方波、三角波、正弦波函数信号发生器
正弦波方波三角波信号发生器
![正弦波方波三角波信号发生器](https://img.taocdn.com/s3/m/8e63a26525c52cc58bd6be2f.png)
课题:正弦波方波三角波信号发生器专业:电气工程及其自动化班级:4学号:姓名:指导教师:设计日期:2013-12-16成绩:重庆大学城市科技学院电气学院正弦波方波三角波信号发生器设计报告一、设计目的作用1.掌握简易信号发生器的设计、组装与调试方法。
2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。
3.加深对模拟电子技术相关知识的理解及应用。
二、设计要求设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下:(1)输出频率为300Hz,误差小于2%。
(2)正弦波输出幅度不小于5V,矩形波输出幅度不小于500mV,三角波输出幅度不小于20mV。
(3)要求波形失真小,电路工作稳定可靠,布线美观。
三、设计的具体实现1、系统概述本信号发生器主要由RC桥式震荡器,滞回比较器,积分器三大主要电路模块构成。
经过RC桥式震荡电路产生正弦波,再经过滞回比较电路产生方波,最后经过积分电路产生三角波。
其总的设计原理框图如图1-1:图1-1系统总体框图2、单元电路设计与分析(1)正弦波产生电路利用RC桥式震荡电路产生正弦波,原理如图1-2所示,其中的RC串并联支路构成正反馈支路,同时兼并选频网络,R2,R5,以及二极管构成负反馈支路并且稳幅。
图1-2正弦波发生电路原理调节电位器R2,可以改变负反馈深度,以便于满足震荡的振幅条件和改变波形。
在电位器支路串联两个并联的二极管,利用电流增大时二极管动态电阻减小、电流减小时二极管动态电阻增大的特点,,加入非线性环节,从而使输出电压稳定,两个二极管特性必须匹配,否则将会出现波形正负半周不对称。
电路震荡频率计算公式:f=1 2 πRC振幅值条件:R f≥2R5正弦波仿真电路如图1-3所示:图1-3正弦波仿真电路图1-4正弦波实测波形(2)方波产生电路在单限比较器,输入电压在阈值电压附近的任何微小变化,都将引起输出电压的跃变,单限比较器虽然灵敏,但是抗干扰能力比较弱,滞回比较器具有滞回特性,既具有惯性,因而具有一定的抗干扰能力,所以我们在此选择滞回比较器产生方波。
信号发生器 (正弦波,方波,三角波)51单片机 C语言代码
![信号发生器 (正弦波,方波,三角波)51单片机 C语言代码](https://img.taocdn.com/s3/m/4059cdd126fff705cc170a7e.png)
/**************************************//* 信号发生器(正弦波,方波,三角波)*//*************************************/#include<reg52.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intsbit cs=P2^0; //tlc5615片选端口sbit clk=P2^1; //tlc5615时钟线sbit din=P2^2; //tlc5615传输端口sbit key1=P1^0;sbit key2=P1^1; //按键的单片机接口uchar keydat;uchar flag; //波形发生终止信号的标志位一旦被置零立马停止发信号uchar flagsqu; //方波高低电平控制为(运用定时器1中断控制)uchar m,num;uchar dat=0xff;uchar code tosin[141]={ //正弦波的编码0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66,0x69,0x6c,0x6f,0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7e,0x7f,0x80,0x7f,0x7e,0x7e,0x7d,0x7c,0x7b,0x7a,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00};void delay(uchar z) //延时函数{uchar x,y;for(x=0;x<110;x++)for(y=z;y>0;y--);}void prepare() //tlc5615的初始化{cs=1;din=1;clk=0;cs=0; //cs的上升沿和下降沿必须在clk 为低时进?}/* 用中断来产生方波void Squtranslator(){TR1=1; //启动定时器1 控制高低电平的持续时间占空比do{do{_wave=0;}while((!flagsqu) && flag==1);//如果一旦终止信号的//产生可以立马退出循环flagsqu=0;do{_wave=1;}while((!flagsqu) && flag==1);flagsqu=0;}while(flag);flag=1;TR1=0;}*/void Squtranslator() //方波函数{uchar j;uchar dat1=0x7f;while(flag){do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(200); //使高低电平持续一段时间if(dat1==0)dat1=0x7f; //完成了0和0x7f之间的替换elsedat1=0;}while(flag);}}void Tratranslator() //锯齿波的发生函数{uchar j;uchar dat1=0x7f;while(flag){do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(2); //稍加延时dat1--;}while(flag && dat1); //一旦有终止信号就可以停止do{prepare();dat=dat1;for(j=0;j<12;j++){din=(bit)(dat>>7); //将数据的最高位赋给dinclk=1;dat=dat<<1; //一位位的传输clk=0;}cs=1; //cs的上升沿和下降沿必须在clk 为低时进行delay(2); //稍加延时dat1++;}while(flag && (!(dat1==0x7f)));}}void Sintranslator(uchar wave[],uchar num )//正弦波的转换函数{uchar i,j;uchar dat1;do{for(i=0;i<num;i++){prepare();dat1=wave[i]; //打开片选开始工作for(j=0;j<12;j++){din=(bit)(dat1>>7); //将数据的最高位赋给dinclk=1;dat1=dat1<<1; //一位位的传输clk=0;if(flag==0)break;}cs=1; //cs的上升沿和下降沿必须在clk为低时进行delay(1); //稍加延时if(flag==0)break;}}while(flag); //等待控制键的暂停}void keyscan() //切换功能按键返回键值函数{uchar i;for(i=0;i<4;i++){if(key1==0){delay(10);if(key1==0){keydat++;do{}while(!key1); //松手检测if(keydat==4)keydat=1;//加满回零处理}}}}void keycountrl() //切断输出控制函数{if(key2==0){delay(10);if(key2==0){flag=0;do{}while(!key2); //松手检测}}}void main (){uchar temp;TMOD=0x01; //确定定时器的工作方式TH0=(65536-50000)/256; //给定时器0赋予初值TL0=(65536-50000)%256;EA=1; //开总中断ET0=1; //开启定时器0中断TR0=1;while(1){do{switch(keydat){case 1:flag=1;do{Sintranslator(tosin,141);}while(flag);break;case 2: flag=1;do{Tratranslator();}while(flag);break;case 3: flag=1;do{Squtranslator();}while(flag);break;default:break;}}while(flag);temp=keydat; //装载键值while(keydat==temp); //在这里等待键值的改变}}void Time0() interrupt 1{TH0=(65536-50000)/256; //定时器0用来扫描按键不断地扫描dTL0=(65536-50000)%256;num++;if(num==4){keyscan();keycountrl();num=0;}}。
方波-三角波-正弦波函数发生器设计
![方波-三角波-正弦波函数发生器设计](https://img.taocdn.com/s3/m/222f5d06f78a6529647d53e4.png)
湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。
函数发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。
该系统通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在示波器上观察波形及数据,得到结果。
其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。
Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。
本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。
关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
方波三角波正弦波函数发生器的设计
![方波三角波正弦波函数发生器的设计](https://img.taocdn.com/s3/m/c18c193a02d8ce2f0066f5335a8102d276a2616c.png)
方波三角波正弦波函数发生器的设计
设计方波、三角波、正弦波函数发生器需要经过以下步骤:
首先,设计电路图。
其主要由单稳态触发器、行波触发器、电源部分和振荡放大部分组成,使用的主要器件有电阻、电容、三极管和二极管。
其次,具体元器件的参数选择。
为了保证输出波形的稳定性,应该选择具有良好温度稳定性和频率稳定性的元器件,同时考虑到制作成本和实际应用要求,选择适合的元器件。
第三,制作电路板。
在选择好元器件之后,需要合理布局电路,将元器件焊接到电路板上。
为保证电路的稳定性和可靠性,电路板应该选用高质量的绝缘材料,并进行严格的质量控制。
然后,对电路进行调试和测试。
初始调试时,需要使用示波器和电压表等测试仪器,调整电路参数,使其达到预期的性能要求。
在测试中,应注意观察波形的稳定性、频率、峰值、偏移量等参数,对异常情况进行分析和处理。
最后,进行封装和安装。
根据实际应用环境和要求,选择合适的封装方式和安装位置。
考虑到散热和防护问题,需要选择具有良好散热性能和防护性能的封装材料,并进行严格的防护处理。
综上所述,设计方波、三角波、正弦波函数发生器是一项既需要严谨的理论知识,又需要熟练的实践技能和深入的电路分析能力的工作,这需要设计者具有深厚的电子技术基础和丰富的实践经验。
函数信号发生器实验报告
![函数信号发生器实验报告](https://img.taocdn.com/s3/m/416a8d96e43a580216fc700abb68a98271feacde.png)
函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。
2、可输出三角波、方波、正弦波。
、可输出三角波、方波、正弦波。
3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。
可调。
4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。
可调。
5、输出阻抗约600Ω。
二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。
对波形非线性无特殊要求。
对波形非线性无特殊要求。
采用图采用图1所示的电路。
所示的电路。
同时同时产生三角波和方波。
产生三角波和方波。
图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。
为方波输出的峰值电压。
OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。
取8.2K 8.2KΩΩ。
R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。
三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。
Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。
R 6=RW/9=10/9=1.11(K Ω)取1K Ω。
设计制作一个方波-三角波-正弦波函数信号发生器 Microsoft Word 文档
![设计制作一个方波-三角波-正弦波函数信号发生器 Microsoft Word 文档](https://img.taocdn.com/s3/m/72bed259312b3169a451a46a.png)
课程设计说明书课程设计名称:模拟电子课程设计课程设计题目:设计制作一个方波-三角波-正弦波函数转换器学院名称:信息工程学院专业:通信工程班级:090422学号:******** 姓名:龙敏丽评分:教师:欧巧凤、张华南20 11 年 3 月23 日模拟电路课程设计任务书20 10 -20 11 学年第2 学期第1 周- 2 周题目设计制作一个方波-三角波-正弦波函数转换器内容及要求①输出波形频率范围为0.02Hz~20KHz且连续可调;②正弦波幅值为±2v;③方波幅值为±2v;④三角波峰-峰值为2v,占空比可调。
能根据题目的要求,综合所学知识,进行资料查询、系统设计、选用合适的元器件,先仿真通过后,用万能板/实验箱制作调试和进行结果分析,按学院要求的格式写出总结报告进度安排1. 布置任务、查阅资料、选择方案,领仪器设备: 3天;2. 领元器件、制作、焊接:3天3.调试: 3.5天4. 验收:0.5天学生姓名:龙敏丽指导时间:2011年2月24日—3月3日指导地点: E-508 室任务下达2011年 2月22日任务完成2011 年 3 月 3 日考核方式 1.评阅□√ 2.答辩□ 3.实际操作□√ 4.其它□√指导教师欧巧凤系(部)主任付崇芳摘要当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。
由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。
信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
常用超低频信号发生器的输出只有几种固定的波形,有方波、三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
多波形信号发生器设计
![多波形信号发生器设计](https://img.taocdn.com/s3/m/f30ada80fc0a79563c1ec5da50e2524de418d055.png)
多波形信号发生器设计一、简介设计一个能够产生多个信号输出的信号发生器,要求输出波形分别为方波、三角波、正弦波。
特别适合电子爱好者或学生用示波器来做观察信号波形实验。
该信号发生器电路简单、成本低廉、调整方便。
它是基于ne555计时器接成振荡器工作形式和电容积分而产生的波形。
其工作频率为1KHz左右,调节滑动变阻器可改变振荡器的频率。
波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。
可见信号源在各种实验应用和试验测试处理中,它的应用非常广泛。
它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。
目前我国己经开始研制波形发生器,并取得了可喜的成果。
但总的来说,我国波形发生器还没有形成真正的产业。
就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。
二、设计目的1、掌握方波—三角波——正弦波函数发生器的原理及设计方法。
2、掌握ne555计时器工作原理和各种电子器件的简单认识。
3、能够独立的进行电路板焊接和电路检查与故障排除。
4、学会用示波器来观察发生器的波形输出并作出判断。
三、硬件介绍及其原理1、元件列表ne555是一种应用特别广泛作用很大的的集成电路,属于小规模集成电路,在很多电子产品中都有应用。
ne555的作用是用内部的定时器来构成时基电路,给其他的电路提供时序脉冲。
ne555时基电路有两种封装形式有,一是dip双列直插8脚封装,另一种是sop-8小型(smd)封装形式。
其他ha17555、lm555、ca555分属不同的公司生产的产品。
内部结构和工作原理都相同。
ne555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k 电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.ne555属于cmos工艺制造.NE555引脚图介绍如下1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛.下面是一个简单的ne555电路应用内部结构几种工作形式第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。
函数信号发生器工作原理
![函数信号发生器工作原理](https://img.taocdn.com/s3/m/e4e1a836bfd5b9f3f90f76c66137ee06eef94e60.png)
函数信号发生器工作原理函数信号发生器是一种可以产生不同形式的波形信号的电子设备。
它通常用于测试电路或设备的响应,及验证系统的可靠性和性能。
本文将介绍函数信号发生器的工作原理及其基本组成。
1、函数信号发生器的基本原理函数信号发生器使用内部电路产生信号波形,这些波形可以是正弦波、方波、三角波等,也可以是随时间变化的任意模拟波形信号,称为任意波形(Arbitrary Waveform)。
任意波形信号可以通过数字信号处理器(DSP)和相应的算法产生,可以控制其幅值、频率、相位、周期等参数,与旋钮手动调节产生的波形相比,任意波形信号更具有可重复性和精度。
任意波形成为了近年来函数信号发生器的重要特点之一。
函数信号发生器的工作原理基于模拟电路和数字技术的结合。
如下图所示,函数信号发生器的主要部件包括信号发生器主控板、波形发生控制板、数字信号处理器(DSP)和高精度数字模拟转换器(DAC)等。
其中波形发生控制板控制信号发生器主控板的输出电压幅值、频率、相位等参数,主控板再将这些参数转换成数字信号通过DSP和DAC产生电压波形输出到信号输出端。
2、函数信号发生器的基本组成(1)信号发生器主控板信号发生器主控板是函数信号发生器的核心控制板,它负责启动、控制和调节函数信号发生器的各种功能。
主控板内包含高速时钟电路、微控制器、输出放大器等部件,通过接收波形控制板发来的指令从而产生需要的波形输出并控制其电压幅值、频率、相位等参数。
(2)波形发生控制板波形发生控制板负责产生波形控制信号,这些信号包括电压幅值、频率、相位等参数。
它和信号发生器主控板通过数字接口连接,主控板根据波形控制板的指令产生相应的波形信号输出。
(3)数字信号处理器(DSP)数字信号处理器(DSP)是函数信号发生器中的重要部件,它用于实现任意波形信号的产生和输出。
DSP通过高精度滤波器将输入的数字信号处理成需要的波形信号,再将这些信号通过DAC转换成模拟信号输出到信号输出端。
函数信号发生器实训报告
![函数信号发生器实训报告](https://img.taocdn.com/s3/m/77fd341d32687e21af45b307e87101f69f31fb5c.png)
一、实训目的本实训旨在通过设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器,掌握函数信号发生器的设计原理、电路组成、工作过程以及调试方法。
通过本次实训,提高学生对电子电路设计和调试能力的培养,为今后从事相关领域工作打下坚实基础。
二、实训内容1. 设计要求(1)通过集成运算放大器和晶体管查分放大电路设计一个函数信号发生器。
(2)输出波形:方波、三角波、正弦波。
(3)输出频率:1—10KHz范围内连续可调,无明显失真。
(4)方波输出电压Uopp:12V,上升、下降沿小于10us(误差<20%)。
(5)三角波Uopp:8V(误差<20%)。
(6)正弦波Uopp:1V。
2. 设计思路(1)原理框图:函数信号发生器主要由振荡器、频率调节电路、波形变换电路和输出电路组成。
(2)系统的组成框图:① 振荡器:产生稳定的振荡信号。
② 频率调节电路:实现输出频率的连续可调。
③ 波形变换电路:将振荡信号转换为所需的波形。
④ 输出电路:放大输出信号。
(3)分块电路和总体电路的设计:① 振荡器:采用正弦波振荡电路,利用晶体管构成正反馈回路,产生正弦波信号。
② 频率调节电路:采用可变电阻器或电位器,调节振荡频率。
③ 波形变换电路:采用比较器和积分器,将正弦波信号转换为方波信号;利用积分器将方波信号转换为三角波信号。
④ 输出电路:采用差分放大器,提高输出信号的幅度和抗干扰能力。
三、实训过程1. 电路搭建根据设计要求,搭建函数信号发生器的电路。
主要包括振荡器、频率调节电路、波形变换电路和输出电路。
2. 电路调试(1)检查电路连接是否正确,确保无短路、断路等故障。
(2)调整频率调节电路,使输出频率达到设计要求。
(3)观察波形变换电路输出波形,确保输出波形符合设计要求。
(4)调整输出电路,使输出信号幅度达到设计要求。
3. 测试与验证(1)使用示波器观察输出波形,确保输出波形符合设计要求。
(2)使用频率计测量输出频率,确保输出频率达到设计要求。
函数信号发生器使用说明
![函数信号发生器使用说明](https://img.taocdn.com/s3/m/ccc01a6403768e9951e79b89680203d8ce2f6ab5.png)
函数信号发生器使用说明函数信号发生器主要由信号产生电路、信号放大电路等部分组成。
可输出正弦波、方波、三角波三种信号波形。
输出信号电压幅度可由输出幅度调节旋钮进行调节,输出信号频率可通过频段选择及调频旋钮进行调节。
其外形如下图:使用说明:电源开关:将电源开关按键弹出即为“关”位置,将电源线接入,按电源开关,以接通电源。
LED显示窗口:此窗口指示输出信号的频率,当“外测”开关按入,显示外测信号的频率。
如超出测量范围,溢出指示灯亮。
频率调节旋钮:调节此旋钮改变输出信号频率,顺时针旋转,频率增大,逆时针旋转,频率减小,微调旋钮可以微调频率。
占空比调节:占空比开关,占空比调节旋钮,将占空比开关按入,占空比指示灯亮,调节占空比旋钮,可改变波形的占空比。
波形选择开关:按对应波形的某一键,可选择需要的波形。
衰减开关:电压输出衰减开关,二档开关组合为20dB、40dB、60dB。
频率范围选择开关(并兼频率计闸门开关):根据所需要的频率,按其中一键。
计数、复位开关:按计数键,LED显示开始计数,按复位键,LED显示全为0计数/频率端口:计数、外测频率输入端口。
外测频开关:此开关按入LED显示窗显示外测信号频率或计数值。
电平调节:按入电平调节开关,电平指示灯亮,此时调节电平调节旋钮,可改变直流偏置电平。
幅度调节旋钮:顺时针调节此旋钮,增大电压输出幅度。
逆时针调节此旋钮可减小电压输出幅度。
电压输出端口:电压输出由此端口输出。
TTL/CMOS输出端口:由此端口输出TTL/CMOS信号。
功率输出端口:功率输出由此端口输出。
扫频:按入扫频开关,电压输出端口输出信号为扫频信号,调节速率旋钮,可改变扫频速率,改变线性/对数开关可产生线性扫频和对数扫频。
电压输出指示:3位LED显示输出电压值,输出接50Ω负载时应将读数÷2。
电子技术课程设计——方波-三角波-正弦波函数发生器的设计
![电子技术课程设计——方波-三角波-正弦波函数发生器的设计](https://img.taocdn.com/s3/m/b82596e7cc175527062208b9.png)
题目2:设计方波-三角波-正弦波函数发生器。
(3组9人,或选作题目5)设计任务和要求①输出波形频率范围为10Hz~100Hz;②方波幅值为3V,占空比可调;课题方波-三角波-正弦波函数发生器的设计一、实验名称:方波,三角波发生器的设计。
二、实验目的:(1)学习方波、三角波发生器的设计方法。
(2)进一步培养安装与调试电路的能力。
三、实验仪器:10KΩ电阻五个,6.2KΩ电阻三个, 2.2KΩ电阻两个,22KΩ、5.1 KΩ、75 KΩ、36 KΩ、2 KΩ电阻各一个,324芯片一块,β值为五十附近的NPN型BJT管四个,电位器三个,0.47μF、220μF电容各两个,示波器、直流稳压电压源、信号源各一台。
四、实验要求:(1)已知条件:集成运放324一片,BJT管若干只(2)性能指标要求:频率范围:10Hz~1KHz;输出电压:方波VPP<24V,三角波VPP>3V,正弦波VPP>1V;五、实验原理。
方波、三角波发生器有电压比较器和基本积分器组成。
运算放大器A1与R1、R2、R3及R P1组成电压比较器;运算放大器A2与R4、R P2、C1及C2组成反向积分器,计较器与积分器首尾相连,形成闭环电路,构成能自动产生方波、三角波的发生器。
电路参数:(1)方波的幅度:U o1m=U z(2)三角波的幅度:U o2m=U z(3)方波三角波的频率:f=可改变三角波的幅度,但会影响方波、三角波的频率;调节电位调节电位器Rp1可改变方波、三角波的频率,但不会影响方波、三角波的幅度。
器Rp2六、具体设计思路1、方波-三角波发生器的基本电路图中A1与A2均采用CF324集成运算放大器,其中A1与R1、R2、R3及滑动变阻器组成电压比较器;A2与R4、C1、C2及滑动变阻器组成反相积分器,比较器与积分器首尾相连,形成闭环电路,调节R p1、R p2,使其能自动产生方波-三角波的发生器。
2、正弦波发生器的基本电路七、整体电路设计。
函数信号发生器设计实验报告
![函数信号发生器设计实验报告](https://img.taocdn.com/s3/m/c8f97643a26925c52cc5bf80.png)
函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。
1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。
设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。
电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。
根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。
本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。
单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。
差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。
传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。
Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。
方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。
即调节RW可改变振荡频率。
根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。
方波_三角波_正弦波_锯齿波发生器
![方波_三角波_正弦波_锯齿波发生器](https://img.taocdn.com/s3/m/925c37cf6529647d27285298.png)
电子工程设计报告目录设计要求1.前言 (2)2方波、三角波、正弦波发生器方案 (3)2.1原理框图 (3)3.各组成部分的工作原理 (4)3.1 方波发生电路的工作原理 (4)3.2 方波--三角波转换电路的工作原理 (5)3.3三角波--正弦波转换电路的工作原理 (7)3.4 方波—锯齿波转换电路的工作原理 (8)3.5总电路图 (9)方波—三角波—正弦波函数信号发生器摘要波形函数信号发生器广泛地应用于各场所。
函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。
除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。
设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。
然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。
其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。
函数(波形)信号发生器。
能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。
关键词:振荡电路;电压比较器;积分电路;低通滤波电路设计要求1.设计、组装、调试方波、三角波、正弦波发生器。
2.输出波形:方波、三角波、正弦波;锯齿波3.频率范围:在0.02-20KHz范围内且连续可调;1.前言在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。
方波三角波:正弦波函数信号发生器精编版
![方波三角波:正弦波函数信号发生器精编版](https://img.taocdn.com/s3/m/d3e7245e524de518964b7dfc.png)
方波三角波:正弦波函数信号发生器精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】苏州科技学院天平学院模拟电子技术课程设计指导书课设名称正弦波-方波-三角波信号发生器设计学生姓名王凌飞徐跃高尚专业物联网1021指导教师胡伏原一设计课题名称正弦波-方波-三角波信号发生器设计二课程设计目的、要求与技术指标课程设计目的(1)巩固所学的相关理论知识;(2)实践所掌握的电子制作技能;(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则;(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;(6)学会撰写课程设计报告;(7)培养实事求是,严谨的工作态度和严肃的工作作风;(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。
课程设计要求(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;(3)安装调试所设计的电路,达到设计要求;(4)记录实验结果。
技术指标(1)输出波形:方波-三角波-正弦波;(2)频率范围:100HZ~200HZ连续可调;(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调;γ。
(4)正弦波失真度:%5≤图函数发生器设计原理函数发生器组成框图,主要有RC 桥式振荡电路,过零比较器,积分器三大主要模块电路构成。
经过RC 桥式振荡电路产生正弦波波 ,再经过零比较器产生方波,然后由积分器产生三角波。
其总的原理设计框如图:图1 总的原理框图 正弦波产生电路利用RC 桥式振荡电路产生正弦波,原理如下图所示;其中RC 串并联电路构成正反馈支路,同时兼并选频网络,R1,R4,R5及二极管等原件构成负反馈和稳幅环节。
函数信号发生器设计(三角波、方波、正弦波发生器)
![函数信号发生器设计(三角波、方波、正弦波发生器)](https://img.taocdn.com/s3/m/8e0f932965ce050877321311.png)
基于AT89C51的函数信号发生器设计设计团队:郭栋、陈磊、集炜、査荣杰指导老师:程立新2011-11-13目录1、概述 (3)2、技术性能指标 (3)2.1、设计内容及技术要求 (3)3、方案的选择 (3)3.1、方案一 (4)3.2、方案二 (6)3.3、方案三 (6)4、单元电路设计 (6)4.1、正弦波产生电路 (6)4.2、方波产生电路 (8)4.3、矩形波产生锯齿波电路 (99)5、总电路图 (10)6、波形仿真结果 (1010)6.1正弦波仿真结果 (10)6.2矩形波仿真结果 (11)6.3锯齿波仿真结果 (11)7、PCB版制作与调试 (12)8、元件清单 (134)结论 (14)总结与体会 (14)参考文献 (15)函数信号发生器1、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
2、技术性能指标2.1、设计内容及技术要求:设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为10Hz——10KHz;3、输出信号幅值:正弦波3V,矩形波10V,锯齿波4V;4、输出矩形波占空比50%-95%可调,矩形波斜率可调。
5、信号发生器用220V/50Hz的工频交流电供电;6、电源:220V/50Hz的工频交流电供电。
按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PCB软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩3、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内蒙古工业大学信息工程学院内蒙古工业大学信息工程学院课程学习报告设计题目:如何实现正弦波、方波与三角波信号之间的变换课程名称:模拟电子技术班级:姓名:学号:成绩:指导教师:目录1 函数发生器的总方案及原理框图 (1)1.1 电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务与要求 (2)2.3 课程设计的技术指标 (2)3 各部分电路设计 (3)3.1 方波发生电路的工作原理 (3)3.2 方波---三角波转换电路的工作原理 (3)3.3 三角波---正弦波转换电路的工作原理 (6)3.4电路的参数选择及计算 (8)3.5 总电路图 (10)4 电路仿真 (11)4.1 方波---三角波发生电路的仿真 (11)4.2 三角波---正弦波转换电路的仿真 (12)5电路的安装与调试 (13)5.1 方波---三角波发生电路的安装与调试 (13)5.2 三角波---正弦波转换电路的安装与调试 (13)5.3 总电路的安装与调试 (13)5.4 电路安装与调试中遇到的问题及分析解决方法 (13)6电路的实验结果 (14)6.1 方波---三角波发生电路的实验结果 (14)6.2 三角波---正弦波转换电路的实验结果 (14)6.3 实测电路波形、误差分析及改进方法 (15)7 实验总结 (17)8 仪器仪表明细清单 (18)9 参考文献 (19)1.函数发生器总方案及原理框图1.1 原理框图1.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
2.课程设计的目的和设计的任务2.1 设计目的1.掌握电子系统的一般设计方法2.掌握模拟IC器件的应用3.培养综合应用所学知识来指导实践的能力4.掌握常用元器件的识别和测试5.熟悉常用仪表,了解电路调试的基本方法2.2设计任务设计方波——三角波——正弦波函数信号发生器2.3课程设计的要求及技术指标1.设计、组装、调试函数发生器2.输出波形:正弦波、方波、三角波;3.频率范围:在10-10000Hz范围内可调;4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V;3.各组成部分的工作原理3.1方波发生电路的工作原理此电路由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。
Uo通过R3对电容C正向充电,如图中实线箭头所示。
反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。
随后,Uo又通过R3对电容C 反向充电,如图中虚线箭头所示。
Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
3.2 方波---三角波转换电路的工作原理方波—三角波产生电路工作原理如下:若a 点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。
运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。
设Uo1=+Vcc,则 312231231()0CC ia R RP R U V U R R RP R R RP ++=++=++++将上式整理,得比较器翻转的下门限单位Uia-为 223131()CC CC ia R R U V V R RP R RP ---=+=++若Uo1=-Vee,则比较器翻转的上门限电位Uia+为 223131()EE CC ia R R U V V R RP R RP +-=-=++比较器的门限宽度2312H CC ia ia R U U U I R RP +-=-=+由以上公式可得比较器的电压传输特性,如图3-71所示。
a 点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221()O O U U dt R RP C -=+⎰ 1O CC U V =+时,2422422()()()CC CC O V V U t t R RP C R RP C -+-==++1O EE U V =-时,2422422()()()CC EE O V V U t t R RP C R RP C --==++可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。
a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为2231O m CC R U V R RP =+方波-三角波的频率f 为 3124224()R RP f R R RP C +=+由以上两式可以得到以下结论:1. 电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。
若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。
2. 方波的输出幅度应等于电源电压+Vcc 。
三角波的输出幅度应不超过电源电压+Vcc 。
电位器RP1可实现幅度微调,但会影响方波-三角波的频率。
3.3 三角波---正弦波转换电路的工作原理三角波——正弦波的变换电路主要由差分放大电路来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:22/1id TC E U U aI I aI e ==+11/1id TC E U U aI I aI e -==+式中 /1C E a I I =≈0I ——差分放大器的恒定电流;T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。
如果Uid 为三角波,设表达式为44434m id m U T t T U U Tt T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨-⎛⎫⎪- ⎪⎪⎝⎭⎩ 022T t T t T ⎛⎫≤≤ ⎪⎝⎭⎛⎫≤≤ ⎪⎝⎭式中 Um ——三角波的幅度; T ——三角波的周期。
为使输出波形更接近正弦波,由图可见:(1)传输特性曲线越对称,线性区越窄越好;(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区。
(3)图为实现三角波——正弦波变换的电路。
其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。
电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。
VCC三角波—正弦波变换电路3.4电路的参数选择及计算1.方波-三角波中电容C1变化(关键性变化之一)实物连线中,我们一开始很长时间出不来波形,后来将C2从10uf(理论时可出来波形)换成0.1uf时,顺利得出波形。
实际上,分析一下便知当C2=10uf时,频率很低,不容易在实际电路中实现。
2.比较器A1与积分器A2的元件计算如下。
由式(3-61)得2231O m CC R U V R RP =+即223141123O m CC U R R RP V ===+取 210R K =Ω,则3130R RP K +=Ω,取320R K =Ω ,RP1为47K Ω的点位器。
区平衡电阻1231//()10R R R RP K =+≈Ω 由式(3-62)3124224()R RP f R R RP C +=+即3141224R RP R RP R C ++=+当110Z H f Z ≤≤H 时,取210C F μ=,则42(75~7.5)R RP k +=Ω,取4 5.1R k =Ω,为100K Ω电位器。
当10100Z H f Z ≤≤H 时 ,取21C F μ=以实现频率波段的转换,R4及RP2的取值不变。
取平衡电阻510R k =Ω。
三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,6C 可取得较小,6C 一般为几十皮法至0.1微法。
RE2=100欧与RP 4=100欧姆相并联,以减小差分放大器的线性区。
差分放大器的几静态工作点可通过观测传输特性曲线,调整RP 4及电阻R*确定。
3.5 总电路图-12V三角波-方波-正弦波函数发生器实验电路先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。
4.电路仿真4.1 方波---三角波发生电路的仿真4.2 三角波---正弦波转换电路的仿真5 电路的安装与调试5.1 方波---三角波发生电路的安装与调试1.按装方波——三角波产生电路1. 把两块741集成块插入面包板,注意布局;2. 分别把各电阻放入适当位置,尤其注意电位器的接法;3. 按图接线,注意直流源的正负及接地端。
2.调试方波——三角波产生电路1. 接入电源后,用示波器进行双踪观察;2. 调节RP1,使三角波的幅值满足指标要求;3. 调节RP2,微调波形的频率;4. 观察示波器,各指标达到要求后进行下一部按装。