弹塑性力学高分复习习题
弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
《工程弹塑性力学》习题

《工程弹塑性力学》习题1、(1)试分析下列应力函数可解什么样的平面应力问题:2232343y q c xy xy c F +⎪⎪⎭⎫ ⎝⎛-=ϕ (2)为使函数φ(r ,z)=C(r 2十z 2)n 能够作为轴对称情况下的应力函数,式中n 应为何值?2、已知下列应力状态:Pa ij 5101138303835⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=σ 试求八面体正应力与剪应力。
3、已知材料的真实应力应变曲线为:B T =σє n 或 m T c εσ=,试证:n e m --=14、试证: ()dV u dS u n dV u u i Vj ij i j s ij i j j i ij V ⎰⎰⎰⎰⎰⎰⎰-=+,,,21σσσ 5、试证图示悬臂梁的应变能公式及泛函ΠP 为:()dx w EJ U l 20''21⎰= 及 ()()()l Fw l Mw Pw dx w EJ l l P +--=∏⎰⎰0'20''21 并说明其附加条件6、试求图示斜坡的最大承载能力。
7、对Mises 屈服条件,证明8、已知理想弹塑性材料的悬臂梁,一端受集中力P 作用,如此杆的截面ij ij ij s J f =σ∂∂=σ∂∂2为矩形,其尺寸为h b 2⨯,弹性模量E ,屈服极限为s σ,试求作用点的挠度值。
9、试证明虚位移与虚应力原理是下列高斯散度定理的特殊情况: dS u T dS u T dV u F dV i S i i S i i V i ij V ij uT ⎰⎰⎰⎰⎰⎰⎰⎰++=εσ10、名词解释1、主平面、主应力、应力主方向2、李兹法3、工程应变4、滑移线5、Drucker 公设6、伽辽金法7、壳体、壳体的厚度、中曲面8、屈服面、屈服函数9、增量理论10、完全解11、简答题1、什么是八面体及其特点?2、阐述弹性力学的平面问题的基本假设?3、矩形、圆形薄板弯曲的三类边界条件的区别?4、在大应变问题中,为什么只有用自由应变才能得出合理的结果?5、Tresca 和Mises 的屈服条件的比较?6、论述薄板小挠度弯曲理论的基本假定?7、各向均匀受压对金属材料体积的影响及写出Bridgman 提出p 与单位体积的关系式。
《弹塑性力学》习题-26页精品文档

已知桁架各杆 EA 相同,材料的弹性关系
为 = E 。 A y l
P
C
x
D
B
l
28.09.2019
21
题2-3 左图示梁受荷载
q
作用,试利用虚位移原 M
理 或最小势能原理导出
EI
x
梁的平衡微分方程和力 y
l
的边界条件。
q
题2-4 利用最小余能
原理求左图示梁的弯
EI
x
矩。
l y
28.09.2019
题2-1 图示结构各杆等 截面杆,截面面积为A, 结点C承受荷载P作用, 材料应力—应变关系分
别为(1) =E ,(2) =E 1/2 。试计算结构
的应变能U 和应变余能 Uc。
A
ly
B
P
Cx
C’
l
28.09.2019
20
题2-2 分别利用虚位移原理、最小势能原
理和最小余能原理求解图示桁架的内力。
弹塑性力学部分习题
第一部分 静力法内容
28.09.2019
1
题 1-1 将下面各式展开
(1). 1 2 ij (ui,juj,i) (i,j1,2,3) (2). U01 2ij ij (i,j1,2,3)
(3). F i n iG u i,j u j,i i j e
x
y
其中 V 是势函数,则应力分量亦可用应
力函数表示为
x y 22V,y x 22V,xy x2 y
28.09.2019
11
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
34Fcxy3xcy23q2y2
ox
弹塑性力学习题集_很全有答案_

式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
题 2—41 图
题 2—42 图
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性理论历年考题

2.9已知应力分量中0x y xy σστ===,求三个主应力123σσσ≥≥。
解 在0x y xy σστ===时容易求得三个应力不变量为1z J σ=,2222yz zx J τττ=+=,30J =特征方程变为32222()0z z σσστσσσσστ--=--=求出三个根,如记1τ=112312,0,2z z σστσσστ=+==-记123σσσ≥≥4.10有一长度为l 的简支梁,在x a =处受集中力P 作用,见题图4.6,试用瑞兹法和伽辽金法求梁中点的挠度。
题图4-6解一:用瑞兹法求解设满足梁端部位移边界条件0,0x l w ==的挠度函数为sinm mm xw B lπ=∑ (1) 梁的变形能U 及总势能∏为2224423001224llmmM EI d w EI U dx dx m BEI dx l π⎛⎫=== ⎪⎝⎭∑⎰⎰443sin 4m mm m EI m a m B P B l l ππ∏=-∑∑ 由0mB ∂∏=∂得 3442sin m m a Pl l B EI mππ=344sinsin 2mm a m xPl l l w EI mπππ=∑(2)以上级数的收敛性很好,取很少几项就能得到满意的近似解,如P 作用于中点(2a l =)时,跨中挠度为(只取一项)3342248.7x l Pl Pl w EI EIπ=== 这个解与材料力学的解(348Pl EI)相比,仅相差1.5%。
解二:用伽辽金法求解1.当对式(1)求二阶导数后知,它满足220,0x ld wdx==,亦即满足支承处弯矩为零的静力边界条件,因此,可采用伽辽金求解。
将式(1)代入伽辽金方程,注意到qdx P =,且作用在x a =处,可得420sin sin 0lm m m x m a EIB dx P l l l πππ⎡⎤⎛⎫⎛⎫-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎰ 3442sinm m aPl l B EI mππ= 求出的挠度表达式与(2)一致。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。
弹塑性力学(工学+专业+工程硕士研究生)复习题+

复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ; 03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。
弹塑性力学复习提纲和考试习题

弹塑性⼒学复习提纲和考试习题《弹塑性⼒学》复习提纲1. 弹性⼒学和材料⼒学在求解的问题以及求解⽅法⽅⾯的主要区别是什么?研究对象的不同:材料⼒学,基本上只研究杆状构件,也就是长度远远⼤于⾼度和宽度的构件。
⾮杆状结构则在弹性⼒学⾥研究研究⽅法的不同:材料⼒学⼤都引⽤⼀些关于构件的形变状态或应⼒分布的假定,得到的解答往往是近似的,弹性⼒学研究杆状结构⼀般不必引⽤那些假定,得到的结果⽐较精确。
并可⽤来校核材料⼒学得出的近似解。
2. 弹性⼒学有哪些基本假设?(1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微⼩的3. 弹性⼒学有哪⼏组基本⽅程?试写出这些⽅程。
(1)平⾯问题的平衡微分⽅程:平⾯问题的⼏何⽅程:平⾯应⼒问题的物理⽅程:(在平⾯应⼒问题中的物理⽅程中将E换为,换为就得到平⾯应变问题的物理⽅程)(2)空间问题的平衡微分⽅程;空间问题的⼏何⽅程;空间问题的物理⽅程:4. 按照应⼒求解和按照位移求解,其求解过程有哪些差别?(1)位移法是以位移分量为基本未知函数,从⽅程和边界条件中消去应⼒分量和形变分量,导出只含位移分量的⽅程和相应的边界条件,解出位移分量,然后再求形变分量和应⼒分量。
要使得位移分量在区域⾥满⾜微分⽅程,并在边界上满⾜位移边界条件或应⼒边界条件。
(2)应⼒法是以应⼒分量为基本未知函数,从⽅程和边界条件中消去位移分量和形变分量,导出只含应⼒分量的⽅程和边界条件,解出应⼒分量,然后再求出形变分量和位移分量。
满⾜区域⾥的平衡微分⽅程,区域⾥的相容⽅程,在边界上的应⼒边界条件,其中假设只求解全部为应⼒边界条件的问题。
5. 掌握以下概念:应⼒边界条件和位移边界条件;圣⽂南原理;平⾯应⼒与平⾯应变;逆解法与半逆解法。
位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每⼀点,位移函数u和v和应满⾜条件=,=(在上)应⼒边界条件:若在部分边界上给定了⾯⼒分量(s)和(s),则可以由边界上任⼀点微分体的平衡条件,导出应⼒与⾯⼒之间的关系式。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学考题史上最全总结_没有之一

5678已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
解:球应力张量作用下,单元体产生体变。
体变仅为弹性变形。
偏应力张量作用下单元体只产生畸变。
塑性变形只有在畸变时才可能出现。
关于岩土材料,上述观点不成立。
9一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)解:,满足,是应力函数。
相应的应力分量为:,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:,,;③由本构方程和几何方程得:④积分得:⑤⑥在x=0处u=0,则由式⑤得,f1(y)= 0;在y=0处v=0,则由式⑥得,f2(x)=0;因此,位移解为:附,对比另一方法:例,z 方向(垂直于板面)很长的直角六面体,上边界受均匀压力p 作用,底部放置在绝对刚性与光滑的基础上,如图所示。
不计自重,且 h >>b 。
试选取适当的应力函数解此问题,求出相应的应力分量。
2b 2b hpOx解答:1、确定应力函数分析截面内力:()()()0,0,0===x q x Q x M ,故选取,022=∂∂=xy φσ 积分得:()()y f y xf 21+=φ,代入相容方程,有:()()()()0242414422444=+=∂∂+∂∂∂+∂∂y f y xf yy x x φφφ, 要使对任意的 x 、y 成立,有()()()()0,04241==y f y f ,积分,得:()()232231,Ey Dy y f Cy By Ay y f +=++=,2323Ey Dy Cxy Bxy Axy ++++=φ。
2、计算应力分量()E Dy B Ay x yx 262622+++=∂∂=φσ, ,022=∂∂=x y φσC By Ay yx xy---=∂∂∂-=2322φτ3、由边界条件确定常数左右边界(2b y ±=):0=y σ;0=xy τ;0,0432==-±-B C Bb Ab 上边界(h x =):,22pb dy bbx -=⎰-σ,022=⎰-dy b b xy τ,022=⎰-dy y b b x σ2,p E O D C A -==== 4、应力解答为:0,0,==-=xy y x p τσσ10已知一半径为R =50mm ,厚度为t =3mm 的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案

解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学大题

已知某材料在纯剪作用下应力—应变关系如图所示,弹性剪切模量为G ,Poisson 比为ν,剪切屈服极限为s τ,进入强化后满足const G d d ==,/γτ。
若采用Mises 等向硬化模型,试求 (1)材料的塑性模量(2)材料单轴拉伸下的应力应变关系。
解:(1)因为τττγ221232*123121J d J h d p⎥⎥⎦⎤⎢⎢⎣⎡= 所以 τγd hd p *3*1=,3*3G d d h p==γτ (2) 弹性阶段。
因为)1(2υ+=EG ,所以)1(2υ+=G E 由于是单轴拉伸,所以εσE = 塑性阶段。
ijp ij fd d σλε∂∂= 1111)1(σσσε∂∂∂∂=fd f h d kl kl p解:在板的固定端,挠度和转角为零。
显然:()0)(b y ==±=±=ωωa x 满足0)(2)(2)(222221=-⋅-=∂∂±=b y x a x C xa x ω故222222111)()(b y a x C w C w --==满足所有的边界条件。
02))((2)y(222221=⋅--=∂∂±=y b y a x C b y ω2、用Ritz 法求解简支梁在均布荷载作用下的挠度(位移变分原理)步骤:(1)设挠度的试验函数 w (x ) = c 1x (l -x )+c 2x 2(l 2-x 2)+…显然,该挠度函数满足位移边界w (0) =0,w (l ) = 0。
(2)求总势能()⎰⎰-''=+=∏l 002qwdx dx w EI 21lV U 仅取位移函数第一项代入,得()()⎰⎥⎦⎤⎢⎣⎡---=∏l 0121dxx l qx c c 2EI 21(3)求总势能的极值EI24ql c 0c 211==∂∏∂ 代入挠度函数即可1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x yD V b y b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q EI l y q EI l x x
y
22
题2-5 利用虚位移原理的近似法或Ritz 法 求解图示梁的挠曲线。 P (1)悬臂梁受两 个集中力 P 作用。
y
EI l/2 l/2
P
x
( 2 )简支梁受均布 荷载 q 作用,设: v =B1x(x-l)+B2x2(x-l) 。
2014-10-13
2014-10-13
P
A C
x
C’
l
B
y
l
20
题2-2 分别利用虚位移原理、最小势能原 理、虚应力原理和最小余能原理求解图示 桁架的内力。已知桁架各杆 EA 相同,材 料的弹性关系为 = E 。
A C P
l
B
2014-10-13
y
x
D
l
21
题2-3 左图示梁受荷载 作用,试利用虚位移原 M 理 或最小势能原理导出 梁的平衡微分方程和力 的边界条件。 题 2-4 利用最小余能 原理求左图示梁的弯 矩。
3
o
x
2c
l
y
2014-10-13 12
题1-14 图示无限大楔形体受水平的常体 积力 q 作用,设应力函数为
ax bx y cxy ey
3 2 2
o
3
试(1)列出求解的待定 系数的方程式,(2)写 出应力分量表达式。
2014-10-13
q
x
y
13
题1-15 设弹性力学平面问题的体积力为 零,且设
2014-10-13
9
题1-11 设有一无限长的薄板,上下两端固 定,仅受竖向重力作用。求其位移解答。 设: u = 0、 v = v(y)
y
g
b
o
x
2014-10-13
10
题1-12 试证明,如果体力虽然不是常量, 但却是有势力,即
V X , x V Y y
其中 V 是势函数,则应力分量亦可用应 力函数表示为
o
450
l
y
h 题1-9图
x
2014-10-13 8
题1-10 图示矩形薄板,厚度为单位1。 已知其位移分量表达式为
O
y
l
h h
g 2 2 u 2 lx ( x y ) , 2E
v
g
E
l x y
x
式中 E、 为弹性模量和泊松系数。 试(1)求应力分量和体积力分 量;(2)确定各边界上的面力。
w y)为待定函数, 试写出应力分量的表达式和位移法方程。
2014-10-13
5
题1-6 半空间体在自重 g 和表面均布压力 q 作用下的位移解为 u = v = 0,
1 g 2 2 w q h z h z 2G 2
q EI l x
y
23
题2-6 设有一无限长的薄板,上下两端固 定,仅受竖向重力作用。利用Ritz 法求 y 其位移解答。
g
b
o
x
设位移的近似解为 u=0, v = B1 y(y-b), 求其位移解答。
2014-10-13
24
题2-7 1.试写出伽辽金法在梁弯曲问题的 求解方程。 2. 利用伽辽金法求图示简支梁的近似 解,设梁挠度的近似解为 v= B1 sin(x/l) 。
e 为体积应变
2014-10-13
2
题1-2 证明下面各式成立,
(1). eijk ai aj = 0 (2).若 ij = ji , ij = - j i ,
则 ij ij = 0
题1-3
2
利用指标符号推导位移法基本方程
G ui G u j , ji Fbi 0
试求 x/z (应力比).
2014-10-13
6
O
题1-7 图示梯形截面墙体完 h A 全置于水中,设水的密度为, C 试写出墙体各边的边界条件。
h B
x
y
D
题1-8 图示薄板两端受均匀拉力作用,试 确定边界上 A点和O点的应力值。
o
A
q
2014-10-13
x q
7
y
题1-9 图示悬臂薄板,已知板内的应力分 量为 x=ax、y=a(2x+y-l-h)、xy=-ax, 其 中a为常数(设a 0)。其余应力分量为零。 求此薄板所受的体力、边界荷载和应变。
q EI l y
2014-10-13 25
x
P (1) sin , (2) Pr sin , r
试(1)检验该函数是否可以作为应力 函数;(2)如果能作为应力函数,求 应力分量的表达式。
2014-10-13 14
题1-16 圆环匀速()转动,圆盘密度为 ,且设 ur 表达式为
C2 (1 ) 2 3 ur C1r r r 8E
题1-20 图示无体力的楔形体,顶端受集 中力偶作用,应力函数取为
(r, )= Acos2 + Bsin2 + C
试( 1 )列出求解待定系数 A 、 B 、 C 的方程式,( 2 ) 写出应力分量表达式。
o
M y
/2/2
x
2014-10-13
19
第二部分 能量法内容 题 2-1 图示结构各杆等 截面杆,截面面积为A, 结点 C 承受荷载 P 作用 , 材料应力—应变关系分 别为(1) =E ,(2) =E 1/2 。试计算结构 的应变能U 和应变余能 Uc。
2
r
b
x
a
y
试由边界条件确定 C1 和 C2 。
2014-10-13
15
题1-17 图示无体力的矩形薄板,薄板内有 一个小圆孔(圆孔半径a 很小),且薄板受 纯剪切作用,试求孔边最大和最小应力。
q
x
y
q
2014-10-13
16
题1-18 图示一半径为a 的 圆盘(材料为E1,1), 外 套以a r b 的圆环(材 料为E2, 2),在 r= b 处 作用外压q,设体积力为零, 试写出该问题解的表达式 以及确定表达式中待定系 数的条件
x 2 V , y 2 V , xy y x xy
2 2 2
2014-10-13 11
题1-13 试分析下列应力函数能解决什么 问题?设无体力作用。
3F xy q 2 xy y 2 4c 3c 2
2014-10-13
q
a b
17
题1-19 图示半无限平面薄板不计体力。已 知在边界上有平行边界的面力q 作用。应 力函数取为 (r, )= r2(Asin2 + B )/2 试(1)列出求解待定系数 A、B 的方程 式,(2)写出应力分量表达式。
y q r o x
2014-10-13 18
2014-10-13
在V上
3
题1-4 等截面柱体在自重作用下,应力解为
x=y=xy=yz=zx=0 , z=gz,试求位移。
z l y
Fbz g
x
x
2014-10-13
4
题1-5 等截面直杆(无体力作用),杆轴 方向为 z 轴,已知直杆的位移解为
u kyz
v kxz
弹塑性力学部分习题
第一部分 静力法内容
2014-10-13
1
题 1-1 将下面各式展开
1 (i, j 1, 2 , 3 ) (1). ij (ui , j u j ,i ) 2 1 (i, j 1,2,3) (2). U 0 ij ij 2
( 3).
Fi ni Gui , j u j ,i ij e