22.2解一元二次方程配方法教案

合集下载

人教版九年级数学上册22.2二次函数与一元二次方程(教案)

人教版九年级数学上册22.2二次函数与一元二次方程(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。

配方法

配方法

22.2降次——解一元二次方程
22.2.1《配方法》教案
姓名:序号:32
配方法是解一元二次方程的通法.因为用配方法解一元二次方程比较麻烦,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是推出求根公式的关键,并在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程就必须熟悉完全平方式的特征.
一、教学目标
(一)知识技能
1、探索具体问题当中的数量关系,并会列一元二次方程。

2、熟练掌握用配方法解一元二次方程
(二)过程与方法
通过解特殊一元二次方程的解法,归纳总结出一般一元二次方程的配方法的解法从而提高学生解决问题的能力。

(三)情感、态度与价值观
在教师的引导下,通过学生的亲身参与的教学活动,并从中体会“化归方法”这一数学思想,使学生感受到用数学知识战胜困难带来的快乐。

二、教学重点、教学难点
重点:开平方法和用配方法解一元二次方程。

难点:归纳和总结配方法
三、教学方法
讲练结合法
四、课时安排
一个课时,40分钟
五、教学过程

六、板书设计
七、教学反思
本章是用配方法的思想来解一元二次方程,从学生的角度考虑本身理解就存在一定难度,从今天教学学生的反应情况看只有60%的学生基本理解,所以在下节课还要讲几个例题,从而加强更多学生对配方法的理解。

22.2 第2课时 配方法

22.2 第2课时 配方法

配方时, 等式两边同时加上的是一次项系数一半的平方.
典例精析
例 用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-3x-1=0.
解: (1)移项,得x 2 4 x 1. x 2 2 2 x 4 1 4,
2 即(x 2) 5.
开平方,得x-2= 5. x1 2 5,x2 2 5.
的问题的?
(5)对于形如x2+px+q=0这样的方程,在什么条件下才 有实数根?
解:(1) 左右两边同时加2,得x2-2x+1=2, 配方得(x-1)2=2,解得 x1 1 2 , x2 1 2; (2)左右两边同时减去3,得x2-2x+1=-3,
配方得(x-1)2=-3,很明显此方程无解;
(3)原方程配方得(x-1)2=0,解得x=1; (4)略;
2 p p 2 0, (5) x px q x q 2 4 2
p p2 x q 0, 2 4 p 2 4q 0.
2
课堂小结
1.一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义,
开方:根据平方根意义,方程两边开平方;
求解:解一元一次方程; 定解:写出原方程的解.
当堂练习
1.用配方法解下列方程: (1) x2+12x =-9
(2) -x2+4x-3=0
解:(1) 两边同时加上36,得x2+12x+36 =-9+36,
配方得(x+6)2=27,解得 x1 6 3 3 , x2 6 3 3 .
(2)原方程可变形为x2-4x+3=0,配方得(x-1)(x-3)=0, x1=1,x2=3.

课件:22.2.2一元二次方程解法 配方法 (共12张PPT)

课件:22.2.2一元二次方程解法  配方法 (共12张PPT)
一元二次方程的解法
配方法
知识回顾:
一元二次方程的解法
上节课我们主要学习了哪两种解一元二次 方程的方法?我们应该如何选择合适的解法? (1) 直接开平方法 当左边是一个完全平方形式,而右边 是一个非负常数时,用直接开平方法非常 简单; (2) 因式分解法
当右边为零,而左边可以分解因式时, 可以用因式分解法.
(2) 4x2 -12x-1 = 0
解: 移项,得 两边除以4,得x2
2
4x2 -12x = 1
1 - 3x = ,配方,得 4
2 2
x2 –2 · x· 2 + 22 = -1+ 22
即:
(x -2)2 =3 x1=2+

3 3 1 3 x 2x 2 2 4 2 3 2 10 (x - ) 即: 2 4
演练
用配方法解下列方程:
(1) 3x2 -6x -1 = 0 解:
1 x 2x 3
2
(2) 2x2–4 = 5x 解:
2
2x2 5x 4 5 25 25 x x 2 2 16 16 5 57 x 4 16 x 5 57 4 4
2
1 2 x 2x 1 1 3 x 12 4 3 x 1 x1 2 3 3
(4)
4x2 -6x
+( )= 4(x -
9 4
4 3 2 4) =(2x
-
3 )2 2
2.用配方法解下列方程:
(1) x2 + 8x –2 = 0 (2) x2 -5x -6 = 0
一元二次方程的解法
例. 用配方法解方程: x2 + px + q = 0 ( p 2 – 4q ≥ 0 ) 解: 移项,得 x2 + px = -q 方程左边配方,得 即

22.2一元二次方程的解法--配方法教案-华东师大版九年级数学上册

22.2一元二次方程的解法--配方法教案-华东师大版九年级数学上册

班级:______姓名:___________ 年级九年级科目数学课型运算课课时 1 主备主讲课题一元二次方程的解法——配方法教研组长签字教学副校长签字一、教学目标1.能准确找到配方所需的常数;会用配方法解二次项系数为1的一元二次方程。

2.让学生经历配方法的探究过程,培养学生的应用意识,转化思想,提高学生的运算能力;3.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心二、教学过程知识预备 1. 用直接开平方法解方程:27)132=+x(2.问题导入:学校要建一个操场,要求长比宽多10m,并且面积为375m2,那么操场的长和宽分别为多少?自主探究(一)探究配方所需的常数1.回顾: 完全平方公式:2)ba±(= ,说出公式的特点2.根据你所掌握的公式特点,将下列代数式配成完全平方的形式试一试:2x+6x+()= x()22x- 5x+() = x()22x+8x+() = x()23、思考:当二次项系数为1时,常数项与一次项系数有怎样的关系?常数项为一次项系数一半的平方(二)用配方法解一元二次方程1、尝试解一元二次方程375102=+xx2.解下列方程。

(1)016-62=+xx(2)024-2=+xx课堂小结配方法解一元二次方程的一般步骤:1、将二次项系数化为1;2、将常数项移到方程的右边;3、方程两边都加上一次项系数一半的平方;4、写成()2mx n p+=的形式,用直接开平法求解。

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1

人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。

配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。

配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。

二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。

但是,对于配方法的原理和应用,他们可能还不太清楚。

因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。

三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。

2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。

3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。

四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。

六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。

例如,解决方程x^2 -5x + 6 = 0。

2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。

配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。

3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。

4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。

5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。

22.2 降次——解一元二次方程(习题课)教学案-

22.2 降次——解一元二次方程(习题课)教学案-

22.2.降次——解一元二次方程(习题课)【学习目标】1、 会灵活选用直接开平方法、配方法、公式法和因式分解法解一元二次方程。

并能说出各种解法的要点及注意的问题。

2、 能利用b 2-4ac 来判断一元二次方程根的情况;同时能根据根的情况来判断某些字母系数的取值范围。

3、 会列一元二次方程解简单实际问题,并对结果作合理的解释。

【学习过程】一、自主学习:自学课本P35---P 44内容,思考下列问题:1、 一元二次方程的解法有哪几种?其基本思想是什么?它们之间有什么区别和联系?2、 用配方法解一元二次方程的一般步骤是什么?配方的关键是什么?3、 用公式法解一元二次方程的一般步骤是什么?求根公式是怎样推导出来的?4、 用因式分解法解一元二次方程的一般步骤是什么?5、 如何利用b 2-4ac 来判断一元二次方程根的情况?都是有哪几种情况?6、 求取的方程的解都符合题意吗?有什么判断依据?交流与点拨:师生共同思考以上几个问题,在解一元二次方程时,往往首先把方程转化成一般形式,然后再去观察到底使用那种方法。

注意配方法的关键是方程两边同时加上一次项系数一半的平方(二次项系数为1时)。

求根公式不要死记,要掌握推导过程。

b 2-4ac 来判断一元二次方程根的情况是考点,要灵活掌握。

二、例题学习:例1 选择适当的方法解下列方程:(1)5)12(2=-x (2)09102=++x x 解: 解:(3)02432=+-x x (4)05822=+-x x解: 解:(5)3632-=-x x(教师可以选择其中一题示范三种方法,最终选择最好的方法,当然,学生可以自主选择方法,学生板演,教师点评。

)例2:关于x 的一元二次方程032)1(2=+++x x m(1)当m 取何值时,此方程有两个不相等的实数根。

(2)当m 取何值时,此方程有两个相等的实数根。

(3)当m 取何值时,此方程没有实数根。

解:(解题时,注意01≠+m , 1-≠m ;再结合b 2-4ac 来判断。

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。

配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。

本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。

但是,对于配方法的理解和应用还需要进一步的引导和培养。

学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。

三. 教学目标1.让学生掌握配方法的基本原理和应用。

2.培养学生解决二次方程问题的能力。

3.培养学生的逻辑思维能力和创新思维能力。

四. 教学重难点1.配方法的基本原理的理解和应用。

2.配方法在解决二次方程问题中的应用。

五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。

同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和教学素材。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。

让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。

呈现(10分钟)讲解配方法的基本原理和步骤。

通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。

同时,引导学生进行思考和讨论,巩固学生的理解。

操练(10分钟)让学生进行配方法的练习。

提供一些配方法的练习题,让学生独立完成。

在学生完成练习的过程中,进行巡视指导和解答学生的疑问。

巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。

引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。

22.2.1 降次--解一元二次方程(配方法)

22.2.1 降次--解一元二次方程(配方法)
东辛店镇中学人教版初中数学九年级教学案
课题
22.2 降次—解一元二次方程(配方法)
课时
第1课时
课 型
新授
主备人
王金涛
学习目标
1、理解配方法的意义,知道用配方法解一元二次方程的一般步骤。
2、会用配方法解一元二次方程。
学习重点
会用配方法解一元二次方程。
学习难点
如何配方?
学习过程
一、复习
、你的收获?2、还有哪些注意的地方?
六、达标
学生感悟
(教师修订)
年级:九年级学科:数学命题人:王金涛审核人:叶书生
东 辛 店 中 学 验 标 题
(满分:50+10时间:10分钟 成绩:)
必做题:(共5题,每题10分)
1、填空:
(1) (2)
2、要使方程 左边配成完全平方式,在方程两边应该都加上( )
(2)填空:
① ②
(3)在解方程 时,共几步?哪几步?
(4)什么叫配方法?请在课本中画出。
四、师生互动,探究新知
1、以小组为单位交流讨论在自学过程和思考题中的疑惑问题(3分钟)。
2、小组内不明白的问题,把问题写在后黑板相应的位置。
3、师生共同解决疑惑问题。
4、解方程:
(1) (2)
5、练习:课本第34页,练习中的第2题中的(2)、(4)、(6)
(2)解下列方程
① ② ③
(3)要使一块长方形场地的长比宽多6m,并且面积为16 ,场地的长和宽应各是多少?
二、把学习目标读两遍
三、自学指导
1、自学内容:课本32页至33页例1之上。
2、自学时间:5分钟
3、自学方法:请同学认真自学课本,不明白的地方请画出,可交流讨论也可问老师,然后完成下列思考题。

华师大版九年级上册22.2.2 用配方法解一元二次方程课件

华师大版九年级上册22.2.2 用配方法解一元二次方程课件
这样原方程就转化为两个一元一
次方程 当当pp<<00时时,,原原方方程程的无解解又如何?
【针对练二】
2
-4
-1
解:
总结梳理 内化目标
•用配方法解二次项系数不是1的一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
(1)配方法解一元二次方程应注意些什么 ?
在用配方法解二次项系数不为1的一元二次 方程时,通常是先让方程的各项除以二次项系 数,即把这类方程转化为例1中的方程类型;
合作探究 达成目标
解一元二次方程的基本思路
二次ห้องสมุดไป่ตู้程
一次方程
把原方程变为(x+n)2=p的形式 (其中n、p是常数)
当p≥0时,两边同时开平方,
(4)求解:解一元一次方程
(5)定解:写出原方程的解
(1)把常数项移到方程右边后,两边加上的常数和一 次项系数有何关系?
(2)左边的平方式中的符号与一次项系数的符号有什 么关系?
【针对练一】
36
6
4
2
16
4
解:
合作探究 达成目标
探究点二 配方法解二次项系数不为1的一元二次方程
➢ 活动二:
(1)这两个小题与活动一中的方程有什么不同 ?如何将此例方程转化为活动一中方程的情形?
达标检测 反思目标
D B
9
3
正数
解:
• 上交作业:教科书第17页 习题21.2第2,3题 .

一元二次方程解法——配方法(1)教学设计

一元二次方程解法——配方法(1)教学设计

22.2.2一元二次方程的解法——配方法(1)教学设计一、内容与内容分析内容:华东师大版九年级数学上册“22.2.2一元二次方程的解法-配方法”。

解析:一元二次方程的解法是本章的重点内容之一,“配方法”是学生接触到的第三种一元二次方程的解法。

配方法是一元二次方程解法中的通法,它是以直接开方法为基础的一次深入探究,是一个由特殊到一般的拓展过程,又为后继学习公式法、二次函数的配方等知识奠定了基础,具有承上启下的作用。

考虑到我班学生实际和配方法的重要性,我安排了两个课时:第一课时,配方的推导及初步运用;第二课时,用配方法解方程。

今天我设计的是第一课时的内容,通过几何拼图,引导学生加深对配方的理解,培养学生“数形结合”的建模思想。

二、目标与目标解析教学目标:知识与技能:理解配方法,能用配方法解二次项系数为1的一元二次方程。

数学思考与问题解决:经历探究配方的过程,体验知识的发生与发展过程,感受利用数形结合、转化、归纳等数学思想方法解决数学问题的策略,培养学生观察、归纳和概括能力。

情感态度:在探究配方过程中融入数学史,感受数学文化,提高学习数学的兴趣。

解析:通过启发式教学,引导学生自主探究、合作交流,经历观察、猜想、验证、归纳的过程,让学生在数学活动的过程中体验学习的快乐,感悟数学文化。

进一步培养学生的推理能力和创造性思维能力,渗透建模、化归、数形结合等数学思想;鼓励学生探究解决问题方法的多样化,培养学生的应用意识、创新意识及解决问题的能力。

三、教学问题诊断分析前面学生已经系统的学习了完全平方式、直接开平方法等知识,同时也具备了一定的自主探究、合作学习能力。

但是他们在解决以下问题时还是会遇到困难:如何配方?为什么这样配方?其原因是学生未真正理解配方的基本方法。

所以在教学中尽可能多地让学生动手操作,参与配方的探究过程,归纳得出配方的基本方法。

基于此,本节课的重点是:探究配方法及如何配方而本节课的难点是:配方法的探究为了更有效突出重点,突破难点,在教学中我以学生活动为主线,直观演示、设疑诱导为辅。

配方法解一元二次方程的教案

配方法解一元二次方程的教案

配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。

一、教学目标(一)知识目标1、理解求解一元二次方程的实质。

2、掌握解一元二次方程的配方法。

(二)能力目标1、体会数学的转化思想。

2、能根据配方法解一元二次方程的一般步骤解一元二次方程。

(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。

二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。

四、知识考点运用配方法解一元二次方程。

五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。

实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。

(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。

通过问题吸引学生的注意力,引发学生思考。

问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。

这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。

1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。

(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。

问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。

22.2降次-解一元二次方程(七个课时)教案

22.2降次-解一元二次方程(七个课时)教案

22.2 降次——解一元二次方程课题:22.2.1配方法(第1课时)一、教学目标1.经历探究过程,会用配方法解较简单的一元二次方程(二次项系数为1).2.培养思考能力和探索精神.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .(二)尝试指导,讲授新课(师出示下面的板书)直接开平方法:第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.师:上节课我们学习了用直接开平方法解一元二次方程.(指准板书)用直接开平方法解一元二次方程有这么三步,第一步化成什么2=常数;第二步开平方降次,把一元二次方程转化为一元一次方程;第三步解一元一次方程,得到两个根.师:按这三步,我们来做一个题目.(师出示例1)例1 解方程:x2-4x+4=5.(先让生尝试,然后师边讲解边板书,解题过程如下)解:原方程化成(x-2)2=5.,开平方,得x-2=5x1=5+2,x2=-5+2.(三)试探练习,回授调节2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .(四)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 解方程:x2+6x-16=0.师:(指准板书)怎么解这个一元二次方程?(稍停)还是要按这三步来做.按这三步来做,关键是哪一步?(稍停)关键是第一步,把方程化成什么2=常数的这种样子,也就是左边化成含有x的式子的平方,右边是一个常数这种样子.怎么化呢?大家自己先化一化.(生尝试,师巡视)师:下面我们一起来化.师:(指准方程)要把这个方程化成什么2=常数这种样子,首先要把常数项移到右边去(板书:解:移项,得x2+6x=16),然后在这个方程的两边加上32(板书:x2+6x+32=16+32),左边x2+6x+32等于什么?(稍停)等于(x+3)2(边讲边板书:(x+3)2),右边16+32等于25(边讲边板书:=25).这样我们把原方程化成了含有x的式子的平方=常数这种样子.师:方程化成这种样子,下面就很好做了.开平方,得x+3=±5(边讲边板书:开平方,得x+3=±5),解一元一次方程,得到两个根,x1=2,x2=-8(边讲边板书:x1=2,x2=-8).师:(指准解题过程)这个题目做完了,通过做这个题目,大家不难发现,解这个题目的关键是在方程两边加上32,把方程的左边配成(x+3)2.这样做叫什么?叫配方(板书:配方).师:像这道例题那样,通过把方程左边配成平方形式来解一元二次方程的方法,叫配方法(板书:配方法).师:下面请大家做几个有关配方法的练习.(五)试探练习,回授调节3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.(六)归纳小结,布置作业师:这节课我们学习了什么?(稍停)我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?(指准板书)和直接开平方法一样,都是这么三步,所不同的是,直接开平方法很容易把原方程化成什么2=常数这种样子,而配方法需要通过配方才能把原方程化成这种样子.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.四、板书设计直接开平方法、配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第2课时)一、教学目标1.会用配方法解一元二次方程(二次项系数不为1).2.培养数感和运算能力.二、教学重点和难点1.重点:用配方法解一元二次方程.2.难点:配方法.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得,.开平方,得,x1= ,x2= .2.填空:(1)x 2-2·x ·13+ =(x- )2; (2)x 2+5x+ =(x+ )2; (3)x 2-32x+ =(x- )2; (4)x 2+x+ =(x+ )2.(订正时告诉学生,加上的那个数是一次项系数一半的平方) (二)尝试指导,讲授新课 (师出示下面的板书) 配方法第一步:化成什么2=常数; 第二步:开平方降次; 第三步:解一元一次方程.师:(指准板书)上节课我们学习了用配方法解一元二次方程.怎么用配方法解一元二次方程?有这么三步,第一步:通过移项、配方把原方程化成什么2=常数这种样子;第二步:开平方,把一元二次方程转化为一元一次方程;第三步:解一元一次方程,得到两个根.在这三步中,第一步中的配方是关键,所以这种解法叫做配方法.师:下面我们用配方法再来解几个一元二次方程,先看例1. (师出示例1)(三)尝试指导,讲授新课 例1 用配方法解方程:x 2+5x+14=0. (先让生尝试,然后师边讲解边板书,解题过程如下) 解:移项,得x 2+5x=-14. 配方 x 2+5x+252⎛⎫ ⎪⎝⎭=-14+252⎛⎫ ⎪⎝⎭,25x+=62⎛⎫⎪⎝⎭.开平方,得x+52=6±, x 1=5-+62,x 2=5--62.(四)试探练习,回授调节3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方,.开平方,得,x1= ,x2= .(五)尝试指导,讲授新课师:下面我们再来做一个题目.(师出示例2)例2 用配方法解方程:2x2+1=3x.师:(指准方程)这个方程与例1这个方程有点区别,区别在哪儿?(稍停)区别主要是,例1这个方程的二次项系数是1,而这个方程的二次项系数不是1.怎么办?我们可以设法把这个方程二次项系数化为1.下面大家自己先试着做一做.(以下生尝试,然后师边讲解边板书,解题过程如下)解:移项,得2x2-3x=-1.二次项系数化为1,得231x-x=-22.配方2223313x-x+=-+2424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,231x-=416⎛⎫⎪⎝⎭开平方,得31x-=44±,x1=1, x2=12.(六)试探练习,回授调节4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.(七)归纳小结,布置作业师:这节课我们继续学习了用配方法解一元二次方程,(指板书)用配方法解一元二次方程就这么三步,解题的关键是第一步.怎么做第一步?(指例2)先移项,再把二次项系数化为1,然后配方.配方时,要在方程两边加上一次项系数一半的平方.(作业:P42习题2.3.)四、板书设计配方法例1 例2第一步:化成什么2=常数;第二步:开平方降次;第三步:解一元一次方程.课题:22.2.1配方法(第3课时)一、教学目标1.会先整理再用配方法解一元二次方程(包括没有实数根的情况).2.培养数感和运算能力.二、教学重点和难点1.重点:先整理再用配方法解一元二次方程.2.难点:没有实数根的情况.三、教学过程(一)基本训练,巩固旧知1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得 .配方,. 开平方,得 , x 1= ,x 2= . (二)创设情境,导入新课师:上节课我们用配方法解了几个一元二次方程,这节课我们用配方法再来做几个题目.(三)尝试指导,讲授新课 (师出示例题) 例 用配方法解方程: (1)(x-2)(x+3)=6; (2)3x(x-1)=3x-4.(先让生尝试,然后师边讲解边板书,解题过程如下) 解:(1)整理,得x 2+x-12=0. 移项,得x 2+x=12.配方 x 2+x+212⎛⎫ ⎪⎝⎭=12+212⎛⎫ ⎪⎝⎭,2149x+=24⎛⎫ ⎪⎝⎭.开平方,得x+12=72±, x 1=3, x 2=-4. (2)整理,得3x 2-6x+4=0. 移项,得3x 2-6x=-4.二次项系数化为1,得24x -2x=-3配方 224x -2x+1=-+13, ()21x-1=-3. 原方程没有实数根.师:例题做完了,从这个例题,谁能概括怎么用配方法解一元二次方程?(让生思考一会儿,再叫学生)生:……(让一两名好生回答)师:用配方法解一元二次方程,(指准例2)第一步要把原方程化成什么2=常数这种样子,怎么化呢?(稍停)先整理,把原方程化成一元一次方程的一般形式;再移项;然后把二次项系数化为1;然后再配方,配方时,在方程两边加上一次项系数一半的平方.第一步完成后,看右边的常数,如果右边的常数为负数,说明原方程没有实数根;(指准例1)如果右边的常数为非负数,则继续第二步第三步,第二步开平方,第三步解一元一次方程得到两个实数根.(四)试探练习,回授调节2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.(五)归纳小结,布置作业师:本节课我们用配方法解了几个一元二次方程,通过做题,同桌之间互相说一说,怎么用配方法解一元二次方程?(同桌之间互相说)(作业:P34练习2(5)(6))四、板书设计(略)课题:22.2.2公式法(第4课时)一、教学目标1.经历一元二次方程求根的推导过程,会用公式法解一元二次方程.2.发展符号感.二、教学重点和难点1.重点:一元二次方程求根公式的推导和运用.2.难点:一元二次方程求根公式的推导. 三、教学过程(一)尝试指导,讲授新课师:(板书:ax 2+bx+c=0,并指准)这是一个一元二次方程,x 是未知数,a ,b ,c 都是常数,而且a ≠0(板书:(a ≠0)).怎么用配方法来解这个一元二次方程?大家自己先试一试.(生尝试,师巡视,要给学生充足的尝试时间)师:我们一起来解这个一元二次方程.首先我们要把这个方程化成什么2=常数这种样子,怎么化呢?师:先把常数项c 移到右边(板书:移项,得ax 2+bx=-c ). 师:再把二次项系数化为1,得2bcx +x=-a a(板书:二次项系数化为1,得2b cx +x=-a a).师:然后配方(板书:配方),怎么配方?(稍停)在方程两边加上一次项系数一半的平方(板书:222b b c b x +x+=-+a 2a a 2a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭),左边是2b x+2a ⎛⎫ ⎪⎝⎭(板书:2b x+2a ⎛⎫ ⎪⎝⎭=),右边=222222222c b b c b 4ac b -4ac -+=-=-=a 4a 4a a 4a 4a 4a (边讲边在黑板的其它地方板演),所以2b x+2a ⎛⎫ ⎪⎝⎭=22b -4ac 4a (边讲边板书:22b -4ac 4a ). 师:(指准板书)通过移项、二次项系数化为1、配方,现在我们把原方程化成了什么2=常数这种形式,接下来怎么做呢?师:(指准方程)接下来开平方(板书:开平方,得),22b b -4acx+=2a 4a ±(边讲边板书:22b b -4ac x+=2a 4a ±),这个二次根式还可以化简,化简结果是2b -4ac2a (边讲边将上面的二次根式改写成2b -4ac2a).师:(指准方程)把b 2a 移到方程右边去,可以解出x ,2-b b -4acx=2a±(边讲边板书:2-b b-4acx=2a±).师:21-b+b-4acx=2a(边讲边板书),22-b-b-4acx=2a(边讲边板书).师:(指准板书)这个方程解完了,通过解这个方程我们得出,一元二次方程ax2+bx+c=0的两个根是2-b b-4acx=2a±(在这个式子外加框).师:(指ax2+bx+c=0)忙乎了半天,有的同学可能会问:这个方程尽是字母,很难解,解它有什么用?是啊,大家想一想,解这个方程有什么用啊?(让生思考一会儿,再叫学生)生:……(让几名同学发表看法)师:以前我们解一元二次方程用的是配方法,要一步一步来解,过程比较麻烦.现在好了,通过解这个方程,(指准求根公式)有了这个式子,只需要把二次项系数a、一次项系数b、常数项c代入这个式子,就可以求出根.因为利用这个式子可直接求根,所以我们把这个式子叫做一元二次方程的求根公式(板书:求根公式).师:(指求根公式)求根公式挺复杂,大家把求根公式写一写,记一记,熟悉熟悉.(生熟悉公式)师:下面我们利用求根公式来解几个一元二次方程.(师出示例题)例利用求根公式解下列方程:(1)x2-4x-7=0; (2)5x2-3x=x+1;(3)2x2-22x+1=0; (4)x2+17=8x.师:(指(1)题)怎么利用求根公式解这个一元二次方程?(板书:解:(1))师:(指(1)题)首先要找出这个方程的二次项系数a、一次项系数b、常数项c,这个方程的a,b,c等于什么?生:a=1,b=-4,c=-7(生答师板书:a=1,b=-4,c=-7).师:找出了a,b,c,接下来干什么?接下来要计算b2-4ac的值(板书:b2-4ac=). b2-4ac=(-4)2-4×1×(-7)=44(边讲边板书:(-4)2-4×1×(-7)=44)师:大家可能觉得有点奇怪,找出了a,b,c,为什么不把a,b,c直接代入求根公式,而是先计算b 2-4ac 的值?(稍停后指准求根公式)大家看求根公式,公式中这个二次根式的被开方数是b 2-4ac ,可见b 2-4ac 必须大于等于0.计算b 2-4ac 的目的是什么?目的是看一看b 2-4ac 的值是大于等于0还是小于0.如果b 2-4ac 的值大于等于0,下一步才把a ,b ,c 代入求根公式;如果b 2-4ac 的值小于0,这个二次根式没有意义,说明方程没有实数根.总之,要根据b 2-4ac 值的符号来决定下一步怎么做,所以不能直接把a ,b ,c 代入求根公式,先要求b 2-4ac 的值.师:(指准板书)这个方程的b 2-4ac 等于44,大于0(边讲边板书:>0),所以下一步可以把a ,b ,c 代入求根公式.师:2-b b -4ac -(-4)444211x===2a 212±±±⨯(边讲边板书). 师:1x =2+11,1x =2-11(边讲边板书). (以下师边讲解边板书其它各题,解题过程如下) (2)整理,得5x 2-4x-1=0. a=5,b=-4,c=-1,b 2-4ac=(-4)2-4×5×(-1)=36>0.2-b b -4ac -(-4)3646x===2a 2510±±±⨯,14+6x ==110,14-61x ==-105. (3)a=2,b=-22,c=1, b 2-4ac=(-22)2-4×2×1=0.2-b b -4ac -(-22)0220x===2a 224±±±⨯,122x =x =2. (4)整理,得x 2-8x+17=0. a=1,b=-8,c=17,b 2-4ac=(-8)2-4×1×17=-4<0. 方程没有实数根.(二)试探练习,回授调节 1.完成下面的解题过程: 利用求根公式解方程:x 2+x-6=0. 解:a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==___________________=_________2a,1x =_________,1x =__________. 2.利用求根公式解下列方程: (1)21x -3x-=04; (2)24x +45x+5=0; (3)3x 2-4x+2=0; (三)归纳小结,布置作业师:本节课我们学习了利用求根公式解一元二次方程,利用求根公式解一元二次方程,这种方法叫公式法(板书课题:22.2.2公式法).师:和配方法相比,用公式法解一元二次方程要简单得多,不过我们还要看到,公式法所用的求根公式是用配方法推导出来的,所以我们说,公式法更简单,配方法更基本.(作业:P 42习题5(1)(2)(5)(6)) 四、板书设计(略)22.2.2公式法ax 2+bx+c=0(a ≠0) 例移项,得…… 二次项系数化为1,得……配方…… …… 开平方,得…… x 1=……x 2=……课题:22.2.2公式法(第5课时) 一、教学目标1.会较熟练地用公式法解一元二次方程.2.知道什么是判别式,会根据判别式的值确定解的情况. 二、教学重点和难点1.重点:根据判别式的值确定解的情况.2.难点:根据判别式的值确定解的情况. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程: 用公式法解下列方程: (1)2x 2-3x-2=0.解:a= ,b= ,c= . b 2-4ac= = >0.2-b b -4acx==___________________=_________2a±,1x =_________,1x =__________. (2)x(2x-6)=6x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .2-b b -4acx==__________________=_________2a±, 12x =x =_________. (3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= .b 2-4ac= = <0. 方程 实数根.(二)尝试指导,讲授新课(师出示下面的板书)一元二次方程ax2+bx+c=0(1)当b2-4ac 时,方程有两个不相等的实数根;(2)当b2-4ac 时,方程有两个相等的实数根;(3)当b2-4ac 时,方程没有实数根.师:刚才我们解了个一元二次方程,我们是怎么解方程的?(稍停)师:(指准板书)首先我们把方程化成一元二次方程的一般形式,也就是ax2+bx+c=0这样的形式.师:然后计算b2-4ac的值,(指准板书)当b2-4ac的值怎么样时,方程有两个不相等的实数根?生:当b2-4ac>0时(多让几名同学回答,然后师填入:>0).师:(指准板书)当b2-4ac的值怎么样时,方程有两个相等的实数根?生:当b2-4ac=0时(多让几名同学回答,然后师填入:=0).师:(指准板书)当b2-4ac的值怎么样时,方程没有实数根?生:当b2-4ac<0时(生答师填入:<0).师:(指板书)通过解一元二次方程,我们得到了这个的结论,请大家一起来把这个结论读两遍.(生读)师:(指板书)这是一个很重要的结论,这个结论告诉我们,一元二次方程根的情况由式子b2-4ac决定,所以我们把式子b2-4ac叫做一元二次方程根的判别式(板书:b2-4ac 叫做根的判别式),记作△(板书:记作△).师:下面我们就利用这个结论来做一个题目.(师出示下面的例题)例利用判别式判断下列方程的根的情况:(1)2x2+3x-4=0;(2)4y2+9=12y;(3)5(x2+1)-7x=0.(师边讲解边板书,解题过程如下)解:(1)a=2,b=3,c=-4.△=b2-4ac=32-4×2×(-4)=9+32>0,方程有两个不相等的实数根.(2)整理,得4y2-12y+9=0a=4,b=-12,c=9.△=b2-4ac=(-12)2-4×4×9=144-144=0,方程有两个相等的实数根.(3)整理,得5x2-7x+5=0a=5,b=-7,c=5.△=b2-4ac=(-7)2-4×5×5=49-100<0,方程没有实数根.(三)试探练习,回授调节2.利用判别式判断下列方程的根的情况:(1)x2-5x=-7;(2)(x-1)(2x+3)=x;(3)x2+5=25x.(四)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了利用判别式判断方程根的情况.请大家再把这个结论读一遍.(生读)(作业:P42习题4.5(3)(4))四、板书设计(略)一元二次方程ax2+bx+c=0 例(1)当b2-4ac>0时……(2)当b2-4ac=0时……(3)当b2-4ac<0时……课题:22.2.3因式分解法(第6课时)一、教学目标1.会用因式分解法解一元二次方程,领会因式分解法的实质是降次.2.培养式的变形能力,发展符号感.二、教学重点和难点1.重点:用因式分解法解一元二次方程.2.难点:式的变形. 三、教学过程(一)基本训练,巩固旧知 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0. x=__________________=______, 1x =_________,2x =__________. (二)尝试指导,讲授新课师:刚才我们解了一个方程,我们是怎么解的?(稍停)我们先整理得到了方程2x 2-3x=0(边讲边板书:2x 2-3x=0),然后用公式法求出两个根.师:(指2x 2-3x=0)除了用公式法,大家想一想,还有别的更简单的方法解这个方程吗?(让生思考一会儿)师:(指2x 2-3x=0)我们把这个方程的左边分解因式(板书:因式分解,得),得到x(2x-3)=0(边讲边板书:x(2x-3)=0).师:(指准x(2x-3)=0)x 乘以2x-3等于0,这说明什么? 生:……(多让几名同学发表看法)师:(指准x(2x-3)=0)x 乘以2x-3等于0,说明x=0或者2x-3=0(板书:于是得x=0或2x-3=0).师:(指准板书)这样我们通过因式分解把一元二次方程转化成了两个一元一次方程.接下来解这两个一元一次方程,由x=0得到x 1=0(板书:x 1=0),由2x-3=0,得到23x =2(板书:23x =2).师:(指板书)用这种方法解出的结果与用公式法解出的结果是一样的,但显然用这种方法解更简单.大家再看一看,用这种方法解方程,哪一步是关键?生:因式分解.(多让几名同学回答)师:因式分解是这种方法的关键,那么这种方法应该叫做什么法?生:(齐答)因式分解法.(师板书课题:22.2.3因式分解法)师:通过因式分解来解一元二次方程,这种方法叫做因式分解法.下面我们用因式分解法再来解几个一元二次方程.(师出示例题)例用因式分解法解下列方程:(1)x(x-2)+x-2=0;(2)5x2-2x-14=x2-2x+34;(3)(2y+3)2=(y-1)2.(师边讲解边板书,(1)(2)题解题过程如课本第39页所示,(3)题解题过程如下) (3)移项,得 (2y+3)2-(y-1)2=0.因式分解,得(3y+2)(y+4)=0.于是得 3y+2=0或y+4=0,12y=-3,y2=-4.师:我们用因式分解法做了几个题,通过做题,哪位同学会归纳用因式分解法解一元二次方程的步骤?(让生思考一会儿再叫学生)生:……(让两名学生归纳)师:(指准例(3)题)用因式分解法解一元二次方程,先把方程右边移到左边,再把左边分解因式,化为两个一次式的乘积等于0的形式,然后得到两个一元一次方程,最后分别解这两个一元一次方程,得到两个根.师:按这样的步骤,下面同学们自己做几个练习.(三)试探练习,回授调节2.完成下面的解题过程:用因式分解法解方程:x2=23x.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.(四)归纳小结,布置作业师:本节课我们学习了用因式分解法解一元二次方程,因式分解法是一种比较简单的解方程的方法,它是通过因式分解把一元二次方程转化为一元一次方程,从而达到降次的目的(边讲边板书:降次).解一元二次方程的基本思路是什么?(稍停)基本思路是降次.配方法是通过配方来降次,因式分解法是通过因式分解来降次.降次是解一元二次方程的基本思路,这一点还希望同学们能好好理解,好好体会.(作业:P43习题6)四、板书设计(略)22.2.3因式分解法2x2-3x=0 例因式分解,得x(2x-3)=0于是得x=0或2x-3=0,x1=0,x2=3 2课题:22.2.3因式分解法(第7课时)一、教学目标1.通过基本训练,复习巩固解一元二次方程的四种方法(直接开平方法、配方法、公式法、因式分解法).2.会选择适当的方法解一元二次方程.二、教学重点和难点1.重点:复习巩固四种方法.2.难点:选择适当的方法解一元二次方程.三、教学过程(一)基本训练,巩固旧知1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 . 开平方,得 , x 1= ,x 2= . (2)用配方法解方程:3x 2-x-4=0; 解:移项,得 .二次项系数化为1,得 . 配方 , . 开平方,得 , x 1= ,x 2= . (3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= .b 2-4ac= = >0.2-b b -4acx==__________________=_________2a, x 1= ,x 2= . (4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 , x 1= ,x 2= . (二)尝试指导,讲授新课 (师出示下表)直接开平方法配方法公式法因式分解法过程简单复杂较简单简单适用某些所有所有某些师:前面我们学习了解一元二次方程的四种方法,哪四种方法?(指准表)直接开平方法、配方法、公式法、因式分解法.这四种方法各有各的特点,这个表反映了它们各自的特点.师:(指准表格)直接开平方法解方程的过程简单,但这种方法只能用于解某些一元二次方程.譬如,3x2-5=0,2(x+1)2=7(边讲边板书),这样的方程可以用直接开平方法来解.师:(指准表格)配方法解方程过程最复杂,但这种方法适用于所有的一元二次方程,也就是说,任何一元二次方程都可以用配方法来解.师:(指准表格)公式法解方程的过程比较简单,而且这种方法适用于所有的一元二次方程.师:(指准表格)因式分解法解方程的过程简单,但这种方法和直接开平方法一样只能用于解某些一元二次方程.譬如,x2+6x=0,x2=(2x+1)2(边讲边板书方程),这样的方程可以用因式分解法来解.师:知道了四种方法各自的特点,下面我们来看一道例题.(师出示例题)例指出下列方程用哪种方法来解比较适当:(1)3x(x+2)=5(x+2);(2)x2+3x-6=0;(3)2(x-4)2-5=0.师:解一元二次方程有四种方法,现在要你指出这几个方程用哪种方法来解比较适当,请大家自己先考虑考虑.(让生思考一会儿)师:谁来说说你的想法?生:……(多让几名同学发表看法,最好要说出理由)师:(指准表格)在四种方法中,用直接开平方法、因式分解法解方程最简单,所以先要看能不能用这两种方法来解.如果不能用直接开平方法来解,也不能用因式分解法来解,就要用公式法来解.因为公式法能解所有的一元二次方程,它是“万能”的,而且比较简单.师:根据这样的思路,我们来看这道例题.师:(指例(1)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)能(板书:解:(1)因式分解法).师:(指例(2)题)这个方程能用直接开平方法解吗?(稍停)不能.能用因式分解法解吗?(稍停)不能.所以要用公式法解(板书:(2)公式法).师:(指例(3)题)这个方程用什么方法解合适?生:(齐答)直接开平方法(生答师板书:(3)直接开平方法).师:这个例题做完了,做完了例题有的同学可能会提出一个问题,什么时候用配方法解方程?(稍停)老师要告诉大家,因为用配方法解方程最复杂,所以我们一般不用配方法解方程.师:有的同学可能会接着问:既然不用配方法解方程,为什么要学配方法?(稍停)在四种方法中,公式法最有用,什么方程都可以用公式法来解,而且比较简单,但求根公式是怎么推导出来的?(稍停)求根公式是用配方法推导出来的,不学配方法哪有公式法?所以我们说,公式法最有用,配方法最基本,而直接开平方法、因式分解法最简单,但这两种方法只适用于某些特殊的一元二次方程.(三)试探练习,回授调节2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.(四)归纳小结,布置作业师:本节课我们复习了解一元二次方程的四种方法,这四种方法各有各的特点,但它们的基本思路是相同的.相同的思路是什么?(稍停)相同的思路是把一元二次方程化为一元一次方程,也就是降次(板书:降次).不管用什么方法,降次是解一元二次方程的基本思路.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.四、板书设计表格例3x2-5=0 2(x+1)2=7x2+6x=0 x2=(2x+1)2。

22.2解一元二次方程配方法教案

22.2解一元二次方程配方法教案
3.重点难点解析:在讲授过程中,我会特别强调配方法的步骤和应用这两个重点。对于难点部分,如配方法的基本原理和开方运算的准确性,我会通过举例和对比来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示配方法的基本原理。
其次,在实践活动环节,学生的参与度很高,但部分小组在讨论过程中偏离了主题。针对这一问题,我应该在活动开始前明确讨论的主题和目标,并在活动过程中加强引导,确保讨论的方向正确。
此外,在小组讨论环节,我发现有些学生过于依赖同学,没有充分独立思考。为了培养学生的独立思考能力,我计划在接下来的课程中,增加一些个人任务,鼓励学生在小组讨论前先独立思考,然后再与同学交流。
-举例:某物体从高处落下,其高度与时间的关系为h = 4.9t^2 + 29.4t + 10,求物体落地时间。
c)开方运算的精确性与合理性。
-难点解释:在开方运算过程中,学生需注意结果的精确性,同时避免出现无意义的结果。
-举例:在解方程x^2 - 2x + 1 = 0时,避免得出x = -1的错误答案,而应得出x = 1。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2 + bx + c = 0(a≠0)的方程。它在数学和实际生活中有着广泛的应用,可以帮助我们解决很多问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示配方法在实际问题中的运用,以及如何帮助我们求解一元二次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

22.2_一元二次方程的解法(直接开平方法配方法公式法因式分解)--

9.x 12x 27 0;
2
8.x1 0; x2 1. 9.x1 3, x2 9.
简记歌诀:
右化零
两因式
左分解
各求解
用配方法解一元二次方程的步骤: 1.把原方程化成 x2+px+q=0的形式。
2.移项整理 得 x2+px=-q 3.在方程 x2+px= -q 的两边同加上一次项系 数 p的一半的平方。 x2+px+( )2 = -q+( ) 2= )2 -q
1 2
例2:用配方法解下列方程
x 6 x 16 0
2
x 8x 1 0
2
二次项系数为1
2 x 1 3x
2 2
二次项系数不为1
3x 6 x 4 0 可以先将系数化为1
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 系数化为1:将二次项系数化为1; 配方:方程两边都加上一次项系数一半的平方 ; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
用公式法解一元二次方程的一般
求根公式 : X=
(a≠0, b2-4ac≥0)
步骤:
1、把方程化成一般形式。 并写出a,
b,c的值。
例1.用公式法解方程2x2+5x3=0

2、求出b2-4ac的值。
解: a=2, b=5,
∴ 3)=49 ∴x =
= =
c= -3,

3、代入求根公式 : X=
b2-4ac=52-4×2×(③
对于方程(2) χ2-1=0 ,你可以怎样解它?
还有其它的解法吗?

222配方法教案

222配方法教案

22.2一元二次方程的解法(2)————配方法教学目标:1. 掌握配方法,会用配方法解二次项系数不是1的一元二次方程。

2. 会对二次三项式配方。

教学重点:用配方法解一元二次方程。

教学难点:对二次三项式配方。

教学过程:一、自主学习:1.一元二次方程的一般形式是什么?其中a 应具备什么条件?说明:在化成一元二次方程的一般形式后,如果二次项的系数是一个负数,应该利用等式的基本性质把二次项的系数化成正的。

2.具备什么特征的一元二次方程可以利用直接开平方法解?说明:形如(1)x 2=p(p 0≥),(2)(mx+n )2=p (p 0≥)就可利用直接开平方法。

它的特征是:左边是一个关于未知数的完全平方式;右边是一个非负数。

且不含一次项。

符合这个特征的方程,就可利用直接开平方法。

3.用配方法解方程: (1) ;(2) 二、师生交流:(一)用配方法解二次项系数不为1的一元二次方程:1.例1:2x 2+5x+1=0解:移项,得:2x 2+5x =-1二次项系数化成1,得:x 2+2125-=x 配方,得:1625211625252+-=++x x (1617)452=+x 开平方得:x+41745±= 41751+-=∴x 41752--=x 例2:3x 2+4=6x解:移项,得:3x 2—6x =-4二次项系数化成1,得:x 2-2x =-34 配方,得:x 2-2x +1 =-34+1 (31)12-=-x所以,原方程无解。

01662=-+x x 0182=+-y y2.师生共同归纳步骤。

3.训练反馈:(1)04632=-+x x ;(2)m m =+942;(3)y y y 8110442-=++;(4)24)12(3+=+x x x 。

(二)对二次三项式进行配方:1.例2:填空:(1)=++982x x ( )2+ ; (2)=--3232x x 3( )2+ ; 2.师生共同归纳步骤。

3. 训练反馈:(1)=-+9922x x ( )2+ ; -4722++x x =-2( )2+ ; (2)用配方法证明: 恒大于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.2 解一元二次方程(配方法) 教案第1课时教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=mx+n=p≥0).如:4x2+16x+16=(2x+4)2二、探索新知列出下面二个问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,•八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?老师点评:问题1:设总共有x只猴子,根据题意,得:x=(18x)2+12整理得:x2-64x+768=0问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500整理,得:x2-36x+70=0(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2-64x+768=0 移项→ x=2-64x=-768两边加(642)2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024左边写成平方形式→(x-32)2=•256 •降次→x-32=±16 即 x-32=16或x-32=-16 解一次方程→x1=48,x2=16可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.学生活动:例1.按以上的方程完成x2-36x+70=0的解题.老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,,x1≈34,x2≈2.可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2.例2.解下列关于x的方程(1)x2+2x-35=0 (2)2x2-4x-1=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:(1)x2-2x=35 x2-2x+12=35+1 (x-1)2=36 x-1=±6x-1=6,x-1=-6x1=7,x2=-5可以,验证x1=7,x2=-5都是x2+2x-35=0的两根.(2)x 2-2x-12=0 x 2-2x=12x 2-2x+12=12+1 (x-1)2=32 x-1=x 1x 2可以验证:x 1=1+2x 2=1-2 三、巩固练习教材P 38 讨论改为课堂练习,并说明理由.教材P 39 练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt △ACB 中,∠C=90°,AC=8m ,CB=6m ,点P 、Q 同时由A ,B•两点出发分别沿AC 、BC 方向向点C 匀速移动,它们的速度都是1m/s ,•几秒后△PCQ•的面积为Rt △ACB 面积的一半.C AQ P分析:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.•根据已知列出等式.解:设x 秒后△PCQ 的面积为Rt △ACB 面积的一半.根据题意,得:12(8-x )(6-x )=12×12×8×6 整理,得:x 2-14x+24=0(x-7)2=25即x 1=12,x 2=2x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去.所以2秒后△PCQ 的面积为Rt △ACB 面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式,•左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材P45复习巩固2.2.选用作业设计.一、选择题1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-113.如果m x2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或9二、填空题1.方程x2+4x-5=0的解是________.2.代数式2221x xx---的值为0,则x的值为________.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为______.三、综合提高题1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.2.如果x2-4x+y2,求(xy)z的值.3.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?答案:一、1.B 2.B 3.C二、1.x1=1,x2=-5 2.2 3.z2+2z-8=0,2,-4三、1.(x-3)(x-1)=0,x1=3,x2=1,∴三角形周长为9(∵x2=1,∴不能构成三角形)2.(x-2)2+(y+3)2,∴x=2,y=-3,z=-2,(xy)z=(-6)-2=1 363.设每台定价为x,则:(x-2500)(8+290050x-×4)=5000,x2-5500x+7506250=0,解得x=275022.2.2 配方法第2课时教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-8x+7=0 (2)x2+4x+1=0老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9x-4=±3即x1=7,x2=1(2)x2+4x=-1 x2+4x+22=-1+22(x+2)2=3即x+2=x1,x2二、探索新知像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:(1)移项,得:x2+6x=-5配方:x2+6x+32=-5+32(x+3)2=4由此可得:x+3=±2,即x1=-1,x2=-5(2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1配方x2+3x+(32)2=-1+(32)2(x+32)2=54由此可得x+32=x132,x232(3)去括号,整理得:x2+4x-1=0移项,得x2+4x=1配方,得(x+2)2=5x+2=x1,x2三、巩固练习教材P39练习 2.(3)、(4)、(5)、(6).四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=12(6x+7)+12,x+1=16(6x+7)-16,因此,方程就转化为y•的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=12y+12,x+1=16y-16依题意,得:y2(12y+12)(16y-16)=6去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72,y4-y2=72(y2-12)2=2894y2-12=±172y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-2 3当y=-3时,6x+7=-3 6x=-10 x=-5 3所以,原方程的根为x1=-23,x2=-53五、归纳小结本节课应掌握:配方法的概念及用配方法解一元二次方程的步骤.六、布置作业1.教材P45复习巩固3.2.作业设计一、选择题1.配方法解方程2x2-43x-2=0应把它先变形为().A.(x-13)2=89B.(x-23)2=0C.(x-13)2=89D.(x-13)2=1092.下列方程中,一定有实数解的是(). A.x2+1=0 B.(2x+1)2=0C.(2x+1)2+3=0 D.(12x-a)2=a3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2二、填空题1.如果x2+4x-5=0,则x=_______.2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数. 3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.三、综合提高题1.用配方法解方程.(1)9y2-18y-4=0 (2)x22.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.①若商场平均每天赢利1200元,每件衬衫应降价多少元?②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.答案:一、1.D 2.B 3.B二、1.1,-5 2.正 3.x-y=54三、1.(1)y 2-2y-49=0,y 2-2y=49,(y-1)2=139,y-1=,y 1,y 2(2)x2(2=•0,x1=x2 2.(x+2)2+(y-3)2=0,x1=-2,y2=3,∴原式=268 1313 --=-3.(1)设每件衬衫应降价x元,则(40-x)(20+2x)=1200,x2-30x+200=0,x1=10,x2=20(2)设每件衬衫降价x元时,商场平均每天赢利最多为y,则y=-2x2+60x+800=-2(x2-30x)+800=-2[(x-15)2-225]+800=-2(x-15)2+1250 ∵-2(x-15)2≤0,∴x=15时,赢利最多,y=1250元.答:略。

相关文档
最新文档