第4讲5(2) 正交试验设计(方差分析)
正交试验设计及其方差分析
例 9. 8 提高某化工产品转化率的试验 . 某种化工产品的转化率可能与反应温度A,反应时间B,某两 种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此 考虑对 A , B ,C , D 这4个因素进行试验.根据以往的经验,确 定各个因素的3个不同水平,如表9-19所示 .分析各因素对产品的 转化率是否产生显著影响,并指出最好生产条件.
3
显然 T Tij ,j =1,2,3,4.此处 i 1
T11 大致反映了A1 对试验结果的影响, T21 大致反映了A2 对试验结果的影响, T31 大致反映了A3 对试验结果的影响, T12 , T22 和 T32 分别反映了B1 , B2 , B3 对试验结果的影响,
T13 , T23 和T33 分别反映了C1, C2 , C3 对试验结果的影响, T14 , T24 和 T34 分别反映了D1, D2 , D3 对试验结果的影响.
Rj 反映了第j列因素的水平改变对试验结果的影响大小, Rj 越大反映第j列因素影响越大.上述结果列表 of range) 由极差大小顺序排出因素的主次顺序:
这里, Rj值相近的两因素间用“、”号隔开,而Rj 值相差较 大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中 控制好因素B,即反应时间.其次是要考虑因素A和D,即要控制 好反应温度和真空度.至于原料配比就不那么重要了.
(2 ) 表中任两列,其横向形成的有序数对出现的次数相同 . 如 表 L4 (23) 中任意两列,数字1 , 2 间的搭配是均衡的 .
凡满足上述两性质的表都称为正交表(Orthogonal table).
常用的正交表有L9(34), L8(27),L16(45)等,见附表7. 用正 交表来安排试验的方法,就叫正交试验设计. 一般正交表)
第4讲5(1) 正交试验设计(方差分析)
处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12
3 K322
y3)2 (y43y5
K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8
y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
正交试验方差分析
1(50) 1(6.5) 1(2.0) 1 1 2 2 2(7.0) 2(2.4) 3(7.5) 3(2.8 2 3 1 3 2 3
2(55) 1
3(58) 1
8பைடு நூலகம்
9 K1j
3
3 15.76
2
3 25.18
1
2 22.65
3
1 20.74
10.9
8.95
T 65.58
K2j
K3j K1j2 K2j2 K3j2
n
对上式做如下变换
SST ( X ij X ) 2 ( X ij X i. X i. X ) 2
i 1 j 1 i 1 j 1
r
n
r
n
( X ij X i. ) ( X i. X ) 2 (X ij X i. )( X i. X )
各式的物理意义
X
所有数据的平均值称为总平均 值 第i个水平的数据平均值称为组平均值 随机误差,又称为组内离差平方和
X i.
SSE 表示每一个数据与其组平均值的离差平方和,反映了实验中的
SS A
表示组平均值与总的平均值得离差平方和,反映了由于因素不同水平引 起的差异又称为组间离差平方和
再稍做整理
X 总和 2 2 SST ( X ij X ) ( X ij ) N i 1 j 1 i 1 j 1 X 总和 校正项CF N
2 2 i 1 j 1 r n i 1 j 1 r n i 1 j 1
r
n
r
n
r
n
( X ij X i. ) ( X i. X ) 2
2 i 1 j 1 i 1 j 1
5-2正交试验设计(方差分析)
正交表
选择部分条件进行试验,再通过数据分析来 寻找好的条件,这便是试验设计问题。通过 少量的试验获得较多的信息,达到试验的目 的:发现那些因子对试验结果确有影响,因 子的什么水平组合是最好的。
第五章 正交试验设计
一、试验设计的基本概念与正交表
多因素试验遇到的最大困难是试验次数太 多,若十个因素对产品质量有影响,每个因素 取两个不同状态进行比较,有210=1024、 如 果每个因素取三个不同状态310=59049个不同 的试验条件
在多因素试验中,有人采用“单因素轮换 法”,但是这种方法不一定能找到好的条件 譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。 B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58
利用正交表进行试验设计的方法就是正交试 验设计。
表 4 .1 试验号 1 2 3 4 5 6 7 8 9 列号 1 1 1 1 2 2 2 3 3 3
L 9 (3 ) 2 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3 1 3 1 2 4 1 2 3 3 1 2 2 3 1
4
“L”表示正交表,“9”是行数,在试验中表示试 验的条件数,“4”是列数,在试验中表示可以安排 的因子的最多个数,“3”是表的主体只有三个不同 数字,在试验中表示每一因子可以取的水平数。
二、无交互作用的正交设计与数据分析
第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析
σ = ˆ
t 0 .975
132 / 4 = 5.74 , 。 ( 4 ) = 2 . 7764
μ 3⋅2
的0.95的置信区间是:
68 ± 2.7764 × 5.74 / 1.8 = 68 ± 11.9 = (56.1,79.9)
贡献率分析
当试验指标不服从正态分布时, 进行方差分析的依据就不充分,此 时可以通过比较个因素的“贡献率” 衡量因素作用的大小。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
ˆ ˆ μ = y = 50 , a3 = T13 − y = 61 − 50 = 11 ,
ˆ c 2 = T32 − y = 57 − 50 = 7 ,
•A3C2 水平组合下指标均值的无偏估计可以取为: ˆ ˆ ˆ ˆ μ 3⋅2 = μ + a3 + c 2 = 50+11+7=68。
区间估计
… Continue
因子水平表 因子 A:反应温度(℃) B:反应时间(分) C:加碱量(%) 水平 一 80 90 5 二 85 120 6 三 90 150 7
试验计划与试验结果
试验号 1 2 3 4 5 6 7 8 9 因子 反应温度 ℃ (1)80 (1)80 (1)80 (2)85 (2)85 (2)85 (3)90 (3)90 (3)90 反应时间 分 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 (1) 90 (2)120 (3)150 加碱量 试验结果 y % 转化率(%) (1)5 31 (2)6 54 (3)7 38 (2)6 53 (3)7 49 (1)5 42 (3)7 57 (1)5 62 (2)6 64
正交试验方差分析(通俗易懂)
第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
第一节、正交设计原理和方法(一) 正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。
它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。
例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A3 3个水平;B因素是磷肥施用量,设B1、B2、B3 3个水平;C因素是钾肥施用量,设C1、C2、C3 3个水平。
这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。
如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。
但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。
如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。
一、正交设计的基本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
图1中标有‘9 ’个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。
即:(1)A1B1C1(2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3 (6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、C 因素的各个水平在试验中各搭配一次。
正交设计与方差分析
正交设计适用于多因素、多水平的试验安排,而方差分析 适用于检验数据间的差异和因素显著性。
04
正交设计与方差分析的实例
正交设计实例
实验设计
正交设计是一种实验设计方法, 通过选择合适的正交表,安排多 因素多水平的实验,以最小实验 次数获得尽可能多的信息。
特点
正交设计具有均衡分散、整齐可 比的特点,能够快速有效地找到 最优方案。
THANKS
感谢观看
复合正交设计
适用于多个因素,每个因素有多个水平的实验。
混合水平正交设计
适用于某些因素水平较多,而其他因素水平较少 的实验。
02
方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计分析方法,用于比较两 个或多个组之间的平均值差异是否显著。它通过分析数据 的变异来源,将总变异分解为组间变异和组内变异,从而 评估不同组之间的差异是否具有统计意义。
适用范围有限
正交设计主要适用于多因素、多水平的实验设计,对于其他类型 的实验可能不太适用。
对实验条件要求较高
正交设计要求实验条件相同,对于实验条件不易控制的情况可能不 太适用。
对实验结果分析要求较高
正交设计需要对实验结果进行复杂的统计分析,对于数据分析能力 要求较高。
正交设计与方差分析的发展趋势
多元化
正交设计与方差分析在未来的应用前景
科学研究
正交设计与方差分析在科学研究领域的应用将会越来越广泛,特别是在生物、化学、物理 等领域。
工业生产
工业生产中需要进行大量的实验研究和数据分析,正交设计与方差分析可以为工业生产提 供有效的实验设计和数据分析方法。
数据分析
正交设计与方差分析作为一种统计分析方法,在数据分析领域的应用将会越来越广泛。
正交试验设计中的方差分析
目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分
析
适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
正交试验设计中的方差分析
那么正交试验的方差分析可以从以下几步进行:
1.计算差方和(离差平方和): 包括以下几部分:
1)各因素差方和:
正交试验都是多因素多水平的试验,因此有必要对各因素的 差方和进行计算。 各因素差方和等于它的各水平均值k1A,k2A,…,kmA之间偏差平 方和。 以因素A为例,它在正交表中的某列,用xij表示A在第i个水 平的第j次试验结果,则;
即:fA×B=fA×fB 试验误差的自由度fe=fT-f因 。
3.计算平均差方和(均方): 在计算各因素的差方和时,按照前面的讲述,它是各水平的 偏差方的和,其大小与水平数有关,故此还不能确切的反映 各因素的情况。为了消除水平数的影响,可以计算其平均差 方和:
因素的平均差方和=因素差方和 =Q因 因素的自由度 f因
试验误差的差方和是所有试验结果在不同水平下的指标值与该 水平下的均值之间的差的平方和。它是由随机误差引起的,故 叫误差的差方和。
Qe QT ( QA QB QN )
2.计算自由度:
试验的总自由度: fT n 1
各因素自由度: f因 m 1
如果有交互作用,则交互作用的自由度为两因素自由度之积:
一.几个数据处理中常用的数理统计名词:
首先对几个数理统计名词进行回顾
1. 平均值 x
就是所有数据的和除以数据的个数。
x
1 n
n i 1
xi
1 n
x1
x2
xn
总体平均值:
1 n
n
xi
i 1
n
总体:数理统计学中指的是研究对象的某一特性值的全体; 样本:从总体中随机抽出的一组测量值。
2.极差 R: 就是一组数据中的最大值减去最小值得到的差值。 3.差方和Q: 测量值对平均值的偏差的平方和,就叫~。也叫离差平方和。
第4讲5(2) 正交试验设计(方差分析)
3
4 5 6 7 8 K1j K2j K1j-K2j SSj
1
1 2 2 2 2 9.9 10.31 -0.41 0.021
2
2 1 1 2 2 9.42 10.79 -1.37 0.235
2
2 2 2 1 1 10.21 10 0.21
1
2 1 2 1 2 10.23 9.98 0.25
1
2 2 1 2 1 10.24 9.97 0.27
拟水平列:第2列
表4-36
试验号 试验号 1 2 3 4 5 6 7 8 9 K1j K2j K3j k1j k2j k3j 调整R' 优水平 优组合 主次顺序 A 1 1 1 1 2 2 2 3 3 3 275.5 252.0 270.0 91.8 84.0 90.0 7.8 A1
例3 试验结果分析表
水 试 验 1 2 3 4 平 号 列 号 A 1 1 1 1 B 1 1 2 2 A×B 1 1 2 2 C 1 2 1 2 A×C 1 2 1 2 B×C 1 2 2 1 误差列 1 2 2 1 数据 5.26 3.90 6.90 7.03
5
6 7 8
2
2 2 2
1
1 2 2 18.68
2
1 2 1 2 11.4 11.5
2
2 1 2 1 10.2 12.7
1
1 2 2 1 12.1 10.8
1
2 1 1 2 12.5 10.4
129.96 132.25
104.04 161.29
146.41 116.64
156.25 108.16
自由度计算: df B df C 2 - 1 1 dfe df 4 df5 1 1 2 (2)显著性检验
第4讲2 正交试验设计(多指标)
1 2
3 1 2 3
2 3
1 3 1 2
7.0 8.0
18.5 9.0 8.0 13.4
1.1 1.6
15.1 1.1 4.6 20.2
3 2
0 3 2 1
K1
27.0
33.5 30.4 9.0
27.5
20.5 42.9 9.2
38.0
24.9 28.0 12.7
抗 压 强 度
极
K2 K3 k1
k2
先对每个指标分别进行单指标的直观分析 对各指标的分析结果进行综合比较和分析,得出较优方案
例 某厂生产一种化工产品,需要检验 两个指标:核酸纯度和回收率,这两 个指标都是越高越好。有影响的因素 有4个,各有3个水平,具体情况如表。 试通过试验找出较好的方案,使产品 的核酸纯度和回收率都有提高。
4 5
6 7 8 9
2 2
2 3 3 3
1 2
3 1 2 3
2 3
1 3 1 2
7.0 8.0
18.5 9.0 8.0 13.4
1.1 1.6
15.1 1.1 4.6 20.2
3 2
0 3 2 1
K1
11
5 6 3.7
9
8 5 3.0
5
8 9 1.7
裂 纹 度
极
K2 K3 k1
k2
k3 差
1.7
2.0 2.0
第4讲(2) 正交试验设计
4.2 多指标正交试验设计及其结果的直观分析
在实际问题中,需要考虑的指标往往不止 一个,有时是两个、三个,甚至更多,这 都是多指标的问题。解决多指标试验问题 可采用两种方法:综合平衡法和综合评分 法。
第4章 方差分析、正交试验设计
r r
i 2 ( X ij X i )( X i X ) 2[( X i X ) ( X ij X i )] 其中: 2 ( X ij X i )(X i X ) 21[(X i X )1( X ij X i )] 其中: i 1 j 1 i j
r i 1 j 1
i
j n 1 r ni n i 1 11r X X ij ni X i n i 1 j 1 n i 1
X rX 1 r n X 1 r n X ij i i
i 1
i 1 QT ( jX1ij X ) 2
r
i 1 j 1 r r
ni ni
i 1
j 1
r
i 1
j 1
i 1 i 1
E、
QE
2 [( X i X )(ni X i ni X i )] 0
i 1
i
Ar
QT QE QA
QA
r n r 于是,总离差平方和被分解为组内离差平方和与 ( X ij X i )2 ni ( X i X )2 从而: QT i 1 j 1 i 1 组间离差平方和之和。 QE ——反映了 ij 的作用 ②组内离差平方和 ②组内离差平方和QQE——反映了 的作用 ②组内离差平方和 E ——反映了 ij 的作用 ②组内离差平方和QEEE ——反映了ijij的作用 ②组内离差平方和 Q ——反映了 ij ij 的作用 r ②组内离差平方和 ③分解定理 QA 2 Q E——反映了的作用 QEn、 X ) ②组内离差平方和Q ——反映了 )] n ( ) ij 的作用 QEr ( X ij nn [( ) ( i n r r r rn 2 2 2 i 1 ( jXX X )) 2 ( X 1 n Q r ) QQQ ( X ij X 设 [( Yn ( 立 ( ij) ,ij ) 2 [( ( ( )] , ) ) ) (Q 2 (i ~ ( E 理 ( Q 定 E ((XijX:XiX)))2Y11r,Yn12,i相)互独)])]QiAr( N(( i )i ) 2 4.1.1 X i j [([( QT)ij( E i , Yjn (0 )1 , )] )] QE i 11j j11 ij X i i[( i ij ) ( i i )] 1 ij i i i) ③组间离差平方和1Qj 1 ——反映了 i 的作用. ii 1j11j 11 A i 1 j 1 i 2 2 Q A——反映了 Y 2 ~ 2 (n) , 又 若 ③组间离差平方和 是 r——反映了的作用. i ③组间离差平方和 QQ A——反映了 的作用. 1,2,n,于是,总离差平方和被分解为组内离差平方和 n , 于 Q ——反映了i 的作用. n ③组间离差平方和 r ③组间离差平方和 A A Q Y1 Y22 ③组间离差平方和 QA ——反映了i iri i的作用. 的作用. 2 rr rr nn Q ni ( X i 2X ) ni的作用.i ( )]2 i [( i ③组间离差平方和rrr A ——反映了 QA r ( X i X ) rn n QQ1 (( Xi i ) 2 i ( X i QiX 2 2, ni 1, n 的线性组合的 X 22 r i i QA rnQ21X X )Q2,nn1 ( X iX )是 Yr2 , Y )])] 2 ( Q A ( X X2) n ( X X ) 2 Y1 n r[([([( ( )] 其中 ) i 1 j Q 组间离差平方和之和。 nn ( ( )] 2 nj j 1 X i X ) i 1 1r ni ( Xi X ) 2 Q A r ii1 1( r [( i 1
正交试验的方差分析
计算平均离差平方和(均方):
在计算各因素离差平方和时,我们知道,它们都是若干项平方的和, 它们的大小与项数有关,因此不能确切反映各因素的情况。为了消 除项数的影响,我们计算它们的平均离差的平方和。
因素的平均离差平方和 = (因素离差的平方和)/因素的自由度 = S因 /f因
试验误差的平均离差平方和 = (试验误差的离差的平方和)/试验误差的自由度 = SE / fE
33.212 ) 377.17, 35.882 ) 376.29,
QC
1 (6.272 9
35.212
59.162 )
531.00,
Q( AXB)1
1 (35.632 9
32.082
32.932 )
375.89,
Q( AXB)2
1 (34.302 9
31.732
34.612 ) 375.68,
考 虑A,B的交互作用。试进行方差分析。
第22页/共47页
第三节: 2水平正交设计的方差分析
解:(选用正交表L8(27)
第23页/共47页
第三节: 2水平正交设计的方差分析
这 里
ST
QT
P
8
xk2
k 1
T2 8
65668 1 (724)2 8
146
SA
1 8
(K1
K2 )2
1 8
(366 358)2
第四节:混合型正交设计的方差分析
混合型正交设计的方差分析,本质上与一般水平数相等正交设计 的
方差分析相同,只要在计算时注意到各水平数的差别就行了。
8
现以L8(4X24)混合S型T 正交QT表为P例:k 1
xk2
1 8
正交试验设计方差分析
参与wH2SO4某一水平的实验编号
10minH2产率
A1(20%) A2 (25%) A3 (30%) A1(20%) A2 (25%)
A3 (30%)
1
2
3
32.62
40.40
41.07
4
5
6
34.97
36.53
45.75
7
8
9
36.62
39.19
44.53
平均值y
34.74
38.71
4.因素的显著性判断 设因素A的F比为FA:
当FA >F0. 01 (n1, n2 )时,说明该因素水平的改变 对实验结果有很显著的影响,记作**。
当FA >F0. 05 (n1, n2 )时,说明该因素水平的改变 对实验结果有显著的影响,记作*。
当FA >F0. 10 (n1, n2 )时,说明该因素水平的改变 对实验结果有一定的影响,记作O。
空白列
119.9 117.56 114.22 39.96 39.18 38.07 1.89
10min内H2的 产率
最佳实验条 件是A3B3C1
上述正交试验设计所获得的数据,从直观分析的角度
来看,提供给我们如下有用的信息:
第一:从极差值的大小可以判断各个因素对实验指标
影响的主次关系,即:
主--------------------------------------------次
(5) F值的计算及因素显著性的检验 因素水平的变化引起的平均偏差平方和与误差
的平均偏差平方和的比值称为F值,即:
S因素
F = f因素 S误差 f误差
用F值的大小来判断因素水平对实验指标的影响。 显然,只有当比值大于1时,才能表明因素水平的 改变对实验指标的影响,即超过了实验误差所产生 的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.显著性检验 将检验结果填入方差分析表:
例3
误差来源 因子A 因子B A×B 离差平方和 3.922 1.298 4.995 自由度 1 1 1
方差分析表
方 差 F 值
F1 -0.05
18.51
显著性 * * *
3.922 1.298 4.995
71.309 23.6 90.818
A ×C
B×C 误差E 总和
B1 A1 A2 B2 5.26+3.90=9.16 6.90+7.03=13.93 5.12+4.40=9.52 3.17+4.80=7.97
A与B的最优搭配:A2B2
链接7
B、C搭配效果表
B1 C1 C2 5.26+5.12=10.38 3.90+4.40=8.30 B2 6.90+3.17=10.07 7.03+4.80=11.83
2
1 2 1 2 11.4 11.5
2
2 1 2 1 10.2 12.7
1
1 2 2 1 12.1 10.8
1
2 1 1 2 12.5 10.4
129.96 132.25
104.04 161.29
146.41 116.64
156.25 108.16
自由度计算: df B df C 2 - 1 1 dfe df 4 df5 1 1 2 (2)显著性检验
120 140
12 12
20 25
(1)试验方案设计
A、C均为三水平,而因素B由于受试验条件的限制, 只能取二水平。可选L18(2*37)表安排试验,但试 验次数太多。若B取三水平,就可直接用L9(34)表 安排试验。为此虚拟一个水平,把因素B凑足三个 水平。根据试验的需要选取重点要考察的那个水平 进行虚拟另一水平。虚拟结果相当于把L9(34)表 作了改造(表4-36)。 第 2列 1 1, 2 2,3 2
表4-27 试验方案及结果分析
试验号 1 2 3
油温℃A 1 1 2
含水量%B 1 2 1
油炸时间s C 1 2 1
空列 1 2 2
空列 1 2 2
试验指标
1
0.8 1.5
3 5.1 4.7 3.8 3
4
5 6 7 8 K1j K2j K3j K4j K1j2 K2j2 K3j2
2
2
3 3 4 4 1.8 4.5 9.8 6.8 3.24 20.25 96.04
许多正交表都列出了相应的交互作用 列表,利用交互作用列表就可以找出任意 两列的交互作用列.任意两个二水平因素的 交互作用列,在正交表中只占一列;任意两 个三水平因素的交互作用列,在正交表中 则占两列 ; 而任意两个 p水平因素的交互作 用列,在正交表中要占(p-1)列.
例3 某厂在梳毛机上探讨梳理工艺对纯毛海军呢细纱重量 不匀率的影响,进行A、B、C三因素二水平正交试验,同 时考虑交互作用A×B、A×C、B×C.(工艺条件太繁故略 去)
2
2 1 1 17.13
1
2 1 2 20.45
2
1 2 1 21.36
1
2 2 1 22.21
2
1 1 2 19.86
5.12
4.40 3.17 4.80
K
( j) 1
23.09
K
( j) 2
17.49
21.9
23.45
20.13
19.22
18.37
20.72 T=40.58
Sj
fj
3.922
1.298
链接7
4.5.4 考虑交互作用正交试验方差分析
例: 用石墨炉原子吸收分光光度法测定食品中的 铅,为了提高测定灵敏度,希望吸光度越大越好, 今欲研究影响吸光度的因素,确定最佳测定条件。
(1)计算
计算各列各水平对应数据之和K1j、K2j及(K1j-K2j);
计算各列偏差平方和及自由度。
表4-25 试验方案及结果分析表 试验号 1 2 A 1 1 B 1 1 A×B 1 1 C 1 2 A×C 1 2 B×C 1 2 空列 1 2 吸光度 2.42 2.24
列 列号 号
1
(1)
2
3 (2)
3
2 1 (3)
4
5 6 7
5
4 7 6
6
7 4 5
7
6 5 4
(4)
1
(5)
2
3 (6)
3
2 1
本例中将A、B因素分别安排在第一、二列上,再由交 互作用列表查出,一、二列的交互作用列为第三列,A×B 排在第三列,接下来排因素C在第四列,一、四列的交互作 用列为第五列,所以A×C排在第五列,二、四列的交互作 用列为第六列,所以B×C排在第六列,第七列空列为误差 列.
因素 列号
A 1
B 2
A×B 3
C 4
A×C 5
B×C 误差列 6 7
这样就完成了表头设计,在安排试验时交互作用列中的 水平数不起作用,即安排试验时只考虑A、B、C三因素的水 平数来安排相应的试验就可以了.把8个试验数据填在下表的 数据列中. 在进行极差分析或方差分析时,交互作用列的极差或离 差平方和与其它单个因素一样计算,这里只介绍方差分析. ( j) K2 将各列“1”、“2”水平的数据和 K1( j ) 、离差平 方和 S j 、自由度 f j 算出并填入下表相应位置.
2
1 1 2 2 1 10.12 10.09 0.03
2
1 2 1 1 2 10.19 10.02 0.17
2.66
2.58 2.36 2.4 2.79 2.76
0.0055 0.0078 0.0091 0.0001 0.0036
返回15
链接
(2)显著性检验
变异来源 A 平方和 自由度 0.0210 1
第4讲(5) 正交试验设计 (方差分析)
4.5.3 考虑交互作用的正交试验设计
在一些试验中,不仅单个因素对指标分 别有影响,而且因素间还会联合起来对指标 有影响,常称这种联合作用为交互作用. 正交表中,每一列的离差平方和反映了 所排因素的不同水平之间的差异程度.而每两 个因素的交互作用的差异程度也正好是正交 表中另一些列的离差平方和.那些列就称为这 两个因素所在列的交互作用列.
3
4 5 6 7 8 K1j K2j K1j-K2j SSj
1
1 2 2 2 2 9.9 10.31 -0.41 0.021
2
2 1 1 2 2 9.42 10.79 -1.37 0.235
2
2 2 2 1 1 10.21 10 0.21
1
2 1 2 1 2 10.23 9.98 0.25
1
2 2 1 2 1 10.24 9.97 0.27
表4-26 方差分析表 均方 0.021 F值 6.82 临界值Fa
F0.05(1,3)=10.13 F0.01(1,3)=34.12
显著水平
B
A×B△ C A×C B× C △ 误差e 误差e △ 总 和
0.2346
0.0055 0.0078 0.0091 0.0001 0.0036 0.0923 0.2818
变异来源 A B△ C 误差e 平方和 17.334 0.00125 0.781 0.763 自由度 3 1 1 2 表4-28 方差分析表 均方 5.778 0.00125 0.781 0.381 3.07
F0.05(1,3)=10.13 F0.01(1,3)=34.12
F值 22.75
临界值Fa
拟水平列:第2列
表4-36
试验号 试验号 1 2 3 4 5 6 7 8 9 K1j K2j K3j k1j k2j k3j 调整R' 优水平 优组合 主次顺序 A 1 1 1 1 2 2 2 3 3 3 275.5 252.0 270.0 91.8 84.0 90.0 7.8 A1
4.995
0.015
0.575
1.845
0.095
1
1
1
1
1
1
1
返回12
返回11
1.误差估计 因为
S4 S7 ,所以将第四列的离差平方和并入误差离
差平方和中得:
S E S4 S7 0.015 0.095 0.11
f E f4 f7 1 1 2
S E 0.11 SE 0.055 fE 2
F0.05(3,3)=9.28, F0.01(3,3)=29.46
显著性 *
误差e
总
△
0.764
18.879
3
7
0.254
和
因素A显著,因素C不显著,因素B对试验结果无影响,各 因素作用的主次顺序为:A-C-B。
(3)优化条件的确定
通过比较因素A各水平K值,可确定其优水 平为A3;因素B不显著,可根据情况确定优 水平,因素C对试验结果无影响,为缩短加 工时间,应选C1。因此,优化工艺条件为 A3B1C1或A3B2C1。
B与C的最优搭配:B1C2 从A×B和B×C的最优搭配中,B因素的最优水平矛盾, 但是A×B的重要性排在B×C的前面,所以,从A×B来考选B2, 当B因素选B2时,由B×C的搭配表C选C1,综合考虑其最优工 艺为:A2B2C1. 因为,本例三个因素的所有搭配就是正交表中的8次试 验,从表中试验数据也可以看到,A2B2C1是第7号试验,不匀率 为3.17是8次试验中最小的,即为最优组合(最优工艺)。
首先,选择合适的正交表,因为都是二水平的且有三个单 解: 个因素和三个交互作用,这就需要正交表至少有6列,我们选 择 L ( 27 ) . 8
有交互作用的正交试验设计必须按照交互作用列表来进 行表头设计.其原则是:有交互作用的两个单个因素先排,紧接 着就排它们交互作用列.