苏教版高中数学选修独立性检验教案

合集下载

苏教版选修1-2高中数学1.1《独立性检验》

苏教版选修1-2高中数学1.1《独立性检验》
课前探究学习 课堂讲练互动
甲厂 乙厂 合计 优质品 非优质品 合计
2 n ad - bc 附:χ2= , a+bb+ca+cb+d
P(χ2≥x0) x0
0.05
0.01
3.841 6.635
课前探究学习
课堂讲练互动
解 (1)甲厂抽查的产品中有 360 件优质品,从而甲厂生产的零件 360 的优质品率估计为500=72%; 乙厂抽查的产品中有 320 件优质品,从而乙厂生产的零件的优质 320 品率估计为500=64%. (2) 甲厂 乙厂 合计 优质品 360 320 680
课前探究学习 课堂讲练互动
【题后反思】 统计的基本思维模式是归纳,通过部分数据的性质 来推测全部数据的性质,从数据上体现的只是统计关系,而不是 因果关系.
课前探究学习
课堂讲练互动
【训练3】 某企业有两个分厂生产某种零件,按规定内径尺寸(单 位: mm) 的值落在 [29.94,30.06) 的零件为优质品.从两个分 厂生产的零件中各抽出了 500 件,量其内径尺寸,得结果如
(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,
但也不能作出结论“H0成立”,即不能认为Ⅰ与Ⅱ没有关 系.
课前探究学习
课堂讲练互动
题型一 利用χ2判定两个变量间的关系 【例1】 某电视台联合相关报社对“男女同龄退休”这一公众关
注的问题进行了民意调查,数据如下表所示:
赞同 男 女 合计 198 476 674
可能性为1%.
课前探究学习 课堂讲练互动
名师点睛 1.独立性检验
2 n ad - bc (1)利用随机变量 χ2= ,(其中 n=a+b a+bc+da+cb+d
+c+d 为样本容量),来确定在多大程度上可以认为“两个分 类变量有关系”的方法称为两个分类变量的独立性检验.

苏教版选修(2-3)3.1《独立性检验》word学案

苏教版选修(2-3)3.1《独立性检验》word学案

独立性检验
教学目标:
1、通过对典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用
2、通过对数据的收集、整理和分析,增强学生的社会实践能力,培养学生分析问题、解决问题的能力。

教学重点:独立性检验的基本思想与方法 教学难点:独立性检验的初步应用 一、课前自主学习:
1、事件A 与B 独立,则P(AB)= ,=)(B A P =)(B A P ,=)(B A P
2、用2×2列联表进行独立性检验,2χ= 。

当2χ> 时,有 把握说事件A 与B 有关,当2χ> 时,有 把握说事件A 与B 有关,当≤2χ 时,认为事件A 与B 是无关的。

有95﹪的把握说事件A 与B 有关,是指推断犯错误的可能性为
3、使用2χ统计量作2×2列联表的独立性检验时,要求表中的4个数据都要 思考:
1、 用卡方检验的步骤是什么?
2、独立性检验的基本思想是什么?
3、用2
χ进行独立性检验作出的推断一定正确吗?
二、典例分析:
例1、为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如
试问:50岁以上的人患慢性气管炎与吸烟有关吗?
例2、对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟
试根据上述数据比较这两种手术对病人又发作心脏病的影响有没有差别。

例3、某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随
对于人力资源部的研究项目,根据上述数据能得出什么结论?
三.巩固练习:P81 A
四、小结:(写出本节的所学所思)。

高中数学3.1《独立性检验》教学设计苏教版选修2_3

高中数学3.1《独立性检验》教学设计苏教版选修2_3

第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

苏教版选修1-2高中数学1.1《独立性检验》ppt课件

苏教版选修1-2高中数学1.1《独立性检验》ppt课件

【训练2】 某大型企业人力资源部为了研究企业员工工 作积极性和对待企业改革态度的关系,随机抽取了 189名员工进行调查,所得数据如下表所示:
积极支持 不太赞成 企业改革 企业改革
合计
工作 积极
54
40
94
工作 一般
32
63
95
对于人合力计 资源部86 的研究项10目3 ,根据上1述89数据能得出 什么结论?
解 提出假设 H0:工作积极性与是否积极支持企业改革无关. χ2=1899×4×549×5×638-6×401×03322≈10.759. 当 H0 成立时,χ2>6.635 的概率约为 0.010, 因为 10.759>6.635,所以有 99%的把握说:抽样员工对待企业改 革的态度与工作积极性是有关的,可以认为企业的全体员工对待 企业改革的态度与其工作积极性是有关的.
44
合计 480 520 1 000
依据公式得
χ2=1
000×442×6-38×5142 480×520×956×44
≈27.139.
当 H0 成立时,χ2≥10.828 的概率约为 0.001, 因为 χ2≈27.139>10.828,
所以我们有 99.9%的把握认为色盲与性别是有关的.
题型二 独立性检验的基本思想
如P(χ2≥6.635)≈0.01,由实际计算得χ2>6.635说明假设不 合理的程度约为99%,即两个分类变量有关系这一结论 成立的可信程度为99%.
2.利用χ2的值判定两个研究对象Ⅰ和Ⅱ之间的关系
(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有 关系”;
(2)若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关 系”;

最新2020高中数学 第3章 统计案例 3.1 独立性检验教学案 苏教版选修2-3

最新2020高中数学 第3章 统计案例 3.1 独立性检验教学案 苏教版选修2-3

3.1 独立性检验1.2×2列联表的定义对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B;Ⅱ也有两类取值,即类1和类2.这些取值可用下面的2×2列联表表示.2.χ2统计量的求法公式χ2=n(ad-bc)2(a+c)(b+d)(a+b)(c+d).3.独立性检验的概念用统计量χ2研究两变量是否有关的方法称为独立性检验.4.独立性检验的步骤要判断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表及χ2公式,计算χ2的值;(3)查对临界值,作出判断.其中临界值如表所示:P(χ2≥x0)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001χ00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.82 8表示在H0成立的情况下,事件“χ≥x0”发生的概率.5.变量独立性判断的依据(1)如果χ2>10.828时,那么有99.9%的把握认为“Ⅰ与Ⅱ有关系”;(2)如果χ2>6.635时,那么有99%的把握认为“Ⅰ与Ⅱ有关系”;(3)如果χ2>2.706时,那么有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)如果χ2≤2.706时,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即Ⅰ与Ⅱ没有关系.1.在2×2列联表中,通常要求a,b,c,d的值均不小于5.2.表中|ad-bc|越小,Ⅰ与Ⅱ关系越弱;|ad-bc|越大,Ⅰ与Ⅱ关系越强.同时要记准表中a,b,c,d四个数据是交叉相乘然后再作差取绝对值,一定不要乘错.3.表中类A与类B,以及类1与类2的关系:对于对象Ⅰ来说,类A与类B是对立的,也就是说类A发生,类B一定不发生,类A不发生,则类B一定发生;同样对于对象Ⅱ来说,类1与类2的关系也是如此.[例1] 在一项有关医疗保健的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.[思路点拨] 在2×2列联表中,共有两类变量,每一类变量都有两个不同的取值,然后找出相应的数据,列表即可.[精解详析] 作列联表如下:喜欢甜食不喜欢甜食合计男117413530女492178670合计609591 1 200[一点通] 分清类别是列联表的作表关键步骤.表中排成两行两列的数据是调查得来的结果.1.下面是2×2y1y2合计x1 a 2173x222527合计 b 46则表中a,b的值分别为________,________.解析:∵a+21=73,∴a=52.又∵a+2=b,∴b=54.答案:52 542.某学校对高三学生作一项调查后发现:在平时的模拟考试中,性格内向的426名学生中有332名在考前心情紧张,性格外向的594名学生中在考前心情紧张的有213人 .作出2×2列联表.性格内向 性格外向 合计 考前心情紧张 332 213 545 考前心情不紧张94 381 475 合计4265941 020[例2] 下表是某地区的一种传染病与饮用水的调查表:得病 不得病 合计 干净水 52 466 518 不干净水 94 218 312 合计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.[思路点拨] (1)根据表中的信息计算χ2的值,并根据临界值表来分析相关性的大小,对于(2)要列出2×2列联表,方法同(1).[精解详析] (1)假设H 0:传染病与饮用水无关.把表中数据代入公式,得χ2=830×(52×218-466×94)2146×684×518×312≈54.21,因为当H 0成立时,χ2≥10.828的概率约为0.001,所以我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得2×2列联表:得病 不得病 合计 干净水 5 50 55 不干净水 9 22 31 合计147286此时,χ2=86×(5×22-50×9)214×72×55×31≈5.785.由于5.785>2.706,所以我们有90%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有90%的把握肯定.[一点通] 解决独立性检验问题的基本步骤是:①指出相关数据,作列联表;②求χ2的值;③判断可能性,注意与临界值作比较,得出事件有关的可能性大小.3.某保健药品,在广告中宣传:“在服用该药品的105人中有100人未患A 疾病”.经调查发现,在不使用该药品的418人中仅有18人患A 疾病,请用所学知识分析该药品对患A 疾病是否有效?解:依题意得2×2的列联表:患病 不患病 合计 使用 5 100 105 不使用 18 400 418 合计23500523要判断该药品对患A 疾病是否有效,即进行独立性检验提出假设H 0:该药品对患A 疾病没有效.根据列联表中的数据可以求得χ2=523×(5×400-100×18)223×500×418×105≈0.041 45<0.455,而查表可知P (χ2≥0.455)≈0.5,故没有充分的理由认为该保健药品对预防A 疾病有效.4.在国家未实施西部开发战略前,一新闻单位在应届大学毕业生中随机抽取1 000人问卷,只有80人志愿加入西部建设.而国家实施西部开发战略后,随机抽取1 200名应届大学毕业生问卷,有400人志愿加入国家西部建设.实施西部开发战略是否对应届大学毕业生的选择产生了影响?志愿者 非志愿者 合计 开发战略公布前 80 920 1 000 开发战略公布后400 800 1 200 合计4801 7202 200提出假设H 0:实施西部开发战略的公布对应届大学毕业生的选择没有产生影响,根据列联表中的数据,可以求得χ2=2 200×(80×800-920×400)2480×1 720×1 000×1 200≈205.22.因为当H 0成立时,χ2≥10.828的概率约为0.001,所以有99.9%的所握认为西部开发战略的实施对应届大学毕业生的选择产生了影响.独立性检验的基本思想与反证法的思想比较反证法 独立性检验要证明结论A要确认“两个对象有关系”在A 不成立的前提下进行推理 假设该结论不成立,即假设结论“两个对象没有关系”成立,在该假设下计算χ2推出矛盾意味着结论A 成立由观测数据计算得到的χ2的观测值很大,则在一定可信程度上说明假设不合理 没有找到矛盾,不能对A 下任何结论,即反根据随机变量χ2的含义,可以通过概率P (χ2证法不成立≥x0)的大小来评价该假设不合理的程度有多大,从而得出“两个对象有关系” 这一结论成立的可信程度有多大课下能力提升(十八)一、填空题1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关) 解析:由χ2值可判断有关.答案:有关2.若两个研究对象X和Y的列联表为:y1y2x1515x24010则X与Y之间有关系的概率约为________.解析:因为χ2=(5+15+40+10)×(5×10-40×15)2(5+15)×(40+10)×(5+40)×(15+10)≈18.8,查表知P(χ2≥10.828)≈0.001.答案:99.9%3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.④以上三种说法都不正确.解析:由独立性检验的意义可知,③正确.答案:③4.调查者询问了72名男女大学生在购买食品时是否观看营养说明得到如下2×2列联表:看营养说明不看营养说明总计男大学生28836从表中数据分析大学生的性别与看不看营养说明之间的关系是________.(填“有关”或“无关”)解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算χ2=72×(28×20-16×8)244×28×36×36≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.答案:有关5.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则由表可知大约有解析:由公式得χ2=168×(68×38-42×20)2110×58×88×80≈11.377>10.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关.答案:99.9% 二、解答题6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:学生的数学成绩好坏与对学习数学的兴趣是否有关?解析:提出假设H 0:学生数学成绩的好坏与对学习数学的兴趣无关.由公式得χ2的值为χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈38.459>10.828,∴有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的.7.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.试按照原试验目的作统计推断.解:提出假设H 0:种子是否灭菌与有无黑穗病无关.由公式得,χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,即当H 0成立时,χ2>3.841的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的.8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.解:2×2列联表如下提出假设H 0根据χ2公式得χ2=1 500(982×17-493×8)2990×510×1 475×25≈13.097.因为H 0成立时,χ2>10.828的概率约为0.001,而这里χ2≈13.097>10.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.。

《独立性检验》教案苏教版选修

《独立性检验》教案苏教版选修

《独立性检验》教案2(苏教版选修2-3)3.1 独立性检验(2)教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用χ2统计量进行独立性检验.教学重点,难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点.教学过程一.学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?.(2)某高校"统计初步"课程的教师随机调查了选该课的一些学生情况,具体数据如下表:非统计专业统计专业男1310女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到χ2,∵χ2,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为.(答案:5%)附:临界值表(部分):(χ2)0.100.050.0250.0102.7063.8415.0246.635二.数学运用1.例题:例1.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。

女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。

(1)根据以上数据建立一个2× 2列联表;(2)判断性别与休闲方式是否有关系。

解:(1)2× 2的列联表:休闲方式性别看电视运动总计女432770男213354总计6460124(2)假设"休闲方式与性别无关"χ2因为χ2,所以有理由认为假设"休闲方式与性别无关"是不合理的,即有97.5%的把握认为"休闲方式与性别有关"。

例2.气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示.问它们的疗效有无差异(可靠性不低于99%)?有效无效合计复方江剪刀草18461245胆黄片919100合计27570345分析:由列联表中的数据可知,服用复方江剪刀草的患者的有效率为,服用胆黄片的患者的有效率为,可见,服用复方江剪刀草的患者与服用胆黄片的患者的有效率存在较大差异.下面用进行独立性检验,以确定能有多大把握作出这一推断.解:提出假设:两种中草药的治疗效果没有差异,即病人使用这两种药物中的何种药物对疗效没有明显差异.由列联表中的数据,求得当成立时,的概率约为,而这里所以我们有的把握认为:两种药物的疗效有差异.例3.下表中给出了某周内中学生是否喝过酒的随机调查结果,若要使结论的可靠性不低于95%,根据所调查的数据,能否作出该周内中学生是否喝过酒与性别有关的结论?喝过酒没喝过酒合计男生77404481女生16122138合计93526619 解:提出假设:该周内中学生是否喝过酒与性别无关.由列联表中的数据,求得,当成立时,的概率约为,而这里,所以,不能推断出喝酒与性别有关的结论.三.回顾小结:1.独立性检验的思想方法及一般步骤.四.课外作业:补充。

高中数学 1.1.1《独立性检验一》教学案 苏教版选修1-2

高中数学 1.1.1《独立性检验一》教学案 苏教版选修1-2

独立性检验(一)
教学目标:
1, 了解独立性检验的含义,理解22⨯列联表。

2, 会用统计量判断两系。

3, 通过典型案例,掌握独立性检验的基本思想。

课前预习
1用样本估计总体时,由于抽样的随机性,由样本得到的推断不一定正确。

利用2
x 进行独立性检验,可以对推断的正确性的概率作出估计,样本量n 越大,这个估计越 . 2.一般地,对于两个研究对象I 和Ⅱ,Ⅰ有两类取值类A 和类B ,Ⅱ也有两类取值类1和类2,可列联表如下:
则2
χ= 其中n= 为 样本量。

3.2
χ 临界值表
例1. 在500人身上试验某种,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表1—1—5所示。

问:该种血清能否起到预防感冒的作用?
表1—1—5
例2.考查人的高血压是否与食盐摄入量有关,对某地区人群进行跟踪调查,得到以下数据:
1.某桑场为了了解职工发生工作人员进行了一次调查,结果如下表。

试问:发生皮炎是否与
采桑有关?
2.为了鉴定新疫苗的效力,将60只豚鼠随机地分成两组,在其中一组接种疫苗后,两组都注射了病源菌,结果列于下表。

问:能否有90%的把握认为疫苗有效?
3某医疗研究机构为了了解关系,进行了一次抽样调查,得到如下数据。

问:打鼾与患心脏病是否有关?。

《 独立性检验》示范课教案【高中数学苏教版】

《 独立性检验》示范课教案【高中数学苏教版】

第九章 统计9.2.1 独立性检验1. 通过实例,理解2×2列联表的统计意义;2. 通过实例,了解2×2列联表独立性检验的基本思想、方法和初步应用.重点:理解2×2列联表的统计意义.难点:了解2×2列联表独立性检验及其应用.一、新课导入情境:某医疗机构为了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人,调查结果是:吸烟220人中,有37人患呼吸道疾病(以下简称患病),183人未患呼吸道疾病(以下简称未患病),不吸烟的295人中 ,有21人患病,274人未患病.我们能根据上面的数据,得到怎样的结论呢? 二、新知探究问题1:根据这些数据,是否能断定:患呼吸道疾病与吸烟有关? 为了研究这个问题,我们将上述数据用下表表示.患病 未患病 合计 吸烟 37 183 220 不吸烟 21 274 295 合计58457515形如上表的表格称为2×2列联表.答案:根据表中的数据可知,在吸烟的人中,有37220≈16.82%的人患病;在不吸烟的人中,有21295≈7.12%的人患病,可知吸烟者与不吸烟者患病的可能性存在差异,所以有患病与吸烟有关这一推论.◆教学目标◆教学重难点 ◆◆教学过程列联表是一个描述两个分类变量分布的频数表.一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(也称为2×2列联表)如下:设计意图:先利用频率估计概率的思想,由吸烟者与不吸烟者患病的可能性的差异程度直观地做出判断.问题2:上述结论给我们的印象是患病与吸烟有关,事实果真如此吗?究竟能有多大的把握认为“患病与吸烟有关”呢?答案:我们可以对两者的关系进行检验.若将事件“某成年人吸烟”记为A ,事件“某成年人患病”记为B ,则事件“某成年人不吸烟”记为A ,事件“某成年人不患病”记为 B ̅̅̅̅,这样,回答“患病与吸烟是否有关?”其实就是需要回答“事件A 与事件B 是否独立?”为了回答这个问题,我们先做出判断“患病与吸烟没有关系”,即提出如下假设H 0:患病与吸烟没有关系.由两个事件相互独立的充要条件,又可将上述假设记为H 0:P (AB )=P (A )P (B ) ,这里的P (A ),P (B )和P (AB )的值都不知道,我们可以用频率来代替概率,估计出P (A ),P (B )和P (AB )的值. 为了便于研究一般情况,我们将原表中的数据用字母代替,得到字母表示的2×2列联表,若设n =a +b +c +d ,则有()a b P A n +≈ ()a cP B n+≈, 故()a b a cP AB n n++≈⋅. 因此在H 0成立的条件下,吸烟且患病的人数为()a b a cn P AB n n n++⋅≈⋅⋅. 同理可得:吸烟但未患病的人数为()a b b d n P AB n n n++⋅≈⋅⋅,不吸烟但患病的人数为()c d a c n P AB n n n++⋅≈⋅⋅,不吸烟且未患病的人数为n ∙P (A B ̅)=n ∙c+d n∙b+d n.如果实际观测值与在事件A ,B 独立的假设下的估计值相差不“大”,那么我们就可以认为这些差异是由随机误差造成的,假设H 0不能被所给数据否定,否则应认为假设H 0不能接受. 追问1:怎样描述实际观测值与估计值的差异呢?答案:考虑实际观测值与在事件A ,B 独立的假设下的估计值的差(如下表):为了避免正负相消及消除样本容量对差异大小的影响,可以将它们分别平方并除以对应的估计频数(即估计值),最后相加,得到22222()()()()a b a c a b b d c d a c c d b d a n b n c n d n n n n n n n n n a b a c a b b d c d a c c d b d n n n n n n n n n n n nχ++++++++-⋅⋅-⋅⋅-⋅⋅-⋅⋅=+++++++++++⋅⋅⋅⋅⋅⋅⋅⋅化简得:22()()()()()n ad bc a b c d a c b d χ-=++++(其中n =a +b +c +d )统计学中通常采用统计量χ2(读作“卡方”)来刻画这个差异. 追问2:如何利用χ2进行推断呢?统计学中已有明确的结论:在H 0成立的情况下,随机事件“χ2≥ 6.635”发生的概率约为0.01,即P (χ2≥ 6.635)≈0.01,也就是说,在H 0成立的情况下,对统计量χ2进行多次观测,观测值超过6.635的概率约为0.01.通过计算,本例中χ2 =11.8634>6.635”,由P (χ2≥ 6.635)≈0.01可知,出现这样的观测值χ2的概率不超过0.01,因此,我们有99%的把握认为H 0不成立,即有99%的把握认为“患呼吸道疾病与吸烟有关系” . 统计量χ2的计算公式:22()()()()()n ad bc a b c d a c b d χ-=++++(其中n =a +b +c +d )独立性检验的定义利用统计量χ2来判断“两个分类变量有关系”的方法称为独立性检验.推断两个分类变量“Ⅰ与Ⅱ有关系”的步骤:一般地,对于两个分类变量Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B,Ⅱ也有两类取值,即类1和类2 ,我们得到如下列联表所示的样本数据:要推断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表与公式计算χ2的值;(3)根据临界值表,做出判断.独立性检验临界值表:(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”;(2)若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关系”;(3)若χ2>2.706,则有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能得出结论“H0成立”,即Ⅰ与Ⅱ没有关系.三、应用举例例1 在500人身上试验某种血清预防感冒的作用,把他们1年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如下表所示.问:该种血清对预防感冒是否有作用?χ2=1000×(258×284−242×216)2500×500×474×526≈7.075因为当H0成立时,χ2≥6.635的概率约为0.01,所以我们有99%的把握认为,该种血清能起到预防感冒的作用.方法总结:独立性检验的注意点:在2×2列联表中,如果两个分类变量没有关系,那么应满足ad-bc≈0,因此|ad-bc|越小,关系越弱;|ad-bc|越大,关系越强.例2为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如下表所示,根据所选择的193个病人的数据,能否做出药的效果与给药方式有关的结论?χ2=193×(58×31−40×64)298×95×122×71≈1.3896<2.072因为当H0成立时,χ2≥1.389 6的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设H0,即不能作出药的效果与给药方式有关的结论.例3 气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行了对比,所得数据如下表所示.问:它们的疗效有无差异?解:提出假设H0没有明显差异,根据列联表中的数据可以求得χ2=345×(184×9−61×91)2245×100×275×70≈11.098因为当H0成立时,P(χ2≥10.828)≈0.001,这里的χ2≈11.098>10.828,所以我们有99.9%的把握认为,两种药物的疗效有差异.四、课堂练习1.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数与方差 B .回归分析 C .独立性检验D .概率2.分类变量X 和Y 的列表如下,则下列说法判断正确的是( )A .ad -bcB .ad -bc 越大,说明X 和Y 关系越强C .(ad -bc )2越大,说明X 与Y 关系越强 D .(ad -bc )2越接近于0,说明X 与Y 关系越强3.若由一个2×2列联表中的数据计算得χ2=8.013,那么是否有99.5%的把握认为两个随机事件之间有关系:________.(填“是”或“否”)4. 为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人. (1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下能否认为40岁以上的人患胃病与否和生活规律有关系?为什么? 参考答案:1.解析:选C .判断两个分类变量是否有关的最有效方法是进行独立性检验.2. 解析:选C .列联表可以较为准确地判断两个变量之间的相关关系程度,由()22()()()()()a b c d ad bc a b c d a c b d χ+++-=++++,当(ad -bc )2越大,χ2越大,表明X 与Y 的关系越强.(ad -bc )2越接近0,说明两个分类变量X 和Y 无关的可能性越大.3.解析:因为χ2=8.013>7.879=x 0.005,查阅χ2表知有99.5%的把握认为两个随机事件之间有关系. 答案:是.4. (1)由已知可列2×2列联表:(2)χ2=540×(20×260-200×60)2220×320×80×460≈9.638>6.635=x 0.01,因此在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关. 五、课堂小结 1.统计量χ2的计算公式:22()()()()()n ad bc a b c d a c b d χ-=++++(其中n =a +b +c +d )2. 推断两个分类变量“Ⅰ与Ⅱ有关系”的步骤: (1)提出假设H 0:Ⅰ与Ⅱ没有关系; (2)根据2×2列联表与公式计算χ2的值; (3)根据临界值表,做出判断.3.独立性检验临界值表:(1)若χ2>10.828,则有99.9%的把握认为“Ⅰ与Ⅱ有关系”; (2)若χ2>6.635,则有99%的把握认为“Ⅰ与Ⅱ有关系”; (3)若χ2>2.706,则有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能得出结论“H 0成立”,即Ⅰ与Ⅱ没有关系. 六、布置作业教材第164页练习第1,2题.。

苏教版高中数学选修1-2《独立性检验》教案2

苏教版高中数学选修1-2《独立性检验》教案2

1.1 独立性检验(共计5课时)一、教学内容与教学对象分析通过典型案例,学习下列一些常用的统计方法,并能初步应用这些方法解决一些实际问题。

通过对典型案例(如“患肺癌与吸烟有关吗”等)的探究。

了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用。

二. 学习目标1、知识与技能通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。

明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。

2、过程与方法在本节知识的学习中,应使学生从具体问题中认识进行独立性检验的作用及必要性,树立学好本节知识的信心,在此基础上学习三维柱形图和二维柱形图,并认识它们的基本作用和存在的不足,从而为学习下面作好铺垫,进而介绍K的平方的计算公式和K的平方的观测值R的求法,以及它们的实际意义。

从中得出判断“X与Y有关系”的一般步骤及利用独立性检验来考察两个分类变量是否有关系,并能较准确地给出这种判断的可靠程度的具体做法和可信程度的大小。

最后介绍了独立性检验思想的综合运用。

3、情感、态度与价值观通过本节知识的学习,首先让学生了解对两个分类博变量进行独立性检验的必要性和作用,并引导学生注意比较与观测值之间的联系与区别,从而引导学生去探索新知识,培养学生全面的观点和辨证地分析问题,不为假想所迷惑,寻求问题的内在联系,培养学生学习数学、应用数学的良好的数学品质。

加强与现实生活相联系,从对实际问题的分析中学会利用图形分析、解决问题及用具体的数量来衡量两个变量之间的联系,学习用图形、数据来正确描述两个变量的关系。

明确数学在现实生活中的重要作用和实际价值。

教学中,应多给学生提供自主学习、独立探究、合作交流的机会。

养成严谨的学习态度及实事求是的分析问题、解决问题的科学世界观,并会用所学到的知识来解决实际问题。

三.教学重点、难点教学重点:理解独立性检验的基本思想;独立性检验的步骤。

苏教版数学高二 选修2-3学案 3.1 独立性检验

苏教版数学高二 选修2-3学案 3.1 独立性检验

3.1独立性检验1.了解独立性检验的概念,会判断独立性检验事件.2.能列出2×2列联表,会求χ2(卡方统计量的值).3.能够利用临界值,作出正确的判断.(重点)4.应用独立性检验分析实际问题.(难点)[基础·初探]教材整理12×2列联表的意义阅读教材P91~P94“例1”以上部分,完成下列问题一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B(如吸烟与不吸烟);Ⅱ也有两类取值,即类1和类2(如患呼吸道疾病和未患呼吸道疾病).我们得到如下表所示的抽样数据:Ⅱ类1类2合计Ⅰ类A a b a+b类B c d c+d合计a+c b+d a+b+c+d列联表,2×2列联表经常用来判断Ⅰ和Ⅱ之间是否有关系.下面是一个2×2列联表:y1y2合计x1 a 2173x282533合计 b 46则表中a,b【解析】∵a+21=73,∴a=52.又b=a+8=52+8=60.【答案】52,60教材整理2独立性检验阅读教材P93~P94“例1”以上部分完成下列各题.1.独立性检验2×2列联表中的数据是样本数据,它只是总体的代表,具有随机性,结果并不唯一.因此,由某个样本得到的推断有可能正确,也有可能错误.为了使不同样本量的数据有统一的评判标准,统计学中引入下面的量(称为卡方统计量):χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(*),其中n=a+b+c+d为样本容量.用χ2统计量研究这类问题的方法称为独立性检验(test of independence).2.独立性检验的基本步骤要推断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表与公式(*)计算χ2的值;(3)查对临界值(如下表),作出判断.P(χ2≥x0)0.500.400.250.150.10x00.4550.708 1.323 2.072 2.706 P(χ2≥x0)0.050.0250.0100.0050.001x0 3.841 5.024 6.6357.87910.8281.关于分类变量x与y的随机变量χ2的观测值k,下列说法正确的是________.(填序号)(1)k的值越大,“X和Y有关系”可信程度越小;(2)k的值越小,“X和Y有关系”可信程度越小;(3)k的值越接近于0,“X和Y无关”程度越小;(4)k的值越大,“X和Y无关”程度越大.【解析】k的值越大,X和Y有关系的可能性就越大,也就意味着X和Y 无关系的可能性就越小.【答案】(2)2.式子|ad-bc|越大,χ2的值就越________.(填“大”或“小”)【解析】由χ2的表达式知|ad-bc|越大,(ad-bc)2就越大,χ2就越大.【答案】大[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]绘制2×2列联表530人,女性为670人,发现其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.【精彩点拨】分成两类,找出不同类情况下的两个数据再列表.【自主解答】作2×2列联表如下:喜欢甜食不喜欢甜食合计男117413530女492178670合计609591 1 2001.分清类别是作列联表的关键.2.表中排成两行两列的数据是调查得来的结果.3.选取数据时,要求表中的四个数据a,b,c,d都要不小于5,以保证检验结果的可信度.[再练一题]1.某电视公司为了研究体育迷是否与性别有关,在调查的100人中,体育迷75人,其中女生30人,非体育迷25人,其中男生15人,请作出性别与体育迷的列联表.【解】体育迷非体育迷合计男451560女301040合计7525100利用χ2值进行独立性检验肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病人数如下:阳性例数阴性例数 合计 新防护服 5 70 75 旧防护服 10 18 28 合计1588103问这种新防护服对预防工人患职业性皮肤炎是否有效?并说明你的理由. 【精彩点拨】 通过有关数据的计算,作出相应的判断.【自主解答】 提出假设H 0:新防护服对预防皮肤炎没有明显效果. 根据列联表中的数据可求得 χ2=103×(5×18-70×10)275×28×15×88≈13.826.因为H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈13.826>10.828,所以我们有99.9%的把握说新防护服比旧防护服对预防工人患职业性皮肤炎有效.根据2×2列联表,利用公式n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算χ2的值,再与临界值比较,作出判断.[再练一题]2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中,有175人秃顶.根据以上数据判断男性病人的秃顶与患心脏病是否有关系?【解】 提出假设H 0:男性病人的秃顶与患心脏病没有关系. 根据题中所给数据得到如下2×2列联表:患心脏病 未患心脏病合计 秃顶 214 175 389 不秃顶 451 597 1 048 合计6657721 437根据列联表中的数据可以求得χ2=1 437×(214×597-175×451)2389×1 048×665×772≈16.373.因为当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈16.373>10.828,所以有99.9%的把握认为,男性病人的秃顶与患心脏病有关系.[探究共研型]独立性检验的综合应用探究1 【提示】 利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.探究2 在χ2运算后,得到χ2的值为29.78,在判断变量相关时,P (χ2≥6.635)≈0.01和P (χ2≥7.879)≈0.005,哪种说法是正确的?【提示】 两种说法均正确.P (χ2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两个变量相关;而P (χ2≥7.879)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两个变量相关.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试分别用列联表、独立性检验的方法分析监督员甲对产品质量好坏有无影响.能否在犯错误的概率不超过0.001的前提下,认为质量监督员甲是否在生产现场与产品质量有关?【精彩点拨】 解答本题可先列出2×2列联表,然后具体分析.【自主解答】 (1)2×2列联表如下:合格品数 次品数 合计 甲在生产现场 982 8 990 甲不在生产现场493 17 510 合计1 475251 500度上认为“质量监督员甲是否在生产现场与产品质量有关系”.(2)由2×2列联表中数据,计算得到χ2的观测值为 χ2=1 500×(982×17-493×8)2990×510×1 475×25≈13.097>10.828,因此在犯错误的概率不超过0.001的前提下,认为质量监督员甲是否在生产现场与产品质量有关.判断两个变量是否有关的三种方法[再练一题]3.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据:出生时间在晚上的男婴为24人,女婴为8人;出生时间在白天的男婴为31人,女婴为26人.(1)将下面的2×2列联表补充完整;晚上 白天 合计 男婴 女婴 合计系?【解】 (1)晚上 白天 合计 男婴 24 31 55 女婴 8 26 34 合计325789(2)由所给数据计算χ2χ2=89×(24×26-31×8)255×34×32×57≈3.689>2.706.根据临界值表知P (χ2≥2.706)≈0.10.因此在犯错误的概率不超过0.10的前提下认为婴儿的性别与出生时间有关系.[构建·体系]1.在2×2列联表中,若每个数据变为原来的2倍,则χ2的值变为原来的________倍.【解析】由公式χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)中所有值变为原来的2倍,得(χ2)′=2n(2a·2d-2b·2c)2(2a+2b)(2c+2d)(2a+2c)(2b+2d)=2χ2,故χ2也变为原来的2倍.【答案】 22.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的唯一数据;④若判定两事件A与B有关,则A发生B一定发生.【解析】对于①,事件A与B的检验无关,只是说两事件的相关性较小,并不一定两事件互不影响,故①错.②是正确的.对于③,判断A与B是否相关的方式很多,可以用列联表,也可以借助于概率运算,故③错.对于④,两事件A与B有关,说明两者同时发生的可能性相对来说较大,但并不是A发生B 一定发生,故④错.【答案】②3.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:χ2=50×(13×20-10×7)223×27×20×30≈4.844.则有__________的把握认为选修文科与性别有关.【答案】95%4.在2×2列联表中,两个比值aa+b与________相差越大,两个分类变量有关系的可能性越大. 【导学号:29440066】【解析】根据2×2列联表可知,比值aa+b与cc+d相差越大,则|ad-bc|就越大,那么两个分类变量有关系的可能性就越大.【答案】c c+d5.(2014·辽宁高考节选)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020 合计7030100的饮食习惯方面有差异”.【解】将2×2列联表中的数据代入公式计算,得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(60×10-20×10)280×20×70×30=10021≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)学业分层测评(建议用时:45分钟)[学业达标]一、填空题1.为了检验两个事件A 与B 是否相关,经计算得χ2=3.850,我们有________的把握认为事件A 与B 相关.【答案】 95%2.(2016·连云港月考)为了考查高中生的性别与是否喜欢数学课程之间的关系,某市在该辖区内的高中学生中随机地抽取300名学生进行调查,得到表中数据:喜欢数学课程不喜欢数学课程合计 男 47 95 142 女 35 123 158 合计82218300【解析】 由χ2=300×(47×123-35×95)2142×158×82×218≈4.512.【答案】 4.5123.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由χ2=(a +b )(c +d )(a +c )(b +d )算得,χ2=110×(40×30-20×20)260×50×60×50≈7.822.附表:①有99%以上的把握认为“爱好该项运动与性别有关”; ②有99%以上的把握认为“爱好该项运动与性别无关”;③在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”;④在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”.【解析】 由附表可得知当χ2≥6.635时,有P =1-P =0.99,当χ2≥10.828时,有P =1-P =0.999,而此时的χ2≈7.822.显然有0.99<P <0.999,故可以得到有99%以上的把握认为“爱好该项运动与性别有关”.【答案】 ①4.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:填“是”或“否”)【解析】因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b =1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】是5.为了评价某个电视栏目的改革效果,在改革前后分别从某居民点抽取了1 000位居民进行调查,经过计算得χ2≈4.358,根据这一数据分析,下列说法正确的是________.①有95%的人认为该栏目优秀;②有95%的人认为该栏目是否优秀与改革有关系;③在犯错误的概率不超过0.05的前提下认为该电视栏目是否优秀与改革有关系;④没有理由认为该电视栏目是否优秀与改革有关系.参考数据如表:【解析】查表可知4.358>3.841,所以在犯错误的概率不超过0.05的前提下认为该电视栏目是否优秀与改革有关系.【答案】③6.在一项打鼾与患心脏病的调查中,共调查了10 671人,经过计算χ2=27.63.根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(填“有关”或“无关”).【解析】∵χ2=27.63>10.828,∴有99.9%的把握认为“打鼾与患心脏病是有关的.【答案】有关7.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:设H0论:服用此药的效果与患者的性别有关,这种判断出错的可能性为______.【导学号:29440067】【解析】由公式计算得χ2≈4.882>3.841,所以有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.【答案】 4.8825%8.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:χ2=.(a+b)(c+d)(a+c)(b+d)参照附表,得到的正确结论的序号是__________.①在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”;②在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”;③有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”; ④有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”. 【解析】 根据列联表中的数据得到 χ2=100×(45×15-30×10)255×45×75×25≈3.03>2.706.所以有90%以上的把握认为“该市民能否做到‘光盘’与性别有关”,故选③.【答案】 ③ 二、解答题9.某中学高二班主任对本班50名学生学习积极性和对待班级工作的态度进行长期的调查,得到的统计数据如下表所示:【解】根据列联表中的数据得到χ2=50×(18×19-6×7)225×25×24×26≈11.538>10.828,即有99.9%的把握认为学习的积极性与对待班级工作的态度有关. 10.为研究学生对国家大事的关心与否与性别是否有关,在学生中随机抽样调查,结果如下:(1)(2)扩大样本容量,将表中每个数据扩大为原来的10倍,然后作出判断分析; (3)从某中学随机抽取450名学生,其中男,女生数量之比为5∶4,通过问卷调查发现男生关心国家大事的百分率为94%,而女生关心国家大事的百分率为85%,请根据这些数据,判断该中学的学生是否关心国家大事与性别的关系.【解】 (1)提出假设H 0:学生对国家大事的关心与否与性别无关. 由公式可得χ2=400×(182×24-18×176)2200×200×358×42≈0.958.因为χ2≈0.958<2.706,所以我们没有理由认为学生是否关心国家大事与性别有关(当然也不能肯定无关).(2)χ2=4 000×(1 820×240-180×1 760)22 000×2 000×3 580×420≈9.577>6.635,所以我们有99%的把握认为是否关心国家大事与性别有关.(3)依题意得,男、女生人数分别是250人和200人,男生中关心国家大事的人数为235人,女生中关心国家大事的人数为170人.列出2×2列联表如下:由表中数据,得χ2=450×(235×30-15×170)2250×200×405×45=10>6.635,所以我们有99%的把握认为该中学的学生是否关心国家大事与性别有关.[能力提升]1.(2016·苏州月考)2016年10月8日为我国第十九个高血压日,主题是“在家测量您的血压”.某社区医疗服务部门为了考察该社区患高血压病是否与食盐摄入量有关,对该社区的1 633人进行了跟踪调查,得出以下数据:计算χ2,盐的摄入量有关系.【解析】 χ2=1 633×(34×1 353-220×26)2254×1 379×1 573×60≈80.155>10.828.故有99.9%的把握认为患高血压病与食盐的摄入量有关系. 【答案】 80.155 99.9%2.(2016·徐州期中)在吸烟与患肺病是否相关的判断中,有下面的说法: ①若χ2>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.【解析】 χ2是检验吸烟与患肺病相关程度的量,而不是确定关系,是反映有关和无关的概率,故①不正确,②中对“确定容许推断犯错误概率的上界”理解错误;③正确.【答案】③3.下列关于χ2的说法中,正确的有________(填序号).①χ2的值越大,两个分类变量的相关性越大;②χ2的计算公式是χ2=n(ad-bc)(a+b)(c+d)(a+c)(b+d);③若求出χ2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断.【解析】对于①,χ2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错;对于②,(ad-bc)应为(ad-bc)2,故②错;③④对.【答案】③④4.有两个分类变量X与Y,其一组观测值如下2×2列联表所示:其中a,X与Y 之间有关系.【解】查表可知:要使有90%的把握认为X与Y之间有关系,则χ2≥2.706,而χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=65×[a·(30+a)-(15-a)·(20-a)]220×45×15×50=13×(65a -300)250×45×60=13×(13a -60)290×60.∵χ2≥2.706,∴13×(13a -60)290×60≥2.706,即(13a -60)2≥1 124,∴13a -60≥33.5或13a -60≤-33.5, ∴a ≥7.2或a ≤2. 又∵⎩⎪⎨⎪⎧a >5,15-a >5,∴5<a <10且a ∈Z . ∴a =8或9.∴当a =8或9时,有90%的把握认为X 与Y 之间有关系.。

2019-2020年高中数学 3.1《独立性检验》教案(1) 苏教版选修2-3

2019-2020年高中数学 3.1《独立性检验》教案(1) 苏教版选修2-3

2019-2020年高中数学 3.1《独立性检验》教案(1) 苏教版选修2-3教学目标(1)通过对典型案例的探究,了解独立性检验(只要求列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法.教学重点、难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点. 教学过程 一.问题情境5月31日是世界无烟日。

有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。

这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 二.学生活动为了研究这个问题,(1)引导学生将上述数据用下表来表示:(2)估计吸烟者与不吸烟者患病的可能性差异:在吸烟的人中,有的人患病,在不吸烟的人中,有的人患病. 问题:由上述结论能否得出患病与吸烟有关?把握有多大? 三.建构数学 1.独立性检验:(1)假设:患病与吸烟没有关系.(近似的判断方法:设,如果成立,则在吸烟的人中患病的比例与不吸烟的人中患病的比例应差不多,由此可得,即()()0a c d c a b ad bc +≈+⇒-≈,因此,越小,患病与吸烟之间的关系越弱,否则,关系越强.) 设,在假设成立的条件下,可以通过求 “吸烟且患病”、“吸烟但未患病”、“不吸烟但患病”、“不吸烟且未患病”的概率(观测频率),将各种人群的估计人数用表示出来. 例如:“吸烟且患病”的估计人数为()a b a cn P AB n n n++⨯≈⨯⨯;“吸烟但未患病” 的估计人数为()a b b dn P AB n n n ++⨯≈⨯⨯; “不吸烟但患病”的估计人数为()c d a cn P AB n n n++⨯≈⨯⨯; “不吸烟且未患病”的估计人数为()c d b dn P AB n n n++⨯≈⨯⨯. 如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能否定假设.否则,应认为假设不能接受,即可作出与假设相反的结论. (2)卡方统计量:为了消除样本对上式的影响,通常用卡方统计量(χ2)来进行估计. 卡方χ2统计量公式:χ222a b a c a b b d a n b n n n n n a b a c a b b dn n n n n n++++⎛⎫⎛⎫-⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=+++++⨯⨯⨯⨯22c d a c c d b d c n d n n n n n c d a c c d b d n n n n n n ++++⎛⎫⎛⎫-⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭++++++⨯⨯⨯⨯ ()()()()()2n ad bc a b c d a c b d -=++++(其中) 由此若成立,即患病与吸烟没有关系,则χ2的值应该很小.把37,183,21,274a b c d ====代入计算得χ2,统计学中有明确的结论,在成立的情况下,随机事件“”发生的概率约为,即,也就是说,在成立的情况下,对统计量χ2进行多次观测,观测值超过的频率约为.由此,我们有99%的把握认为不成立,即有99%的把握认为“患病与吸烟有关系”.象以上这种用统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验. 说明:(1)估计吸烟者与不吸烟者患病的可能性差异是用频率估计概率,利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,观测数据取值越大,效果越好.在实际应用中,当均不小于5,近似的效果才可接受.(2)这里所说的“呼吸道疾病与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患呼吸道疾病的可能性(风险)更大”,而不是说“抽烟的人一定患呼吸道疾病”.(3)在假设下统计量χ2应该很小,如果由观测数据计算得到χ2的观测值很大,则在一定程度上说明假设不合理(即统计量χ2越大,“两个分类变量有关系”的可能性就越大).2.独立性检验的一般步骤:一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值:类和类(如吸烟与不吸烟),Ⅱ也有两类取值:类和类(如患呼吸道疾病与不患呼吸道疾病),得到如下表所示:第一步,提出假设:两个分类变量Ⅰ和Ⅱ没有关系;第二步,根据2×2列联表和公式计算χ2统计量; 第三步,查对课本中临界值表,作出判断. 3.独立性检验与反证法:反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立; 独立性检验(假设检验)原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立. 四.数学运用 1.例题:例1.在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防感冒的分析:在使用该种血清的人中,有的人患过感冒;在没有使用该种血清的人中,有的人患过感冒,使用过血清的人与没有使用过血清的人的患病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.解:提出假设:感冒与是否使用该种血清没有关系.由列联表中的数据,求得221000(258284242216)7.075474526500500χ⨯⨯-⨯=≈⨯⨯⨯∵当成立时,的概率约为,∴我们有99%的把握认为:该种血清能起到预防感冒的作用. 例2.为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示.根据所选择的193个病人的数据,能否作出分析:在口服的病人中,有的人有效;在注射的病人中,有的人有效.从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为用药效果与用药方式一定有关呢?下面用独立性检验的方法加以说明.解:提出假设:药的效果与给药方式没有关系.由列联表中的数据,求得22193(58314064) 1.3896 2.072122719895χ⨯⨯-⨯=≈<⨯⨯⨯当成立时,的概率大于,这个概率比较大,所以根据目前的调查数据,不能否定假设,即不能作出药的效果与给药方式有关的结论.说明:如果观测值,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“成立”,即Ⅰ与Ⅱ没有关系.2.练习:课本第91页 练习第1、2、3题. 五.回顾小结:1.独立性检验的思想方法及一般步骤; 2.独立性检验与反证法的关系. 六.课外作业:课本第93页 习题3.1 第1、2、3题. 2019-2020年高中数学 3.1《独立性检验》教案(2) 苏教版选修2-3教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用χ2统计量进行独立性检验.教学重点,难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点. 教学过程 一.学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据? .(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:χ2250(1320107) 4.84423272030⨯⨯-⨯=≈⨯⨯⨯,∵χ2,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 .(答案:5%)二.数学运用 1.例题:例1.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。

苏教版高中数学选修独立性教案

苏教版高中数学选修独立性教案

2.3 独立性 2.3.1 条件概率教学目标(1)通过对具体情境的分析,了解条件概率的定义; (2)掌握一些简单的条件概率的计算.教学重点,难点:条件概率的定义及一些简单的条件概率的计算. 教学过程 一.问题情境1.情境:抛掷一枚质地均匀的硬币两次.(1)两次都是正面向上的概率是多少?(2)在已知有一次出现正面向上的条件下,两次都是正面向上的概率是多少? (3)在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:上述几个问题有什么区别?它们之间有什么关系? 二.学生活动两次抛掷硬币,试验结果的基本事件组成集合{}S =正正,正反,反正,反反,其中两次都是正面向上的事件记为A ,则{}A =正正,故()14P A =. 将两次试验中有一次正面向上的事件记为B ,则{}B =正正,正反,反正,那么,在B 发生的条件下,A 发生的概率为13. 这说明,在事件B 发生的条件下,事件A 发生的概率产生了变化.三.建构数学1. 若有两个事件A 和B ,在已知事件B 发生的条件下考虑事件A 发生的概率,则称此概率为B 已发生的条件下A 的条件概率,记作()P A B . 注:在“”之后的部分表示条件,区分()P A B 与()P B A .比如,若记事件“两次中有一次正面向上”为B ,事件“两次都是正面向上”为A ,则()P A B 就表示“已知两次试验中有一次正面向上的条件下,两次都是正面向上的概率”.思考:若事件A 与B 互斥,则()P A B 等于多少?在上面的问题中,()()()311,,443P B P AB P A B ===,我们发现 ()()()114334P AB P A B P B ===. 注:事件AB 表示事件A 和事件B 同时发生.2. ()P A B 与()P AB 的区别:()P A B 是在事件B 发生的条件下,事件A 发生的概率,()P AB 表示事件A 和事件B 同时发生的概率,无附加条件.3.一般的,若()0P B >,则在事件B 已发生的条件下A 发生的条件概率是()P A B ,()()()P AB P A B P B =.反过来可以用条件概率表示事件AB 发生的概率,即有乘法公式 :若()0P B ≠,则()()()P AB P A B P B =, ()2同样有若()0P A ≠,则()()()P AB P B A P A =.(2)'4. 条件概率的性质:任何事件的条件概率都在0和1之间,即()01P A B ≤≤. 必然事件的条件概率为1,不可能事件的条件概率为0. 四.数学运用 1.例题:例1.抛掷一枚质地均匀的骰子所得的样本空间为{}1,2,3,4,5,6S =,令事件{}2,3,5A =,{}1,2,4,5,6B =,求()P A , ()P B ,()P AB , ()P A B .解:{}2,5A B =I ,由古典概型可知()3162P A ==,()56P B =,()2163P AB ==, ()()()25P AB P A B P B ==.例2正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求()P AB ,()P A B . 解:根据几何概型,得()19P AB =,()49P B =, 所以 ()()()14P AB P A B P B ==.例3.在一个盒子中有大小一样的20个球,其中10个红球,10个白球.求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率.解:记“第1个人摸出红球”为事件A ,“第2个人摸出白球” 为事件B ,则由乘法公式,得 ()()()101050.2632192019P AB P B A P A ==⨯=≈ 答:所求概率约为0.2632. 例4. 设100件产品中有70件一等品,25 件二等品,规定一、二等品为合格品.从中任取1 件,求 (1) 取得一等品的概率;(2) 已知取得的是合格品,求它是一等品的概率.解:设B 表示取得一等品,A 表示取得合格品,则 (1)因为100件产品中有 70件一等品, 70()0.7100P B == (2)方法1:因为95 件合格品中有 70 件一等品,又由于一等品也是合格品 AB B ∴=70()0.736895P B A ==. 方法2: ()()()P AB P B A P A =701000.736895100=≈. 2.练习:(1).甲乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%. 求:① 乙市下雨时甲市也下雨的概率;② 甲市下雨时乙市也下雨的概率. 解 记 “甲市下雨”为事件A ,记“乙市下雨”为事件B .按题意有,()20P A =﹪,()18P B =﹪,()12P AB =﹪. ①乙市下雨时甲市也下雨的概率为()122(|)()183P AB P A B P B ===;②甲市下雨时乙市也下雨的概率为()()()123205P AB P B A P A ===.(2).第55页练习第1,2题. 五.回顾小结:1. 条件概率公式:()()()P AB P A B P B =,若()0P B ≠,则()()()P AB P A B P B =; 若()0P A ≠,则()()()P AB P B A P A =; 2.条件概率的性质:()01P A B ≤≤.六.课外作业:第64页习题2.4第2,3,8题.。

苏教版数学高二-选修1-2教案 1.1独立性检验的基本思想及其初步应用

苏教版数学高二-选修1-2教案 1.1独立性检验的基本思想及其初步应用

1.1独立性检验的基本思想及其初步应用●三维目标1.知识与技能了解独立性检验的基本思想、方法及初步应用.会从列联表(只要求2×2列联表)、柱形图、条形图直观分析两个分类变量是否有关.会用K2公式判断两个分类变量在某种可信程度上的相关性.2.过程与方法运用数形结合的方法,借助对典型案例的探究,来了解独立性检验的基本思想,总结独立性检验的基本步骤.3.情感、态度与价值观(1)通过本节课的学习,让学生感受数学与现实生活的联系,休会独立性检验的基本思想在解决日常生活问题中的作用.(2)培养学生运用所学知识,依据独立性检验的思想作出合理推断的实事求是的好习惯.●重点难点重点:理解独立性检验的基本思想及实施步骤.难点:了解独立性检验的基本思想、了解随机变量K2的含义.分别利用2×2列联表、等高条形图、K2公式分析两变量之间的关系,探究解题方法和规律,充分理解观测值k的意义,能熟练正确地对问题作出判断,达到化难为易的目的.●教学建议通过对典型案例“吸烟是否对患肺癌有影响?”的提出,联系生活,引起共鸣,激发学生的学习兴趣.从生活的实例出发,让学生充分体会数学与实际生活的联系,从而使得本节知识的形成更自然、更生动.要注重学生的主体参与,努力创设教师引导下的学生自主探究、合作交流的学习方式.建议在教学过程中,教师点拨、学生探讨,共同完成例题的解答.要注重数学的思想性,采用反证法做类比,帮助学生理解独立性检验的思想,通过课堂练习,检验学生能否熟练掌握用独立性检验思想解决实际问题的方法.●教学流程通过典型案例“吸烟是否与患肺癌有关系”的研究,介绍了独立性检验的基本思想、方法和初步应用.创设问题情境引出列联表、等高条形图和K2公式等基础知识.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上分析解决例题1的问题,并总结规律方法,完成变式训练.引导学生分析例题2,根据图中的数据计算出各类变量对应的频率,作出等宽且高度均为1的条形图.并通过图形作出判断,完成变式训练.完成当堂双基达标,巩固所学知识及应用方法,并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.要求学生借鉴例题3的解法完成变式训练.给出易错辨析题目及错解,让学生讨论错因,并给出正确解答.引导学生探究例题3的解法,(1)直接由表中数据代入公式,作出判断.(2)列出列联表,由公式计算观测值,作出判断.解后让学生总结规律方法.课标解读1.了解独立性检验的基本思想、方法及其简单应用.(重点)2.通过收集数据,并依据独立性检验的原理作出合理推断,培养学生良好的思维习惯.(难点)分类变量与列联表吸烟变量有几种类别?国籍变量呢?【提示】吸烟变量有吸烟与不吸烟两种类别,而国籍变量则有多种类别,如中国、美国、法国…….1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.2.列联表(1)定义:列出的两个分类变量的频数表,称为列联表.(2)2×2列联表:一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:2×2列联表y1y2总计x1 a b a+bx 2 c d c +d 总计a +cb +da +b +c +d等高条形图【问题导思】表格和图形哪一个更能直观地反映出两个分类变量间是否相互影响? 【提示】 图形.(1)定义:将列联表中的数据用高度相同的两个条形图表示出来,其中两列的数据分别对应不同的颜色,这就是等高条形图.(2)特征:等高条形图与表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.(3)用法:观察等高条形图发现a a +b 和cc +d 相差很大,就判断两个分类变量之间有关系.独立性检验(1)定义:利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d 为样本容量.用2×2列联表分析两变量间的关系在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用a a +b 与cc +d判断二者是否有关系.【思路探究】 对变量进行分类→求出分类变量的不同取值→作出2×2列联表→计算a a +b 与c c +d的值作出判断 【自主解答】 2×2列联表如下:年龄在六年龄在六总计十岁以上十岁以下 饮食以蔬菜为主 43 21 64 饮食以肉类为主 27 33 60 总计7054124将表中数据代入公式得 a a +b =4364=0.671 875. c c +d =2760=0.45. 显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,注意应该是4行4列,计算时要准确无误. 2.作2×2列联表时,关键是对涉及的变量分清类别.题中条件不变,尝试用|ad -bc|的大小判断饮食习惯与年龄是否有关. 【解】 将本例2×2列联表中的数据代入可得 |ad -bc|=|43×33-21×27|=852.相差较大,可在某种程度上认为饮食习惯与年龄有关系.用等高条形图分析两变量间的关系某学校对高三学生作了一项调查,发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张.作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系.【思路探究】 作出2×2列联表―→根据列联表数据 作等高条形图―→对比乘积的差距判断两 个分类变量是否有关【自主解答】 作列联表如下:性格内向 性格外向 总计 考前心情紧张 332 213 545 考前心情不紧张 94 381 475 总计4265941 020图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例.从图中可以看出,考前紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例高,可以认为考前紧张与性格类型有关.1.利用列联表中数据计算出各类变量取值对应频率,作出等宽度且高度均为1的等高条形图.2.利用数形结合的思想,借助等高条形图来判断两个分类变量是否相关是判断变量相关的常见方法之一.一般地,在等高条形图中,a a +b 与c c +d 相差越大,两个分类变量有关系的可能性就越大.作等高条形图时可以用列联表来寻找相关数据,作图要精确,且易于观察,使对结论的判断不出现偏差.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.试利用图形判断监督员甲在不在生产现场对产品质量好坏有无影响.【解】 根据题目所给数据得如下2×2列联表:合格品数 次品数 总计 甲在生产现场 982 8 990 甲不在生产现场 493 17 510 总计1 475251 500图中两个深色条的高分别表示甲在生产现场和甲不在生产现场样本中次品数的频率.从图中可以看出,甲不在生产现场样本中次品数的频率明显高于甲在生产现场样本中次品数的频率.因此可以认为质量监督员甲在不在生产现场与产品质量好坏有关系.独立性检验下表是某地区的一种传染病与饮用水的调查表:得病 不得病 总计 干净水 52 466 518 不干净水 94 218 312 总计146684830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病的有5人,不得病的有50人,饮用不干净水得病的有9人,不得病的有22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.【思路探究】 求出k 2的值―→与临界值作比较―→作出判断.【自主解答】 (1)假设H 0:传染病与饮用水无关.把表中数据代入公式得: K 2的观测值k =830×52×218-466×942146×684×518×312≈54.21.在H 0成立的情况下,P(K 2>10.828)≈0.001,是小概率事件, 所以拒绝H 0.因此我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得2×2列联表:得病 不得病 总计 干净水 5 50 55 不干净水 9 22 31 总计147286此时,K 2的观测值k =86×5×22-50×9214×72×55×31≈5.785.因为5.785>5.024,P(K 2>5.024)≈0.025,所以我们有97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有97.5%的把握肯定.解决一般的独立性检验问题的步骤:(1)通过列联表确定a 、b 、c 、d 、n 的值,根据实际问题需要的可信程度确定临界值k 0;(2)利用K 2=n ad -bc 2a +bc +d a +cb +d求出K 2的观测值k ;(3)如果k≥k 0,就推断“两个分类变量有关系”,这种推断犯错误的概率不超过α;否则就认为在犯错误的概率不超过α的前提下不能推断“两个分类变量有关系”.某社区医疗服务部门为了考察人的高血压病是否与食盐摄入量有关,对该社区的1 633人进行了跟踪测查,得出以下数据:患高血压 未患高血压 合计 喜欢较咸食物 34 220 254 喜欢清淡食物 26 1 353 1 379 合计601 5731 633问能否判断在犯错误的概率不超过0.001的前提下,认为患高血压与食盐摄入量有关? 【解】 提出假设H 0:该社区患有高血压病与食盐的摄入量无关. 由公式计算K 2的观测值为 k =1 633×34×1 353-220×26260×1 573×254×1 379≈80.155.因为80.155>10.828,因此在犯错误的概率不超过0.001的前提下,我们认为该社区患有高血压病与食盐的摄入量有关.因未理解P(K 2≥k 0)的含义而致误某小学在对232名小学生调查中发现:180名男生中有98名有多动症,另外82名没有多动症,52名女生中有2名有多动症,另外50名没有多动症,用独立性检验方法判断多动症与性别是否有关系?【错解】 由题目数据列出如下列联表:多动症 无多动症 总计 男生 98 82 180 女生 2 50 52 总计100132232k =232×98×50-2×82100×132×180×52≈42.117>10.828.所以有0.1%的把握认为多动症与性别有关系.【错因分析】 应该是有(1-P(K 2≥10.828))×100%=(1-0.001)×100%的把握,而不是P(K 2≥10.828)×100%=0.001×100%的把握.【防范措施】 本题的错误之处在于不能正确理解独立性检验步骤的含义,当计算的K 2的观测值k 大于临界值k 0时,就可推断在犯错误的概率不超过α的前提下说两分类变量有关系.这一点需牢记,才能避免类似错误.【正解】 由题目数据列出如下列联表:多动症 无多动症 总计 男生 98 82 180 女生 2 50 52 总计100132232由表中数据可得到: k =232×98×50-2×822100×132×180×52≈42.117>10.828.所以有99.9%的把握认为多动症与性别有关系.1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.1.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有【解析】独立性检验的结果与实际问题有差异,即独立性检验的结论是一个数学统计量,它与实际问题中的确定性存在差异.【答案】 D2.分类变量X和Y的列联表如下,则()y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dA.ad-bcB.ad-bc越大,说明X与Y的关系越强C.(ad-bc)2越大,说明X与Y的关系越强D.(ad-bc)2越接近于0,说明X与Y的关系越强【解析】由K2的计算公式可知,(ad-bc)2越大,则K2越大,故相关关系越强.【答案】 C3.观察下列各图,其中两个分类变量x、y之间关系最强的是()【解析】 在四幅图中,D 图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.【答案】 D4.为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表所示:患慢性气管炎 未患慢性气管炎 合计 吸烟 43 162 205 不吸烟 13 121 134 合计56283339【解】 从题目的2×2列联表中可知:a =43,b =162,c =13,d =121,a +b =205,c +d =134,a +c =56,b +d =283,n =a +b +c +d =339,代入公式:K 2=n ad -bc 2a +bc +d a +cb +d ,得k =339×43×121-162×132205×134×56×283≈7.469.因为7.469>6.635,所以我们有99%的把握认为50岁以上的人患慢性气管炎与吸烟习惯有关系.一、选择题1.有两个分类变量X 与Y 的一组数据,由其列联表计算得k≈4.523,则认为“X 与Y 有关系”犯错误的概率为( )A .95%B .90%C .5%D .10%【解析】 P(K 2≥3.841)≈0.05,而k≈4.523>3.841.这表明认为“X 与Y 有关系”是错误的可能性约为0.05,即认为“X 与Y 有关系”犯错误的概率为5%.【答案】 C2.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( )A .平均数与方差B .回归分析C .独立性检验D .概率【解析】 判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 【答案】 C3.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 与Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( )A.0.25 B.0.75C.0.025 D.0.975【解析】∵P(k>5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X 和Y有关系”.【答案】 C4.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()图1-2-1A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%【解析】本题考查学生的识图能力,从图中可以分析,男生喜欢理科的可能性比女生大一些.【答案】 C5.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是()A.男、女患色盲的频率分别为0.038,0.006B.男、女患色盲的概率分别为19240,3 260C.男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D.调查人数太少,不能说明色盲与性别有关【解析】男人中患色盲的比例为38480,要比女人中患色盲的比例6520大,其差值为|38480-6520|≈0.0 676,差值较大.【答案】 C二、填空题6.某班主任对全班50名学生作了一次调查,所得数据如表:认为作业多认为作业不多总计喜欢玩电脑游戏 18 9 27 不喜欢玩电脑游戏 8 15 23 总计262450在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.【解析】 查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k 0=6.635.本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.【答案】 不能7.独立性检验所采用的思路是:要研究A ,B 两类型变量彼此相关,首先假设这两类变量彼此________.在此假设下构造随机变量K 2,如果K 2的观测值较大,那么在一定程度上说明假设________.【答案】 无关 不成立8.某高校《统计初步》课程的教师随机调查了选该课的一些学生的情况,具体数据如下表:专业性别 非统计专业 统计专业 男生 13 10 女生720K 2的观测值为k =50×13×20-10×7223×27×20×30≈4.844.因为k >3.841,所以确认“主修统计专业与性别有关系”,这种判断出现错误的可能性为________.【解析】 因为随机变量K 2的观测值k >3.841,所以在犯错误的概率不超过0.05的前提下认为“主修统计专业与性别有关系”.故这种判断出现错误的可能性为5%.【答案】 5%三、解答题9.为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?【解】 列出2×2列联表理 文 总计 有兴趣 138 73 211 无兴趣9852150总计236 125 361代入公式得K 2的观测值 k =361×138×52-73×982236×125×211×150≈1.871×10-4.∵1.871×10-4<2.706,∴可以认为学生选报文、理科与对外语的兴趣无关.10.某校对学生课外活动进行调查,结果整理成下表:运用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?体育 文娱 合计 男生 21 23 44 女生 6 29 35 合计275279【解】由图可以直观地看出喜欢体育还是喜欢文娱与性别在某种程度上有关系,但只能作粗略判断,具体判断方法如下:假设“喜欢体育还是喜欢文娱与性别没有关系”, ∵a =21,b =23,c =6,d =29,n =79, ∴K 2的观测值为k =79×21×29-23×6221+23×6+29×21+6×23+29≈8.106.且P(K 2≥7.879)≈0.005,即我们得到的K 2的观测值k≈8.106超过7.879,这就意味着:“喜欢体育还是文娱与性别没有关系”这一结论成立的可能性小于0.005,即在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关”.11.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数12638618292614分组 [29.86, 29.90) [29.90, 29.94) [29.94, 29.98) [29.98, 30.02) [30.02, 30.06) [30.06, 30.10) [30.10, 30.14) 频数297185159766218(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.甲厂 乙厂 合计 优质品 非优质品 合计附:K 2=n ad -bc a +bc +d a +cb +dP(K 2≥k) 0.05 0.01 k3.8416.635 【解】 (1)为360500=72%; 乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)甲厂 乙厂 合计 优质品 360 320 680 非优质品 140 180 320 合计5005001 000k =1 000×360×180-320×1402500×500×680×320≈7.353>6.635,因此,在犯错误的概率不超过0.01的前提下,即有99%的把握认为“两个分厂生产的零件的质量有差异”.在对人们休闲方式的调查中,已知男性占总调查人数的25,其中有一半的休闲方式是运动,而女性只有13的休闲方式是运动.经过调查员计算,在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么被调查的人中最少有多少人的休闲方式是运动?【思路探究】 (1)设总共调查了n 人,则其中男性有多少人?其中休闲方式为运动的有多少人?非运动的呢?(2)被调查的女性有多少人?休闲方式是运动的有多少人?非运动的呢? (3)根据题意,K 2的临界值为多少?K 2的观测值为多少?二者之间有什么关系? 【自主解答】 设总共调查n 人,则被调查的男性人数应为25n ,其中有n5人的休闲方式是运动;被调查的女性人数应为3n 5,其中有n5人的休闲方式是运动,列出2×2列联表如下:运动 非运动 总计 男性 n5 n 5 25n 女性 n 5 25n 3n 5 总计25n 3n 5n由表中数据,得k =n·n 5·2n 5-n 5·n 522n 5·3n 5·2n 5·3n 5=n 36. 要使调查员在犯错误的概率不超过0.05的前提下认为“休闲方式与性别有关”,则k≥3.841.所以n 36≥3.841.解得n≥138.276.又n5∈N *,所以n≥140.所以被调查的人中,以运动为休闲方式的最少有140×25=56(人).本题属于逆向探求型问题,目的在于训练K 2公式的熟练应用.解题的关键在于根据犯错误概率的上界α确定临界值k 0,然后设出未知数利用K 2≥k 0列出不等式进行解决.这里运用了方程思想和化归思想.有两个分类变量X 与Y ,其一组观测值如下面的2×2列联表所示:y 1 y 2 合计 x 1 a 20-a 20 x 2 15-a 30+a 45 合计155065其中a,15-a 均为大于5的整数,则a 取何值时,在犯错误的概率不超过0.10的前提下认为“X 和Y 有关系”?【解】 查表可知:要使犯错误的概率不超过0.1,则K 2≥2.706, 而K 2=65×[a×30+a -15-a ×20-a ]220×45×15×50=13×65a -300250×45×60=13×13a -60290×60,因为K 2≥2.706, 所以13×13a -60290×60≥2.706.即(13a -60)2≥1 124,所以13a -60≥33.5或13a -60≤-33.5, 解得a≥7.2或a≤2.又⎩⎪⎨⎪⎧a>5,15-a>5, 所以5<a<10,且a ∈Z , 所以a =6,7,8,9,又因为a≥7.2或a≤2,所以a =8或a =9.。

高中数学 11(独立性检验二)教学案 苏教版选修1-2 学案

高中数学 11(独立性检验二)教学案 苏教版选修1-2 学案

独立性检验(二)
教学目标:
1. 通过典型案例,进一步掌握独立性检步骤。

2. 培养学生应用意识和解决实际问题的能力。

识记要点
1. 独立性检验的方法步骤如下:
(1) 科学抽取样本(样本容量不能太小) (2) 列出2×2列联表;
(3) 提出统计假设0H :A,B 无关(相互独立); (4) 由公式计算卡方
2
χ=)
)()()(()(2
d c b a d b c a bc ad n ++++-
(5) 查对临界 2. 2
χ临界值表:
典型例题
例1. 为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,
193个病人的数据,能否作出药的效果与给药方式有关的结论?
表1—1—6
例2. 气管炎是一种常见的呼吸道疾病,医药研究人员对两种中管炎的疗效进行了对比,所得数据如表1—1
—7所示。

问:它们的疗效有无差异?
表1—1—7
课堂练习Array
1.某报对“男女同龄退休”这一公据如下表。

根据表中数据,能否认为对这一问题的看法与性别有关?
2.为了了解小麦种过是试验观察,得到如下数据。

根据表中数据,能否认为发生黑穗病与种子是否灭菌有关?
3.下表所况的调查数据。

若按95%的可靠性的要求,对11岁儿童能否作出花粉热与湿疹有关的结论?。

第1章1.1独立性检验 学案 高中数学选修1-2 苏教版

第1章1.1独立性检验 学案 高中数学选修1-2 苏教版

学习目标 1.理解列联表的意义,会根据列联表中数据大致判断两个变量是否独立.2.理解统计量χ2的意义和独立性检验的基本思想.知识点一2×2列联表和χ2统计量思考1什么是列联表,它有什么作用?答一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值类A和类B,Ⅱ也有两类取值类1和类2,得如下列联表中的抽样数据:以上表格称为2×2列联表.其中|ad-bc|越小,Ⅰ与Ⅱ的关系越弱;|ad-bc|越大,Ⅰ与Ⅱ的关系越强.思考2统计量χ2有什么作用?答χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),用χ2的大小可判断事件A、B是否有关联.1.2×2列联表一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值类A和类B,Ⅱ也有两类取值类1和类2,得到如下列联表所示的抽样数据:上述表格称为2×2列联表.2.统计量χ2χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).(n=a+b+c+d)知识点二独立性检验要推断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表和公式计算χ2的值;(3)查对临界值表,作出判断.类型一2×2列联表与χ2的计算例1在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据以上数据建立2×2列联表,并计算χ2.解根据题意,列出2×2列联表如下:由公式可得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=89×(24×26-31×8)255×34×32×57≈3.689.反思与感悟制作2×2列联表一般有以下三个步骤:第一步:合理选取两个研究对象,且每个对象都可以取两个值. 第二步:抽取样本,整理数据.第三步:画出2×2列联表.利用χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),准确代数与计算,求出χ2的值.跟踪训练1 根据下表计算:χ2≈________.(结果保留3位小数) 答案 4.514解析 χ2=300×(37×143-85×35)2122×178×72×228≈4.514.类型二 独立性检验的应用例2 用两种检验方法对某食品做沙门氏菌检验,结果如下表.附:能否在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系? 解 通过计算可知χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )≈113.184 6.而查表可知,因为P (χ2≥10.828)≈0.001,而113.184 6远大于10.828,所以在犯错误的概率不超过0.001的前提下认为采用荧光抗体法与检验结果呈阳性有关系.反思与感悟 独立性检验可以通过2×2列联表计算χ2的值,然后和临界值对照作出判断. 跟踪训练2 调查在2~3级风的海上航行中男女乘客的晕船情况,结果如下表所示:根据此资料,你是否认为在2~3级风的海上航行中男人比女人更容易晕船? 解 提出假设H 0:海上航行晕船情况和性别没有关系. 根据列联表中的数据可求得 χ2=71×(12×24-25×10)222×49×37×34≈0.075 6.因为χ2<2.706,所以我们没有理由认为男人比女人更容易晕船.1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”. 答案 90%解析 由临界值表知,χ2>2.706时,有90%的把握认为x 与y 有关系. 2.下面2×2列联表的χ2=________(精确到0.001).答案 1.390解析 χ2=193×(40×64-58×31)298×95×71×122≈1.390.3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是________.(填序号)①若χ2>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③若从χ2统计量中得出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 答案 ③解析 对于①,99%的把握是通过大量的试验得出的结论,这100个吸烟的人中可能全患肺病也可能都不患,是随机的,所以①错;对于②,某人吸烟只能说其患病的可能性较大,并不一定患病;③的解释是正确的.4.某学校对高三学生作了一项调查,发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张.根据以上数据建立2×2列联表. 解 作列联表如下:5.为研究学生的数学成绩与学生学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:学生的数学成绩好坏与对学习数学的兴趣是否有关?解 由公式得:χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵38.459>10.828,∴有99.9%的把握认为,学生学习数学的兴趣与数学成绩是有关的.1.独立性检验的思想:先假设两个事件无关,计算统计量χ2的值.若χ2值较大,则拒绝假设,认为两个事件有关.2.独立性检验的步骤:(1)作出假设H 0:Ⅰ与Ⅱ没有关系;(2)计算χ2的值;(3)和临界值比较作出判断.一、填空题1.下面是一个2×2列联表:则表中a 、b 处的值分别为________,________. 答案 52 60解析 由列联表知,a =73-21=52,b =a +8=52+8=60.2.为了检验两个事件A ,B 是否相关,经过计算得χ2=8.283,则说明事件A 和事件B ________(填“相关”或“无关”). 答案 相关解析 由χ2>6.635,则有99%的把握认为事件A 和事件B 相关,可知,事件A 与事件B 有关.3.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到如下数据.试推断有________的把握认为种子灭菌与发生黑穗病有关.答案 95%解析 χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,所以我们有95%的把握认为种子灭菌与发生黑穗病是有关系的.4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2=99.9,根据这一数据分析,下列说法正确的是________(只填序号). ①有99.9%的人认为该栏目优秀;②有99.9%的人认为栏目是否优秀与改革有关系; ③有99.9%的把握认为电视栏目是否优秀与改革有关系; ④以上说法都不对. 答案 ③5.分类变量X 和Y 的列表如下,则下列说法判断正确的是________.(填序号)①ad -bc 越小,说明X 与Y 的关系越弱;②ad-bc越大,说明X与Y的关系越强;③(ad-bc)2越大,说明X与Y的关系越强;④(ad-bc)2越接近于0,说明X与Y的关系越强.答案③6.某市政府在调查市民收入增减与旅游愿望的关系时,采用独立性检验法抽查了3 000人,计算发现χ2=6.023,根据这一数据查表,市政府断言市民收入增减与旅游愿望有关系,这一断言犯错误的概率不超过________.答案0.025解析由P(χ2≥5.024)=0.025可知,这一断言犯错误的概率不超过0.025.7.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:根据此资料,教龄的长短与支持新的数学教材________关(填“有”或“无”).答案无解析由公式得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=71×(12×24-25×10)237×34×22×49≈0.075 6.∵χ2<2.706.∴我们没有理由认为教龄的长短与支持新的数学教材有关.8.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. 答案 2解析由公式χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)中所有值变为原来的2倍,得(χ2)′=2n(2a·2d-2b·2c)2(2a+2b)(2c+2d)(2a+2c)(2b+2d)=2χ2,故卡方也变为原来的2倍.9.根据下面的列联表得到如下四个判断:①至少有99.9%的把握认为“患肝病与嗜酒有关”;②至少有99%的把握认为“患肝病与嗜酒有关”;③在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒有关”;④在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒无关”.其中正确命题的个数为________. 答案 2解析 由列联表中数据可求得χ2=992×(700×32-60×200)2760×232×900×92≈7.349>6.635,所以在犯错误的概率不超过0.01的前提下,认为“患肝病与嗜酒有关”,即至少有99%的把握认为“患肝病与嗜酒有关系”.因此②③正确.10.假设有两个分类变量X 与Y ,它们的可能取值分别为{}x 1,x 2和{}y 1,y 2,其2×2列联表为:以下各组数据中,对于同一样本能说明X 与Y 有关系的可能性最大的一组为________. ①a =5,b =4,c =3,d =2; ②a =5,b =3,c =4,d =2; ③a =2,b =3,c =4,d =5; ④a =2,b =3,c =5,d =4. 答案 ④解析 比较|ad -bc |.①中,|10-12|=2;②中,|10-12|=2;③中,|10-12|=2;④中,|8-15|=7.故填④. 二、解答题11.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?解 假设每一晚都打鼾与患心脏病无关,则有由χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )得,χ2=1 633×(30×1 355-224×24)2254×1 379×54×1 579=68.033. ∵68.033>10.828.∴有99.9%的把握认为每一晚都打鼾与患心脏病有关.12.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断. 附:解 根据题目所给数据建立如下2×2列联表:根据2×2列联表中的数据得到:χ2=170×(22×38-22×88)2110×60×44×126≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”. 13.下表是某地区的一种传染病与饮用水的调查表:(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;(2)若饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水的卫生程度有关,并比较两种样本在反映总体时的差异.解 (1)提出假设H 0:传染病与饮用水的卫生程度无关. 由公式得χ2=830×(52×218-466×94)2146×684×518×312≈54.212.因为54.212>10.828.因此我们有99.9%的把握认为该地区这种传染病与饮用水的卫生程度有关. (2)依题意得2×2列联表:此时,χ2=86×(5×22-50×9)255×31×14×72≈5.785.由于5.785>5.024,所以我们有97.5%的把握认为该种传染病与饮用水的卫生程度有关. 两个样本都能统计得到传染病与饮用水的卫生程度有关这一相同结论,但第(1)问中我们有99.9%的把握肯定结论的正确性,第(2)问中我们只有97.5%的把握肯定结论的正确性.。

高中数学第3章统计案例3.1独立性检验教学案苏教版选修2_3word格式

高中数学第3章统计案例3.1独立性检验教学案苏教版选修2_3word格式

3.1 独立性检验1.2×2列联表的定义对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和类B;Ⅱ也有两类取值,即类1和类2.这些取值可用下面的2×2列联表表示.2 .χ2统计量的求法公式χ2=n(ad-bc)2(a+c)(b+d)(a+b)(c+d).3.独立性检验的概念用统计量χ2研究两变量是否有关的方法称为独立性检验.4.独立性检验的步骤要判断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:(1)提出假设H0:Ⅰ与Ⅱ没有关系;(2)根据2×2列联表及χ2公式,计算χ2的值;(3)查对临界值,作出判断.其中临界值如表所示:005.变量独立性判断的依据(1)如果χ2>10.828时,那么有99.9%的把握认为“Ⅰ与Ⅱ有关系”;(2)如果χ2>6.635时,那么有99%的把握认为“Ⅰ与Ⅱ有关系”;(3)如果χ2>2.706时,那么有90%的把握认为“Ⅰ与Ⅱ有关系”;(4)如果χ2≤2.706时,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“H0成立”,即Ⅰ与Ⅱ没有关系.1.在2×2列联表中,通常要求a,b,c,d的值均不小于5.2.表中|ad-bc|越小,Ⅰ与Ⅱ关系越弱;|ad-bc|越大,Ⅰ与Ⅱ关系越强.同时要记准表中a,b,c,d四个数据是交叉相乘然后再作差取绝对值,一定不要乘错.3.表中类A与类B,以及类1与类2的关系:对于对象Ⅰ来说,类A与类B是对立的,也就是说类A发生,类B一定不发生,类A不发生,则类B一定发生;同样对于对象Ⅱ来说,类1与类2的关系也是如此.[例1] 在一项有关医疗保健的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.[思路点拨] 在2×2列联表中,共有两类变量,每一类变量都有两个不同的取值,然后找出相应的数据,列表即可.[精解详析][一点通] 分清类别是列联表的作表关键步骤.表中排成两行两列的数据是调查得来的结果.1.下面是2×2列联表:则表中a ,b 的值分别为________,________.解析:∵a +21=73,∴a =52.又∵a +2=b ,∴b =54. 答案:52 542.某学校对高三学生作一项调查后发现:在平时的模拟考试中,性格内向的426名学生中有332名在考前心情紧张,性格外向的594名学生中在考前心情紧张的有213人 .作出2×2列联表.[例2] 下表是某地区的一种传染病与饮用水的调查表:(1)这种传染病是否与饮用水的卫生程度有关,请说明理由; (2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.[思路点拨] (1)根据表中的信息计算χ2的值,并根据临界值表来分析相关性的大小,对于(2)要列出2×2列联表,方法同(1).[精解详析] (1)假设H 0:传染病与饮用水无关.把表中数据代入公式,得χ2=830×(52×218-466×94)2146×684×518×312≈54.21,因为当H 0成立时,χ2≥10.828的概率约为0.001,所以我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得2×2列联表:此时,χ2=86×(5×22-50×9)214×72×55×31≈5.785.由于5.785>2.706,所以我们有90%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有90%的把握肯定.[一点通] 解决独立性检验问题的基本步骤是:①指出相关数据,作列联表;②求χ2的值;③判断可能性,注意与临界值作比较,得出事件有关的可能性大小.3.某保健药品,在广告中宣传:“在服用该药品的105人中有100人未患A 疾病”.经调查发现,在不使用该药品的418人中仅有18人患A 疾病,请用所学知识分析该药品对患A 疾病是否有效?解:依题意得2×要判断该药品对患A 疾病是否有效,即进行独立性检验提出假设H 0:该药品对患A 疾病没有效.根据列联表中的数据可以求得χ2=523×(5×400-100×18)223×500×418×105≈0.041 45<0.455,而查表可知P (χ2≥0.455)≈0.5,故没有充分的理由认为该保健药品对预防A 疾病有效.4.在国家未实施西部开发战略前,一新闻单位在应届大学毕业生中随机抽取1 000人问卷,只有80人志愿加入西部建设.而国家实施西部开发战略后,随机抽取1 200名应届大学毕业生问卷,有400人志愿加入国家西部建设.实施西部开发战略是否对应届大学毕业生的选择产生了影响?解:依题意,得2×2列联表:提出假设H 0:实施西部开发战略的公布对应届大学毕业生的选择没有产生影响,根据列联表中的数据,可以求得χ2=2 200×(80×800-920×400)2480×1 720×1 000×1 200≈205.22.因为当H 0成立时,χ2≥10.828的概率约为0.001,所以有99.9%的所握认为西部开发战略的实施对应届大学毕业生的选择产生了影响.独立性检验的基本思想与反证法的思想比较课下能力提升(十八)一、填空题1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)解析:由χ2值可判断有关. 答案:有关2.若两个研究对象X 和Y则X 与Y 之间有关系的概率约为________. 解析:因为χ2=(5+15+40+10)×(5×10-40×15)2(5+15)×(40+10)×(5+40)×(15+10)≈18.8,查表知P (χ2≥10.828)≈0.001.答案:99.9%3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.④以上三种说法都不正确.解析:由独立性检验的意义可知,③正确. 答案:③4.调查者询问了72名男女大学生在购买食品时是否观看营养说明得到如下2×2列联表:从表中数据分析大学生的性别与看不看营养说明之间的关系是________.(填“有关”或“无关”)解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算χ2=72×(28×20-16×8)244×28×36×36≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.答案:有关5.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:解析:由公式得χ2=168×(68×38-42×20)2110×58×88×80≈11.377>10.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关.答案:99.9% 二、解答题6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:学生的数学成绩好坏与对学习数学的兴趣是否有关?解析:提出假设H 0:学生数学成绩的好坏与对学习数学的兴趣无关.由公式得χ2的值为 χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈38.459>10.828,∴有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的.7.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.试按照原试验目的作统计推断.解:提出假设H 0:种子是否灭菌与有无黑穗病无关. 由公式得,χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,即当H 0成立时,χ2>3.841的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的.8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.解:2×2列联表如下提出假设H 0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系.根据χ2公式得 χ2=1 500(982×17-493×8)2990×510×1 475×25≈13.097.因为H 0成立时,χ2>10.828的概率约为0.001,而这里χ2≈13.097>10.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.。

苏教版高中数学选修独立性检验学案

苏教版高中数学选修独立性检验学案

独立性检验二一. 知识回顾1. 用______统计量确定在多大程度上可以认为两个分类变量有相互关系的方法称为两个分类变量的_________________________ 2. χ2=_________________________,其中____=n ,称为___________3. 有人说“我们有99%的把握认为吸烟和患肺癌有关,是指每100个吸烟者中就会有99个患肺癌的。

”你认为这种观点正确吗?二. 例题精讲例1. 气管炎是一种常见的呼吸道疾病,医药研究人员对两种中药治疗慢性气管炎的疗效进例2. 为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果列在下表中.根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?三. 课堂练习1下列关于χ2的说法中正确的是( )A .χ2在任何相互独立问题中都可以用来检验有关还是无关B .χ2的值越大,两个事件的相关性就越大。

C .χ2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合。

D .χ2的观测值计算公式为2.某医疗机构为了了解打鼾与患心脏病的关系,进行了一次抽样调查,得到如下数据,问:3.为了鉴定新疫苗的效力,将60只豚鼠随机分为两组,其中在一组接种疫苗后,两组都注()()()()()d b c a d c b a bc ad n ++++-=2χ四.课后作业1. 经过对χ2的研究,得到了若干个临界值,当χ2≤2.706时,我们认为两个分类变量X 和Y之间()A.有95%的把握认为X和Y有关系。

B.有99%的把握认为X和Y有关系。

C.没有充分的理由说明X和Y有关系。

D.有95%的把握认为X和Y没有关系。

2.在吸烟与患肺病这两个分类变量的计算中,下列说法中正确是()A.若统计量χ2>6.635,我们有99%的把握说吸烟与患肺病有关,则某人吸烟,那么他有99%的可能患有肺病。

苏教版高中数学选修独立性检验学案(1)

苏教版高中数学选修独立性检验学案(1)

独立性检验一班级_________姓名__________一. 问题情景:某医疗机构为了了解患肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个成年人,其中吸烟者2148人,不吸烟者7817 人,调查结果是:吸烟的2148 人中49人患肺癌,2099人不患肺癌;不吸烟的7817人中42人患肺癌, 7775人不患肺癌。

根据这些数据能否断定:患肺癌与吸烟有关。

二.学生活动:1将上述数据整理成表格。

2根据表格计算:吸烟的人中患病的比例________;不吸烟的人中患病的比例___________;因此,从直观上可得出结论_______________________________________3能否断定吸烟一定与患病有关;有多大的把握得出该结论?(1)提出假设:(3)引入卡方统计量:(4)分析卡方统计量:三.建构数学用χ2统计量研究这类问题的方法称为独立性检验。

一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类A和B(如吸烟与不吸烟);Ⅱ也(1)提出假设H0:Ⅰ和Ⅱ没有关系;(2)根据2× 2列表与公式计算χ2的值;(3)查对临界值,作出判断。

3、由于抽样的随机性,由样本得到的推断有可能正确,也有可能错误。

利用χ2进行独立性检验,可以对推断的正确性的概率作出估计,样本量n越大,估计越准确。

若χ2≥_________,则有99.9%的把握认为“Ⅰ和Ⅱ有关系”;若χ2≥__________,则有99%的把握认为“Ⅰ和Ⅱ有关系”;若χ2≥__________,则有90%的把握认为“Ⅰ和Ⅱ有关系”;若χ2≤_________,则认为没有充分的证据显示“Ⅰ和Ⅱ有关系”,但也不能做出结论“H0成立”,即不能认为“Ⅰ和Ⅱ没有关系”★χ2越大,Ⅰ和Ⅱ相关程度_____________四.数学应用1.例题讲解例1: 例1.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 独立性检验(1)
教学目标
(1)通过对典型案例的探究,了解独立性检验(只要求22⨯列联表)的基本思想、方
法及初步应用;
(2)经历由实际问题建立数学模型的过程,体会其基本方法.
教学重点、难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点. 教学过程 一.问题情境
5月31日是世界无烟日。

有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。

这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:
1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515
个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.
问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 二.学生活动
为了研究这个问题,(1)引导学生将上述数据用下表来表示:
(2)估计吸烟者与不吸烟者患病的可能性差异:
在吸烟的人中,有
37
16.82%220≈的人患病,在不吸烟的人中,有217.12%295
≈的人患病.
问题:由上述结论能否得出患病与吸烟有关?把握有多大?
三.建构数学 1.独立性检验:
(1)假设0H :患病与吸烟没有关系.
(近似的判断方法:设n a b c d =+++,如果0H 成立,则在吸烟的人中患病的比例与
不吸烟的人中患病的比例应差不多,由此可得
a c
a b c d

++,即()()0a c d c a b ad bc +≈+⇒-≈,因此,||ad bc -越小,患病与吸烟之间的关系越
弱,否则,关系越强.)
设n a b c d =+++,
在假设0H 成立的条件下,可以通过求 “吸烟且患病”、“吸烟但未患病”、“不吸烟但患病”、“不吸烟且未患病”的概率(观测频率),将各种人群的估计人数用,,,,a b c d n 表示出来.
例如:“吸烟且患病”的估计人数为()a b a c
n P AB n n n ++⨯≈⨯

; “吸烟但未患病” 的估计人数为()a b b d
n P AB n n n ++⨯≈⨯⨯
; “不吸烟但患病”的估计人数为()c d a c
n P AB n n n
++⨯≈⨯⨯
; “不吸烟且未患病”的估计人数为()c d b d
n P AB n n n
++⨯≈⨯⨯
. 如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能
否定假设0H .否则,应认为假设0H 不能接受,即可作出与假设0H 相反的结论. (2)卡方统计量:
为了消除样本对上式的影响,通常用卡方统计量(χ2
2
()-=∑
观测值预期值预期值
)来进
行估计.
卡方χ2
统计量公式:
χ22
2
a b a c a b b d a n b n n n n n a b a c a b b d
n n n n n n
++++⎛⎫⎛⎫-⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=+
++++⨯⨯⨯⨯
22
c d a c c d b d c n d n n n n n c d a c c d b d n n n n n n ++++⎛⎫⎛⎫-⨯⨯-⨯⨯ ⎪ ⎪⎝
⎭⎝⎭++++++⨯⨯⨯⨯ ()()()()()
2
n ad bc a b c d a c b d -=
++++(其中n a b c d =+++) 由此若0H 成立,即患病与吸烟没有关系,则χ2
的值应该很小.把
37,183,21,274a b c d ====代入计算得χ211.8634=,统计学中有明确的结论,在
0H 成立的情况下,随机事件“2 6.635χ≥”
发生的概率约为0.01,即2
( 6.635)0.01P χ≥≈,也就是说,在0H 成立的情况下,对统计量χ2
进行多次观测,观测值超过6.635的频率约为0.01.由此,我们有99%的把握认为0H 不成立,即有99%的把握认为“患病与吸烟有关系”.
象以上这种用2
χ统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验.
说明:
(1)估计吸烟者与不吸烟者患病的可能性差异是用频率估计概率,利用χ2进行独立
性检验,可以对推断的正确性的概率作出估计,观测数据,,,
a b c d取值越大,效果越
好.在实际应用中,当,,,
a b c d均不小于5,近似的效果才可接受.
(2)这里所说的“呼吸道疾病与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患呼吸道疾病的可能性(风险)更大”,而不是说“抽烟的人一定患呼吸道疾病”.
(3)在假设
H下统计量χ2应该很小,如果由观测数据计算得到χ2的观测值很大,则在一定程度上说明假设不合理(即统计量χ2越大,“两个分类变量有关系”的可能性就越大).
2.独立性检验的一般步骤:
一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值:类A和类B(如吸烟与不吸烟),Ⅱ也有两类取值:类1和类2(如患呼吸道疾病与不患呼吸道疾病),得到如下表所示:
推断“Ⅰ和Ⅱ有关系”的步骤为:
第一步,提出假设
H:两个分类变量Ⅰ和Ⅱ没有关系;
第二步,根据2×2列联表和公式计算χ2统计量;
第三步,查对课本中临界值表,作出判断.
3.独立性检验与反证法:
反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立;
独立性检验(假设检验)原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立.
四.数学运用
1.例题:
例1.在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:该种血清能否起到预防感冒的
分析:在使用该种血清的人中,有48.4%
500
=的人患过感冒;在没有使用该种血清
的人中,有284
56.8%
500
=的人患过感冒,使用过血清的人与没有使用过血清的人的患
病率相差较大.从直观上来看,使用过血清的人与没有使用过血清的人的患感冒的可能性存在差异.
解:提出假设0H :感冒与是否使用该种血清没有关系.由列联表中的数据,求得
2
2
1000(258284242216)7.075474526500500
χ⨯⨯-⨯=≈⨯⨯⨯
∵当0H 成立时,2
6.635χ≥的概率约为0.01,∴我们有99%的把握认为:该种血清能起到预防感冒的作用.
例2.为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示.根据所选择的193个病人的数据,能否作出
分析:在口服的病人中,有
59%98≈的人有效;在注射的病人中,有67%95
≈的人有效.从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为
用药效果与用药方式一定有关呢?下面用独立性检验的方法加以说明. 解:提出假设0H :药的效果与给药方式没有关系.由列联表中的数据,求得
2
2
193(58314064) 1.3896 2.072122719895
χ⨯⨯-⨯=≈<⨯⨯⨯
当0H 成立时,2
1.3896χ≥的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设0H ,即不能作出药的效果与给药方式有关的结论.
说明:如果观测值2
2.706χ≤,那么就认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,但也不能作出结论“0H 成立”,即Ⅰ与Ⅱ没有关系. 2.练习:课本第91页 练习第1、2、3题. 五.回顾小结:
1.独立性检验的思想方法及一般步骤; 2.独立性检验与反证法的关系. 六.课外作业:
课本第93页 习题3.1 第1、2、3题.。

相关文档
最新文档