博弈论的主要均衡概念及其比较

合集下载

博弈论三种均衡的异同

博弈论三种均衡的异同

问题:博弈论三种均衡的异同结合工作实践举一个例子,谈以下三种均衡的异同,1、占优策略均衡,2、纳什均衡,3、混合策略纳什均衡。

国企办公室当中的智猪博弈。

“大猪”们辛辛苦苦加班,工资一分也不多拿,“小猪”们一边逍遥自在,工资一分也不少拿,这种情况在国企办公室里比比皆是。

很遗憾,我就是“大猪”们中的一员,因为我们什么都缺,尤其缺能干的人,就是不缺人。

严格占优均衡(DSE)、重复剔除占优均衡(IEDE)、纯策略纳什均衡(PNE)、混合策略纳什均衡(MNE),前一个均衡是后一个均衡的特例,后一个均衡是前一个均衡的扩展,即DSE是IEDE的子集,IEDE是PNE的子集,PNE是MNE的子集。

他们的区别如下:1、占优策略“不管你怎么做,我所做的都是我能做得最好的。

”其他人无论采取什么策略,目前你采取的策略就是最优的,永远不会改变。

2、纳什均衡:在一种策略组合上,其他人不改变策略时,那么你就不会改变策略,因为目前最优。

★“给定你的做法后,我所做的是我能做得最好的。

”★“给定我的做法后,你所做的是你能做得最好的。

”★如果你有占优策略, 你可以使用此策略, 以不变应万变;★如果你没有占优策略, 你必须随机应变。

在达到了纳什均衡之后, 所有参与者都没有动机想再变了。

纳什均衡是常态,帕累托最优几乎不存在。

经典案例:囚徒困境。

3、混合策略纳什均衡由所有参与人的混合策略构成的纳什均衡。

有些博弈不存在纳什均衡,或者纳什均衡不唯一,如猜硬币博弈。

要想为博弈方的选择和博弈结果做明细的预测,就要用到混合策略纳什均衡。

混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。

博弈论的主要均衡概念及其比较

博弈论的主要均衡概念及其比较

博弈论的主要均衡概念及其比较
均衡概念是博弈论的核心概念,它指的是一种状态,在这种状态下,双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果。

主要的均衡概念有:
1、纳什均衡:纳什均衡是博弈论中最重要的均衡概念,它是由美国经济学家纳什提出的,它是指当双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果,即每个玩家都没有动力改变自己的策略。

2、Nash-Subgame均衡:Nash-Subgame均衡是由美国经济学家纳什提出的,它是指在一个博弈中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。

3、博弈树均衡:博弈树均衡是由美国经济学家John Nash提出的,它是指在博弈树中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。

纳什均衡和Nash-Subgame均衡是两种最重要的均衡概念,它们都是基于每个玩家都有一个最优的策略,而博弈树均衡则是基于博弈树模型的均衡概念。

它们之间的区别在于,纳什均衡和Nash-Subgame均衡是针对一般情况的均衡概念,而博弈树均衡是针对博弈树模型的均衡概念。

博弈论和纳什均衡

博弈论和纳什均衡

博弈论和纳什均衡引言博弈论是一门研究决策制定者之间相互作用的学科。

纳什均衡是博弈论中的一个重要概念,表示在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。

本文将介绍博弈论的基本概念和纳什均衡的理论,并探讨其在现实生活中的应用。

博弈论基本概念博弈论研究的对象是决策制定者之间的相互作用,其中包括两个或更多个决策制定者,每个决策制定者可以选择不同的策略。

博弈论的基本元素包括玩家、策略和收益。

玩家是决策制定者的角色,策略是玩家在每个决策点上可以采取的行动,收益是每个玩家在不同策略组合下所获得的利益。

博弈论中常见的博弈形式包括合作博弈和非合作博弈。

在合作博弈中,玩家之间可以进行合作并达成协议,而在非合作博弈中,玩家之间相互独立且没有协作的能力。

纳什均衡的概念纳什均衡是博弈论中的一个重要概念,由诺贝尔经济学奖得主约翰·纳什提出。

纳什均衡指的是在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。

具体来说,在一个博弈中,如果每个玩家选择了一个策略组合,且任何一个玩家单独改变自己的策略都无法提高自己的收益,那么这个策略组合就是一个纳什均衡。

纳什均衡可以通过数学方法进行计算,其中最常用的方法是利用最优响应函数。

最优响应函数指的是一个玩家在其他玩家的策略给定时,可以最大化自己的收益的策略选择。

纳什均衡的特性纳什均衡具有以下几个重要的特性:1.独立于个体的理性决策:纳什均衡的形成不依赖于玩家之间的协商或合作,而是由每个玩家根据自己的利益进行独立的决策而达成的。

2.稳定性:在纳什均衡中,每个玩家都在最优响应下选择策略,没有动机或能力单独改变自己的策略来获得更好的结果。

这种稳定性使得纳什均衡成为一种理想的博弈状态。

3.不一定最优:纳什均衡并非一定是博弈的最优结果,即每个玩家获得的收益并不一定是最大化的。

纳什均衡是一种均衡状态,每个玩家在给定其他玩家的策略下无法获得更多的收益。

对称均衡 非对称均衡 博弈论

对称均衡 非对称均衡 博弈论

对称均衡非对称均衡博弈论
对称均衡和非对称均衡是博弈论中的重要概念,用于描述博弈中各方的策略选择和结果。

在博弈论中,博弈是指一种决策情形,其中参与者的利益受到彼此的影响。

对称均衡和非对称均衡都是描述博弈中可能出现的情况的概念。

首先,让我们来看看对称均衡。

在博弈论中,对称均衡是指参与者采取相同的策略,并且没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。

对称均衡的一个经典例子是“囚徒困境”博弈,其中两名囚犯面临合作或者背叛的选择。

在对称均衡中,如果两名囚犯都选择背叛,那么他们都会受到最严厉的惩罚,而如果两名囚犯都选择合作,那么他们都会受益。

因此,对称均衡发生在他们都选择背叛或者都选择合作的情况下。

其次,非对称均衡是指参与者采取不同的策略,并且在当前策略下没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。

非对称均衡的一个例子是“买方市场”博弈,其中卖方和买方在价格谈判中采取不同的策略。

在非对称均衡中,如果卖方设定了一个最低价格,而买方愿意接受这个价格,那么双方都没有动机改变自己的策略。

总的来说,对称均衡和非对称均衡是博弈论中用于描述参与者策略选择和结果的重要概念。

通过研究对称均衡和非对称均衡,我们可以更好地理解博弈中参与者的决策行为,以及他们可能达到的结果。

这些概念对于经济学、政治学以及其他社会科学领域都具有重要意义。

希望这个回答能够帮助你更好地理解对称均衡、非对称均衡和博弈论的相关概念。

博弈论纳什均衡

博弈论纳什均衡

博弈论纳什均衡什么是纳什均衡?1、纳什均衡(Nash equilibrium ),又称非合作博弈均衡,是博弈论概念,指的是:一种博弈稳定结果,谁单方改变策略,谁就会损失。

两个囚徒互相揭发,就是一种纳什均衡。

对于每个囚徒来说,如果打破纳什均衡,在对方实施揭发策略时,改变揭发策略,保持沉默,自己就会由判刑2年,变成判刑5年。

也就是说,两个囚徒互相揭发是稳定博弈结果,谁单方改变策略,就会受到损失。

这也就是均衡涵义所在,两个囚徒从利己角度,都不会单方改变策略。

博弈策略稳定,博弈结果也稳定。

之所以命名为纳什均衡,是因为提出者是经济学家、博弈论创始人约翰.纳什。

之所以称为非合作博弈均衡,原因就是:两个囚徒如果合作,互相保持沉默,各自只要坐牢1年;但最终博弈结果,也就是纳什均衡显著特征,是不合作。

2、纳什均衡意义重大。

纳什均衡提出,震动整个经济学界。

诺贝尔经济学奖得主萨缪尔森曾说:“你只要教会鹦鹉说‘需求和供给’,它也是经济学家。

”博弈论专家坎多瑞则说:“这只鹦鹉现在必须多学一个词了,那就是‘纳什均衡’。

”诺贝尔经济学奖得主迈尔森也说:“发现纳什均衡意义,可以和生命科学中发现DNA 双螺旋结构相媲美。

”纳什也因为提出纳什均衡,创立博弈论,而获得1994年诺贝尔经济学家奖。

纳值均衡意义重大,简单来说,就是它对于经济学具有重大意义。

读友们如果了解经济学看不见的手原理,就知道,古典经济学认为,通过市场这只‘看不见的手’调节,个体追求私利行为,会促进集体利益最大化。

但纳什均衡却违反上述原理:两个囚徒分别追求私利行为,并没有促进集体(囚徒整体)利益最大化,反而是损人不利己。

这正是市场失灵软肋之处,通过博弈论视角可以得到合乎逻辑解释,更有条件找到合适解决方案。

从上述这点,读友们可以“一斑窥全豹”,感受到博弈论重要性。

更重要的是,纳什均衡非常普遍,小至个人沟通,中到公司竞争,大到国家往来,都可以观察到。

Q2:怎样运用纳什均衡?1、分析囚徒困境。

博弈论重点

博弈论重点

博弈论期末复习要点纳什均衡(P52):指的是参与人的这样一种策略组合,在该策略组合中,每个人的策略都是最优的,任何参与人单独改变策略都不会得到好处。

换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略。

完全信息(P34):各个博弈方都完全了解所有博弈方在各种情况下的得益状况。

上策均衡(P41):在某个博弈中,如果不管其他博弈方选择什么策略,一博弈方的某一个策略给他带来的收益始终高于其他策略,至少不低于其他策略。

帕累托上策均衡(P92):多个纳什均衡的某一个均衡策略给所有博弈方带来的得益都大于其他所有纳什均衡带来的得益,则各个博弈方都会倾向于此纳什均衡的策略,博弈能够实现帕累托效率。

聚点均衡(P97):在多重纳什均衡博弈中,双方同时会选择一个聚点构成的纳什均衡。

合并均衡(P268):具有完美信息的博弈方在博弈中,不管自己情况如何,都采取相同的市场均衡。

(在合并均衡中,完美信息博弈方的情况不同,并不会导致他们的行为不同,因此他们的行为不会给不完美信息的博弈方透露任何有用的消息)分开均衡(P268):在不同情况下,完美信息博弈方所采取完全不同的市场策略。

(在分开均衡中,由于博弈方的情况不同,采取的不同的市场策略,因此完美信息博弈方的策略可以完全反映他的情况,因此能够给不完美信息博弈方的“判断”提供充分的信息和依据)海萨尼转换(P292):将得益不了解转化为类型不了解的基础上,进一步将不完全信息静态博弈转化为完全但不完美信息动态博弈进行分析的思路。

完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全了解的博弈。

不完美信息(P34):动态博弈中在轮到行为时对博弈的进程完全不了解的博弈。

混合策略(P72):博弈方以一定的概率分布在可选策略中随机选择的决策方式。

一致性预测(P53):如果所有博弈方都预测一个特定的博弈结果会出现,那么所有的博弈方都不会利用该预测或者这种预测能力,选择与预测结果不一致的策略。

《博弈论》知识点总结归纳

《博弈论》知识点总结归纳

《博弈论》知识点总结归纳《博弈论》知识点总结归纳摘要:博弈论是研究决策者之间相互影响和决策制定的数学分析工具。

本文对博弈论的基本概念、解的概念、均衡理论、博弈策略和应用等方面进行了总结归纳,以帮助读者更好地理解和应用博弈论的相关知识。

关键词:博弈论、基本概念、解的概念、均衡理论、博弈策略、应用引言博弈论是研究决策者之间相互影响和决策制定的数学分析工具,源自于经济学和数学两大学科的交叉。

博弈论在经济学、管理学、政治学、社会学、计算机科学等多个领域都有广泛的应用。

本文将对博弈论的相关知识进行详细的总结和归纳。

一、基本概念1.1 博弈博弈是指决策者之间相互影响和策略选择的过程。

博弈的基本要素包括:参与者、策略、收益和信息。

1.2 参与者参与者是指博弈中的决策者,可以是个人、团体、企业、国家等。

参与者的目标是实现自身利益的最大化。

1.3 策略策略是指参与者在博弈中所能采取的行动或选择。

通常分为纯策略和混合策略。

1.4 收益收益是指在博弈中参与者根据所选择的策略所能得到的结果或利益。

收益可以用来衡量参与者的利益大小。

1.5 信息信息是指参与者在博弈中所了解的有关其他参与者或博弈环境的信息。

信息可以分为对称信息和非对称信息。

二、解的概念2.1 均衡均衡是指在博弈中各参与者选择了策略后,没有动力再改变策略,从而达到一种稳定状态。

常见的均衡概念有纳什均衡、帕累托最优和博弈解。

2.2 纳什均衡纳什均衡是指在博弈中的一组策略选择,使得每个参与者选择的策略是对其他参与者的策略选择的最佳应对,没有动机再改变策略。

2.3 帕累托最优帕累托最优是指在博弈中的一组策略选择,使得至少有一个参与者的收益达到最大,而其他参与者的收益至少不会减小。

帕累托最优是一种资源分配的有效方式。

2.4 博弈解博弈解是指在博弈中的一组策略选择,使得没参与者都没有动力再改变策略。

博弈解往往是均衡的特殊情况。

三、均衡理论3.1 零和博弈零和博弈是一种特殊的博弈形式,即参与者的利益总和为零。

博弈论10-均衡概念比较与PBNE的再精炼

博弈论10-均衡概念比较与PBNE的再精炼

表10. 1

参与人2


U (1-p )
参与人1

D(p)
L
10,0 10,1
R
5,2 2,0
在表10.4.1中,(D,L) 是一个纳什均衡(弱劣 战略均衡);只要参与人2不选择R,D就是参 与人1的最优选择;同样,只要参与人1不选择 U,L就是参与人2的最优选择。但是,如果参与 人2有可能错误地选择R,那么,不论这个错误 发生的概率是多么小,参与人1的最优选择就 是U而不是D;预测到这一点,参与人2将选择 R。就是说,(D,L)不是一个颤抖手均衡。对 比之下,(U,R)是—个颤抖手均衡:不论参与
如果设想不论参与人1在最初选择什么,如果 博弈进入他的第二个信息集,他更可能选择 R’而不是L‘ (因为前者优于后者)。
那么,如果参与人1最初选择R,参与人2应 该选择D. 可见RR’只包含参与人1的一个错误, RL‘包含参与人1的两个错误。
表2

参与人2

P
U
D


1
L
1-2/m
0,1
( p, q) lim( pm, qm ) m
所以,(L, L), q1 1, q序2 贯(1均,0衡)
10.4 泽尔腾的颤抖手均衡
泽尔腾(1975)使用战略式博弈引入颤抖手均衡的概 念。颤抖手均衡的基本思想是,任何一个博弈中, 每一个参与人都有一定的可能性犯错误(类似一个人 用手抓东西时,手一颤抖,他就可能抓不住他想抓 的东的);一个战略组合,只有当它在允许所有参与 人都可能犯错误时仍是每一个参与人的最优战略的 组合时,才是一个均衡。
另一方面,如果参与人1以1-2/m选择L,1/m的概 率选择RL‘或RR’(因此,2/m是参与人1犯错误的 概 率 ) , 参 与 人 2 选 择 U 的 期 望 效 用 是 (1)(1 - 2/m)+(2)(1/m)+(2)(1/m)=1+2/m,选择D的期望 效用是(1)(1-2/m)+(0)(1/m)十(3)(1/m)=1+1/m, 所以U优于D;令m趋于无穷,我们得到(L,U)是 一个颤抖手均衡。

博弈论吉本斯

博弈论吉本斯

博弈论吉本斯
吉本斯(John Nash)是著名的美国数学家和经济学家,他对博弈论的贡献被广泛认可。

以下是关于吉本斯在博弈论方面的主要贡献:
1. 吉本斯均衡:吉本斯提出了著名的吉本斯均衡概念,也称为纳什均衡。

吉本斯均衡是指在博弈中,当每个参与者都选择了最优策略后,没有参与者有动机单独改变自己的策略。

这个概念对于理解博弈中的平衡点和策略选择具有重要意义。

2. 非合作博弈理论:吉本斯发展了非合作博弈理论,该理论研究了在博弈中参与者之间缺乏合作的情况。

他提出了一种数学模型,描述了参与者在决策中寻求自己最佳利益的过程,以及在这种情况下可能出现的均衡点。

3. 吉本斯博弈:吉本斯还提出了吉本斯博弈,这是一类特殊的博弈模型,其中每个参与者的最佳策略取决于其他参与者的选择。

吉本斯博弈的研究为博弈论提供了更深入的理解,揭示了博弈中可能存在的多个均衡点和策略选择的复杂性。

吉本斯的贡献对于博弈论的发展具有重要影响,他的研究为理解经济、社会和政治中的决策行为和策略选择提供了理论基础,对于经济学、管理学和其他社会科学领域的研究都具有重要意义。

博弈论(潜在博弈、纳什均衡

博弈论(潜在博弈、纳什均衡

博弈论(潜在博弈、纳什均衡潜在博弈和纳什均衡是博弈论中的重要概念。

潜在博弈是指在博弈开始之前,参与者对博弈规则和结果的假设和预期。

纳什均衡是指在博弈中,各参与者都采取最优策略时所达到的结果。

在现实生活中,我们经常会遇到各种潜在博弈的情况。

比如,在一个拍卖会上,卖家和买家都会根据对市场的了解和对对方行为的预期来制定自己的策略。

卖家希望以最高的价格卖出物品,而买家则希望以最低的价格购买物品。

他们的策略取决于对对方行为的预期,以及对市场供求关系的判断。

在这种情况下,纳什均衡的概念就显得尤为重要。

纳什均衡是指在博弈中,各参与者都选择了最优策略,没有人可以通过改变自己的策略来获得更好的结果。

换句话说,纳什均衡是一种稳定的状态,参与者不会主动改变自己的策略。

然而,纳什均衡并不一定是最优解。

在某些情况下,博弈参与者可能会因为缺乏信息或信任问题而无法达到纳什均衡。

在这种情况下,博弈参与者可能会采取非最优策略,导致整个博弈结果下降。

潜在博弈和纳什均衡的概念不仅适用于经济学领域,也可以应用于其他领域。

比如在政治上,各国之间的战略决策也可以看作是一种博弈。

每个国家都会根据对其他国家行为的预期来制定自己的策略,以达到自己的最大利益。

而纳什均衡的概念则可以帮助我们理解为什么有些国家会选择合作,而有些国家会选择对抗。

潜在博弈和纳什均衡是博弈论中的重要概念,可以帮助我们理解各种博弈情况下参与者的策略选择和结果。

在现实生活中,这些概念也可以应用于经济学、政治学等领域,帮助我们分析和解决各种复杂的决策问题。

通过理解和应用潜在博弈和纳什均衡的原理,我们可以更好地把握博弈中的机会和挑战,做出更明智的决策。

博弈论中的均衡

博弈论中的均衡

博弈论中的均衡一、博弈论的定义博弈论是研究决策者之间相互影响的一种数学工具。

它主要关注的是在决策者之间存在相互作用和相互依存的情况下,如何做出最优决策。

二、博弈论中的均衡概念均衡是博弈论中一个重要的概念。

它指的是在一个博弈中,每个参与者都采取了最优策略,并且没有任何一个参与者能够通过改变自己的策略来获得更多的收益。

三、纳什均衡纳什均衡是博弈论中最为常见和重要的均衡概念之一。

它指的是在一个非合作博弈中,每个参与者都采取了最优策略,并且这些最优策略构成了一个稳定状态,即没有任何一个参与者能够通过改变自己的策略来获得更多的收益。

四、纳什均衡存在定理纳什均衡存在定理指出,在任何一个有限制性条件(例如有限次迭代)下满足某些基本条件(例如紧致性)的非合作博弈中,至少存在一个纳什均衡。

五、纳什均衡的计算方法在一些简单的博弈中,可以通过列出参与者的收益矩阵来计算纳什均衡。

具体方法是找到每个参与者的最优策略,并检查这些最优策略是否构成了一个稳定状态。

在一些复杂的博弈中,计算纳什均衡可能非常困难甚至不可能。

此时,可以采用数值方法(例如迭代法)或者近似方法(例如线性规划)来求解。

六、纳什均衡的应用纳什均衡在经济学、政治学、生物学等领域都有广泛应用。

在市场竞争中,企业可以通过分析竞争对手的行为和策略来制定自己的最优策略;在国际关系中,各国可以通过分析其他国家的行为和策略来制定自己的外交政策。

七、纳什均衡存在局限性尽管纳什均衡是博弈论中最为常见和重要的均衡概念之一,但它也存在一些局限性。

在一些博弈中,存在多个纳什均衡,而且这些纳什均衡可能会导致非常不同的结果;在一些博弈中,参与者的收益函数可能并不是凸函数,因此纳什均衡可能不存在或者不唯一。

八、总结博弈论中的均衡是一个重要的概念,其中纳什均衡是最为常见和重要的一种。

通过计算纳什均衡,参与者可以找到自己的最优策略,并且预测其他参与者的行为和策略。

然而,纳什均衡也存在局限性,在实际应用中需要注意。

《博弈论》知识点总结归纳

《博弈论》知识点总结归纳

《博弈论》知识点总结归纳博弈论是研究决策者之间相互作出决策时,通过考虑对方的行动和可能的结果来进行决策的一门学科。

它主要关注对策略的选择与分析,以及对方可能的反应。

下面我们来对博弈论的知识点进行总结归纳。

1.普通博弈和扩展博弈:博弈论分为两类,即普通博弈和扩展博弈。

普通博弈是指参与者在同一时间同时做出决策的博弈,扩展博弈是指参与者在不同的时间节点上做出决策的博弈。

2.博弈的组成要素:博弈论研究的关键要素包括博弈参与者、参与者的策略、参与者的支付、参与者的效用等。

博弈论的目标是通过合理的策略选择来实现最优的支付和效用。

3.纳什均衡:纳什均衡是博弈论中一个重要的概念,指的是当每个参与者都选择了最优的策略后,没有人会改变自己的策略来获得更好的支付。

纳什均衡是博弈的稳定状态。

4.博弈的分类:根据参与者的合作与否,博弈可以分为合作博弈和非合作博弈。

合作博弈中,参与者可以通过合作与其他参与者达成协议,而非合作博弈中,参与者彼此之间没有合作关系。

5.零和博弈和非零和博弈:零和博弈是指所有参与者的支付之和为零的博弈,即一方获利就意味着其他方会损失相应的支付。

非零和博弈是指所有参与者的支付之和不为零的博弈,即所有参与者都有可能获得一定的支付。

6.博弈的解析方法:解析方法是通过分析博弈的特性和参与者的策略来研究博弈的方法。

解析方法包括主要包括支配策略法、混合策略法、最佳反应函数等。

7.博弈的策略选择:博弈论研究的核心问题之一是参与者在博弈中如何选择最优的策略。

策略选择可以通过分析博弈的收益矩阵和参与者的目标来实现。

8.博弈的应用领域:博弈论的应用十分广泛,包括经济学、政治学、生物学、社会学等多个领域。

在经济学中,博弈论被用来研究市场竞争、价格形成等问题,在政治学中,博弈论被用来分析政治决策与合作等问题。

9.孤立型博弈和重复博弈:孤立型博弈是指只进行一轮博弈的情况,参与者只能根据当下的情况来做出决策。

重复博弈是指进行多轮博弈的情况,参与者可以根据之前的决策和结果来进行策略的调整。

完整版)博弈论知识点总结

完整版)博弈论知识点总结

完整版)博弈论知识点总结博弈论是研究决策主体在相互作用中做出的决策以及均衡问题的学科。

该学科的研究假设包括:1)决策主体是理性的,会尽可能地最大化自己的收益;2)完全理性是共同知识;3)每个参与者都能对环境和其他参与者的行为形成正确的信念和预期。

博弈中涉及到的变量包括:参与人、行动、战略和信息。

完全信息指每个参与人都了解其他参与人的支付函数,而完美信息则指在博弈过程中,每个参与人都能观察和记忆之前的行动选择。

不完全信息则表示参与人没有完全掌握其他参与人的信息,存在不确定性因素。

博弈与传统决策的区别在于,博弈是决策主体之间的相互作用,需要考虑其他决策者的选择和效用函数。

博弈的表示形式包括战略式博弈和扩展式博弈,其中战略式博弈适用于描述不需要考虑博弈进程的完全信息静态博弈问题,而扩展式博弈则更适用于描述动态博弈问题。

与战略式博弈不同,扩展式博弈更注重参与者在博弈过程中面临的决策问题的序列结构分析,而不是仅关注博弈结果的描述。

扩展式博弈包括参与人集合、参与人的行动顺序、序列结构和参与人的支付函数等要素。

战略式博弈是一种静态模型,而扩展式博弈是一种动态模型。

博弈论可以分为合作博弈和非合作博弈,其中合作博强调团体理性、团体最优决策和效率,而非合作博弈强调个人理性和个人最优决策。

根据参与人行动先后顺序的不同,博弈可以分为静态博弈和动态博弈,后者包括先行动者获得先行动者行动信息的情况。

根据参与人对信息的掌握程度,博弈可以分为完全信息和不完全信息博弈。

根据决策主体对信息的掌握程度和行动的先后顺序,博弈可以分为完全信息静态博弈、完全信息动态博弈、不完全信息静态博弈和不完全信息动态博弈。

不同类型的博弈有不同的均衡类型和求解方法,顺序的不同也会影响均衡结果。

Hotelling价格竞争模型是一种重要的扩展式博弈,用于描述两个企业在同一市场上的价格竞争。

相对应。

占有均衡是指在博弈中存在一组参与人的战略选择,使得每个参与人都无法通过改变自己的战略来提高自己的支付。

几种均衡的概念

几种均衡的概念

几种均衡的概念
1. Nash均衡:在博弈论中指的是每个参与者通过最优的策略选择,使得任何一个参与者单方面改变策略都不能获得更多的收益。

2. Walras均衡:在经济学中指市场上的供求达到均衡状态,所有商品的价格都已经确定,市场整体没有供过于求或需求过剩的情况。

3. Cournot均衡:是用来描述投资者怎样平衡利润最大化与市场份额之间的关系。

指的是几个投资者在市场中进行投资,每个投资者预测对手的投资行为,然后选择最优策略的状态。

4. Stackelberg均衡:是博弈论中,一种非纳什均衡,也是竞争者在垄断形势下的最优策略。

指的是在竞争者之间制定不同的价格、数量或其他策略,使得每个竞争者都能获得最大的利润。

5. Pareto均衡:是指在任何人都不愿意我的情况下,通过某种资源分配方法来使一个人或一组人的利益得到了提高,但另一些人的利益没有降低,这种资源分配方法被称为Pareto均衡。

博弈论考前总结

博弈论考前总结

完全信息静态博弈1.占优战略均衡(以不变应万变)1)不要求“理性”为共同知识2)定义: 不管其他人选择什么战略, 参与人的(严格)占优战略是唯一的。

所有人都有严格占优战略, 那么占优战略均衡就是可预测的唯一均衡。

2.例:囚徒困境, 坦白是每一个参与人的最优战略3.重复剔除的占优均衡1)要求: “理性”是参与人的共同知识2)方法: 重复剔除严格劣战略, 直到只剩下唯一的战略组合为止4.若剔除后战略组合不唯一, 那博弈就不是重复剔除占优可解的。

5.例:智猪博弈(不是占优均衡, 只有小猪有严格占优均衡, 大猪没有)6.纳什均衡1)含义: 给定你的战略, 我的战略是最优的, 给定我的战略, 你的战略也是最优的。

即双方在给定的策略下不愿意调整自己的策略。

分类:2)纯战略: 一个战略规定参与人在每一个给定的信息情况下只选择一种特定的行动, 该战略为纯战略3)混合战略:如果一个战略规定参与人在给定信息情况下以某种概率分布随机的选择不同的行动, 该战略为混合战略7.存在性定理: 每一个有限博弈至少存在一个纳什均衡(纯战略或混合战略)8.混合战略纳什均衡1)方法: 支付最大化法、支付等值法9.例: 社会福利博弈无限策略博弈案例:古诺双寡头竞争模型(纳什均衡):二者成本函数相同, 完全了解, 同时决策对比: 垄断市场占优战略<重复剔除占优战略<纯战略纳什均衡<混合战略纳什均衡泽尔腾--完全信息动态博弈—子博弈精炼纳什均衡1.博弈的拓展式表达●信息集: 信息集是指对于特定的参与者, 建立基于其所观察到的所有博弈中可能发生的行动的集合。

具体来说, 在扩展形式的博弈中, 信息集就是一系列的决策节点, 例如:●每个节点只描述一个参与者。

●参与者无法区分信息集里的多个节点。

即是说: 如果信息集有多个节点, 信息集所属的参与者就不知道能往哪个节点移动。

2.如果博弈是完美信息的, 每个信息集只能有一个参与者, 并显示博弈所处的阶段。

博弈论知识点总结

博弈论知识点总结

博弈论知识点总结博弈论是一门研究决策与策略的数学理论,主要涉及博弈参与者之间的冲突、竞争和合作,并通过数学模型和方法来分析博弈参与者的最佳决策和最优策略。

下面是博弈论的一些基本概念和重要知识点的总结。

1. 标准形博弈(Normal Form Game):标准形博弈是博弈论中最常见的形式,参与者同时选择策略,并根据选择产生相应的收益或损失。

标准形博弈由参与者的策略集合、收益函数和参与者的收益组成。

2. 纳什均衡(Nash Equilibrium):纳什均衡是指在一个博弈中,参与者选择的策略组合使得没有任何一个参与者单方面改变自己的策略能够获得更高的收益。

纳什均衡是博弈论的核心概念,用来描述博弈中的稳定状态。

3. 零和博弈(Zero-sum Game):零和博弈是指当其中一个参与者获得了收益,另一个参与者就会产生相应的损失,总收益为零。

在零和博弈中,参与者之间的利益完全相反,他们的决策是对立的。

4. 混合策略(Mixed Strategy):混合策略是指在博弈中,参与者以一定概率选择不同的纯策略。

混合策略在博弈论中用来描述参与者的随机决策,可以通过计算期望收益来确定最优混合策略。

5. 博弈树(Game Tree):博弈树是用来表示博弈过程的树状结构,每个节点代表一个博弈的状态,边代表参与者的策略选择。

博弈树可以用来推导纳什均衡策略和分析博弈过程。

6. 合作博弈(Cooperative Game):合作博弈是指参与者之间可以合作达到更好的结果的博弈形式。

在合作博弈中,参与者通过互相合作,在利益最大化和成本最小化之间进行协商和决策。

7. 非合作博弈(Non-cooperative Game):非合作博弈是指参与者之间独立地做决策,不进行合作和协商的博弈形式。

在非合作博弈中,参与者根据自身利益进行策略选择,涉及策略选择和对手的预测。

8. 进化博弈(Evolutionary Game):进化博弈是将生物进化的概念引入博弈论中的一种模型。

博弈论的基本原理

博弈论的基本原理

博弈论的基本原理博弈论是一门研究决策制定的数学理论,主要关注在冲突或竞争环境下的决策过程。

在博弈论中,参与者根据对手可能的行为进行决策,从而实现最有利于自己的结果。

博弈论的基本原理包括一些重要概念和理论,如纳什均衡、博弈矩阵、博弈策略等。

纳什均衡是博弈论中的重要概念之一。

纳什均衡是指在博弈中所有参与者都选择了最优的策略后,没有人可以通过改变自己的策略来获得更好的结果。

换句话说,纳什均衡是一种稳定的策略选择,使得每个参与者都无法从单方面改变策略而获益。

纳什均衡的概念在博弈论中扮演着至关重要的角色,它帮助人们理解在竞争环境中参与者的决策过程。

博弈矩阵是描述博弈参与者策略选择和结果的重要工具。

博弈矩阵是一个表格,其中列出了所有参与者可能的策略选择和对应的结果。

通过分析博弈矩阵,参与者可以了解每种策略选择的后果,并据此制定最优的决策方案。

博弈矩阵的使用使得博弈过程更加清晰和可计算,有助于参与者做出理性的决策。

博弈策略是参与者在博弈中制定的行动方案。

博弈策略可以分为纯策略和混合策略两种形式。

纯策略是指参与者根据固定的行动方案做出决策,而混合策略则是指参与者根据一定的概率分布随机选择行动方案。

在博弈过程中,参与者根据对手的行为和可能的结果选择最优的策略,以实现自己的利益最大化。

总的来说,博弈论的基本原理帮助我们理解在竞争或冲突环境下的决策过程。

通过分析纳什均衡、博弈矩阵和博弈策略,参与者可以更好地制定决策方案,实现最有利于自己的结果。

博弈论的研究不仅有助于理解个体决策行为,也对组织、企业和政府的决策制定具有重要的启示意义。

因此,掌握博弈论的基本原理对于提高决策效率和优化资源配置具有重要意义。

博弈论的主要均衡概念及其比较

博弈论的主要均衡概念及其比较

博弈论的主要均衡概念及其比较【摘要】均衡概念是构成整个博弈论的基石,对博弈论均衡概念的透彻理解将对博弈论的学习打下良好的基础。

本文首先将博弈划分为不同的类型,并对主要的均衡概念进行了数学描述,最后对不同的均衡概念进行了比较。

【关键词】博弈论;纳什均衡;重复博弈博弈论在现代经济学中占据着相当重要的位置,在微观经济学的本科教学环节中,如果将博弈论这一部分排除在外,那么教学内容是不完整的,并且和现代微观经济学的发展严重脱节。

但是由于课时以及学生接受能力的限制,对博弈论的内容进行全面深入地讲解难以做到,因此,将博弈论的基本概念和方法清晰地向本科学生进行展示就显得十分重要了。

在博弈论的基本概念当中,最重要的当属博弈均衡的概念,这些概念的掌握有助于学生把握博弈论的整体框架,并对博弈论的后续学习至关重要。

因此,本文将主要的博弈均衡概念进行分类和表述,并对不同的博弈概念进行比较,以期对博弈论的教学有所助益。

一、博弈的主要类型博弈构成的基本要素包括:1、参与人(1~N);2、各个参与人各自可选择的行动集合Ai={ai};3、参与人i的策略Si,给定信息集,该策略决定在博弈的每一阶段他选择的行动;4、参与人的收益Ui (S1,S2…SN)。

依据不同的分类标准,博弈可以被划分为不同的类型。

1、静态博弈、动态博弈和重复博弈博弈各方同时选择策略的博弈称为静态博弈,如猜硬币、投标等,静态博弈一般可以用支付矩阵来表达。

动态博弈是指博弈各方按照一定的先后次序进行策略的选择,典型的例子如对弈,动态博弈一般可以用“博弈树”来表达。

Game Theory 中文翻译为博弈论也是分别用静态和动态博弈的典型代表博彩和对弈的简称而来。

重复博弈是指同一个博弈(静态或动态)反复进行所构成的博弈过程,如体育比赛中的多局赛制等。

2、完全信息和不完全信息博弈完全信息博弈是指每个参与人都了解其他参与人的收益函数的博弈,不完全信息博弈是指参与人并不完全了解其他参与人收益函数的博弈。

博弈论平衡点

博弈论平衡点

博弈论平衡点
博弈论是一门研究决策制定的数学理论,它研究的是不同参与者之间的冲突和合作关系。

在博弈论中,平衡点是一个重要的概念,它指的是在参与者之间达成的一种稳定状态,使得任何一方都没有动机改变自己的策略。

在博弈论中,平衡点有多种形式,其中最常见的是纳什均衡。

纳什均衡是由数学家约翰·纳什提出的概念,它指的是在参与者之间达成的一种策略组合,使得每个参与者都在给定其他参与者的策略下选择自己的最佳策略。

换句话说,当每个参与者都假设其他参与者不会改变自己的策略时,自己的策略也是最优的,这种状态就是纳什均衡。

在现实生活中,很多决策制定都可以用博弈论的理论来解释。

比如,在商业竞争中,不同企业之间的定价策略就可以看作是一个博弈论的过程。

而在政治领域,不同国家之间的外交政策也可以看作是一个博弈论的过程。

在这些决策中,参与者都在努力寻找一种最优的策略,使得自己能够获得最大的利益。

然而,要找到一个真正的平衡点并不容易。

因为在现实生活中,参与者之间的信息是不对称的,他们都有可能会采取不同的行动来追求自己的利益。

而且在某些情况下,平衡点可能并不稳定,一旦有参与者改变了自己的策略,就会导致整个博弈过程的变化。

因此,要找到一个真正的平衡点需要参与者之间的不断博弈和调整。

总的来说,博弈论的平衡点是一个重要的概念,它可以帮助我们更好地理解决策制定的过程。

在现实生活中,我们也可以运用博弈论的理论来分析和解决问题,找到参与者之间的最优策略。

博弈论贝叶斯纳什均衡

博弈论贝叶斯纳什均衡

博弈论贝叶斯纳什均衡一、引言博弈论是研究决策者在相互影响中做出决策的科学。

贝叶斯纳什均衡是博弈论中的一种解法,它考虑了不完全信息下的决策问题,被广泛应用于经济学、政治学、计算机科学等领域。

本文将从博弈论和贝叶斯纳什均衡两个方面进行详细介绍。

二、博弈论1.基本概念博弈论中有三个基本概念:玩家、策略和收益。

玩家是参与游戏的实体,可以是个人、组织或国家等。

每个玩家都有自己的目标和利益。

策略是指玩家在游戏中做出的选择。

每个玩家都有多种可选的策略,每种策略都对应着不同的收益。

收益是指每个玩家在游戏结束后获得的利益或损失。

收益可以用数字表示,也可以用其他方式来描述。

2.分类根据游戏参与者数量和信息情况,博弈论可以分为以下几类:(1)单人博弈:只有一个玩家参与游戏,如囚徒困境。

(2)双人博弈:有两个玩家参与游戏,如零和博弈、非零和博弈等。

(3)多人博弈:有多个玩家参与游戏,如合作博弈、竞争博弈等。

(4)完全信息博弈:每个玩家都知道其他玩家的策略和收益情况,如国际象棋。

(5)不完全信息博弈:每个玩家只知道自己的策略和收益情况,不知道其他玩家的策略和收益情况,如扑克牌。

3.解法解决一个博弈问题需要找到一种最优的策略组合,使得每个玩家都能够获得最大化的收益。

常见的解法有纳什均衡、帕累托最优解等。

三、贝叶斯纳什均衡1.基本概念贝叶斯纳什均衡是指在不完全信息下的多人博弈中,每个玩家根据已知信息做出最优选择所形成的策略组合。

它包含两个部分:先验概率和后验概率。

先验概率是指每个玩家在游戏开始前对其他玩家的策略和收益情况所做的预测。

后验概率是指每个玩家在游戏进行过程中,根据已知信息对其他玩家的策略和收益情况所做的修正。

2.求解方法贝叶斯纳什均衡的求解方法可以分为两种:直接求解和迭代求解。

直接求解是指通过计算每个玩家在不同信息情况下的期望收益,找到满足条件的最优策略组合。

这种方法适用于信息量较少、博弈参与者较少的情况。

迭代求解是指通过反复修正先验概率和后验概率,最终找到满足条件的最优策略组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博弈论的主要均衡概念及其比较【摘要】均衡概念是构成整个博弈论的基石,对博弈论均衡概念的透彻理解将对博弈论的学习打下良好的基础。

本文首先将博弈划分为不同的类型,并对主要的均衡概念进行了数学描述,最后对不同的均衡概念进行了比较。

【关键词】博弈论;纳什均衡;重复博弈博弈论在现代经济学中占据着相当重要的位置,在微观经济学的本科教学环节中,如果将博弈论这一部分排除在外,那么教学内容是不完整的,并且和现代微观经济学的发展严重脱节。

但是由于课时以及学生接受能力的限制,对博弈论的内容进行全面深入地讲解难以做到,因此,将博弈论的基本概念和方法清晰地向本科学生进行展示就显得十分重要了。

在博弈论的基本概念当中,最重要的当属博弈均衡的概念,这些概念的掌握有助于学生把握博弈论的整体框架,并对博弈论的后续学习至关重要。

因此,本文将主要的博弈均衡概念进行分类和表述,并对不同的博弈概念进行比较,以期对博弈论的教学有所助益。

一、博弈的主要类型博弈构成的基本要素包括:1、参与人(1~N);2、各个参与人各自可选择的行动集合Ai={ai};3、参与人i的策略Si,给定信息集,该策略决定在博弈的每一阶段他选择的行动;4、参与人的收益Ui (S1,S2…SN)。

依据不同的分类标准,博弈可以被划分为不同的类型。

1、静态博弈、动态博弈和重复博弈博弈各方同时选择策略的博弈称为静态博弈,如猜硬币、投标等,静态博弈一般可以用支付矩阵来表达。

动态博弈是指博弈各方按照一定的先后次序进行策略的选择,典型的例子如对弈,动态博弈一般可以用“博弈树”来表达。

Game Theory 中文翻译为博弈论也是分别用静态和动态博弈的典型代表博彩和对弈的简称而来。

重复博弈是指同一个博弈(静态或动态)反复进行所构成的博弈过程,如体育比赛中的多局赛制等。

2、完全信息和不完全信息博弈完全信息博弈是指每个参与人都了解其他参与人的收益函数的博弈,不完全信息博弈是指参与人并不完全了解其他参与人收益函数的博弈。

3、完美信息和不完美信息博弈在动态博弈中,一参与人完全了解在自己行为之前的博弈进程,则称此参与人为有完美信息的参与人,如果博弈中所有的参与人都具有完美信息,则称此动态博弈为完美信息的动态博弈。

反之,如果在存在具有不完美信息的参与人(参与人不完全了解自己行为之前的博弈进程),则称此动态博弈为不完美信息动态博弈。

4、合作博弈与非合作博弈合作博弈允许参与人之间自愿签订有约束力的协议,而非合作博弈的参与人则完全按照个人理性做出策略的选择。

在囚徒困境博弈中,非合作博弈得到的结果是双方均坦白,而在合作博弈的情况下则可能得到双方均不坦白的更好的结果。

5、完全理性和有限理性博弈由具备完全理性的参与各方所进行的博弈称为完全理性博弈。

存在有限理性博弈方的博弈称为有限理性博弈。

将上述不同的博弈类型进行组合,可以得到更多类型的博弈,如不完全、完全信息博弈和静、动态博弈可以组合为不完全信息静态博弈、不完全信息动态博弈,完美完全信息博弈、完美不完全信息博弈、不完美不完全信息博弈等。

二、博弈论主要的均衡概念1、上策均衡如果一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,那么该策略组合称为一个上策均衡。

2、纳什均衡(1)纯策略纳什均衡在博弈G={S1……Sn;u1……un}中,如果由各个博弈方的各一个策略组成的某个策略组合(s1*,……sn*)中,任一博弈方的策略si*,都是对其余博弈方策略组合s-i*的最佳策略,即:ui(si*,s-i*)≥ui(si,s-i*)对于任一((1~N))都成立,则称(s1*,……sn*)为一个“纯策略纳什均衡” 。

(2)混合策略纳什均衡混合策略:在博弈G={S1……Sn;u1……un}中,博弈方i的策略空间为Si=(si1……sik),则博弈方i以概率分布(pi1……pik)在其策略空间中进行选择,由此形成的策略称为“混合策略”。

其中0≤ pij≤1,且。

将纯策略拓展到混合策略,相应的纳什均衡称为混合策略纳什均衡。

事实上,纯策略纳什均衡是混合策略纳什均衡的一个特例。

根据纳什定理我们知道,每一个有限博弈(参与人和策略空间均为有限)均存在至少一个混合策略的纳什均衡。

3、防共谋均衡如果一个博弈的某个策略组合满足以下要求:1、没有任何单个博弈方的偏离了会改变博弈的结果;2、给定选择偏离的博弈方有再次偏离的自由时,没有任何两个博弈方的串通会改变博弈的结果;3、以此类推,直到所有博弈方的串通都不会改变博弈的结果。

满足上述要求的均衡策略组合称为“防共谋均衡”。

4、子博弈完美纳什均衡如果在一个完美信息的动态博弈中,各博弈方的策略构成一个策略组合满足:在整个动态博弈及它所有子博弈中都构成纳什均衡,那么这个策略组合成为该动态博弈的一个“子博弈完美纳什均衡”。

5、颤抖手均衡如果有限策略博弈的一个纳什均衡满足对每个博弈方i都存在一严格混合策略序列{},使得(1),(2)对于任意正整数m,都是纳什均衡,那么,称为一个“颤抖手均衡”。

这里的严格混合策略指的是每一个策略都有一个正的被选取的概率。

6、完美贝叶斯均衡当博弈的一个策略组合及其相应的判断满足以下要求时,称为一个“完美贝叶斯均衡”:(1)在各个信息集,轮到选择的博弈方必须具有一个关于博弈达到该信息集中每个节点可能性的判断,对非单节点信息集,一个判断就是博弈达到该信息集中各个节点的概率分布,对单节点而言,则可理解为判断达到该节点的概率为1。

(2)给定各博弈方的“判断”,他们的策略必须是“序列理性”的。

所谓序列理性是指在各个信息集,给定轮到选择博弈方的判断和其他博弈方的后续策略,该博弈方的选择及其后续策略必须使自己的期望收益最大化。

(3)在均衡路径上的信息集初,判断由贝叶斯法则和各博弈方的均衡策略决定。

(4)在不处于均衡路径上的信息集处,判断由贝叶斯法则和各博弈方在此处可能有的均衡策略决定。

7、贝叶斯纳什均衡在静态贝叶斯博弈中G={A1,…,An;T1,…,Tn;p1,…,pn;u1,…un}中,如果对任意博弈方i和他的每一种可能的类型,Si*(ti)所选择的行动ai 都能满足:max则称策略组合S*=(S1*,…,Sn*)为G的一个贝叶斯均衡。

8、分离均衡和混合均衡在不完美信息博弈中,在不同情况下(如拥有商品的类型不同)的完美信息博弈方采取相同行为的市场均衡,称为混合均衡(pooling equilibrium);反之,在不同情况下,完美信息博弈方采取完全不同行为的市场均衡称为分离均衡(seperating equilibrium)。

三、不同均衡概念的比较上策均衡一般适用于静态博弈,虽然具有很好的稳定性,但是在对博弈进行分析的局限性较强,因为在很多博弈中,并不是所有的参与人都具有上策。

在博弈论的各种均衡概念中,纳什均衡处于核心的位置。

这是因为:1、纳什均衡是分析博弈的有力工具,可以对大量的博弈结果做出有效地判断,不论是静态还是动态博弈,比如运用纳什均衡可以预测古诺寡头市场上各个厂商的产量,也可以用纳什均衡预测动态的斯塔博格模型中的垄断厂商的产量;2、纳什定理表明了纳什均衡的普遍存在性,这说明了在博弈环境下纳什均衡概念本质上的合理性;3、其他的均衡概念基本上都是由纳什均衡衍生而来,如子博弈完美纳什均衡是将纳什均衡扩展到了每个子博弈上面,贝叶斯纳什均衡则是将纳什均衡延伸到了不完全信息博弈当中。

纳什均衡的主要问题首先,一个博弈往往存在多个纳什均衡,而运用纳什均衡概念本身无法再对这些均衡进一步分析;其次纳什均衡不能排除博弈策略中所包含的不可信的行为设定,不能解决动态博弈的相机抉择所引起的可信性问题,这导致了纳什均衡的内在不稳定性。

利用逆推归纳法,子博弈完美均衡有效地排除了纳什均衡中不可信的行为设定,从而提高了纳什均衡的稳定性,但是逆推归纳法也有严重的弱点。

首先,逆推归纳法只能分析明确设定的博弈问题,要求博弈的结构,包括次序、规则、和收益情况都非常清楚,并且各个博弈方了解博弈结构,并相互指导对方了解博弈结构,而现实问题往往与这些要求相去甚远;其次对于阶段比较多,比较复杂的动态博弈,比如对弈,运用逆向归纳法的工作量则变得极为庞大,以至于借助计算机也无法完成;如果遇到两条收益相同的路径,逆推归纳法则无法继续进行下去。

逆推归纳法更大的问题是对博弈方的理性要求太高,不仅要求所有博弈方都有高度的理性,不允许博弈方犯任何错误,而且要求所有博弈方了解和信任对方的理性,形成“理性的共同知识”,这些条件在现实中同样难以得到满足。

颤抖手均衡的概念在一定程度上解决了子博弈完美均衡和逆推归纳法所遇到的问题。

颤抖手均衡考虑到参与人难免会犯一些错误而舍去了由于参与人小概率的偏移而导致整个策略组合不可行的均衡路径,因而具有更高的稳定性。

但是颤抖手均衡本身并没有解决博弈方犯错误的问题,因而也不能保证它的预测就是实际博弈的结果。

贝叶斯纳什均衡和完美贝叶斯均衡是针对不完全和不完美信息博弈问题提出的。

造成不完全和不完美信息博弈问题的根本原因是参与各方的信息不对称,而这在现实的经济活动中是普遍存在的,如在保险市场、信贷市场、劳动力市场、柠檬市场、拍卖市场上的情形。

分析和解决信息不对称问题对经济活动造成的影响是现代信息经济学的核心问题,因而博弈论成为信息经济学研究的有力工具,现代信息经济学取得的迅猛发展和博弈论广泛运用分不开的。

完美贝叶斯均衡是针对不完美信息博弈提出的均衡概念,而贝叶斯纳什均衡是针对不完全信息博弈提出的均衡概念。

海萨尼通过引入一个虚拟的自然博弈方将原来的不完全信息博弈问题转换为完全但不完美信息博弈问题,使得动态贝叶斯博弈分析就可以利用完美贝叶斯均衡、分离均衡、混合均衡等概念和方法进行分析。

四、结束语本文对博弈论中主要的均衡概念进行了描述和比较分析。

上策均衡是最直观的博弈均衡概念,但适用范围非常有限。

纳什均衡是博弈论的理论基石,从本质上刻画了处于博弈环境(即每个参与人的收益受到整个博弈策略组合的影响)的均衡状态。

子博弈完美均衡解决了纳什均衡中不可置信威胁的问题,颤抖手均衡将博弈方犯错误的可能性考虑了进来;而贝叶斯纳什均衡和完美贝叶斯均衡则可以用来处理信息不完美和不完全问题。

当然,本文所涉及的博弈均衡概念基本上都是关于非合作和完全理性下博弈(颤抖手均衡虽然考虑了博弈方可能会犯错误的可能性,但这并不意味这博弈方的有限理性)。

关于合作博弈和有限理性博弈也发展出了一些均衡概念,如纳什谈判解、夏普利值、进化稳定策略等,另外关于非合作博弈也有一些均衡概念本文没有涉及。

随着博弈论理论的不断发展和实际运用的日趋广泛,博弈均衡的概念将会得到不断地精炼和更新。

参考文献:[1]谢识予,经济博弈论(第三版)[M],复旦大学出版社,2006。

相关文档
最新文档