准同期并列条件分析及整定 自动准同步装置的基本构成

合集下载

电力系统自动化第2讲 同步发电机的自动准同期并列

电力系统自动化第2讲 同步发电机的自动准同期并列
第二讲 同步发电机的自动 准同期并列
North China Electric Power University
第三章 同步发电机的自动准同期并列
2023/10/16
重点讲解发电机同步准同期 并列的自动化原理. 这是将同 步发电机投入电网进行并列运 行以组成电力系统的基本步骤.
North China Electric Power University page2
检测的信息主要取自并列断路器QF两侧的电压,而
且主要是对脉动电压
U
进行检测并提取信息。
S
2023/10/16 North China Electric Power University page18
1 脉动电压— QF两侧电压相量幅值相等
(1)QF两侧电压相量幅值相等 j U X
可以得到脉动电压:
Sy
0.2 2 f N
100
0.2 rad / S
TS
2 Sy
10S
测量 TS 的值可以检测出发电机组与电网之间滑差
角频率的大小,即频率差的大小。
2023/10/16 North China Electric Power University page23
2 脉动电压—并列检测合闸相角差
同步发电机并列的同步过程分析
发电机发出 功率
发电机吸收 功率
2023/10/16 North China Electric Power University page15
自同期并列
自周期并列就是将一台未加励磁电流的发电机组升速
到接近于电网频率,滑差角频率不超过允许值,而且, 在机组的加速度小于某一给定值的条件下,首先合上并 列断路器QF,接着立刻合上励磁开关,给转子加上励磁电 流,在发电机电动势逐渐增长的过程中,由电力系统将 并列发电机拉入同步状态。

电力系统自动化chapter1-2准同期并列的基本原理2

电力系统自动化chapter1-2准同期并列的基本原理2

T s1
T s2
ω s2
ω s1
UG +U x
图 1-7
UG − U x
t
T s1
T s2
U G 与 U x 不等时 U s 的波
第二节
准同期并列的基本原理
(三)利用脉动电压 u s 检测准同期并列的条件 脉动电压 u s 有时也称作滑差电压。 1、电压幅值差 电压幅值差 U G − U x 为对应于脉动电压 U s 波形的
2 2 = + Us U x U G − 2U x U G cos ω s t (1-9) 当 ω st = 0 时, U s = U G − U x 为两电压幅值差;
当 ω st
= π 时, U s = U G + U x 为两电压幅值和。
第二节
US
准同期并列的基本原理
ω s1
ω s2
t
US
图 1-6 U G = U x 时 U s 的波形
第二节
准同期并列的基本原理
Hale Waihona Puke 在满足并列条件的情况下,采用准同期并列方
法将待并发电机组投入电网运行,前已述及只 要控制得当就可使冲击电流很小且对电网扰动 甚微。
因此准同期并列是电力系统运行中的主要并列
方式。
第二节
准同期并列的基本原理

设并列断路器 DL 两侧电压分别为 U G 和 U x ; 并列断路器 DL 主触头闭合瞬间所出现的冲击电流值以及进入同步运行的暂 态过程,决定于合闸时的脉动电压 U s 和滑差角速度 ω s 。 因此,准同期并列主要对脉动电压 U s 和滑差角速度 ω s 进行 检测和控制,并选择合适的时间发出合闸信号,使合闸瞬间 的 U s 值在允许值以内。 检测的信息也就取自 DL 两侧的电压, 而且主要是对 U s 进行检测并提取信息。

发电机自动准同期装置并列参数分析

发电机自动准同期装置并列参数分析

发电机自动准同期装置并列参数分析摘要:本文首先对同步发电机的并列运行相关内容进行基本阐述,然后分析发电机自动准同期装置并列相关参数,旨在促进我国电力企业发展提供参考和借鉴。

关键词:发电机;自动准同期装置;并列参数;分析研究1引言发电机在对用电设备进行电能输送时,需要借助电力系统。

同期并列技术就是将发电机与电力系统进行并列操作,帮助减少发电机并网过程中出现故障的概率。

随着我国经济社会和科学技术的不断发展,电力企业电网规模也不断扩大,发电机和数量和性能也在不断提高。

因此,加强对发电机自动准同期装置并列技术和相关参数进行不断研究和分析变得更加重要。

2 同步发电机并列运行同步发电机并列运行是指电力企业的同步发电机和电力系统根据一定的条件和规则并列运行。

这种运行情况能够帮助增大供电系统的稳定性,提高供电效果和质量,并使电力负荷的分配更加合理,从而综合性的提高企业的电力运行经济效益。

具体的并列运行发电机如下图1所示:根据运行的不同需要,并列操作是同步发电机的运行操作和电力系统解列这个两部分的共同并列运行操作,也叫同期操作。

图1.电力系统中并列运行的发电机2.1并列操作的要求和条件为了使得同步发电机的运行效果更加优异,减少故障的发生,发电机在投入的瞬间冲击电流需要根据实际情况达到最小,保证其最大数值在额定电流的2倍以下。

同时,在发电机进行并列运行时,需要控制波动效果在最小范围内,保证运行状态的稳定性。

3 相关自动准同期装置参数分析3.1基本原理影响自动准同期运行的因素有许多,其中频率差因素和相角差因素是一对相互影响且相对矛盾的因素。

当两个系统中的原有相位差为Δa≠0时,若需要满足频率要素相等,则Δa恒定,且不可能Δa=0。

当Δf =fg-fS≠0时, 即存在频率差时,Δa才会出现等于0的机会。

根据运行实际情况,与相位差相比,电压差和频率差对于整体电力运行系统和电力设备的影响更加微小,并且其电压和频率能够通过调整和控制较为简单的满足运行要求。

电力系统自动化 第一章 自动准同期

电力系统自动化 第一章 自动准同期

ω g − ωs
t ) 为脉动电压的幅值
u x = U x cos(
ω g + ωs
2
t)
概述 三、准同期条件的分析
ω x = ω g − ωs
U x = 2U g sin
δ = ω xt
= 2U g sin
ω xt
2
δ
2
= 2U s sin
δ
2
脉动周期
1 2π Tx = = fx ωx
2πf x fx ωx = = ω x* = 2πf e f e 2πf e
发电机并列示意图
概述 一、并列操作(Parallel Operating) 并列操作
同期点(synchronizing point):在发电厂中, 同期点 :在发电厂中, 每一个有可能进行并列操作的断路器都是同期 点。
概述 一、并列操作(Parallel Operating) 并列操作
同期条件的引出
越前鉴别
自动准同期装置
三、自动准同期的均频与均压部件
(二)模拟式自动准同期的均频与均压部件 2、脉冲展宽
脉冲展宽回路
自动准同期装置
三、自动准同期的均频与均压部件
(二)模拟式自动准同期的均频与均压部件 3、滑差过小自动发增速脉冲
自动准同期装置
三、自动准同期的均频与均压部件
(二)模拟式自动准同期的均频与均压部件 4、均压部分
越前时间、数值角 越前时间、 差、整步电压
四、同期条件的检测
ZZQ-5模拟式自动准同期装置 模拟式自动准同期装置
电压检测
自动准同期装置
第三节 自动准同期装置举例
一、微机自动准同期装置的合闸部分
微机同期装置示意图

发电机同期并列装置

发电机同期并列装置
δ=0°前一段时间发出合闸脉冲,这个提前时间称为导前时间时间 tfw 。 由于一个断路器的合闸时间是恒定不变的,所以导前时间也不应
随频差、压差改变,是一个固定的值,称之为恒定导前时间。
五、自动准同期装置
(二)自动准同期装置的构成及功能 自动准同期装置利用脉动电压波形,完成发电机并列前的自动调压、
自动调频和在满足并列条件的前提下,于发电机电压和系统电压相位重合 前的一个恒定导前时间发出合闸脉冲。
五、自动准同期装置
调压部分:比较待并发电机电压和系统电压的高低,自动发出降压或 升压脉冲,作用于发电机励磁调节器,使发电机电压趋近于系统电压,且 当电压差小于规定数值时,解除电压差闭锁,允许发出合闸脉冲。
电源部分:将系统电压和发电机电压变成装置所需要的相应电压外, 还为逻辑回路提供直流电源。 (三)同期对象及同期PT
图10 同期PT信号接入
六、发电机同期系统试验
(一)同期操作前对发电机的控制 1、电压控制
由于机组电压高于系统电压时,发电机发出无功,所以,在 并网前,最好能够保证机组的电压能稍高于系统电压,避免无功 反送。 2、转速控制
为了防止发电机在并网的瞬间,有功功率倒送,所以要在并 网前,保证发电机的转速稍微高于3000转。
2、自同期并列
◆ 自同期并列的方法
自同期并列原理图如图2所示。
图2 自同期并列原理图
开机前将DL和灭磁开关KMC断开, KMC的常闭辅助接点KMC ´将 发电机转子绕组通过自同期电阻RZ短路。开启机组,将机组驱动 到接近额定转速(转速差一般控制在额定转速的5%以下)时自动
闭合DL,由DL的辅助接点联动将KMC闭合、KMC ´断开,给发电机转 子绕组加励磁电流。
❃ 四大组成部分:合闸、调频、调压、电源 合闸部分:在频率差和电压差均满足准同期并列条件的前提下,于发 电机电压和系统电压相位重合前的一个恒定导前时间发出合闸脉冲。上述 条件不满足时,则闭锁合闸脉冲回路。 调频部分:判断发电机频率是高于还是低于系统频率,从而自动发出 减速或增速调频脉冲,使发电机频率趋近于系统频率。

同期的原理、准同期并列和自动准同期装置

同期的原理、准同期并列和自动准同期装置

同期的原理、准同期并列和自动准同期装置
电力系统运行过程中常需把系统的联络线或联络变压器与电力系统进行并列,这种将小系统通过断路器等开关设备并入大系统的和称为同期操作。

同期即开关设备两侧电压幅值大小相等、频率相等、相位相同。

通过调节幅值、频率、相位使设备并网:
1、通过调节发电机的励磁可以调节频率和相位。

2、通过调节发电机的转速可以调节电压幅值。

同期装置的作用是用来判断断路器两侧是否达到同期条件,从而决定能否执行并网的专用装置。

分为准同期装置和自动准同期装置。

准同期装置指待并发电机调整电压幅值、频率、相位与电网一致后操作断路器合闸使发电机并入电网。

自动准同期装置指将发电机升至额定转速后(即电压幅值大小相等),在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。

原理如下:
准同期并列和自动准同期并列优缺点。

准同期并列优点:能使待并发电机和系统都不受或仅受微小的冲击。

准同期并列缺点:因需调整并发电机的电压和频率,使之与系统电压、频率接近,一般操作时间较自同期并列时间长(需几分钟到十几分钟),不利于系统发生事故出现频率缺额时及时投入备用容量。

自动准同期并列优点:操作简单、并列迅速、易于实现自动化。

自动准同期并列缺点:冲击电流大,对系统扰动大,不仅会引起系统频率振荡,且会在自同期并列的机组附近造成电压瞬时下降。

自动准同期并列只能在电力系统事故、频率降低时使用。

适用标准和相应的设计规范有哪些?
《DL 400-91 继电保护和安全自动装置技术规程》 3.6
《电力工程电气设计手册(电气二次部分) 》第二十二章Page 419-462。

电力系统自动装置原理:第02章_同步发电机的自动并列-(4_5)

电力系统自动装置原理:第02章_同步发电机的自动并列-(4_5)

第四节 频率差和电压差的调整
2. 电压差调整 •任务:在并列操作过程中自动调节待并发电机的
电压值,使电压差条件符合并列的要求。 (1) UG < U X ,发升压脉冲; (2) UG > U X ,发降压脉冲;
•实施原理、原则:与频率差调整相似。
主要内容
1. 概述 2. 准同期并列的基本原理 3. 自动并列装置的工作原理 4. 频率差与电压差的调整 5. 数字型并列装置的组成
) 重点:
并列操作的两种方式; 准同期并列的理想条件;
自动准同期装置的组成;
恒定越前时间并列装置的基本原理 ;
微机式准同期装置的原理与优点。
本章作业:
1、 什么叫并列操作,简述同步发电机并列时应遵循的两条基 本原则。 2、并列操作有哪两种方式?它们是如何实现的? 3、什么是准同期的恒定越前时间?它的整定值与哪些因素有 关,应当如何整定? 4、自动准同期装置由哪三个控制单元组成?它们各自的主要任 务是什么? 5、何谓滑差、滑差周期?与相角差δ有什么关系? 6、简述微机型自动准同期装置实现电压差检测、频率差检 测、相角差检测以及恒定越前时间检测的原理和方法。
第五节 数字式并列装置
一、概述
用大规模集成电路微处理器(CPU)等器件构成的数字式并 列装置,由于硬件简单,编程方便灵活,运行可靠,且技术上 已日趋成熟,成为当前自动并列装置发展的主流。
模拟式并列装置为简化电路,在一个滑差周期Ts时间内, 把ωs假设为恒定。数字式并列装置可以克服这一假设的局限性 ,采用较为精确的公式,按照δe当时的变化规律,选择最佳的 越前时间发出合闸信号,可以缩短并列操作的过程,提高了自 动并列装置的技术性能和运行可靠性。
原理:驱动器控制的三相电形成电磁场, 转子(永磁铁)在此磁场作用下转动; 同时电动机自带的编码器反馈信号给驱动器, 驱动器根据反馈值与目标值进行比较, 调整转子转动的角度。

同期的方式及准同期并列的条件

同期的方式及准同期并列的条件
• 接地方式的种类有:1、中性线接地,2、 B相
接地。
• 发电厂的电压互感器多采用B相接地方式 ,其
中性点F作为后备。
• 变电站电压互感器采用中性点接地方式。
电压互感器的变比
大电流接地系统电压互感器的变比
小电流接地系统电压互感器的变比
2.3.2 同期电压引入方式
2.3.2.1 发电机断路器同期点
同期装置同期点选择和同期电压引入二三准同期并列的条件准同期并列的操作方式四同期的方式一五自动自同期11同期基本概念各发电机转子间的相角差不越过允许的极限值发电机出口的折算电压近似地相等系统中各发电机转子以相同的电角速度旋转只有满足这些条件
同期装置

同期的方式

同期点选择和同期电压引入

准同期并列的条件
可能的小,其瞬时最大值一般不超过1~2
倍的额定电流。
(2)发电机组并入电网后,应能迅速进
入同步运行状态,其暂态过程要短,以减少
对电力系统的扰动。
1.2 同期的基本方式
发电机的并列有两种方式:即准同期和自同期。
自同期
采用此种方式时,
先打开导叶开启机组,
当转速接近额定转速
时,直接合机组出口
断路器,连接机组和
UG U X
冲击电流有效值: I ''
Xd X X
UX
Us超前Ih900,冲击电流
主要为无功电流分量
''
h
出现这种情况时,冲击电动力对发电机定子绕组端
部机械产生危害!
UG
3.2.2 仅存在合闸相角差
φ
并列时: ① 频率 fG=fX;
② 电压幅值UG=UX;
δe

第一章 自动准同期

第一章 自动准同期

将一台未加励磁电流的发电机升速到接近于系 统频率,在滑差角频率不超过允许值、且加速 度小于给定值的条件下,首先合上并列断路 器,接着再立刻合上励磁开关,给转子加上励 磁电流,在发电机电势逐渐增大的过程中由系 统将发电机拉入同步运行。
第二节 越前时间、数值角差与 整步电压

越前时间、数值角 越前时间、数值角 差、整步电压 差、整步电压
误差
d i td dt
i i ( i 1 i ) 0 i m
td
t
合闸时间越长,误差越大,只适合于匀速变化的
越前时间、数值角 越前时间、数值角 差、整步电压 差、整步电压
二、数值角差

(2)积分预报法(两步预报法) 步长
T ti ti k
一、恒定越前时间(invariable exceeding time)
准同期并列合闸信号控制的逻辑结构图
越前时间、数值角 越前时间、数值角 差、整步电压 差、整步电压
一、恒定越前时间
恒定越前相角:装置中所取提前量是某一恒定 到达 0 之 相角 YJ ,即在脉动电压 U x 前的 YJ 相角发出合闸信号。 恒定越前时间:装置中所取提前量是某一恒定 到达 0 之 时间信号,即在脉动电压 U x 前的 tYJ 发出合闸信号。一般 tYJ 等于断路器 的合闸时间 t QF 。

——电源的角速度 ——初相角
概述 概述 一、并列操作(Parallel Operating)

并列的原则: 冲击电流(impulse current)尽可能小 暂态过程(transient process)尽量短 并列方式: 准同期(quasi-synchronizing) 自同期(self-synchronizing)

准同期并列的基本原理汇总

准同期并列的基本原理汇总





准同期并列的基本原理
一、 脉动电压 (一) U G 与 U x 两电压幅值相等

G U x U 为便于分析问题,设待并发电机 G x
断路器 DL 两侧间电压差 u s 为
us U G sin G t 1 U x sin x t 2


当 st 时, U s U G U x 为两电压幅值和。
准同期并列的基本原理
US
s1
s2
t
图 1-6 U G = U x 时 U s 的波形 s1 s2
US
o
T s1
T s2
UG U x
图 1-7 形
T s1
UG U x T s2
t
o
U G 与 U x 不等时 U s 的波
设置了频率控制单元、电压控制单元和合闸信号控制单元 待并发电机的频率或电压都由并列装置自动调节
当满足并列条件时,自动选择合适时机发出合闸信号
准同期并列的基本原理
三、准同期并列合闸信号的控制
电压差允许 频率差允许
与 门
合闸信号
提前量信号
提前量信号形成
图 1-9 准同期并列合闸信号控制逻辑结构图
准同期并列的基本原理
在满足并列条件的情况下,采用准同期并列方
法将待并发电机组投入电网运行,前已述及只 要控制得当就可使冲击电流很小且对电网扰动 甚微。
因此准同期并列是电力系统运行中的主要并列
方式。
准同期并列的基本原理
设并列断路器 DL 两侧电压分别为 U G 和 U x ; 并列断路器 DL 主触头闭合瞬间所出现的冲击电流值以及进入同步运行的暂 态过程,决定于合闸时的脉动电压 U s 和滑差角速度 s 。 因此,准同期并列主要对脉动电压 U s 和滑差角速度 s 进行 检测和控制,并选择合适的时间发出合闸信号,使合闸瞬间 的 U s 值在允许值以内。 检测的信息也就取自 DL 两侧的电压, 而且主要是对 U s 进行检测并提取信息。

准同周期

准同周期

准同期自动并列装置研究徐华辉电气8班 201130700228摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。

关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。

不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。

本文即针对发电机同期并列的原理及过程进行了阐述。

1、准同期装置的发展电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。

但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。

八十年代中期又陆续推出了一些类似装置。

目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。

准同期装置的发展经历了如下三代产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。

这是最原始的准同期方法。

后来改用指针式电磁绕组的整步表构成的手动准同期装置。

这种方法仍然应用在常规的设计中。

第二代准同期装置是以许继的zz03和ZZQS为代表的模拟式自动准同期装置。

它用分立晶体管元件搭建硬件电路,对同期条件进行检测和处理。

ZZQ3和ZZQS自动准同期装置的出现,极大的提高了并网速度和可靠性,但由于模拟式同期装置用模拟电子元件拟合,必然带来诸如导前时间不稳定、阻容电路作为微分电路的条件约束、构成装置元器件参数漂移不稳定等问题。

模拟式的同期装置合闸准确度比较低,它无法指示装置的运行状态,不能进行故障自检等,现在已经基本被淘汰。

同步发电机自动准同期并列综述

同步发电机自动准同期并列综述

同步发电机自动准同期并列综述任治坪(新疆大学电气工程学院,新疆乌鲁木齐 830008)摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。

关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法Parallel synchronous generatorautomatic synchronizing SummaryRen Zhiping(Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008)Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on.Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。

不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。

自动准同期装置的工作原理

自动准同期装置的工作原理

自动准同期装置的工作原理自动准同期装置是一种用于测量和校准时间精度的设备。

它能够准确地判断设备的时间延迟和频率偏移,从而确保设备的时间同步性。

本文将介绍自动准同期装置的工作原理,包括其组成部分和工作流程。

一、组成部分自动准同期装置通常由以下几个主要组成部分构成:1. 时钟源:提供高精度的时间信号,可以是原子钟、GPS卫星信号或其他高精度时钟信号。

时钟源是自动准同期装置的核心,决定了测量和校准的时间精度。

2. 测量模块:用来测量设备的时间延迟和频率偏移。

测量模块通常包含时钟测量电路、频率测量电路和延迟测量电路等。

3. 控制模块:根据测量结果进行校准控制。

控制模块可以根据测量结果自动调整设备的时钟信号,使其与参考时钟同步。

4. 显示和记录设备:展示和记录测量结果,可以以数字或图形形式显示。

二、工作原理自动准同期装置的工作原理可以分为测量和校准两个步骤。

1. 测量步骤:自动准同期装置首先利用测量模块对设备的时钟信号进行测量。

测量模块会与设备的时钟进行比较,测量出设备与参考时钟之间的时间延迟和频率偏移。

2. 校准步骤:根据测量结果,控制模块会自动调整设备的时钟信号,使其与参考时钟同步。

校准可以通过改变设备的时钟频率、调整时钟的相位来实现。

自动准同期装置通过不断地测量和校准,使设备的时钟信号保持与参考时钟的同步。

在测量和校准过程中,自动准同期装置可以自动识别和修复设备中存在的时间偏差和频率漂移,确保设备的时间同步性,提高系统的可靠性和稳定性。

三、应用领域自动准同期装置广泛应用于各个领域,特别是对时间同步性要求较高的行业,如通信、电力、航空航天等。

1. 通信领域:自动准同期装置在通信网络中起到重要作用,确保不同设备的时钟同步,提高通信质量。

2. 电力领域:电力系统中的各个设备需要高度同步的时钟信号,以确保电力系统的运行安全和稳定。

3. 航空航天领域:航空航天系统对时间同步性要求极高,自动准同期装置能够确保航空航天设备的精准同步,提高导航、通信和控制的准确性。

同步发电机自动并列知识讲解

同步发电机自动并列知识讲解

UG UX
S2
t
TS2
U sU m 2 xU m 2 G2U mU xmc Gosts
当 st 0 时, Us Um GUm x
当 st 时, Us Um GUm x
准同期并列的基本原理
脉动电压中包括信息如下:
▪ 电压幅值差。最佳为 UmGUmX 的值最小,二电压重合时判别。
▪ 频率差,显示出相角差随时间变化的规律。
要求 S 小于某一允许的值,相当于要求脉动电压周期 T S 大于某一给定
的值。
最佳是在 UG 与 UX 重合时合闸,即相角差为零时(相量重合)幅值差最
小,考虑动作时间,要提前。 根据相角差的变化规律,可求得合闸指令最佳发出时机。
可采用两种方式
恒定越前相角准同期 恒定越前时间准同期
准同期并列的基本原理
❖ 准同期并列装置的原理
▪ 并列装置的构成 自动化程度一般分为
频率差控制单元 电压差控制单元 合闸信号控制单元
半自动 全自动
准同期并列的基本原理
▪ 恒定越前相角准同期
提前量信号取某一恒定相角 YJ 。
US
s1
s2 sy0
s3
UA
0
t
t
s1s2s3
断路器的合闸时间为 t QF 。同期装置动作时间为 t C 。
可采用两种方式mxmg恒定越前相角准同期恒定越前时间准同期准同期并列的基本原理并列装置的构成自动化程度一般分为频率差控制单元电压差控制单元合闸信号控制单元半自动全自动准同期并列的基本原理恒定越前相角准同期提前量信号取某一恒定相角syyj常数最佳滑差角频率过零后合闸过零时合闸过零前合闸断路器的合闸时间为
fG fX fG fX
输出减速脉冲信号 输出加速脉冲信号

第2章同步发电机的自动并列

第2章同步发电机的自动并列

系统电压
U sin( t ) U X mX X 2
U U U sin( t ) U sin( t ) 两者的电压差称为滑差电压U S G X mG G 1 mX X 2
●发电机电压角频率 G ●电网电压角频率 X 二者之间的电压相量差为 US UG U X 冲击电流决定于合闸瞬间的 U S ,要求: (1) U S 尽可能小; (2)并列后迅速进入同步运行状态,对电网扰 动小。
合闸后,发电机处于发电状态,受到制动。发电机发出功率, 沿着功角特性到达b点时,有
G x
s 0
此时,仍为发电机状态, G 继续减小, s 为负值, 使得 e 逐渐减小,发电机发率沿着功角特性往回摆动,到达 原点时, e 为负,交换功率变负,发电机处于电动机状态, 有重新加速,交换功率沿特性曲线变到c点, G x 来回摆动,直到进入同步运行为止。 进入同步运行状态的暂态过程与合闸时的滑差角频率的初始大 小 s 0 有关,若 s 0 较小,到达最大相角b点的相角差变化 较小,可很快进入同步运行。
可采用两种方式
恒定越前相角准同期 恒定越前时间准同期
准同期并列的基本原理

二、准同期并列装置
频率差控制单元

并列装置的构成
电压差控制单元
合闸信号控制单元
半自动:无频率差、电压差控制功能。
自动化程度一般分为
全自动
自动准同期并列装置 三个控制单元
频率差允许 电压差允许
与 门
QF
并列断 路器
TVX
TVG
一、脉动电压变化
UG U X
US
S1
TS1
S 2
G X
两电压相量做相 对运动

山东大学电力系统保护与控制重点总结

山东大学电力系统保护与控制重点总结

绪论发生短路时可能产生的危害:1,通过故障点的很大的短路电流和所燃起的电弧,会损坏故障元件2,短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短他们的使用寿命3,电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量4,破坏电力系统并列运行的稳定性,引起系统震荡,甚至使整个系统瓦解继电保护装置的基本任务:1,自动、迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行2,反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号、减负荷或跳闸。

一般情况下不要求保护迅速动作,而是根据对电力系统及其元件的危害程度经一定的延时动作于信号继电保护装置的构成:测量部分,逻辑部分和执行部分电力系统继电保护装置的要求:选择性,速动性,灵敏性,可靠性电力系统自动控制的主要内容:1,电力系统自动检测与控制系统2,电厂动力机械自动控制系统3,变电站自动控制系统4,电力系统自动装置电力系统的分层控制:1,按照控制水平分2,按照模型化方法的不同分3,按照组织分层划分电网的电流保护继电特性:在启动和返回的过程中,继电器的动作迅速、明确、干脆、不可能停留在某一个中间位置,这种特性叫做继电特性。

三段式整定:电流速断保护(靠整定值的选取来满足选择性要求,简单可靠动作迅速,但是不能保护全长)限时电流速断保护(能保护线路的全长,但是保护范围受到系统运行方式的影响)定时限过电流保护(简单可靠、一般情况下也能满足快速切除故障的要求。

但是他直接受电网接线以及电力系统运行方式变化的影响)对于方向性电流保护:只有启动电流大于反向短路的最大电流时,不需加方向元件三段式零序电流保护:1,零序电流速断保护: 躲开本线路末端接地短路时可能出现的最大零序电流3I0.max ,躲开断路器三相出头不同期合闸时,所出现的最大零序电流t。

常规整定中选取两者中较大的作为整定值。

第3章:同步发电机的自动并列

第3章:同步发电机的自动并列
e 0。
后三个条件必须同时满足,否则有可能产生很大 的冲击电流,甚至引起发电机的强烈振荡。
(二)准同期并列误差对并列的影响 1.合闸电压幅值差对并列的影响
分析条件:UG U X ,G X ,e G X 0
冲击电流的有效值:
I
h
UG
X
d
UX XX
U
X
d
X
X
X
为发电机直轴次暂态电抗;
d
三. 准同期并列
准同期并列时先将待并列双方(系统或发电机)的电 压加到并列断路器主触头两侧,然后调整两侧电压,使电 压幅值、频率和相角分别相等时闭合断路器主触头,使并 列双方并联在一起运行。
(一)准同期并列的理想条件
发电机侧电压
uG UG sin(Gt 0G )
系统侧电压
uX U X sin(X t 0X )
又从最大值变到 0。相角差 e变动2 的时间周期就是脉动
周期TS (滑差周期)。
(二)UG与U X 两电压幅值不相等
US
U
2 G
U
2 X
2UGU X
cos S t
当St 0时,U S UG U X 为两电压幅值差; 当St 时,U S UG U X 为两电压幅值和。
(三)利用脉动电压U S检测准同期并列的条件 1.电压幅值差
自动监视电压表、频率差及选择的时间发出 合闸脉冲,使断路器在零相角差时合闸;同时设 有自动调节电压和频率单元,在压差和频差不合 格时发出控制脉冲。
频差不满足要求时,自动调节原动机的转速, 减小或增加频率,即通过控制原动机的调速器实 现。
压差不满足要求时,自动调节发电机的电压 使待并电压接近系统电压,即通过调节控制发电 机励磁调节装置来实现。

同步发电机准同期并列运行

同步发电机准同期并列运行

同步发电机准同期并列运行一、并列操作的意义同步发电机投入电力系统并列运行的操作,或者,电力系统解列的两部分进行并列运行的操作,被称为并列或同期操作。

随着负荷的波动,电力系统中发电机运行的台数也经常要变化。

因此,同步发电机的并列操作是电厂的一项重要操作,另外,当系统发生事故时,也常要求将备用发电机组迅速投入电网运行。

可见,在电力系统运行中并列操作是较为频繁的。

电力系统的容量在不断增大,同步发电机的单机容量也越来越大,大型机组不恰当的并列操作将导致严重后果。

因此,对同步发电机的并列操作进行研究,提高并列操作的准确度和可靠性,对于系统的可靠运行具有很大的现实意义。

同步发电机的并列运行方法可以分为准同期并列运行和自同期并列两种。

在电力系统正常运行情况下,一般采用准同期并列方法将发电机组投入运行。

自同期并列方法法已经很少采用,只有当电力系统发生事故时,为了迅速投入水轮发电机组,过去曾采用自同期并列方法。

随着自动控制技术的进步,特别是微型数字式自动并列方法已日趋成熟,现在也可以用准同期法快速投运水轮发电机组。

二、准同期并列条件待并发电机组先加励磁电流,调节其端电压的状态参数使之符合并列条件,再合上断路器QF ,这种操作为准同期并列。

发电机准同期并列的理想条件为并列断路器两侧电源电压三个状态量全部相等,即(1) 或 (即频率相等) (2) (即电压幅值相等)(3)(即相角差为零) 这是,并列合闸的冲击电流等于零,斌且并列后发电机G 与电网立即进入同步运行,不发生任何扰动现象。

但是,实际运行中待并发电机组的调节系统很难实现上边提到的理想条件调节。

因此,三个条件很难同时满足。

其实在实际操作中也没有这样苛求的必要。

G Xωω=G X f f =G X U U =0e δ=因为并列合闸时只要求冲击电流较小、不危及电气设备,合闸后发电机组能迅速拉入同步运行,对待并发电机和电网运行的影响较小,不致引起不良后果。

因此,现实情况中同步电机并列应遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍的额定电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综上所述,发电机准同步并列的实际条件是: 1)待并发电机与系统电压幅值接近相等,一般情 况下压差限制在额定电压的5%-10%。 2)在断路器合闸瞬间,待并发电机电压与系统电 压的相位差应接近零,通常准同步并列操作允许的合 闸相位差不应超过5°。 3)待并发电机电压与系统电压的频率应接近相等 ,一般控制频率差在0.25Hz以内。
G S 2U Gm sin t 为脉振电压的幅值 2
脉振电压ud可变为
G S u d U dm cos 2 t
断路器两侧电压的频率差,称之滑差。 滑差角频率为
d G S
发电机侧和系统侧两电压相量的相角差为
d t
四、微机型自动准同步装置的主要特点及要求
(1)高可靠性;(2)高精度;(3)高速度; (4)能融入分布式控制系统(DCS); (5)操作简单、方便,有清晰的人机界面; (6)二次线设计简单清晰; (7)调试方便; (8)有较长时间的运行实践经验。
第二节 准同步并列 条件分析及整定
第三节 自动准同步 装置的基本构成
第二节 准同步并列条件分析及整定
一、发电机并入系统时的冲击电流和冲击功率
图2-4 冲击电流的产生
交轴方向上相应的冲击电流周期分量有效值为:
U G U S cos Xd
直轴方向上相应的冲击电流周期分量有效值为:
U S sin Xq
总的冲击电流周期分量有效值为:
U G U S cos U S sin I ip X X d q
2 2
二、准同步各个条件对准同步并列的影响
并列合闸时只要遵循如下的原则:
1)发电机组并列瞬间,冲击电流应尽可能小;
2)发电机组并入电网后,应能迅速进入同步运
行状态,其暂态过程要短。
1、电压幅值差的影响
UG U S 产生冲击电流的有效值为:I ip Xd
2、相角差值的影响
冲击电流的有效值为
U 2U I ip sin X q Xq 2
பைடு நூலகம்
3、频率差值的影响
图2-5 准同步时频率条件分析 (a)待并发电机与系统的电压向量图 (b)Ud的波形
因此
U dm 2U Gm sin
d t
2
2U Gm sin

2
2U Sm sin

2
滑差角频率ωd与滑差频率fd的关系为
d 2πfd
所以,滑差周期
1 2 Td f d d
在准同步并网的三个条件中,电压差和频率差 不是伤害发电机的重要原因,真正伤害发电机的是 相角差。
第三节 自动准同步装置的基本构成
一、自动准同期装置的功能
自动准同期装置的任务是实现自动并列操作,应 具有以下两种功能: 1)自动检测待并发电机与母线之间的压差及频 差是否符合并列条件,并在满足这两个条件时, 能自动地发出合闸脉冲,使并列断路器主触头在 相角差为零的瞬间闭合; 2)当压差、频差不满足并列条件时,能对待并 发电机自动地进行调压、调速,以加快进行自动 并列的过程。
三、自动准同步装置的组成
自动准同步装置主要由频差控制单元,压差控制 单元,合闸信号控制单元和电源四部分组成。
图2-6 典型自动准同步装置构成原理图
按提前量的不同,可分为恒定越前相角和恒定越 前时间两种原理。 1、恒定越前相角的同步装置是采用并列点两侧 电压相量重合之前的一个角度φdq发出合闸脉冲, 只有在一特定频差时才能实现零相角差并网 2、恒定越前时间同步装置则采用在并列点两侧 电压相量重合点之前的一个时间tdq时发出合闸脉 冲,可保证在任何频率差时都可在零相角差实现 并网。
二、准同步装置的分类
1、手动准同步装置
手动准同步装置没有频率调节和电压调节的功 能,并列时,运行操作人员监视同步屏的电压 表、频率表及整步表,当频率和电压都满足并 列条件时,靠经验人为的判断合闸时间,操作 断路器合闸。
2、自动准同步装置(ASA)
自动准同步装置通过接入待并发电机和运行系统 的TV二次电压能自动监视待并发电机侧和系统 侧的电压、频率并且能在导前时间点发出合闸命 令,使断路器在零相角差时进行合闸。 自动准同步装置具有均压控制、均频控制和合闸 控制三种功能,通过自动调压和调频单元,在压 差和频差不满足同期条件时发出控制脉冲。
一、电力系统及其运行特点
脉振电压Ud为
U d U Gm sinG t 0G U Sm sin S t 0S

经过和差化积则变为
G S G S u d 2U Gm sin t cos t 2 2
定义 U dm
相关文档
最新文档