七段显示译码器电路设计
7段数码显示译码器设计
7段数码显示译码器设计
设计一个7段数码显示译码器,主要功能是将4位二进制编码转换为用7段LED显示的十进制数。
具体设计过程如下:
1.确定电路的输入和输出:输入为4位二进制编码,输出为7段LED 显示的十进制数。
2.确定译码器类型:由于需要将二进制编码转换为十进制数,可以选用BCD-7段译码器或者十进制译码器作为基本器件。
3.确定电路原理图:根据所选的译码器类型,画出电路原理图。
在原理图中,需要连接一个4位二进制编码器到译码器的输入端,同时将译码器的输出连接到7段LED显示器的相应段。
4.电路连接和布线:将译码器和7段LED显示器连接到电源和接地线上,并将4位二进制编码器的输出连接到译码器的输入端。
5.电源和接地线:将电源和接地线正确连接到电路中,确保电路能够正确工作。
6.电路调试和测试:通过输入不同的4位二进制编码来测试电路的译码功能,确保译码器能够正确地将二进制编码转换为十进制数,并且在7段LED显示器上显示。
7.电路性能优化和改进:根据测试结果,对电路进行进一步的优化和改进。
可以考虑是否需要增加输入的保护电路,或者改进电源和接地线的布线方式来提高电路的性能。
总结:
以上是设计一个7段数码显示译码器的基本步骤,通过选择合适的译码器类型,正确连接电路和调试测试,可以实现4位二进制编码到十进制数的转换,并在7段LED显示器上显示。
在设计过程中,需要注意电路连接的正确性和稳定性,以及对电路的性能进行优化和改进。
EDA实验报告
EDA实验报告班级:姓名:目录实验一:七段数码显示译码器设计 (1)摘要 (1)实验原理 (1)实验方案及仿真 (1)引脚下载 (2)实验结果与分析 (3)附录 (3)实验二:序列检测器设计 (6)摘要 (6)实验原理 (6)实现方案及仿真 (6)引脚下载 (7)实验结果与分析 (8)实验三:数控分频器的设计 (11)摘要 (11)实验原理 (11)方案的实现与仿真 (11)引脚下载 (12)实验结果及总结 (12)附录 (12)实验四:正弦信号发生器 (14)摘要 (14)实验原理 (14)实现方案与仿真 (14)嵌入式逻辑分析及管脚下载 (16)实验结果与分析 (17)附录 (18)实验一:七段数码显示译码器设计摘要:七段译码器是一种简单的组合电路,利用QuartusII的VHDL语言十分方便的设计出七段数码显示译码器。
将其生成原理图,再与四位二进制计数器组合而成的一个用数码管显示的十六位计数器。
整个设计过程完整的学习了QuartusII的整个设计流程。
实验原理:七段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用译码程序在FPGA\CPLD中来实现。
本实验作为7段译码器,输出信号LED7S的7位分别是g、f、e、d、c、b、a,高位在左,低位在右。
例如当LED7S 输出为“1101101”时,数码管的7个段g、f、e、d、c、b、a分别为1、1、0、1、1、1、0、1。
接有高电平段发亮,于是数码管显示“5”。
实验方案及仿真:I、七段数码显示管的设计实现利用VHDL描述语言进行FPGA上的编译实现七段数码显示译码器的设计。
运行QuartusII在G:\QuartusII\LED7S\下新建一个工程文件。
新建一个vhdl语言编译文件,编写七段数码显示管的程序见附录1-1。
十六进制7段数码显示译码器设计实验报告
实验名称:十六进制7段数码显示译码器设计实验目的:1.设计七段显示译码器2.学习Verilog HDL文本文件进行逻辑设计输入;3.学习设计仿真工具的使用方法;工作原理:7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是二进制的,所以输出表达都是十六进制的,为了满足十六进制数的译码显示,最方便的方法就是利用译码程序在FPGA/CPLD中来实现。
例如6-18作为7段译码器,输出信号LED7S 的7位分别接图6-17数码管的7个段,高位在左,低位在右。
例如当LED7S输出为“1101101”时,数码管的7个段g,f,e,d,c,b,a分别接1,1,0,1,1,0,1;接有高电平的段发亮,于是数码管显示“5”。
注意,这里没有考虑表示小数点的发光管,如果要考虑,需要增加段h,例6-18中的LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)应改为…(7 DOWNTO 0)。
实验内容1:将设计好的VHDL译码器程序在Quartus II上进行编辑、编译、综合、适配、仿真,给出其所有信号的时序仿真波形。
实验步骤:步骤1:新建一个文件夹击打开vhdl文件;步骤2:编写源程序并保存步骤3:新建一个工程及进行工程设置步骤4:调试程序至无误;步骤5:接着新建一个VECTOR WAVEFOM文件及展出仿真波形设置步骤6:输入数据并输出结果(时序仿真图)步骤7:设置好这个模式步骤8:生成RTL原理图步骤9:引脚锁定及源代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY DECL7S ISPORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO 0);LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END;ARCHITECTURE one OF DECL7S ISBEGINPROCESS(A)BEGINCASE A ISWHEN"0000"=> LED7S<="0111111";WHEN"0001"=> LED7S<="0000110";WHEN"0010"=> LED7S<="1011011";WHEN"0011"=> LED7S<="1001111";WHEN"0100"=> LED7S<="1100110";WHEN"0101"=> LED7S<="1101101";WHEN"0110"=> LED7S<="1111101";WHEN"0111"=> LED7S<="0000111";WHEN"1000"=> LED7S<="1111111";WHEN"1001"=> LED7S<="1101111";WHEN"1010"=> LED7S<="1110111";WHEN"1011"=> LED7S<="1111100";WHEN"1100"=> LED7S<="0111001";WHEN"1101"=> LED7S<="1011110";WHEN"1110"=> LED7S<="1111001";WHEN"1111"=> LED7S<="1110001";WHEN OTHERS =>NULL;END CASE;END PROCESS;END;实验内容二:1、硬件测试。
实验五-7段数码显示译码器设计
实验五7段数码显示译码器设计实验报告一、实验要求1、GW48实验箱2、写出7段数码显示译码器程序3、总结实验步骤和实验结果二、实验内容1、说明例中各语句的含义,以及该例的整体功能。
在max+plus2或quartus2上对以下该例进行编辑、编译、综合、适配仿真,给出其所有信号的时序仿真波形。
module zdw(in,out);output [6:0]out;input [3:0]in;reg[6:0]out;always@(in)begincase(in)4'd0: out=7'b1111110;4'd1: out=7'b0110000;4'd2: out=7'b1101101;4'd3: out=7'b1111001;4'd4: out=7'b0110011;4'd5: out=7'b1011011;4'd6: out=7'b1011111;4'd7: out=7'b1110000;4'd8: out=7'b1111111;4'd9: out=7'b1111011;4'd10: out=7'b1110111;4'd11: out=7'b0011111;4'd12: out=7'b1001110;4'd13: out=7'b0111101;4'd14: out=7'b1001111;4'd15: out=7'b1000111;default: out=7'bx;endcaseendendmodule2、引脚锁定以及硬件下载测试。
建议选实验电路模式6,用数码8显示译码输出(PIO46—PIO40)。
键8,键7,键6,键5四位控制输入,硬件验证译码器的工作性能。
十六进制7段数码显示译码器设计实验报告
十六进制7段数码显示译码器设计实验报告实验报告:十六进制7段数码显示译码器设计一、实验目的本实验的主要目的是设计一种用于将十六进制数码转化为七段显示的译码器电路。
通过这个实验,我们可以学习和了解数字电路的工作原理、数码管的控制方式以及七段数码的译码方法。
二、实验原理本实验所用到的数码管为共阳数码管,它由7个发光二极管组成,其中的每一个发光二极管称为一个段。
这七个段依次为a、b、c、d、e、f和g,它们分别对应数码管上的abcdefg七个引脚。
当一些引脚输出高电平时,相应的段就会被点亮,从而显示出特定的字符。
为了实现将十六进制数码转化为七段显示的功能,我们需要设计一个译码器电路。
译码器电路的输入为十六进制数码,输出为七段信号,用于控制数码管的每个段的亮灭情况。
为了简化设计,我们可以采用CMOS数字集成电路74LS47来实现译码器电路。
该集成电路内部集成了BCD转七段译码器,可以将二进制代码转化为七段数码显示所需要的信号。
它的输入为四个二进制输入端口A、B、C和D,输出为七个段芯片(a、b、c、d、e、f和g)的控制信号。
三、实验步骤1.首先,根据74LS47的真值表,确定译码器的输入和输出。
2.根据真值表,画出逻辑图,确定硬件电路的连接方式。
3.按照逻辑图和电路连接方式,进行硬件电路的布线。
4.按照实验仪器的操作说明,对电路进行调试和测试。
5.将输入端口连接至外部的十六进制信号源,观察输出端口的数据是否正确。
6.验证电路的正确性和稳定性,如果出现问题,进行排除和修复。
四、实验结果经过实验,我们成功地设计并实现了一个十六进制7段数码显示译码器电路。
当输入端口接收到一个十六进制信号时,通过电路的处理和转换,将其转化为了相应的七段信号,用于控制数码管的每个段的亮灭情况。
通过实验观察,我们发现电路的输出结果与预期一致,且工作稳定。
五、实验总结通过这个实验,我们对于数字电路的工作原理和数码管的控制方式有了更深的了解。
BCD7段数码管显示译码器电路设计
以上语句等效为: process(indicator, sig)
variable temp : std_logic ; begin
temp := ‘0’ ; temp :=temp xor (sig(0) and indicator(0)); temp :=temp xor (sig(1) and indicator(1)); temp :=temp xor (sig(2) and indicator(2)); temp :=temp xor (sig(3) and indicator(3)); output <= temp ; end process ;Biblioteka 例:变量赋值实现循环语句功能
process(indicator, sig) variable temp : std_logic;
begin temp := ‘0’ ; for i in 0 to 3 loop
temp:=temp xor (sig(i) and indicator(i));
end loop ; output <= temp; end process;
PROCESS (a,b) BEGIN
--sequential statements END PROCESS;
PROCESS BEGIN
-- sequential statements WAIT ON (a,b) ; END PROCESS;
BCD-7段显示译码器工作原理
• BCD-7段译码器是由7个发光二极(LED) 管构成,LED由特殊的半导体材料砷化镓、 磷砷化镓等制成,组装成分段式或点阵式 LED显示器件(半导体显示器)。分段式显示 器(LED数码管)由7条线段围成8型,每一段 包含一个发光二极管。外加正向电压时二 极管导通,发出清晰的光,有红、黄、绿 等色。只要按规律控制各发光段的亮、灭, 就可以显示各种字形或符号。
7段数码显示译码器设计
7段数码显示译码器设计数码显示译码器是一种可以将二进制代码转换为数码形式输出的电子装置。
它是数字电路中常见且重要的组成部分,用于将二进制数据转换为人们可以直接阅读和理解的数码显示。
本文将介绍一个基于74LS47芯片的7段数码显示译码器的设计。
一、设计目标设计一个能够接受4位二进制代码输入,并将其转换为对应的七段数码形式输出的译码器电路。
二、74LS47芯片介绍74LS47是一种四位BCD-7段数码译码器/驱动器芯片,它能够将4位BCD代码转换为对应的七段数码输出。
该芯片具有以下特点:1.输入:4位BCD代码(A,B,C和D)2.输出:共阳极(共阳)显示器的七个引脚(a,b,c,d,e,f和g)3.功能:将BCD代码转换为七段数码形式输出,用于显示三、电路设计1.将74LS47芯片的引脚连接至7段数码显示器的a,b,c,d,e,f和g引脚。
这些引脚负责控制七段数码的每个段。
2.A,B,C和D引脚接收4位二进制代码输入。
3. 第一个74LS47芯片的Vcc引脚连接到正电源,GND引脚连接到地。
4. 还需将每个74LS47芯片的GA和GB引脚连接在一起,形成一个输入信号的链。
GA和GB引脚连接到Vcc电源端。
5.在接有显示器的七段段引脚(a,b,c,d,e,f,g)和段选择(a-g`)之间插入电阻。
这些电阻可用于限流,避免过高电流对显示器和芯片造成损坏。
6.确保芯片和显示器之间的信号传输有效,没有短路或脱离接地。
四、工作原理1.输入:通过A、B、C和D四个引脚接收4位BCD代码,一共有16个可能的输入组合。
2.输出:将四位BCD代码转换为相应的七段数码输出,用于显示。
例如,输入“0000”将转换为“0”的数码形式。
3.七段显示器共阳极(共阳):对于共阳极的显示器,七个段引脚(a,b,c,d,e,f和g)的高电平将被激活,且通过公共引脚控制显示的数码部分。
4.区分位和段:每个数码位由七个段组成,通过该段的点亮和熄灭来表示所需显示的数字。
(整理)七段显示译码器电路设计.
题目:七段显示译码器电路设计专业:生产过程自动化专业班级:生产过程0901 姓名:学号:指导老师:杨旭目录第一节绪论……………………………………………………………………………..1.1本设计的任务和主要内容………………………………………………………………..1.2基本工作原理及原理框图………………………………………………………………...第二节硬件电路的设计…………………………………………………………………2.1BCD译码器选择与设计…………………………………………………………………….2.2LED显示器的设计……………………………………………………………………………2.3总的设计……………………………………………………………………………………第四节设计总结…………………………………………………………………………第一节绪论本课程设计的七段译码器主要以BCD译码器或LED显示器为主要部件,应用集成门电路组成的一个具有译码和显示的装置。
其中BCD 译码器采用8421BCD译码器,即----七段显示译码器(74LS48)型。
LED显示器是由发光二极管组成的,LED显示器分共阴极和共阳极两种型号,共阴极LED显示器的发光二级管阴极接地,共阳极LED显示器的发光二极管阳极并联。
最后把BCD译码器或LED显示器组成了的装置就具有了显示和译码的功能。
此七段译码器也就成功了。
1.1设计的任务和本主要内容1)运用LED显示器或BCD译码器实现一定的功能2)写出详细的实验报告1.2基本工作原理及原理框图基本工作原理及原理框图如下:第二节硬件的设计BCD译码器选择与设计发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。
分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。
外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。
七段译码器显示电路.doc
七段译码器显示电路.doc七段译码器显示电路是一种常见的数字显示电路,它可以将数字信号转换为七段数码管可以显示的信号。
在这种电路中,数字信号经过七段译码器解码后,将产生与数字相应的七个片段输出信号,这七个片段用于控制数码管的显示。
该电路由以下几部分组成:1.七段译码器七段译码器是将二进制代码转换为七段数码管显示的芯片。
通常,七段译码器有4位二进制输入和7位输出,每个输出对应一个数码管的片段,称为“a”、“b”、“c”、“d”、“e”、“f”、“g”,而其余输出为“dp”,作为十进制点的控制器。
2. 7490计数器7490计数器是一种可实现数字信号计数的芯片。
在该电路中,7490计数器与七段译码器相结合,其输出作为七段译码器的输入,使其能够显示数字信号。
3. 7447特殊驱动芯片7447是一种特殊的数码管驱动芯片,与七段译码器配合使用,用于数码管的数码输出。
7447芯片的输出通过NPN晶体管到达数码管的象限管,控制其亮度。
4. 2N3906 PNP晶体管PNP晶体管的输出与七段译码器的输入进行连接,用于控制七段译码器的输出段。
5. 10μF电容电容器用于过滤输入信号,避免噪声产生干扰。
7. 1K电阻电阻用于将输入信号和晶体管之间的电流限制在一个安全范围内。
该电路基于二进制计数,可从0到9逐个显示数字。
在7490计数器和七段译码器之间的输出信号滞后1,可以在保证数字显示正确的情况下使显示更加流畅。
七段译码器通过特殊驱动芯片和PNP晶体管控制数码管的显示,保证显示效果稳定而清晰。
总之,七段译码器显示电路在数字技术中具有广泛的应用,并可通过合理的设计和调试,为数字信号在显示上提供高效而稳定的解决方案。
基于DE2十六进制7段数码显示译码器verilog设计
实验一十六进制7段数码显示译码器设计一、实验目的1.熟悉硬件逻辑电路的一般设计和测试流程;2.嵌入式逻辑分析仪使用方法;实验内容了解硬件的层次化设计,通过半加器完成一个四位无符号数的全加器设计二、实验内容及步骤:1.用Verilog HDL设计1位7段数码管的显示译码电路,能够显示0~f。
显示数字由SW3~SW0设定;2.使用嵌入式逻辑分析仪进行仿真;3.将实验程序下载到DE2运行。
实验结果仿真波形三、实验程序:module lm7448(IN,OUT);input [3:0]IN;output [6:0]OUT;reg [6:0]OUT;always@(IN)case(IN)4'b0000:OUT<=7'b0000001;4'b0001:OUT<=7'b1001111;4'b0010:OUT<=7'b0010010;4'b0011:OUT<=7'b0000110;4'b0100:OUT<=7'b1001100;4'b0101:OUT<=7'b0100100;4'b0110:OUT<=7'b1100000;4'b0111:OUT<=7'b0001111;4'b1000:OUT<=7'b0000000;4'b1001:OUT<=7'b0001100;4'b1010:OUT<=7'b0001000;4'b1011:OUT<=7'b0000000;4'b1100:OUT<=7'b0110001;4'b1101:OUT<=7'b0000001;4'b1110:OUT<=7'b0110000;4'b1111:OUT<=7'b0111000;default : OUT=7'b0000001;endcaseendmodule四、实验结果。
基于FPGA的七段数码显示译码器的设计
基于FPGA的七段数码显示译码器的设计七段数码显示器是一种常见的显示设备,用于显示数字和一些字母字符。
在FPGA(Field Programmable Gate Array)上设计七段数码显示译码器可以实现数字输入到七段数码显示器的转换,并将对应的控制信号输出到相应的段。
FPGA是一种可编程逻辑设备,具有可重构性和可编程性,因此它可以用来设计各种数字逻辑电路,包括数码显示译码器。
设计一个基于FPGA的七段数码显示译码器需要以下步骤:
1.确定输入和输出:七段数码显示译码器的输入为数字(0-9),输出为七段数码显示器的段控制信号。
2.确定数码管的显示编码:七段数码管的每个段都有对应的编号,常用的编码方式有共阴极和共阳极两种。
确定使用哪种编码方式,决定了段控制信号的输出方式。
3.设计逻辑电路:根据数码管的显示编码和输入数字,设计逻辑电路来生成对应的段控制信号。
可以使用逻辑门、触发器和其他数字逻辑电路组合实现。
4. 编写HDL代码:使用硬件描述语言(如Verilog、VHDL等)编写逻辑电路的描述代码。
代码应包括输入端口、输出端口以及逻辑电路的实现。
5.进行仿真:使用仿真工具对编写的HDL代码进行仿真验证,确保逻辑电路的正确性。
6.确定FPGA芯片:选择适合需求的FPGA芯片,考虑输入输出端口数量、资源利用率以及时钟频率等因素。
7.进行综合:使用综合工具将编写的HDL代码综合为FPGA芯片可识别的级联逻辑门。
8.进行布局布线:使用布局布线工具将综合结果映射到FPGA芯片上的逻辑单元和连线。
9.进行时序分析:使用时序分析工具分析电路中的时序约束,如时钟频率,以确保电路工作正常。
译码显示电路的设计
译码显示电路的设计一、引言译码显示电路是数字电路中常见的一种应用,它可以将数字信号转化为人类可以直接理解的形式,如数字、字母、符号等。
本文将介绍译码显示电路的设计方法和步骤。
二、基本概念1. 译码器:将输入的数字信号转换为输出信号,输出信号通常为二进制编码。
2. 显示器:将输入的二进制编码转换为人类可以直接理解的形式。
三、设计流程1. 确定输入信号类型和数量:根据实际需求确定输入信号类型和数量,如BCD码、二进制码等。
2. 选择合适的译码器:根据输入信号类型和数量选择合适的译码器,如74LS47、74LS138等。
3. 确定输出类型和数量:根据实际需求确定输出类型和数量,如七段数码管、LED灯等。
4. 连接译码器和显示器:将译码器输出连接到显示器输入,并确保正确连接。
5. 设计供电电路:设计合适的供电电路,确保整个系统正常工作。
6. 调试测试:对整个系统进行调试测试,确保正常工作。
四、具体实现以BCD码为例,设计一个能够驱动4位七段数码管的译码显示电路。
1. 确定输入信号类型和数量:BCD码,需要4个输入信号。
2. 选择合适的译码器:选择74LS47,它可以将BCD码转换为七段数码管的输出信号。
3. 确定输出类型和数量:使用4位七段数码管作为输出。
4. 连接译码器和显示器:将74LS47的A、B、C、D四个输入端分别连接到BCD码输入端,将74LS47的a、b、c、d、e、f、g七个输出端分别连接到七段数码管的a、b、c、d、e、f、g七个输入端,并确保正确连接。
5. 设计供电电路:使用5V电源供电,确保整个系统正常工作。
6. 调试测试:对整个系统进行调试测试,通过输入BCD码,观察七段数码管是否正确显示。
五、总结译码显示电路是数字电路中常见的一种应用,本文介绍了译码显示电路的设计流程和具体实现方法。
在实际应用中,需要根据实际需求选择合适的译码器和显示器,并进行合理连接和调试测试。
数字电路实验
数字电路实验实验⼀:数字实验箱的基本操作⼀、实验⽬的1、熟悉数字电路实验箱的结构、基本功能和使⽤⽅法。
2、理解数字电路及数字信号的特点。
3、掌握数字电路的基本搭建⽅法4、熟悉数字电路实验的操作要求和规范。
⼆、实验设备与仪器数字电路实验箱、数字式万⽤表。
三、实验原理1、七段显⽰译码器——CC4511引脚图如图1-1⽰。
V DD f g a b c d e图1-1 七段显⽰译码器——CC4511第8脚为负极,16脚为电源正极,A、B、C、D为BCD码输⼊端,a、b、c、d、e、f、g、h 为译码输出端,输出1有效,⽤于驱动共阴极LED数码管2、七段数码显⽰器(共阴极)结构图如下图所⽰。
四、实验内容及⽅法1、熟悉数字实验箱的组成和各部分的基本作⽤。
2、将实验箱中的四组拨码开关的输出A i、B i、C i、D i分别接⾄CC4511的对应输⼊⼝,接上+5V电源,然后按功能表的要求揿动四个数码的增减键和操作三个开关,观测盘上的四位数与LED数码管显⽰的对应数字是否⼀致,以及译码显⽰是否正常,记⼊表4.10。
五、实验思考题1.拨码开关的输出A i、B i、C i、D i的优先级别是怎么排列的,⽽CC4511的对应输⼊⼝A、B、C、D的优先级别⼜是怎么样的。
六、总结实验⼆、组合逻辑电路的设计与测试(1)(利⽤⼩规模集成芯⽚)⼀、实验⽬的1、掌握组合逻辑电路的分析和设计⽅法。
2、学习并掌握⼩规模芯⽚(SSI)的基本测试⽅法及实现各种组合逻辑电路的⽅法。
3、学习⽤仪器检测故障,排除故障。
⼆、实验设备与仪器数字电路实验箱、数字式万⽤表、74LS00⼀⽚(四2输⼊与⾮门)、74LS20(⼆4输⼊与⾮门)两⽚。
三、实验原理1.分析逻辑电路的⽅法:根据逻辑电路图---写出逻辑表达式---化简逻辑表达式(公式法、卡诺图法)---画出逻辑真值表---分析得出逻辑电路解决的实际问题(逻辑功能)。
2.设计组合电路的⼀般步骤如图2-1所⽰。
FPGA与数字系统设计-实验六7段数码显示译码器设计
7段数码显示译码器设计1、实验目的熟悉ISE系列软件的设计流程和基本工具使用,学习7段数码显示译码器设计,学习VHDL的CASE语句应用。
2、实验内容7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是二进制的,所以输出表达都是十六进制的,为了满足十六进制数的译码显示,最方便的方法就是利用译码程序在FPGA/CPLD中实现。
本实验中,7段译码器的数码管采用共阴数码管,而且不考虑小数点的发光管。
其输出信号LED7S的7位分别接数码管的7个段,高电平有效。
例如,当LED7S输出为“1101101”时,数码管的7个段:g、f、e、d、c、b、a分别接1、1、0、1、1、0、1;接有高电平的段发亮,于是数码管显示“5”。
3、实验器材Spartan 3E开发板。
4、实验说明实验中所需要的源文件在本报告附录中。
5、实验步骤步骤1:创建ISE工程(1)启动桌面上的ISE9.1图标,在Project Navigator中选择File→New Project。
(2)在弹出的对话框(见图1)中,设置工程名为ymq7s,工程存放路径为E:\work\,顶层模块类型选择HDL,并单击Next按钮。
图1 ISE工程属性对话框(3)出现图2所示对话框,目标器件选择spartan3E,具体设计如下图。
图2 ISE工程属性对话框(4)一直点击Next,直到出现图3(即是刚才所设定的),最后点击Finish。
图3 工程设计总表出现图4,这就是所建立的工程,现在我们需要在里面完成我们的设计。
图4 ISE工程属性对话框步骤2:创建新的VHDL设计文件(1)在ISE用户界面中,选择Project→New Source。
(2)在弹出的对话框(见图5)中,选择VHDL Module作为源程序类型,设置文件名为ymq7s,并单击“下一步”按钮。
图5 VHDL的New Source Wizard(3)点击Next,直到出现图6,直到Finish。
七段显示译码器电路设计
七段显示译码器电路设计七段显示译码器是一种重要的数字电路,用于将二进制码转换为七段显示器上的对应数字或字母。
它通常由四个输入引脚和七个输出引脚组成,其中四个输入引脚表示二进制数的四位码,而七个输出引脚控制七段显示器中的各个段是否点亮。
下面是一个简单的七段显示译码器电路设计,它能够将四位二进制码转换为七段显示器所需的控制信号。
首先,我们需要定义一个真值表来描述七段显示器的每个数字或字母的显示信号。
下面是一个常用的真值表示例:输入编号,a,b,c,d,e,f,g--------,-,-,-,-,-,-,-0,1,1,1,1,1,1,01,0,1,1,0,0,0,02,1,1,0,1,1,0,13,1,1,1,1,0,0,14,0,1,1,0,0,1,15,1,0,1,1,0,1,16,1,0,1,1,1,1,17,1,1,1,0,0,0,08,1,1,1,1,1,1,19,1,1,1,1,0,1,1A,1,1,1,0,1,1,1B,0,0,1,1,1,1,1C,1,0,0,1,1,1,0D,0,1,1,1,1,0,1E,1,0,0,1,1,1,1F,1,0,0,0,1,1,1接下来,我们可以根据这个真值表来设计七段显示译码器的逻辑电路。
一个常见的方法是使用四个二-四译码器和一些逻辑门。
每个二-四译码器都有两个输入引脚和四个输出引脚,它将两个二进制数的每一位作为输入,将输出引脚的一些组合置高来实现对应输出数的逻辑。
在我们的设计中,我们可以将四个输入引脚分别连接到四个二-四译码器的输入引脚上,然后将四个输出引脚通过逻辑门连接到七个段的输入引脚上。
最后,我们需要选择适当的逻辑门来实现所需的逻辑。
常见的选择是使用与门和反相器。
与门用于实现多个输入引脚同时为高时将输出引脚置高的逻辑。
反相器则用于将逻辑信号进行反相。
例如,我们可以使用四个与门来实现输入二进制数为0、1、2和3时,对应输出引脚的逻辑。
然后,我们可以使用反相器来实现其他输出引脚的逻辑。
BCD七段译码器
)
输出低电平电流(
)
工作环境温度
最小 4.75 2.0
-40
74Ⅱ 参数值
典型 5
最大 5.25
0.8 15 24 -50 3.2 85
电 性 能:(除特别说明外,均为全温度范围)
最小 4.5 2.0
-55
54 参数值 典型
5
最大 5.5
0.7 15 12 -50 1.6 125
Hale Waihona Puke 单位V V V V mA μA mA ℃
动器。低电平有效、高的灌入电流的输出可直接驱动显示器。7 个与非门和一个
驱动器成对连接,以产生可用的 BCD 数据及其补码至 7 个与或非译码门。剩下的
与非门和 3 个输入缓冲器作为试灯输入( )端、灭灯输入/动态灭灯输出(
)
端及动态灭灯输入( )端。
该电路接受 4 位二进制编码—十进制数(BCD)输入并借助于辅助输入端状
54LS247/74LS247
LSTTL 型 BCD—七段译码器/驱动器(OC,15V)
推荐工作条件
符号
参数名称
Vcc VIH VIL VO(OFF) IO(ON) IOH IOL TA
电源电压
输入高电平电压
输入低电平电压
关态输出电压(a~g 输出端)
开态输出电流(a~g 输出端)
输出高电平电流(
Vcc=最大 (
VI=2.7V 除外)
20
IIL
输入低电平电流 Vcc=最大 VI=0.4V
其它输入
IOS
输出短路电流
Vcc=最大 (仅对
VO=0V )
-0.3
ICC
电源电流 Vcc=最大 (注)
七段数码显示译码器设计
实验一七段数码显示译码器设计一、实验目的:1.完成七段数码显示译码器的设计,学习组合电路设计;2.学习多层次设计方法。
3.锻炼使用Verilog HDL 语言编程的能力。
二、实验原理:1.七段译码电路时一宗纯组合的逻辑电路,通常是由小型专用的IC门电路组成。
2.七段码输入与输出的原理与真值表关系。
a)输入:七段码输入为四个输入信号,用来表示0000—1111,即表示为十六进制的“0”到“F”。
b)输出:七段码输出为七个输出信号,分别用a,b, c,d,e,f,g七个符号来表示。
一般规定,输出信号为“1”时,它所控制的发光二极管为点亮状态,输出信号为“0”时,它所控制的发光二极管为熄灭状态。
本实验使用的七段数码为共阴极,其电路图如图1所示。
图1 共阴数码管及其电路c)输入与输出关系用思维二进制代码组成十六进制代码,将其用代码显示,表2-1 七段字符显示真值表数码A3 A2 A1 A0 A B C D E F G 对应码(h)0 0 0 0 0 1 1 1 1 1 1 0 7E1 0 0 0 1 0 1 1 0 0 0 0 302 0 0 1 0 1 1 0 1 1 0 1 6D3 0 0 1 1 1 1 1 1 0 0 1 794 0 1 0 0 0 1 1 0 0 1 1 335 0 1 0 1 1 0 1 1 0 1 1 5B6 0 1 1 0 1 0 1 1 1 1 1 5F7 0 1 1 1 1 1 1 0 0 0 0 708 1 0 0 0 1 1 1 1 1 1 1 7F9 1 0 0 1 1 1 1 1 0 1 1 7BA 1 0 1 0 1 1 1 0 1 1 1 77上,需要进行引脚分配。
一、实验步骤:(1) 创建工程文件(2) 创建原理图设计文档(3) 利用ESC绘制电路图进行功能设计(4) 执行综合(5) 设计测试平台文件(6) 执行功能仿真(7) 执行实现、添加约束文件(8) 执行时序仿真(9) 生产位流文件,配置目标芯片Verilog HDL程序:`timescale 1ns / 1ps//////////////////////////////////////////////////////////////////////////////////// Company:// Engineer://// Create Date: 18:47:07 03/10/2013// Design Name:// Module Name: ssss// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments:////////////////////////////////////////////////////////////////////////////////////module decode_7(a, b, c, d, en, sega, segb, segc, segd,sege,segf,segg );input a, b, c, d, en;output reg sega, segb, segc, segd,sege,segf,segg;reg [1:7] segs;always @(a or b or c or d or en) beginif (en)case ({d, c, b, a})0:segs = 7'b1111110; //01:segs = 7'b0110000;2:segs = 7'b1101101;3:segs = 7'b1111001;4:segs = 7'b0110011;5:segs = 7'b1011011;6:segs = 7'b0011111;7:segs = 7'b1110000;8:segs = 7'b1111111;9:segs = 7'b1110011; //910:segs = 7'b1110111;//1011:segs = 7'b0011111;12:segs = 7'b1001110;13:segs = 7'b0111101;4:segs = 7'b10011111;15:segs = 7'b1000111;15default segs = 7'bx;endcaseelsesegs = 7'b0;{sega, segb, segc, segd,sege,segf,segg} = segs; endEndmodule实验过程中得到的图片:实验体会:本次实验通过对FPGA实验平台的使用,Verilog HDL语言有了一定的理解与认识,但在很多地方没有很好的熟练度,在以后的学习中还要好好的熟悉之。
多功能数字钟电路设计
多功能数字钟电路设计
多功能数字钟电路可以用来显示时间、日期、闹钟和定时器等功能。
下面是一个简单的多功能数字钟电路设计,它基于CD4511七段译码器和CD4543 BCD-七段译码器。
1. 时间显示功能
为了显示时间,我们需要使用CD4543 BCD-七段译码器。
该译码器接收来自实时时钟(RTC)模块的BCD编码输出。
RTC模块可以用来跟踪时间和日期,它通常包括一个晶体振荡器、计数器和存储器。
BCD 编码输出通过CD4543译码器转换为七段LED显示。
2. 日期显示功能
类似于时间显示功能,日期显示也需要使用RTC模块。
RTC模块可以提供年份、月份和日期的BCD编码输出。
这些编码输出通过CD4543译码器转换为七段LED显示。
3. 闹钟功能
闹钟功能可以通过计时器和比较器实现。
我们可以使用555定时器作
为计时器,它可以生成一个固定的时间间隔。
然后,我们可以使用一个比较器来比较当前时间和闹钟时间。
如果它们匹配,闹钟就会响起。
4. 定时器功能
定时器功能可以通过555定时器来实现。
我们可以设置计时器的时间间隔,并使用CD4511七段译码器来显示剩余时间。
当定时器完成计时时,它可以触发一个报警器或执行其他操作。
总之,多功能数字钟电路可以实现时间、日期、闹钟和定时器等多种功能。
这些功能可以通过RTC模块、CD4511七段译码器、CD4543 BCD-七段译码器和555定时器等元件来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:七段显示译码器电路设计专业:生产过程自动化专业班级:生产过程0901 姓名:学号:指导老师:杨旭目录第一节绪论……………………………………………………………………………..1.1本设计的任务和主要内容………………………………………………………………..1.2基本工作原理及原理框图………………………………………………………………...第二节硬件电路的设计…………………………………………………………………2.1BCD译码器选择与设计…………………………………………………………………….2.2LED显示器的设计……………………………………………………………………………2.3总的设计……………………………………………………………………………………第四节设计总结…………………………………………………………………………第一节绪论本课程设计的七段译码器主要以BCD译码器或LED显示器为主要部件,应用集成门电路组成的一个具有译码和显示的装置。
其中BCD 译码器采用8421BCD译码器,即----七段显示译码器(74LS48)型。
LED显示器是由发光二极管组成的,LED显示器分共阴极和共阳极两种型号,共阴极LED显示器的发光二级管阴极接地,共阳极LED显示器的发光二极管阳极并联。
最后把BCD译码器或LED显示器组成了的装置就具有了显示和译码的功能。
此七段译码器也就成功了。
1.1设计的任务和本主要内容1)运用LED显示器或BCD译码器实现一定的功能2)写出详细的实验报告1.2基本工作原理及原理框图基本工作原理及原理框图如下:第二节硬件的设计BCD译码器选择与设计发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。
分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。
外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。
只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号。
LED数码管有共阳、共阴之分。
图4 - 17(a)是共阴式LED数码管的原理图,图4-17(b)是其表示符号。
使用时,公共阴极接地,7个阳极a~g由相应的BCD七段译码器来驱动(控制),如图4 - 17(c)所示。
BCD七段译码器的输入是一位BCD码(以D、C、B、A表示),输出是数码管各段的驱动信号(以F a~F g表示),也称4—7译码器。
若用它驱动共阴LED数码管,则输出应为高有效,即输出为高(1)时,相应显示段发光。
例如,当输入8421码DCBA=0100时,应显示,即要求同时点亮b、c、f、g段,熄灭a、d、e段,故译码器的输出应为F a~F g=0110011,这也是一组代码,常称为段码。
同理,根据组成0~9这10个字形的要求可以列出8421BCD七段译码器的真值表,见表4 - 12(未用码组省略)。
设计:•分段式数码由分布在同一平面上若干段发光的笔画组成,如半导体显示器。
半导体数码管——BS201A半导体数码管是分段式半导体显示器件,其基本结构是PN结,即用发光二极管(LED)组成字型来来显示数字。
这种数码 ...分段式数码由分布在同一平面上若干段发光的笔画组成,如半导体显示器。
半导体数码管——BS201A半导体数码管是分段式半导体显示器件,其基本结构是PN结,即用发光二极管(LED)组成字型来来显示数字。
这种数码管的每个线段都是一个发光二极管,因此也称LED数码管或LED七段显示器。
BCD---七段显示译码器(74LS48)因为计算机输出的是BCD码,要想在数码管上显示十进制数,就必须先把BCD码转换成 7 段字型数码管所要求的代码。
我们把能够将计算机输出的BCD码换成 7 段字型代码,并使数码管显示出十进制数的电路称为“七段字型译码器”。
1)输入:8421BCD码,用A3 A2 A1 A0表示(4位)。
2)输出:七段显示,用Ya ~ Yg 表示(7位) 3)逻辑符号:七段显示译码器在数字测量仪表和各种数字系统中,都需要将数字量直观地显示出来,一方面供人们直接读取测量和运算的结果;另一方面用于监视数字系统的工作情况。
因此,数字显示电路是许多数字设备不可缺少的部分。
数字显示电路通常由译码器、驱动器和显示器等部分组成,如图5.3.5所示。
下面对显示器和译码驱动器分别进行介绍。
数码显示器是用来显示数字、文字或符号的器件,现在已有多种不同类型的产品,广泛应用于各种数字设备中,目前数码显示器件正朝着小型、低功耗、平面化方向发展。
数码的显示方式一般有三种:第一种是字形重叠式,它是将不同字符的电极重叠起来,要显示某字符,只须使相应的电极发亮即可,如辉光放电管、边光显示管等。
第二种是分段式,数码是由分布在同一平面上若干段发光的笔划组成,如荧光数码管等。
第三种是点阵式,它由一些按一定规律排列的可发光的点阵所组成,利用光点的不同组合便可显示不同的数码,如场致发光记分牌。
数字显示方式目前以分段式应用最普遍,图5.3.6表示七段式数字显示器利用不同发光段组合方式,显示0~15等阿拉伯数字。
在实际应用中,10~15并不采用,而是用2位数字显示器进行显示。
按发光物质不同,数码显示器可分为下列几类:(1)半导体显示器,亦称发光二极管显示器;(2)荧光数字显示器,如荧光数码管、场致发光数字板等;(3)液体数字显示器,如液晶显示器、电泳显示器等;(4)气体放电显示器,如辉光数码管、等离子体显示板等。
如前所述,分段式数码管是利用不同发光段组合的方式显示不同数码的。
因此,为了使数码管能将数码所代表的数显示出来,必须将数码经译码器译出,然后经驱动器点亮对应的段。
例如,对于8421码的0011状态,对应的十进制数为3,则译码驱动器应使 a、b、c、d、g各段点亮。
即对应于某一组数码,译码器应有确定的几个输出端有信号输出,这是分段式数码管电路的主要特点。
7448七段显示译码器7448七段显示译码器输出高电平有效,用以驱动共阴极显示器。
该集成显示译码器设有多个辅助控制端,以增强器件的功能。
7448的功能表如表5.3.4所示,它有3个辅助控制端LT、RBI、BI/RBO,现简要说明如下:灭灯输入BI/RBOBI/RBO是特殊控制端,有时作为输入,有时作为输出。
当BI/RBO 作输入使用且BI=0时,无论其它输入端是什么电平,所有各段输入a~g均为0,所以字形熄灭。
试灯输入LT当LT=0时,BI/RBO是输出端,且RBO=1,此时无论其它输入端是什么状态,所有各段输出a~g均为1,显示字形8。
该输入端常用于检查7488本身及显示器的好坏。
表5.3.4 7488功能表动态灭零输入RBI当LT=1,RBI=0且输入代码DCBA=0000时,各段输出a~g均为低电平,与BCD码相应的字形熄灭,故称“灭零”。
利用LT=1与RBI=0可以实现某一位的“消隐”。
此时BI/RBO是输出端,且RBO=0。
h9y9ylllllllllllllll动态灭零输出RBOBI/RBO作为输出使用时,受控于LT和RBI。
当LT=1且RBI=0,输入代码DCBA=0000时,RBO=0;若LT=0或者LT=1且RBI=1,则RBO=1。
该端主要用于显示多位数字时,多个译码器之间的连接。
从功能表还可看出,对输入代码0000,译码条件是:LT和RBI同时等于1,而对其它输入代码则仅要求LT=1,这时候,译码器各段a~g输出的电平是由输入BCD码决定的,并且满足显示字形的要求。
参考文献1.数字电子技术杨志忠主编高等教育出版社2.电子技术试验与课程设计毕满清主编机械工业出版社3.电类专业课程设计指导张华主编机械工业出版社设计小结经过一周的奋战,我的课程设计终于完成了。
在没有做课程设计以前觉得课程设计只是对所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。
课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。
通过这次课程设计使我明白了自己原来知识还比较欠缺。
自己要学习的东西还太多,以前老是觉得自己什么都会,什么东西都懂,有点眼高手低。
通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。
在这次课程设计中,我和同学的关系也更近了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法让我们更好的理解知识,所以在这里非常感谢帮助我的同学及我的搭档。
在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但同样收获巨大。
在整个设计中我懂得了许多东西,也培养了我独立工作的能力及团队合作的意识。
树立了对自己工我充分体会到了在创造过程中探索的艰难和成功时的喜悦。
虽然这个设计做的也作工作能力的信心,相信会对今后的学习工作生活有非常重要的影响,使不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。
总体来说,这次课程设计我受益匪浅。
在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。