-1=1,3a n+1-3a n=12 即a1=2,a n+1-a n=4.∴{a n}是以2 为⾸项,4 为公差的等差数列,∴a n=2+4(n-1)=4n-2,a3=4×3-2=10.答案10 4n-27.在等⽐数列{a n}中,a1=1,a4=-4,则公⽐q=;|a1|+|a2|+…+|a n|=2.解析∵a 4=q3=-8,∴q=-2.∴a =1·(-2)n-1,na1 21n1-2∴|a n|=2n-2,∴|a1|+|a2|+…+|a n|=2 =2n-1-1.1-2 2 答案-2 2n-1-128.已知S n是等差数列{a n}的前n 项和,且S11=35+S6,则S17的值为.解析因S11=35+S6,得11a1+11 × 10d=35+6a1+6 × 5d,即a1+8d=2 27,所以S17=17a1+17 × 16d=17(a1+8d)=17×7=119.2答案1199.等差数列{a n}的公差不为零,a4=7,a1,a2,a5成等⽐数列,数列{T n}满⾜条件T n=a2+a4+a8+…+a2n,则T n=.解析设{a n}的公差为d≠0,由a1,a2,a5成等⽐数列,得a2=a1a5,即(7-2d)2=(7-3d)(7+d)所以d=2 或d=0(舍去).所以a n=7+(n-4)×2=2n-1.⼜a2n=2·2n-1=2n+1-1,故T n=(22-1)+(23-1)+(24-1)+…+(2n+1-1)=(22+23+…+2n+1)-n=2n+2-n-4.答案2n+2-n-410.数列{a n}的通项公式a n=2n-1,如果b n=2n,那么{b n}的前n 项和a n+a n+1为.解析b n=2n n=2n+1-1-2n-1,a n+a n+1所以b1+b2+…+b n=22-1-2-1+23-1-22-1+…+-2n-1=2n+1-1-1.答案⼆、解答题2n+1-1-111.已知{a n}为等差数列,且a3=-6,a6=0.2n+1-1n (1) 求{a n }的通项公式;(2) 若等⽐数列{b n }满⾜ b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前 n 项和公式.解 (1)设等差数列{a n }的公差为 d . 因为 a 3=-6,a 6=0,所以Error!解得 a 1=-10,d =2. 所以 a n =-10+(n -1)·2=2n -12. (2)设等⽐数列{b n }的公⽐为 q .因为 b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即 q =3. 所以{b }的前 n 项和公式为 S =b 1 1-q n =4(1-3n ).n n 1-q13.记公差 d ≠0 的等差数列{a n }的前 n 项和为 S n ,已知 a 1=2+ 2,S 3=12+3(1) 求数列{a n }的通项公式 a n 及前 n 项和 S n .(2) 已知等⽐数列{b nk },b n + 2=a n ,n 1=1,n 2=3,求 n k .(3) 问数列{a n }中是否存在互不相同的三项构成等⽐数列,说明理由.解 (1)因为 a 1=2+所以 d =2.2,S 3=3a 1+3d =12+3 2,所以 a n =a 1+(n -1)d =2n + 2,S =n a 1+a n =n 2+( 22+1)n . (2) 因为 b n =a n -所以 bn k =2n k .2=2n ,2.⼜因为数列{bn }的⾸项bn =b =2,公⽐q=b 3=3,k 1 1b1 所以bn k=2·3k-1.所以2n k=2·3k-1,则n k=3k-1.(3)假设存在三项a r,a s,a t成等⽐数列,则a2s=a r·a t,即有(2s+2)2=(2r+2)(2t+2),整理得(rt-s2) 2=2s-r-t.若rt-s2≠0,则2=2s-r-t,rt-s2因为r,s,t∈N*,所以2s-r-t是有理数,这与rt-s22为⽆理数⽭盾;若rt-s2=0,则2s-r-t=0,从⽽可得r=s=t,这与r综上可知,不存在满⾜题意的三项a r,a s,a t.。
数列求和和求通项方法总结(定版)(最新整理)
![数列求和和求通项方法总结(定版)(最新整理)](https://img.taocdn.com/s3/m/82fa82b131b765ce040814b6.png)
等差等比数列、数列求和、求通项一、单选题1.已知等差数列的前项为,且,,则使得取最小值时的为{}n a n n S 1514a a +=-927S =-n S n ( ).A .1B .6C .7D .6或72.已知等比数列满足,,则( ){}n a 114a =()35441a a a =-2a =A .B .C .D .2112183.设等差数列的前项和为,若,,则的值为( ){}n a n n S 11m a =21121m S -=m A. B. C. D.34564.设等差数列的前项和为,若公差,,则的值为( ){}n a n n S 3d =68a =10S A.65B.62C.59D.565.等比数列中,若,是方程的两根,则的值为( ).{}n a 1a 10a 220x x --=47a a ⋅A.2B. C. D.12-1-6.已知等差数列的前项和为,且,,则( ){}n a n n S 452a =1015S =7a =A.B.1C.D.212327.公比为的等比数列中,,,则( )q {}n a 134a a ⋅=48a =1a q +=A. B.3或2C. D.3或-3328.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .649.在各项均为正数的等比数列中,若,则的值为(){}n a 569a a =3132310log log log a a a ++⋅⋅⋅+A.12 B.10 C.8D.32log 5+10.已知数列满足,且,那么( ){}n a 12n n a a +=+12a =5a =A.8B.9C.10D.1111.已知等差数列中,,,则的值是( ){}n a 7916+=a a 41a =12a A .15B .30C .31D .6412.在等比数列中,,,则( ){}n a 212a =68a =4a =A.B.C.D.424±2±13.设等比数列的前项和为,若,则( ){}n a n n S 4813S S =816S S =A.B.C.D.19141521514.在等差数列中,,则等于(){}n a 372a a +=9S A.2B.18C.4D.915.在等比数列中,,,,则等于(){}n a 11a =2q =16n a =n A. B. C. D.345616.已知等差数列中,若,,则( ){}n a 21a =-45a =-5S =A. B. C. D.7-13-15-17-17.已知等比数列满足,且,则当时,{}n a 0,1,2,n a n >= 25252(3)nn a a n -⋅=≥1n ≥( )2123221log log log n a a a -+++= A .B .C .D .(21)n n -2(1)n +2n 2(1)n -18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,73812则塔的顶层共有灯( )A .盏B .盏C .盏D .盏123419.等差数列的公差是2,若成等比数列,则的前项和( ){a n }a 2,a 4,a 8{a n }n S n =A .B .C .D .n(n +1)n(n−1)n(n +1)2n(n−1)220.等差数列的前项和为,若,,则等于( ){}n a n n S 24S =410S =6S A. B. C. D.1218244221.已知等比数列中,,,则( ){}n a 2341a a a =67864a a a =456a a a =A. B.-8C.8D.168±22.一个等比数列的前项和为48,前项和为60,则前项和为( ){}n a n 2n 3n A.63B.108C.75D.8323.等差数列{a n }中,若a 2+a 4+a 9+a 11=32,则a 6+a 7= ( )A .9B .12C .15D .16二、填空题24.2与4的等比中项为_________.25.已知是等差数列,是其前项和,若,则的值是_____________.{}n a n S n 75230a a --=17S26.等差数列,的前项和分别为,,且,则______.{}n a {}n b n n S n T 313n n S n T n +=+220715a ab b +=+27.设是公差不为0的等差数列的前项和,且,则______.n S {}n a n 712a a =-1197S S a =+28.在各项均为正数的等比数列中,若,则的值为{}n a 10091011 3a a =333122019111log log log a a a +++ ____________.29.在等差数列中,已知,则______.{}n a 4816a a +=11S =数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和例题.在等差数列中,已知,.{}n a 15a =59113a a =(1)求数列的前项和的最大值;{}n a n n S (2)若,求数列前项和.n n b a ={}nb n nT练习.已知等差数列的前项和为,且,.{}n a n n S 35a =-424S =-(1)求数列的通项公式;{}n a (2)求数列的前项和的最小值.{}n a n n S 作业.已知数列是公差不为0的等差数列,首项,且成等比数列.{}n a 11a =124,,a a a(1)求数列的通项公式.{}n a (2)设数列满足求数列的前项和为.{}n b 2n an b =,{}n b n n T 2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法例:已知数列,求前项和1312--=n n n a n nS 练习.已知的前n 项和,{}n a 243n S n n =-+(1)求数列的通项公式;{}n a (2)求数列的前n 项和.162n n a +-⎧⎫⎨⎬⎩⎭n T 作业1.设数列满足:,.{}n a 212321111 (333)n n a a a a n -++++=n ∈+N ⑴求;n a ⑵求数列的前项和.{}n a n n S2.设数列是公差为2的等差数列,数列满足,,.{}n a {}n b 11b =22b =()11n n n n a b b n b ++=+(1)求数列、的通项公式; {}n a {}n b (2)求数列的前项和;{}n n a b n n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如,可裂项成,列出前项求和消去一些项)(1k n n a n +=)11(1kn n k a n +-=n ②形如,可裂项成,列出前项求和消去一些项kn n a n ++=1)(1n k n ka n -+=n 例:已知数列,求前项和1)2()1)(1(11=≥+-=a n n n a n ,n nS练习1.等比数列的各项均为正数,,,成等差数列,且满足.{}n a 52a 4a 64a 2434a a =Ⅰ求数列的通项公式;(){}n a Ⅱ设,,求数列的前n 项和.()()()1111n n n n a b a a ++=--*n N ∈{}n b n S 练习2.已知数列满足,且,等比数列中,.{}n a 0n a ≠1133n n n n a a a a ++-={}n b 2146,3,9b a b b ===(1)证明:数列为等差数列,并求数列的通项公式1n a ⎧⎫⎨⎬⎩⎭{}n a (2)求数列的前n 项和.{}1n n a a +n S作业1.在等差数列中,为其前项和,且{}n a n S n *()n N ∈335,9.a S ==(1)求数列的通项公式;{}n a (2)设,求数列的前项和。
等差数列求和练习题
![等差数列求和练习题](https://img.taocdn.com/s3/m/74d98c173d1ec5da50e2524de518964bce84d244.png)
等差数列求和练习题一、基础练习题1. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。
解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)2. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。
解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)二、练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n = 5解答:代入求和公式得:S₅ = 5/2 * (3 + 3 + (5-1)*2) = 5/2 * (6 + 8) = 5/2 * 14 = 35(2)首项a₁ = -2,公差d = 3,项数n = 8解答:代入求和公式得:S₈ = 8/2 * (-2 + (-2) + (8-1)*3) = 8/2 * (-4 + 21) = 8/2 * 17 = 68(3)首项a₁ = 1,公差d = 0,项数n = 10解答:代入求和公式得:S₁₀ = 10/2 * (1 + 1 + (10-1)*0) = 10/2 * (2 + 0) = 10/2 * 2 = 102. 求解下列等差数列的前n项和:(1)首项a₁ = 2,公差d = 4,项数n = 6解答:代入求和公式得:S₆ = 6/2 * (2 + 2 + (6-1)*4) = 6/2 * (4 + 20) = 6/2 * 24 = 72(2)首项a₁ = 0,公差d = -3,项数n = 7解答:代入求和公式得:S₇ = 7/2 * (0 + 0 + (7-1)*(-3)) = 7/2 * (0 - 18) = 7/2 * (-18) = -63(3)首项a₁ = 1,公差d = 1,项数n = 100解答:代入求和公式得:S₁₀₀ = 100/2 * (1 + 1 + (100-1)*1) = 100/2 * (2 + 99) = 100/2 * 101 = 5050三、进阶练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n为首项的二倍解答:由题可知n = a₁ * 2 = 3 * 2 = 6,代入求和公式得:S₆ = 6/2 * (3 + 3 + (6-1)*2) = 6/2 * (6 + 10) = 6/2 * 16 = 48(2)首项a₁ = -2,公差d = 3,项数n为首项的三倍解答:由题可知n = a₁ * 3 = -2 * 3 = -6,代入求和公式得:S₋₆ = -6/2 * (-2 + (-2) + (-6-1)*3) = -6/2 * (-4 + (-21)) = -6/2 * (-25) = 752. 求解下列等差数列的前n项和:(1)首项a₁ = 2,项数n为公差的四倍,公差d = 3解答:由题可知n = d * 4 = 3 * 4 = 12,代入求和公式得:S₁₂ = 12/2 * (2 + 2 + (12-1)*3) = 12/2 * (4 + 33) = 12/2 * 37 = 222(2)首项a₁ = 0,项数n为公差的五倍,公差d = -2解答:由题可知n = d * 5 = -2 * 5 = -10,代入求和公式得:S₋₁₀ = -10/2 * (0 + 0 + (-10-1)*(-2)) = -10/2 * (0 - 18) = -10/2 * (-18) = 90综上所述,通过练习题的求解,我们熟悉了等差数列的求和公式,并能够灵活运用求和公式解决不同条件下的等差数列求和问题。
(完整版)等差数列求和及练习题(整理)
![(完整版)等差数列求和及练习题(整理)](https://img.taocdn.com/s3/m/b087876afab069dc5122017c.png)
等差数列求和引例:计算1+2+3+4+……+97+98+99+100一、有关概念:像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。
这个固定的数就叫做“公差”。
二、有关公式:和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)公差=(末项-首项)÷(项数-1)项数=(末项-首项)÷公差+1三、典型例题:例1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。
判断首项末项公差项数(1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)(看ppt,推出公式)例3、计算1+3+5+7+……+35+37+39练习2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99(2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100(3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少?例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。
这堆圆木共有多少根?(博易P27例3)(看ppt)练习3:丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。
三年级奥数等差数列求和习题及答案(可编辑修改word版)
![三年级奥数等差数列求和习题及答案(可编辑修改word版)](https://img.taocdn.com/s3/m/7e041bc6ba1aa8114531d99e.png)
计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。
来表示。
二、表达方式:常用Sn= (a1 +a n ) ⨯n ÷ 2 。
三:求和公式:和=(首项+末项) ⨯项数÷2 ,sn对于这个公式的得到可以从两个方面入手:(思路 1)1 + 2 + 3 + + 98 + 99 + 100=( 1 + 1 00) +( 2 + 99 ) +( 3 + 9 8) + +( 50 + 5 1)=101⨯50=5050共50个101(思路 2)这道题目,还可以这样理解:和= 1 + 2 + 3 + 4 + + 98 + 99 + 100+ 和= 100 + 99 + 98 + 97 + + 3 + 2 + 12倍和= 101 + 101 + 101 + 101 + + 101 + 101 + 101即,和= (100 + 1) ⨯100 ÷ 2 = 101⨯ 50 = 5050 。
四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
譬如:① 4 + 8 + 12 + + 32 + 36 =(4 + 36)⨯ 9 ÷ 2 = 20 ⨯ 9 = 1800 ,题中的等差数列有 9 项,中间一项即第 5 项的值是 20,而和恰等于20 ⨯ 9 ;② 65 + 63 + 61 + + 5 + 3 + 1 =(1 + 65)⨯ 33 ÷ 2 = 33 ⨯ 33 = 1089 ,题中的等差数列有 33 项,中间一项即第 17 项的值是 33,而和恰等于33 ⨯33 。
例题精讲:例 1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。
等差数列求和练习题
![等差数列求和练习题](https://img.taocdn.com/s3/m/037e90edc8d376eeaeaa315e.png)
等差数列前n 和练习题1.已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( )A .10B .16C .20D .242. 等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对3. 设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( )A .22B .21C .20D .194. 已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________.5. 已知a n =n 的各项排列成如图的三角形状:记A(m ,n)表示第m 行的第n 个数,则A(21,12)=________.a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9… … … … … … … … … …6. 设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( ) A.S 15a 15 B.S 9a 9 C.S 8a 8 D.S 1a 17. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .18. 将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组.A .30B .31C .32D .339. 数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.10.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .。
等差数列的求和公式及应用练习题
![等差数列的求和公式及应用练习题](https://img.taocdn.com/s3/m/259b2fd150e79b89680203d8ce2f0066f4336464.png)
等差数列的求和公式及应用练习题等差数列是数学中重要的概念,它在数学和其他科学领域的应用非常广泛。
本文将详细介绍等差数列的求和公式以及一些相关的应用练习题。
一、等差数列的定义和性质等差数列是指数列中任意两个相邻元素之间的差值都相等的数列。
设等差数列的首项为a,公差为d,则该数列可以写成如下形式:a,a+d,a+2d,a+3d,...等差数列的求和公式是指数列前n项和的表达式。
下面推导等差数列求和公式的过程:设等差数列的首项为a,公差为d,数列的前n项和为S。
首项a、末项a+(n-1)d之和为:a+a+(n-1)d = 2a+(n-1)d令项数乘以和数(第一次 + 第二次 = 第一次到第二次):n * S = a + a + (a + 2d) + ... + [a + (n-3)d + a + (n-2)d] + [a + (n-2)d + a + (n-1)d]共有n项,则等式右边的式子可以重排为:n * S = n * a + [1 + 2 + 3 + ... + n-3 + n-2 + n-2 + n-1] * d即:n * S = n * a + n(n-1)/2 * d两边同时除以n,得到:S = a + (n-1)/2 * d这就是等差数列前n项和的求和公式。
二、等差数列求和公式的应用练习题1. 求等差数列1,3,5,7,9的前10项和。
根据等差数列求和公式,首项a = 1,公差d = 3-1 = 2,项数n = 10。
代入公式,可得:S = 1 + (10-1)/2 * 2 = 1 + 9 * 2 = 1 + 18 = 19。
所以,等差数列1,3,5,7,9的前10项和为19。
2. 某等差数列的首项为-5,公差为3,若数列的前n项和为123,请求n的值。
根据等差数列求和公式,首项a = -5,公差d = 3,项数n为待求。
代入公式,可得:123 = -5 + (n-1)/2 * 3化简得:123 = -5 + 1.5n -1.5移项得:129 = 1.5n解方程可得:n = 86所以,该等差数列的前n项和为123时,n的值为86。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列求和
引例:计算1+2+3+4+……+97+98+99+100
一、有关概念:
像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。
这个固定的数就叫做“公差”。
二、有关公式:
和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
公差=(末项-首项)÷(项数-1)
项数=(末项-首项)÷公差+1
三、典型例题:
例1、聪明脑筋转转转:
判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。
判断首项末项公差项数
(1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()
例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)(看ppt,推出公式)
例3、计算1+3+5+7+……+35+37+39
练习2:计算下列各题
(1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99
(2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100
(3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少?
例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。
这堆圆木共有多少根?(博易P27例3)(看ppt)
练习3:
丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。
丹丹在这些天中共学会了多少个单词?
等差数列求和练习题
一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项及公差写出来,如果不是请打“×”。
判断首项末项公差
1. 2、4、6、8、10、12、14、16.()()()()
2. 1、3、6、8、9、11、12、14. ()()()()
3. 5、10、15、20、25、30、35. ()()()()
4. 3、6、8、9、12、16、20、26.()()()()
二、请计算下列各题。
(1)3+6+9+12+15+18+21+24+27+30+33
(2)4+8+12+16+20+24+28+32+36+40
(3)求3、6、9、12、15、18、21、这个数列各项相加的和。
(4)2+4+6+8+……+198+200
★(5)求出所有三位数的和。
(其他作业:练习册B 1题、4题、6题)。