大学物理-质点运动学
大学物理质点力学第一章 质点运动学 PPT
方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=
dθ
dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ
大学物理第1章质点运动学
大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。
一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。
质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。
二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。
1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。
匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。
2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。
非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。
三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。
主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。
我们可以通过坐标系建立一个参照系,来描述质点的位置。
2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。
位移的大小可以用位移公式Δr=r2-r1来计算。
3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。
速度的大小可以用速度公式v=Δr/Δt来计算。
4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。
加速度的大小可以用加速度公式a=Δv/Δt来计算。
四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。
曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。
1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。
弧长的大小可以用弧长公式s=rθ来计算。
2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。
曲率半径可以根据曲线的形状计算得出。
3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。
大学物理-质点运动学
空间曲线上的任意点无穷小邻域内的一段 弧长,可以看作是位于密切面内的平面曲线。
曲线在密切面内的弯曲程度,称为曲线的 曲率,用表示。
描述点运动的弧坐标法
密切面与自然轴系
自然轴系
B(副法线) N(主法线)
自然轴系P-TNB P-空间曲线上的动点;
描述点运动的直角坐标法
例题3
几点讨论
2、关于P点运动的性质:何时 作加速度运动?何时作减速度 运动?
这一问题请同学们自己研究。
第1章 质点运动学
描述点运动的弧坐标法
描述点运动的弧坐标法
弧坐标要素与运动方程 密切面与自然轴系 速度 加速度
描述点运动的弧坐标法
弧坐标要素与运动方程
x
rA
O
r
B
rB
y
速度的方向为轨道上质点所在处的切线方向。 速度的矢量式:
v v x i v y j vz k
dx dy dz vx , vy , vz dt dt dt
速度的三个坐标分量:
速度的大小:
2 2 2 v v vx v y vz
( 2) 令
b x2 x1 为影长
db l dx2 v dt h dt
代入
l b x2 h
以
dx 2 hv 0 dt h l
得
lv 0 v hl
描述点运动的直角坐标法
椭圆规机构
例 题3
=常数, ω=
OA AB AC l , BP d
求:P点的运动方程、速度、加速度。
•
速率
1
在t时间内,质点所经过路程 s 对时间的变化率
大学物理——第1章-质点运动学
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
大 学 物 理 质点运动学
dr
dx
i
dy
j 3i 8tj (m/s)
dt dt dt
(3)由加速度的定义得
a
d
8 j (m/s2 )
dt
x
22
例2: 一质点沿半径为1 m的圆周运动,它通过的弧长 s按s=t+2t2的规律变化。问它在2 s末的速率、法向 加速度和切向加速度各是多少?
解 (1)由速率定义,有 ds 1 4t dt
小球的切向加速度量值 a,法向加速度量值an和轨道
的曲率半径 。
解:由图可知
a
g sin
gy
a g
gt
2 0
g 2t 2
g2t
02 g2t 2
an θ
x= 0
θ
a
y=gt
an
g cos
gx
g
an
g0 02 g2t 2
2
2 x
2 y
(02
g 2t 2 )3 / 2
an
an
g0
21
§1.4 运动学中的两类问题
r
C
B
r
r2
O
位置矢量的增量 ◆位矢增量的模 ◆位矢模的增量
r r2 r1 | r|| r2 r1 | r | r2 | | r1 |
位移在直角坐标系中的表示式
r
xi
yj
zk
9
路程 s t 时间内质点在空间内实际运行的路径距离。
注意
• s与 r的区别
s为标量, r为矢量
s r
d
s
dr
将t =2代入上式,得2 s末的速率为
=1+4×2=9 (m·s-1)
(2)法向加速度的大小 (3)切向加速度的大小
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
大学物理-质点运动学(答案)
第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m .(E) 5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxlxdt dt= 22dx l dl x h dldt x dt x dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为1 4.5432.52-112t (s)v (m/s)v ϖxo(A) t r d d (B) tr d d ϖ(C) t rd d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x提示:22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
大学物理第1章质点运动学ppt课件
大学物理第1章质点运动学ppt课件•质点运动学基本概念•直线运动中质点运动规律•曲线运动中质点运动规律•相对运动中质点运动规律目录•质点运动学在日常生活和工程技术中应用•总结回顾与拓展延伸质点运动学基本概念01质点定义及其意义质点定义用来代替物体的有质量的点,是一个理想化模型。
质点意义突出物体具有质量这一要素,忽略物体的大小和形状等次要因素,使问题得到简化。
参考系与坐标系选择参考系定义为了研究物体的运动而选作标准的物体或物体系。
坐标系选择为了定量描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。
常用的坐标系有直角坐标系、极坐标系、自然坐标系等。
位置矢量与位移矢量位置矢量定义从坐标原点指向质点的矢量,用r表示。
位移矢量定义质点从初位置指向末位置的有向线段,用Δr表示。
质点在某时刻的位置矢量对时间的变化率,即单位时间内质点位移的矢量,用v 表示。
速度定义加速度定义速度与加速度关系质点在某时刻的速度矢量对时间的变化率,即单位时间内质点速度的变化量,用a 表示。
加速度是速度变化的原因,速度变化快慢与加速度大小成正比,方向与加速度方向相同。
速度加速度定义及关系直线运动中质点运动02规律匀速直线运动特点及应用特点质点在直线运动中,速度大小和方向均保持不变。
应用描述物体在不受外力或所受合外力为零的情况下的运动状态。
匀变速直线运动规律探究定义质点在直线运动中,加速度大小和方向均保持不变。
运动学公式包括速度公式、位移公式和速度位移关系式,用于描述匀变速直线运动的基本规律。
定义物体在重力的作用下从静止开始下落的运动。
运动学公式包括位移公式、速度公式和速度位移关系式,用于描述自由落体运动的基本规律。
运动特点初速度为零,加速度为重力加速度,方向竖直向下。
自由落体运动分析竖直上抛运动过程剖析定义物体以一定的初速度竖直向上抛出,仅在重力作用下的运动。
运动特点具有竖直向上的初速度,加速度为重力加速度,方向竖直向下。
大学物理-质点运动学学
v
t
上式可变为
即
dv 6t dt
dv 6tdt
左右两边同时积分,利用初 始条件 t = 0时,v =12,得:
x
0
dx (12 3t 2 )dt
0
t
x 12t t 3
*已知质点的运动方程为 2 3 r (0.5 t ) i (3 t t ) j (m), 则它的加速度的大小和方向分别为: A) 1 36t 2 arctan 6t C) 1 36t arctan3t B) 1 36t arctan6t D) 1 36t 2 arctan 3t
解:(1) 从运动方程中消去时 间,得轨迹方程
x2 y 1 9 (2) r (3) x3i y 3 j 9i 8 j (m)
平均速度
r 3i 3 j v 3i 3 j m/s t 2 1
dx dy j 3 i 2t j (4) v i dt dt dv a 2 j m/s 2 dt
不 知 云 与 我 俱 东 。
卧 看 满 天 云 不 动 ,
百 里 榆 堤 半 日 风 。
飞 花 两 岸 照 船 红 ,
宋襄 邑 陈 道 与 中 义 ]
[
是 船 行 。
仔 细 看 山 山 不 动 ,
看 山 恰 似 走 来 迎 ,
满 眼 风 波 多 闪 烁 ,
是 船 行 。
柔 橹 不 施 停 却 棹 ,
练习:一质点坐平面曲线运动, t = 2s时的位置矢量: 已知其运动方程为 r (2) x2i y2 j 8i 18 j (m) 2 x 4t , y 2 4t (SI) 第2 内的位移 求:(1)质点运动的轨迹方程;(2) t = 3s时的位置矢量;(3)第2 内的 r r (2) r (1) 4i 12 j (m) 位移和平均速度;(4) t = 2s时的 第2 内的平均速度 速度和加速度。 r 4i 12 j 解:(1) 从运动方程中消去时间, v t 2 1 4i 12 j m/s 得轨迹方程 2 dr dx dy x i j 4i 8t j (4) v y 2 dt dt dt 4 dv (2) t = 3s时的位置矢量 a 8 j m/s 2 dt r (3) x3i y3 j 12i 38 j (m) 当 t = 2s时 (3) t = 1s时的位置矢量: v 4 i 16 j m/s a 8 j (m/s 2 ) r (1) x1i y1 j 4i 6 j (m)
第一章质点运动学1大学物理教程北京邮电大版
质点运动的方法。
x
1
gt2
2
1.2.1 位置矢量 运动方程
1 位置矢量 确定质点P某一时刻在坐标系里的位置的物理量称位
r 置矢量, 简称位矢 。
r
xi
yj
zk
y
y
r
*P
k j
式中 i、j 、k 分别为x、y、z
方向的单位矢量。
z ox
i
x
例如: r 2i 3 j 5k z
r 位矢 的大小为: r r x2 y2 z2
x
dx dt
r dr r2 h2 dt
按题意
0
dr dt
由此得船速
x 0
r r2 h2
0
x2 h2 x
v = vxi = -v0
x2 h2 i x
上式中的负号表示船的速度v沿X轴的负方向。
加速度:
ax
dvx dt
0
h2 x2 h2
dx dt
v02h2 x3
a
v02h 2 x3
i
负号表示加速度a的方向与X轴的正方向相反。 由于a与v同向,所以小船是加速靠岸的。
在直角坐标系中分解:
r xi yj zk
在直角坐标系中分 解:
rA xAi yA j zAk rB xBi yB j zB k
则在直角坐标系 Oxyz 中其位移为
r (xB xA)i ( yB yA) j (zB zA)k
xi yj zk
y
yB A r
r y A A
z = z(t)
该r运动2方ti程矢(8量式t:2 )
j
方程组消去t就得到质点的轨迹方程。 例运动学方程为x=2t, y=8-t2,轨迹方程为
大学物理之质点运动学
矢量性:注意矢量和标量的区别。 相对性:对不同参照系有不同的描述。
3.运动学方程是运动学的核心,包含了运动的全部信息。
运动学的两类问题 运动方程是运动学问题的核心 1、已知运动方程,求质点任意时刻的位置、速度 以及加速度
r r t
dr v dt
2 dv d r a 2 dt dt
第一章 质点运动学 §1-1 质点、参考系 、坐标系
一、质点
1. 引入 质点的概念是考虑主要因素而忽略次要因素引入的一个理想 化的力学模型,使研究的问题得到简化。 2. 概念
质点是一个理想化的力学模型,当物体的大小和形状忽略不 计时,可以把物体当做只有质量没有形状和大小的点。 3.说明 一个物体能否当做质点,并不取决于它的实际大小,而是 取决于研究问题的性质。
大小:
方向:
2)相对性: 例如:坐在运动汽车中的人,选车厢为参考系,人位 移为零,但如选择地面为参考系位移不为零。 3)单位:米(m) 2.位移与路程的区别 位移是矢量:是指位置矢量的变化; 路程是标量:是指运动轨迹的长度。
思考:位移的大小什么时候与路程相等?
3. 区分:
三、速度(描述质点位置随时间变化的快慢和方向的物理量 )
速度大小的变化率,其方向指向曲线的切线方向
切向加速度:
dv d s a e 2 e h dt dt
2
讨论
de dt
O
Δ
e t t
e e (t t ) - e (t )
当: t 0 , 0 有
e e
s
求:1、任意时刻 t 速度
2、切向加速度的大小
1-2-6 圆周运动及其角量描述
平面极坐标系
大学物理质点运动学总结
大学物理质点运动学总结质点运动学是物理学中的一个重要分支,研究物体在空间中的运动规律,对于理解物体的运动状态和运动规律具有重要意义。
在大学物理课程中,学习质点运动学是必不可少的一部分,下面我们来对大学物理质点运动学进行总结。
首先,我们要了解质点的基本概念。
质点是一个没有大小但有质量的物体,在运动学中,我们将物体视为质点来进行研究。
质点的运动状态可以用位置、速度和加速度来描述,这些是描述质点运动的基本物理量。
其次,我们要了解质点的运动规律。
根据牛顿运动定律,质点的运动状态受到力的影响,力是导致质点运动状态发生改变的原因。
根据牛顿第二定律,质点的加速度与作用在其上的合外力成正比,与质点的质量成反比。
这就是著名的F=ma公式,描述了质点的运动规律。
在质点运动学中,我们还需要了解匀速直线运动和变速直线运动。
在匀速直线运动中,质点在单位时间内位移相等,速度保持恒定;而在变速直线运动中,质点在单位时间内位移不等,速度不断发生变化。
这些运动规律对于我们理解质点的运动状态和运动规律具有重要意义。
此外,我们还需要了解曲线运动。
在曲线运动中,质点沿着曲线路径运动,速度和加速度的方向都会发生变化。
对于曲线运动,我们需要引入切线和法线的概念,以便更好地描述质点在曲线路径上的运动状态。
最后,我们需要了解相对运动。
在相对运动中,质点的运动状态是相对于其他物体或参考系来描述的。
相对运动涉及到相对速度和相对加速度的概念,通过这些概念,我们可以更好地描述质点在不同参考系下的运动状态。
总的来说,大学物理质点运动学是一个重要而复杂的学科,它涉及到质点的基本概念、运动规律、匀速直线运动、变速直线运动、曲线运动和相对运动等内容。
通过学习质点运动学,我们可以更好地理解物体的运动规律,为我们进一步学习和研究物理学奠定坚实的基础。
希望这篇总结对大家有所帮助,谢谢阅读!。
大学物理第一章质点运动学讲义
质点运动学的重要概念
位移
质点的位移是指质点在某一时刻相对 于参考点的位置变化量。
速度
质点的速度是指质点在某一时刻相对 于参考点的位置变化率。
加速度
质点的加速度是指质点在某一时刻相 对于参考点的速度变化率。
相对速度和相对加速度
当存在多个质点时,需要引入相对速 度和相对加速度的概念,以描述不同 质点之间的相对运动关系。
伽利略变换适用于低速运动,即速度远小于光速的情况。在 高速运动或引力场中,需要使用爱因斯坦的相对论变换。
牛顿运动定律的相对性
01
牛顿第一定律
一个质点将保持其运动状态,除非受到外力作用。在相对运动的参考系
中,牛顿第一定律速度与作用力成正比,与质量成反比。在相对运动的参考系中,
质点的描述主要包括位置、速度和加速度等基本参数,这些参数随时间变化而变 化,描述质点的运动状态。
质点运动的基本参数
位置
质点的位置可以用空间坐标来表示,通常用三维 坐标系中的坐标值描述。
速度
质点的速度是描述质点运动快慢和方向的物理量, 用矢量表示,包括大小和方向。
加速度
质点的加速度是描述质点速度变化快慢的物理量, 也是矢量,包括大小和方向。
描述一个质点相对于另一个质点的运 动速度。当两个质点相对运动时,它 们的相对速度取决于它们各自的运动 状态和方向。
相对加速度
描述一个质点相对于另一个质点的加 速度。相对加速度的大小和方向与两 个质点的相对速度有关,并影响它们 之间的相对位置和运动轨迹。
伽利略变换
伽利略变换是描述两个相对运动的惯性参考系之间关系的数 学公式。通过伽利略变换,可以计算一个质点在另一个质点 的参考系中的位置、速度和加速度。
大学物理第一章质点运动 学讲义
大学物理质点运动学总结
大学物理质点运动学总结一、引言在大学物理课程中,运动学是物理学的基础,它研究物体的运动状态和运动规律。
其中,质点运动学是运动学的一部分,主要研究质点的运动性质和运动规律。
下面将对大学物理质点运动学进行总结。
二、质点的运动描述1. 位置和位移质点在运动过程中,位置可以用空间直角坐标系或极坐标系来描述。
而位移是指物体从初始位置到最终位置的变化量,它是个矢量量,具有大小和方向。
2. 速度与速度的计算方法速度是指单位时间内位移的变化量,可以用瞬时速度和平均速度来描述。
瞬时速度是指某一瞬间的速度,可以通过求导位移对时间的导数得到。
平均速度是指物体在一段时间内总位移与总时间的比值。
3. 加速度与加速度的计算方法加速度是指单位时间内速度的变化量,也是个矢量量。
可以用瞬时加速度和平均加速度来描述。
瞬时加速度是指某一瞬间的加速度,可以通过求导速度对时间的导数得到。
平均加速度是指物体在一段时间内总速度变化与总时间的比值。
三、常见的运动规律1. 一维运动规律一维运动规律描述了在一条直线上运动的物体的运动规律。
其中最重要的是匀速直线运动规律和匀加速直线运动规律。
匀速直线运动规律指出,当物体在匀速直线运动时,其位移与时间成正比。
匀加速直线运动规律指出,在匀加速直线运动中,物体的位移与时间的关系是二次函数。
2. 斜抛运动规律斜抛运动是指物体沿着一个初速度方向在空中做抛体运动的一种情况。
在斜抛运动中,物体的水平速度保持恒定,垂直速度受到重力的作用而发生改变。
斜抛运动的水平运动和垂直运动可以分开来考虑,通过合成两个运动,可以得出物体的轨迹和运动规律。
3. 圆周运动规律圆周运动是指物体在半径相同的圆内以恒定速度做匀速圆周运动的一种情况。
在圆周运动中,质点的速度方向始终垂直于半径的方向,因此质点在圆周上的运动轨迹是一个圆。
圆周运动的相关公式可以由质点完成单位时间所走过的弧长与所需的时间的比值来推导。
四、运动学的应用1. 自由落体问题自由落体是指物体在无空气阻力情况下,在重力作用下自由垂直下落的一种运动。
大学物理 第一章 质点运动学
是否等于瞬时速率? t 时刻位矢
瞬时速度的大小是否
r
等于瞬时速率?
A
r
r1
B t 时间内位移
x
t +t 时刻位矢
平面直角坐标系中的瞬时速度(简称速度)
v lim r dr
t0 t
dt
r(t) x(t)i y(t) j
v d r
dx
i
d
y
j
y
vy
v
dt dt dt
vx
vxi vy j
力 学
§1-1 参照系 &坐标系 质点 §1-2 位移、速度和加速度 §1-3 圆周运动 §1-5 牛顿运动定律 §1-6 牛顿运动定律的应用举例
1. 运动的绝对性 绝对静止的物体是没有的
地球自转 太阳表面的运动
太阳随银河系运动
为了确定一个物体的位置和描述一个物体的机
械运动,必须另选一个物体或内部无相对运动的物
3. 坐标系 为了定量地描述物体相对于参考系的 运动情况,要在参考系上选择一个固定的坐标系
坐标系选定后,运动物体A 中任一点 P 的位置
就可以用它在此坐标系中的坐标来描述
运动物体
运动参考系
y
A P(x,y,z)
运动物体
O
z 参考系
x
地面参考系
常用坐标系: 平面直角坐标系和自然坐标系
一、质点 一般情况下,运动物体的形状和大小都可能变化
y
y z koj
r
i
x
*P
x
方向的单位矢量.
z
位矢r 的值为
r
xi
yj
zk
r r x2 y2 z2
位矢 r 的方向余弦
大学物理第一章 质点运动学
a 常量,v v0 at,
•匀变速直线运动:
1 2 x x0 v0t at 2 2 2 v v0 2a( x x0 )
注意:以上各式仅适用于匀加速情形。
t t
要求 v( y ),可由
dv dv dy dv a v dt dy dt dy
有
积分得
v
dv kv v dy
2
dv kdy v
y dv v ky v0 v k 0 dy ln v0 ky, v v0e
1-3 曲线运动
一.运动的分解
如图,A、B为在同一高度的两个小球。在同一 时刻,使A球自由落体,B球沿水平方向射出,虽然 两球的轨道不同,但是两球总是在同一时刻落地。 说明,B球的运动可分解为在水平方向作匀速直线运 动,在竖直方向作自由落体运动。
其大小注意a aa a2 x 2 y2 z
dv dv a a dt dt
•描述质点运动的状态参量的特性 状态参量包括
r , v, a
应注意它们的
(1)矢量性。注意矢量和标量的区别。
(2)瞬时性。注意瞬时量和过程量的区别。 (3)相对性。对不同参照系有不同的描述。
1 gx y xtg 2 2 2 v0 cos 19.6 2 50tg 50tg 19.6(1 tg ) 2 cos
两边一起定积分得
dv dv adt kv dt kdt 2 v
2
v
v0
t dv k dt 2 0 v
v0 v(t ) kv0t 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m . (E) 5 m. (1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxl xdt dt= 22dx l dl x h dldt x dtx dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为(A) t r d d (B) t r d d ϖ(C) t r d d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x1 4.5432.52-112t (s)v (m/s)v ϖxo提示:22, dx dy dx dy v i j v dtdt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来?(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
二. 填空题1、已知质点的运动学方程为j t t i t t r ϖϖϖ)314()2125(32++-+= (SI) 当t = 2 s 时,加速度的大小为a = 217/m s ;加速度a ϖ与x 轴正方向间夹角= 0104222222222100241417/19010424t st st sx yx y d r ai tji jdta a a m s a arctg arctg a ===-==-+=-+∴=+=+=⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v v v提示:παv r风对人v r地对人v r风对地xMh 1h 2 o x x mn at ag2、在半径为R 的圆周上运动的质点,其速率与时间关系为2ct =v (式中c 为常量),则从t = 0到t 时刻质点走过的路程S (t ) =__313ct ______;t 时刻质点的切向加速度a t =___2ct _____;t 时刻质点的法向加速度a n =___24c t R_______。
提示:23002241, 32, ttt n ds v s vdt ct dt ct dt dv v c t a ct a dt R R========⎰⎰3、灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为 112M h v v i h h =-rr.提示:坐标系如图,设人的坐标为x ,头的影子坐标为x M ,人向x 轴正向运动。
111121212M M h x dx h h v dx v i i ih h dt h h dt h h ===⋅=---r r r r m 答:根据三角形的相似性,有x4、一物体作如图所示的斜抛运动,测得在轨道A 点处速度v ϖ的大小为v ,其方向与水平方向夹角成30°.则物体在A 点的切向加速度a t =____-0.5g_______,轨道的曲率半径=________223v g⨯__________.022sin 300.5cos 30 cos 30t n a g gv v a g g =-=-==∴=ρρ 5、一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是=12t 2-6t (SI), 则质点的角速度 =__4t 3-3t 2____(SI)______; 切向加速度 a t=___12t 2-6t _(SI)___________.提示:()2320012643t tdt t t dt t t ==-=-⎰⎰ωβ2126t a R t t ==-β6、一质点从O 点出发以匀速率1 cm/s 作顺时针转向的圆周运动,圆的半径为1 m ,如图所示.当它走过2/3圆周时,走过的路程是___4π/3 (m )___,这段时间内的平均速度大小为v ϖ30°AyxOPvr___)(/)m s π______,方向是__与x 轴正方向逆时针成600_______.三.计算题1、有一质点沿x 轴作直线运动,t 时刻的坐标为x = t 2 – 2 t 3(SI) .试求: (1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1)t 1=1s: x 1=2.5m; t 2=2s: x 2=2m ;∴21212 2.50.5(/)21x x v i i i m s t t --===---r rr r (2),)69(2i t t i dtdx v ρρρ-== )/(6)4629(22s m i i v s t ρρρ-=⨯-⨯==∴时,(3)令0)69(2=-=i t t v ρρ, 得:s t 5.1'=. 此时x’=3.375m; 又t 1=1s 时, x 1=2.5m; t 2=2s 时, x 2=2m∴第二秒内的路程s=(x’-x 1)+(x’-x 2)=()+=2.25m2、一正在行驶的汽船发动机关闭后得到一个与船速方向相反的大小与船速平方成正比的加速度:2kv a -=,其中k 为正的常数,设发动机关闭时船速为v o ,试证明在发动机关闭后时间t 内船行驶的距离为)1ln(1+=kt v k x o 。
解:已知:i kv a ρρ2-=, 又dt v d a ρρ=2kv dt dv -=∴, 分离变量,得:kdt v dv-=2积分:,1,1,0000200tkv v v kt vkdt v dvt v v vv t +=-=--=⎰⎰又⎰⎰+=+=∴=xtdt t kv v dx tkv v dt dxdtdx v 00000,1,1,得:)1ln(10kt v kx +=3、物体作斜抛运动,初速度1020-⋅=s m v 与水平方向成45o角,求: (1) 在最高点处的切向加速度、法向加速度;(2) 在2=t 秒时的切向加速度、法向加速度。
解:(1)最高点:)/10,(0,,2s m g g a g a e g a t n n ===∴=取为重力加速度ρρ(2)、)/(1021045sin ,/21045cos 0000s m t gt v v s m v v y x -=-===t t v v v y x 2200100400222-+=+=222,2200100400)2(100t n t a g a tt t dtdv a -=-+-==22/24.9225,/83.32252s m a s m a s t n t =+==-==时,(註:本题也可用填空题4的方法做,即求出v ρ与水平方向的夹角,然后再将g 分解为a t 和a n )。
4、质点沿半径为R 的圆周运动,加速度与速度的夹角ϕ保持不变,求该质点的速度随时间而变化的规律,已知初速为0v 。
解:Rv a dtdva a atg n t tn 2,,===ϕ ⎰⎰-=∴=+-==vv ttv Rtg Rtg v v Rtg t v v Rtg dt v dv Rtg v dt dv 0000022,11,,ϕϕϕϕϕ分离变量并积分:得:选做题:1、细杆OL 绕O 点以匀角速ω转动,并推动小环C 在固定的钢丝AB 上滑动。
图中的l 为已知,试利用ϕ或S 表示小环的速度与加速度。
解:如图建立坐标系,则222() cos 2cos dr ds ds d d ltg v i i i l idt dt d dt d dv dv d a l tg idt d dt--===⋅=⋅===⋅=r r r r r r r r r r ϕϕωωϕϕϕϕωϕϕϕ2、一架飞机从A 处向北飞到B 处,然后又向南飞回到A 处,飞机相对于空气的速度为v ,而空气相对于地面的速度为B A u 、,之间的距离为l ,飞机相对于空气的速率v 保持不变。
x(1)如果空气是静止的(即u=0),试证来回飞行时间为t 0=2l/v(2) 如果空气的速度由东向西,试证来回飞行时间22021/vu t t -=;(3) 如果空气的速度的方向偏离南北方向某一角度θ,则来回飞行时间为⎪⎪⎭⎫ ⎝⎛--=2222231/sin 1v u vu t t θ。
解:根据+v v v →→→=r r r机地机气气地求解。
(1)0v 0, v , 2lv v t v→→→=∴==∴=rQ 气地机地机气 (2)如图所示,无论从A 飞到B ,还是从B 飞到A ,v →==机地22l t v →∴===机地(3)从A 飞到B 时,如右图所示:cos v u θ→=机地A B t →=;从B 飞到A 时,如下图所示:cos v u θ→=机地B A t →=2321A B B Au t t t t v →→⎛⎫∴=+=- ⎪⎝⎭Bv →r 机地v →r 机气v →r 气地Av →r气地v →r 机气v →r机地AB θ v →r 机地(大小为u )v →r气地(大小为v )v →r机气v r气v r。