电力电子新技术第1章绪论 共40页PPT资料
合集下载
电力电子技术基础 第1章 绪论
![电力电子技术基础 第1章 绪论](https://img.taocdn.com/s3/m/6a35d691db38376baf1ffc4ffe4733687e21fce3.png)
、电力变换的基本原理
4)AC/AC变换
下图也是用两个开关组成的简单变流电路,输入端接的是交流电us。
每个开关与一个二极管串联表示流过开关的电流方向 是单向的。这是因为在实际电路中这两个开关采用晶闸管, 晶闸管是单向导电的。
如果开关K1和K2都采取通断控制,则可以将 交流电变为交流电,即AC/AC变换。
控制理论广泛用于电力电子技术,使电力电子装置的性能满足各种需求; 电力电子技术可以看成弱电控制强电的接口,控制理论是实现该接口的
强有力纽带。
第1章 绪论
1.1电力电子技术的定义
电力电子技术是应用于电力领域的电子技术, 是使用器件对电力进行变换和控制的技术。 这个器件指的是功率半导体器件,也称为电力电子器件。
用倒三角描述,如图所示。
电子学
电路、器 件
电力 电子技术
连续、离散
控制 理论
静止器、旋转电机
电力学
3
第1章 绪论 1.1电力电子技术的定义
电子技术
• 所用器件: 晶体管、场效应管、 集成电路、微处理器 、电感、电容。
• 完成功能: 信号产生、变换、存 储、发送、接收。
• 基础理论: 电路、磁路、电磁场
这四类变换器将在后继章节中详细论述,下面简单介绍电力变换的基本原理8 。
第1章 绪论 1.2电力变换的基本原理
上述的电力变换中使用的电力电子器件都是工作在开关状态。 电力电子器件为什么工作在开关状态? 为了使器件的功率损耗(P=UI)最小: 器件开通时,通过的电流i很大,但器件上的电压u≈0 器件断开时,承受的电压u很高,但流过的电流i≈0
4
第1章 绪论
1.1电力电子技术的定义
电子学
电力学
电路、器 件
4)AC/AC变换
下图也是用两个开关组成的简单变流电路,输入端接的是交流电us。
每个开关与一个二极管串联表示流过开关的电流方向 是单向的。这是因为在实际电路中这两个开关采用晶闸管, 晶闸管是单向导电的。
如果开关K1和K2都采取通断控制,则可以将 交流电变为交流电,即AC/AC变换。
控制理论广泛用于电力电子技术,使电力电子装置的性能满足各种需求; 电力电子技术可以看成弱电控制强电的接口,控制理论是实现该接口的
强有力纽带。
第1章 绪论
1.1电力电子技术的定义
电力电子技术是应用于电力领域的电子技术, 是使用器件对电力进行变换和控制的技术。 这个器件指的是功率半导体器件,也称为电力电子器件。
用倒三角描述,如图所示。
电子学
电路、器 件
电力 电子技术
连续、离散
控制 理论
静止器、旋转电机
电力学
3
第1章 绪论 1.1电力电子技术的定义
电子技术
• 所用器件: 晶体管、场效应管、 集成电路、微处理器 、电感、电容。
• 完成功能: 信号产生、变换、存 储、发送、接收。
• 基础理论: 电路、磁路、电磁场
这四类变换器将在后继章节中详细论述,下面简单介绍电力变换的基本原理8 。
第1章 绪论 1.2电力变换的基本原理
上述的电力变换中使用的电力电子器件都是工作在开关状态。 电力电子器件为什么工作在开关状态? 为了使器件的功率损耗(P=UI)最小: 器件开通时,通过的电流i很大,但器件上的电压u≈0 器件断开时,承受的电压u很高,但流过的电流i≈0
4
第1章 绪论
1.1电力电子技术的定义
电子学
电力学
电路、器 件
电力电子-第1章
![电力电子-第1章](https://img.taocdn.com/s3/m/7b8c3fcf168884868662d64e.png)
SCR:12kV/1kA和6500V/4000A GTR:1800V/800A/2kHz、1400v/600A/5kHz、 600V/3A/100kHz MOSFET:1kV/2A/2MHz和60V/200A/2MHz . IGBT:6500V/4500V/3300V/1700V/1200V/600V, 3300A8A;IR公司已设计出开关频率高达 150kHz的WARP系列 400~600V的IGBT
电力电子技术
授课教师:国海
绪论
1.1 电力电子学科的形成 1.2 电力电子变换和控制的技术经济意义 1.3 电力电子技术的应用领域 课程学习要求
2
1.1 电力电子学科的形成
1.电力技术 2.电子技术 3.电力电子技术
美国学者W. Newell认为电 力电子学是由电力学、电子 学和控制理论三个学科交叉 而形成的。
✓ 电子技术是研究电子器件,以及 利用电子器件来处理电子电路中 电信号的产生、变换、处理、存 储、发送和接收问题。
✓ 又称为信息电子技术或信息电子 学。
5
1.1 电力电子学科的形成(续3)
3.电力电子技术(Power Electronics)
将电子技术和控制技术引入传统的电力技术领域,利用 半导体电力开关器件组成各种电力变换电路实现电能的变 换和控制,构成了一门完整的学科,被国际电工委员会命 名为电力电子学(Power Electronics)或称为电力电子技 术。
基本原理 图中的开关设为理想开关
vo= S×vi
S为开关函数
13
3.利用开关器件实现电力变换的基本原理(续1) 如何用电力电子开关器件实现电能的变换?
DC/DC直流降压电路
14
3.利用开关器件实现电力变换的基本原理(续2) 方案一: 电阻降压
电力电子技术
授课教师:国海
绪论
1.1 电力电子学科的形成 1.2 电力电子变换和控制的技术经济意义 1.3 电力电子技术的应用领域 课程学习要求
2
1.1 电力电子学科的形成
1.电力技术 2.电子技术 3.电力电子技术
美国学者W. Newell认为电 力电子学是由电力学、电子 学和控制理论三个学科交叉 而形成的。
✓ 电子技术是研究电子器件,以及 利用电子器件来处理电子电路中 电信号的产生、变换、处理、存 储、发送和接收问题。
✓ 又称为信息电子技术或信息电子 学。
5
1.1 电力电子学科的形成(续3)
3.电力电子技术(Power Electronics)
将电子技术和控制技术引入传统的电力技术领域,利用 半导体电力开关器件组成各种电力变换电路实现电能的变 换和控制,构成了一门完整的学科,被国际电工委员会命 名为电力电子学(Power Electronics)或称为电力电子技 术。
基本原理 图中的开关设为理想开关
vo= S×vi
S为开关函数
13
3.利用开关器件实现电力变换的基本原理(续1) 如何用电力电子开关器件实现电能的变换?
DC/DC直流降压电路
14
3.利用开关器件实现电力变换的基本原理(续2) 方案一: 电阻降压
电力电子技术第一章
![电力电子技术第一章](https://img.taocdn.com/s3/m/87754d7c4028915f814dc20b.png)
热效应来定义的,使用时应按有效值相等的原则来选取电 流定额,并应留有一定的裕量。
2、正向压降UF
指规定条件下,流过稳定的额定电流时,器件两端的 正向平均电压(又称管压降)。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
3、反向重复峰值电压URRM
指器件能重复施加的反向最高峰值电压(额定电 压)。此电压通常为击穿电压的2/3。使用中通常按照 电路中电力二极管可能承受的反向峰值电压的两倍来选 定此项参数。
图1-3 电力二极管的伏安特性
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
二、 动态特性 (开关特性)
电力二极管的电压-电流特性
是随时间变化的
延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降 时间与延迟时间 的比值 tf /td,或称恢复系数,用 Sr表示。
通或者 关断的控制。
❖电压驱动型
----仅通过在控制端和公共端之间施加一定的
电压信号就可实现导通或者关断的控制。
PPT文档演模板
电力电子技术第一章
1.2 不可控器件—电力二极管
➢1.2.1 电力二极管的工作原理 ➢1.2.2 电力二极管的基本特性与参数
一、电力二极管的伏安特性 二、电力二极管的开关特性 三、电力二极管的主要参数
Diode)常用于开关频率在1KHz以下的整流电路 中,其反向恢复时间在5μs以上,额定电流可 达数千安培,额定电压达数千伏以上。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
②快恢复二极管
2、正向压降UF
指规定条件下,流过稳定的额定电流时,器件两端的 正向平均电压(又称管压降)。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
3、反向重复峰值电压URRM
指器件能重复施加的反向最高峰值电压(额定电 压)。此电压通常为击穿电压的2/3。使用中通常按照 电路中电力二极管可能承受的反向峰值电压的两倍来选 定此项参数。
图1-3 电力二极管的伏安特性
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
二、 动态特性 (开关特性)
电力二极管的电压-电流特性
是随时间变化的
延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降 时间与延迟时间 的比值 tf /td,或称恢复系数,用 Sr表示。
通或者 关断的控制。
❖电压驱动型
----仅通过在控制端和公共端之间施加一定的
电压信号就可实现导通或者关断的控制。
PPT文档演模板
电力电子技术第一章
1.2 不可控器件—电力二极管
➢1.2.1 电力二极管的工作原理 ➢1.2.2 电力二极管的基本特性与参数
一、电力二极管的伏安特性 二、电力二极管的开关特性 三、电力二极管的主要参数
Diode)常用于开关频率在1KHz以下的整流电路 中,其反向恢复时间在5μs以上,额定电流可 达数千安培,额定电压达数千伏以上。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
②快恢复二极管
第1讲绪论电力电子课件
![第1讲绪论电力电子课件](https://img.taocdn.com/s3/m/c76d10fbe53a580216fcfeee.png)
西门子系列变频器
420型经济系列
430系列风机水泵专用 440型通用型变频器
1.3 电力电子技术的应用
3) 电力系统
电力电子技术在电力系统中有非常广泛的应用。据估计,发达国家在用户 最终使用的电能中有60%以上至少经过一次电力电子变流装置的处理。电 力系统在通向现代化的进程中,电力电子技术是关键技术之一。毫不夸张 地说,离开电力电子技术,电力系统的现代化是不可想象的。
能源是人类社会的永恒话题,电能是最优质的能源,
因此,电力电子技术将青春永驻。
一门崭新的技术,21世纪仍将以迅猛的速度发展。
1.3 电力电子技术的发展史
电力电子器件的发展对电力电子技术 的发的发展史为纲的。
返回
电力电子技术的发展史
电力电子技术和电子学的关系
电力电子电路和电子电路 许多分析方法一致,仅应用目的不同 广义而言,电子电路中的功放和功率输出也可算做电力电子电
路 电力电子电路广泛用于电视机、计算机等电子装置中,其电源
部分都是电力电子电路
器件的工作状态 • 信息电子 既可放大,也可开关 • 电力电子 为避免功率损耗过大,总在开关状态 ——电力电
直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受 电端的逆变阀都采用晶闸管变流装置。近年发展起来的柔性交流输电也是 依靠电力电子装置才得以实现的。柔性交流输电是应用大功率、高性能的 电力电子元件制成可控的有功或无功电源以及电网的一次设备等,以实现 对输电系统的电压、阻抗、相位角、功率、潮流等的灵活控制,将原基本 不可控的电网变得可以全面控制。从而大大提高电力系统的高度灵活性和 安全稳定性,使得现有输电线路的输送能力大大提高。典型电力电子装置 有静止无功补偿器(SVC)、静止无功发生器(ASVG)、综合潮流控制器 ( UPFC ) 和 可 控 串 联 电 容 补 偿 器 ( TCSC ) 等
电力电子新技术培训课程(ppt 40页)
![电力电子新技术培训课程(ppt 40页)](https://img.taocdn.com/s3/m/e5c89b83a5e9856a57126099.png)
BUCK电路
3.利用开关器件实现电力变换的基本 原理(续8)
✓ AC/DC基本整流电路
工作方式 相控、斩波 分析方法 傅立叶分解 、积分 考虑问题 开关时刻、 滤波
3.利用开关器件实现电力变换的基本 原理(续9)
✓ DC/AC基本逆变电路
工作方式 方波、PWM波 分析方法 傅立叶分解 考虑问题 开关时刻、 滤波
☞电力电子技术和控制理论 控制理论广泛用于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。
另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 础元件和重要支撑技术。
✓ 电力变换按电压(电流)的 大小、波形及频率变换划 分为四类基本变换及相应 的四种电力变换电路或电 力变换器。
✓ 这四类基本变换可以组合 成许多复合型电力变换器
2.交流机组实现电力变换
传统电力技术如何将交流电变为直流电? 基本原理 缺点
2.交流机组实现电力变换(续1)
传统电力技术如何将一种频率的交流电变为另一种频率 的交流电?
☞采用全控型器件的电路的主要控制方式为脉冲宽度调制 (PWM)方式。相对于相位控制方式,可称之为斩波控 制方式,简称斩控方式。
☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表 的复合型器件异军突起。它是MOSFET和BJT的复合,综 合了两者的优点。与此相对,MOS控制晶闸管(MCT) 和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
3.利用开关器件实现电力变换的基本 原理(续8)
✓ AC/DC基本整流电路
工作方式 相控、斩波 分析方法 傅立叶分解 、积分 考虑问题 开关时刻、 滤波
3.利用开关器件实现电力变换的基本 原理(续9)
✓ DC/AC基本逆变电路
工作方式 方波、PWM波 分析方法 傅立叶分解 考虑问题 开关时刻、 滤波
☞电力电子技术和控制理论 控制理论广泛用于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。
另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 础元件和重要支撑技术。
✓ 电力变换按电压(电流)的 大小、波形及频率变换划 分为四类基本变换及相应 的四种电力变换电路或电 力变换器。
✓ 这四类基本变换可以组合 成许多复合型电力变换器
2.交流机组实现电力变换
传统电力技术如何将交流电变为直流电? 基本原理 缺点
2.交流机组实现电力变换(续1)
传统电力技术如何将一种频率的交流电变为另一种频率 的交流电?
☞采用全控型器件的电路的主要控制方式为脉冲宽度调制 (PWM)方式。相对于相位控制方式,可称之为斩波控 制方式,简称斩控方式。
☞在80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表 的复合型器件异军突起。它是MOSFET和BJT的复合,综 合了两者的优点。与此相对,MOS控制晶闸管(MCT) 和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
电力电子第1章
![电力电子第1章](https://img.taocdn.com/s3/m/d6629fc5ba0d4a7302763aba.png)
1) 正向伏安特性
晶闸管在门极开路(IG=0)的情况下,在阳
极与阴极间施加一定的正向阳极电压,器 件也仍处于正向阻断状态,只有很小的正 向漏电流流过。 外加的阳极正向电压在其转折电压以下时, 只要在门极注入适当的电流(一般为毫安 级),器件也会立即进入正向导通状态 。
1.2.1 晶闸管的阳极伏安特性
1.4 双向晶闸管
双向晶闸管的电气图形符号和伏安特性图
1.4 双向晶闸管
双向晶闸管(TRIAC)内部结构可看 做两只普通晶闸管反向并联,引出的 三个端子为主极T1,T2和门极G。它 具有正、反向对称的伏安特性,主要 参数有断态重复峰值电压和额定通态 电流,因双向晶闸管正
、反向都能触发导通,所以额定通态 电流为有效值。
——在门极断路而结温为额定值时,允许重复加在器件 上的正向峰值电压。
反向重复峰值电压URRM
——在门极断路而结温为额定值时,允许重复加在器件 上的反向峰值电压。
通态(峰值)电压UT
——晶闸管通以某一规定倍数的额定通态平均电流时的 瞬态峰值电压。
1.3.2 晶闸管的电流参数
通态平均电流 IT(AV)
通常规定为hFE下降到规定值的1/2~1/3时所对 应的Ic 。 实际使用时要留有裕量,只能用到IcM的一半或 稍多一点。
1.5.2 功率晶体管的特性
集电极最大耗散功率PcM
最高工作温度下允许的耗散功率。 产品说明书中给PcM时同时给出壳温TC,间接 表示了最高工作温度 。
1.6 功率场效应晶体管
第1章 晶闸管概述
晶闸管是由多种器件组成的家族,而 被广泛使用的普通晶闸管则是这个家 族中的一员,俗称可控硅整流器 (SCR,Silicon Controlled Rectifier),简称可控硅,其规范 术语是反向阻断三端晶闸管。
晶闸管在门极开路(IG=0)的情况下,在阳
极与阴极间施加一定的正向阳极电压,器 件也仍处于正向阻断状态,只有很小的正 向漏电流流过。 外加的阳极正向电压在其转折电压以下时, 只要在门极注入适当的电流(一般为毫安 级),器件也会立即进入正向导通状态 。
1.2.1 晶闸管的阳极伏安特性
1.4 双向晶闸管
双向晶闸管的电气图形符号和伏安特性图
1.4 双向晶闸管
双向晶闸管(TRIAC)内部结构可看 做两只普通晶闸管反向并联,引出的 三个端子为主极T1,T2和门极G。它 具有正、反向对称的伏安特性,主要 参数有断态重复峰值电压和额定通态 电流,因双向晶闸管正
、反向都能触发导通,所以额定通态 电流为有效值。
——在门极断路而结温为额定值时,允许重复加在器件 上的正向峰值电压。
反向重复峰值电压URRM
——在门极断路而结温为额定值时,允许重复加在器件 上的反向峰值电压。
通态(峰值)电压UT
——晶闸管通以某一规定倍数的额定通态平均电流时的 瞬态峰值电压。
1.3.2 晶闸管的电流参数
通态平均电流 IT(AV)
通常规定为hFE下降到规定值的1/2~1/3时所对 应的Ic 。 实际使用时要留有裕量,只能用到IcM的一半或 稍多一点。
1.5.2 功率晶体管的特性
集电极最大耗散功率PcM
最高工作温度下允许的耗散功率。 产品说明书中给PcM时同时给出壳温TC,间接 表示了最高工作温度 。
1.6 功率场效应晶体管
第1章 晶闸管概述
晶闸管是由多种器件组成的家族,而 被广泛使用的普通晶闸管则是这个家 族中的一员,俗称可控硅整流器 (SCR,Silicon Controlled Rectifier),简称可控硅,其规范 术语是反向阻断三端晶闸管。
电力电子技术绪论(ppt 50页)
![电力电子技术绪论(ppt 50页)](https://img.taocdn.com/s3/m/71e8f74127284b73f24250f8.png)
2 电力电子技术的发展
电力电子技术的两大分支:
电力电子器件制造技术:是电力电子技术的基础,
电 也是电力电子技术发展的动力,其理论基础是半导
力 电
体物理。
子 电力电子器件应用技术(也称变流技术):
技
是用电力电子器件构成的电力变换电路和
术 对其进行控制的技术,以及构成电力电子装置和电
力电子系统的技术。
电力电子电路的根本任务是实现电能变换和控制。
能够完成电能变换和控制的电路称为电力电子电路。 2)电力电子电路的基本形式:有四种 ①直流变换电路:将直流电能转换为另一固定电压或
可调电压的直流电能的电路。也称开关型DC/DC变 换电路或称直流斩波器。 ②逆变电路:将直流电能变换为交流电能的电路。
也称为DC/AC变换电路。
它是电力电子技术的核心,其理论基础是电路理 论。
(1)电力电子器件的发展:其发展过程也就是电力电子技 术的发展过程。 1904年:电子管问世;之后出现了汞弧整流器。 汞弧整流器:把水银封于真空管内,利用对其蒸气的点弧 可对大电流进行控制,其性能和晶闸管很相似。 30年代~50年代:是汞弧整流器发展迅速并大量应用的时 期。 1947年:美国著名的贝尔实验室发明了晶体管,引发了电 子技术的一场革命。 1956年:美国研制出了最先用于电力领域的半导体器件— —硅整流二极管(SR)。它广泛用于电化学工业、电气铁 道直流变电所、轧钢用直流电动机的传动,甚至用于直流 输电。 1957年:美国通用电气公司发明了晶闸管(SCR),(即 普通反向阻断型可控硅)。它标志着电力电子技术的诞生。 但在此之前,用于电力变换的电子技术就已经存在了, 把晶闸管出现前的时期称为史前期或黎明期。
多年来,为了提高电力电子装置的功率密度以减小体积,把 多个大功率器件组成的各种单元与驱动、保护电路集成一体, 构成了功率集成电路(PIC)。
电力电子技术第一章
![电力电子技术第一章](https://img.taocdn.com/s3/m/3feadf77c77da26925c5b0f3.png)
–由若干功率开关器件与快速二极管组合而成
• 单片集成式模块
–功率器件、驱动、保护等电路集成于一个硅片
• 智能功率模块
–将具有驱动、自保护、自诊断功能的集成芯片再与电力电子 器件集成
-10-
电力工程系
表1-1 电力电子器件
类型
名称
不可控器件 电力二极管(Power Diode)
半控型器件
晶闸管(Thyristor)
第1章 电力电子器件
1.1 电力电子器件概述 1.2 电力二极管 1.3 晶闸管及其派生器件 1.4 门极可关断晶闸管 1.5 电力晶体管 1.6 功率场效应晶体管 1.7 绝缘栅双极性晶体管
-1-
电力工程系
1.1 电力电子器件概述
1.1.1 电力电子器件的概念和特征 1.1.2 电力电子器件的基本类型 1.1.3 电力电子器件的模块化与集成化 1.1.4 电力电子器件的应用领域
电流控
分
制器件
立 器 件
全 控 型
器 件
电压控 制器件
门极可关断晶闸管(GTO)
电力晶体管(GTR) 电力场效应晶体管(Power
MOSFET) 绝缘栅双极型晶体管(IGBT)
MOS控制晶闸管(MCT)
集成门极换流晶闸管(IGCT)
集成模块
功率集成模块(PIC) -11-
出现时间 1955 1958 1964 1975 1975 1985 1992 1996
1.1.1 电力电子器件的概念和特征
2. 特征 • 承受电压和电流的能力,是其最重要的参数。 • 为了减小损耗、提高效率,工作在开关状态。 • 由信息电子电路来控制,并且需要驱动电路。 • 自身的功率损耗远大于微电子器件,一般需要安装散热器。
• 单片集成式模块
–功率器件、驱动、保护等电路集成于一个硅片
• 智能功率模块
–将具有驱动、自保护、自诊断功能的集成芯片再与电力电子 器件集成
-10-
电力工程系
表1-1 电力电子器件
类型
名称
不可控器件 电力二极管(Power Diode)
半控型器件
晶闸管(Thyristor)
第1章 电力电子器件
1.1 电力电子器件概述 1.2 电力二极管 1.3 晶闸管及其派生器件 1.4 门极可关断晶闸管 1.5 电力晶体管 1.6 功率场效应晶体管 1.7 绝缘栅双极性晶体管
-1-
电力工程系
1.1 电力电子器件概述
1.1.1 电力电子器件的概念和特征 1.1.2 电力电子器件的基本类型 1.1.3 电力电子器件的模块化与集成化 1.1.4 电力电子器件的应用领域
电流控
分
制器件
立 器 件
全 控 型
器 件
电压控 制器件
门极可关断晶闸管(GTO)
电力晶体管(GTR) 电力场效应晶体管(Power
MOSFET) 绝缘栅双极型晶体管(IGBT)
MOS控制晶闸管(MCT)
集成门极换流晶闸管(IGCT)
集成模块
功率集成模块(PIC) -11-
出现时间 1955 1958 1964 1975 1975 1985 1992 1996
1.1.1 电力电子器件的概念和特征
2. 特征 • 承受电压和电流的能力,是其最重要的参数。 • 为了减小损耗、提高效率,工作在开关状态。 • 由信息电子电路来控制,并且需要驱动电路。 • 自身的功率损耗远大于微电子器件,一般需要安装散热器。
电力电子技术基础-绪论
![电力电子技术基础-绪论](https://img.taocdn.com/s3/m/d72ba20c561252d381eb6e2d.png)
讯发射电源; ❖ 各种精密稳压:稳流电源。
程控交换机
电子装置 微型计算机
2、电力传动
❖ 工艺调速传动:轧钢、榨糖、造纸、化工、炼油; ❖ 节能调速传动:风机、水泵、压缩机; ❖ 牵引调速传动:轨道牵引、城市交通、电梯、矿井卷扬机
等; ❖ 精密调速和特种调速:数控机床主轴和伺服控制、雷达与
火炮跟踪控制、离心机控制等。
3、电力系统
❖ 发电环节:发电机励磁调节控制; ❖ 输电网中:电能质量控制器、直流输电、无功补偿器、有
源滤波器、固态开关; ❖ 配电网中:配电用无功补偿器、有源滤波器; ❖ 储能系统:抽水蓄能电站变频调速、超导磁铁储能。
柔性交流输电FACTS
高压直流装置HVDC
SVC
四、我国电力电子技术的现状与发展
电力变换的种类
输入 输出
交流(AC)
直流(DC)
整流
交流(AC) 交流电力控制变频、变相
直流(DC) 直流斩波 逆变
二、电力电子技术的发展历程
史前期 (黎明期)
晶体管诞生
晶闸管问世 (“公元元年”)
全控型器件迅 速发展时期
1904
电子管 问世
Hale Waihona Puke 19301947 1957 1970 1980 1990 2000 t(年)
❖ 电力电子器件研制水平落后; 场控器件全靠进口;
❖ 国产电力电子装置相对落后,高端产品主要被外国公司占 领;
❖ 国产电力电子产品配套水平差; ❖ 应用基础研究更不上。
五、电力电子电路的仿真分析
❖ 仿真:用模型( 物理、数学) 代替实际系统进行实验和研 究。 ➢ 数字仿真、模拟仿真和混合仿真等多种形式和方法, 现主要指在计算机上完成的数学分析( 数字仿真)。 ➢ 电力电子电路的仿真是对电力电子电路和系统进行分 析和设计的非常有效的方法和工具。
程控交换机
电子装置 微型计算机
2、电力传动
❖ 工艺调速传动:轧钢、榨糖、造纸、化工、炼油; ❖ 节能调速传动:风机、水泵、压缩机; ❖ 牵引调速传动:轨道牵引、城市交通、电梯、矿井卷扬机
等; ❖ 精密调速和特种调速:数控机床主轴和伺服控制、雷达与
火炮跟踪控制、离心机控制等。
3、电力系统
❖ 发电环节:发电机励磁调节控制; ❖ 输电网中:电能质量控制器、直流输电、无功补偿器、有
源滤波器、固态开关; ❖ 配电网中:配电用无功补偿器、有源滤波器; ❖ 储能系统:抽水蓄能电站变频调速、超导磁铁储能。
柔性交流输电FACTS
高压直流装置HVDC
SVC
四、我国电力电子技术的现状与发展
电力变换的种类
输入 输出
交流(AC)
直流(DC)
整流
交流(AC) 交流电力控制变频、变相
直流(DC) 直流斩波 逆变
二、电力电子技术的发展历程
史前期 (黎明期)
晶体管诞生
晶闸管问世 (“公元元年”)
全控型器件迅 速发展时期
1904
电子管 问世
Hale Waihona Puke 19301947 1957 1970 1980 1990 2000 t(年)
❖ 电力电子器件研制水平落后; 场控器件全靠进口;
❖ 国产电力电子装置相对落后,高端产品主要被外国公司占 领;
❖ 国产电力电子产品配套水平差; ❖ 应用基础研究更不上。
五、电力电子电路的仿真分析
❖ 仿真:用模型( 物理、数学) 代替实际系统进行实验和研 究。 ➢ 数字仿真、模拟仿真和混合仿真等多种形式和方法, 现主要指在计算机上完成的数学分析( 数字仿真)。 ➢ 电力电子电路的仿真是对电力电子电路和系统进行分 析和设计的非常有效的方法和工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1-7 风场
总之,电力电子技术的应用越来越广,其地位也越来越重要。
1.4 本教材的内容简介
■本教材的内容
1.5 开关型电力电子变换的基本原 理及控制方法
1.电力变换的类型
2.交流机组实现电力变换
3.利用开关器件实现电力变换的基本原理
1.电力变换的类型
电源可分为两类:
直流电(D.C) ,频率f=0 交流电(A.C) ,频率f0
科和其他学科的关系,小三角形则描述了电气工程一级学
科内各二级学科的关系。
1.1 什么是电力电子技术
☞电力电子技术和控制理论 控制理论广泛用于电力电子技术中,它使电力电
子装置和系统的性能不断满足人们日益增长的各种 需求。电力电子技术可以看成是弱电控制强电的技 术,是弱电和强电之间的接口。而控制理论则是实 现这种接口的一条强有力的纽带。
vo(t)d
tDV D
D 开关占空比 Ts 开关周期
3.利用开关器件实现电力变换的基本 原理(续6)
方案三:串联单刀双掷开关,理想开关,无损耗 串联LC, 滤出谐波, 滤波器的截止频率<<开关频率
3.利用开关器件实现电力变换的基本 原理(续7)
方案三:串联单刀双掷开关,理想开关,无损耗 增加控制回路
☞电力电子技术还大量用于冶金工 业中的高频或中频感应加热电源、 淬火电源及直流电弧炉电源等场 合。
图1-4 AB变频器
1.3 电力电子技术的应用
◆交通运输 ☞电气化铁道中广泛采用电力电子技术。电气机车中的直流
机车中采用整流装置,交流机车采用变频装置。直流斩波 器也广泛用于铁道车辆。在未来的磁悬浮列车中,电力电 子技术更是一项关键技术。除牵引电机传动外,车辆中的 各种辅助电源也都离不开电力电子技术。 ☞电动汽车的电机依靠电力电子装置进行电力变换和驱动控 制,其蓄电池的充电也离不开电力电子装置。一台高级汽 车中需要许多控制电机,它们也要靠变频器和斩波器驱动 并控制。 ☞飞机、船舶和电梯都离不开电力电子技术。
电冰箱、微波炉等电器也应用了电力电子技术。 ◆其它 ☞航天飞行器中的各种电子仪器需要电源,载人航天器也离
不开各种电源,这些都必需采用电力电子技术。 ☞抽水储能发电站的大型电动机需要用电力电子技术来起动
和调速。超导储能是未来的一种储能方式,它需要强大 的直流电源供电,这也离不开电力电子技术。
1.3 电力电子技术的应用
1.2 电力电子技术的发展史
◆晶闸管时代 ☞晶闸管由于其优越的电气性能和控制性能,使之很快就取
代了水银整流器和旋转变流机组,并且其应用范围也迅速 扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸 管变流技术的发展而确立的。 ☞晶闸管是通过对门极的控制能够使其导通而不能使其关断 的器件,属于半控型器件。对晶闸管电路的控制方式主要 是相位控制方式,简称相控方式。晶闸管的关断通常依靠 电网电压等外部条件来实现。这就使得晶闸管的应用受到 了很大的局限。
器件制造技术的理论基础(都是基于半导体理论) 是一样的,其大多数工艺也是相同的。
电力电子电路和信息电子电路的许多分析方法也 是一致的。 ☞电力电子技术和电力学
电力电子技术广泛用于电气工程中,这是电力电 子学和电力学的主要关系。
1.1 什么是电力电子技术
各种电力电子装置广泛 应用于高压直流输电、静止
☞随着全控型电力电子器件的不断进步,电力电子 电路的工作频率也不断提高。与此同时,软开关技 术的应用在理论上可以使电力电子器件的开关损耗 降为零,从而提高了电力电子装置的功率密度。
1.3 电力电子技术的应用
■电力电子技术的应用范围十分广泛。它不仅用于 一般工业,也广泛用于交通运输、电力系统、通 信系统、计算机系统、新能源系统等,在照明、 空调等家用电器及其他领域中也有着广泛的应用。
1.3 电力电子技术的应用
◆电力系统 ☞据估计,发达国家在用户最终使用的电能中,有60%以上
的电能至少经过一次以上电力电子变流装置的处理。 ☞直流输电在长距离、大容量输电时有很大的优势,其送
电端的整流阀和受电端的逆变阀都采用晶闸管变流装置, 而轻型直流输电则主要采用全控型的IGBT器件。近年发 展起来的柔性交流输电(FACTS)也是依靠电力电子装置 才得以实现的。 ☞晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、 静止无功发生器(SVG)、有源电力滤波器(APF)等电 力电子装置大量用于电力系统的无功补偿或谐波抑制。 在配电网系统,电力电子装置还可用于防止电网瞬时停 电、瞬时电压跌落、闪变等,以进行电能质量控制,改 善供电质量。 ☞在变电所中,给操作系统提供可靠的交直流操作电源, 给蓄电池充电等都需要电力电子装置。
☞新能源、可再生能源发电比如风力 发电、太阳能发电,需要用电力电 子技术来缓冲能量和改善电能质量。 当需要和电力系统联网 时,更离不 开电力电子技术。
☞核聚变反应堆在产生强大磁场和注 入能量时,需要大容量的脉冲电源, 这种电源就是电力电子装置。科学 实验或某些特殊场合,常常需要一 些特种电源,这也是电力电子技术 的用武之地。
◆一般工业 ☞工业中大量应用各种交直流电动机,都是用电力
电子装置进行调速的。 ☞一些对调速性能要求不高的大型鼓风机等近年来
也采用了变频装置,以达到节能的目的。
1.3 电力电子技术的应用
☞有些并不特别要求调速的电机为 了避免起动时的电流冲击而采用 了软起动装置,这种软起动装置 也是电力电子装置。
☞电化学工业大量使用直流电源, 电解铝、电解食盐水等都需要大 容量整流电源。电镀装置也需要 整流电源。
方案一: 电阻降压
3.利用开关器件实现电力变换的基本 原理(续3)
方案二: 串联晶体管
3.利用开关器件实现电力变换的基本 原理(续4)
方案三: 串联单刀双掷开关,理想开关,无损耗
3.利用开关器件实现电力变换的基本 原理(续5)
方案三: 串联单刀双掷开关,理想开关,无损耗
VD0
1 Ts
Ts 0
基本原理 缺点
3.利用开关器件实现电力变换的基本 原理
如何用电力电子开关器件实现电能的变换? 基本原理
图中的开关设为理想开关
vo= S×vi
S为开关函数
3.利用开关器件实现电力变换的基本 原理(续1)
如何用电力电子开关器件实现电能的变换?
DC/DC直流降压电路
3.利用开关器件实现电力变换的基本 原理(续2)
3.利用开关器件实现电力变换的基本 原理(续10)
AC/AC直接变频、变压电路
工作方式 周期控制
分析方法 等效法 考虑问题 开关时刻
1.4 开关型电力电子变换器的基本特性
开关型电力电子变换器的核心部分是一组开关电路 输出、输入端附加、滤波器,可以改善输出电压和输入电
流波形 通常采用开关周期平均值(状态空间平均法)和傅立叶级
无功补偿、电力机车牵引、
交直流电力传动、电解、励
磁、电加热、高性能交直流
电源等之中,因此,无论是
国内国外,通常都把电力电
图1-2 电气工程的双三角形描述
子技术归属于电气工程学科。在我国,电力电子与电力传
动是电气工程的一个二级学科。图1-2用两个三角形对电
气工程进行了描述。其中大三角形描述了电气工程一级学
另外,控制理论是自动化技术的理论基础,二 者密不可分,而电力电子装置则是自动化技术的基 础元件和重要支撑技术。
1.2 电力电子技术的发展史
■电力电子技术的发展史
图1-3 电力电子技术的发展史
◆一般认为,电力电子技术的诞生是以1957年美国 通用电气公司研制出第一个晶闸管为标志的。
1.2 电力电子技术的发展史
1.2 电力电子技术的发展史
◆全控型器件和电力电子集成电路(PIC)
☞70年代后期,以门极可关断晶闸管(GTO)、电力双极型 晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为 代表的全控型器件迅速发展。全控型器件的特点是,通过 对门极(基极、栅极)的控制既可使其开通又可使其关断。
☞采用全控型器件的电路的主要控制方式为脉冲宽度调制 (PWM)方式。相对于相位控制方式,可称之为斩波控制 方式,简称斩控方式。
数分析其工作特性 电力电子变换电路中的电压、电流周期性时间函数
电力变换按电压(电流)的 大小、波形及频率变换划 分为四类基本变换及相应 的四种电力变换电路或电 力变换器。
这四类基本变换可以组合 成许多复合型电力变换器
2.交流机组实现电力变换
传统电力技术如何将交流电变为直流电? 基本原理 缺点
2.交流机组实现电力变换(续1)
传统电力技术如何将一种频率的交流电变为另一种频率 的交流电?
1.3 电力电子技术的应用
图1-5 中国南方电网公司安顺换流站
图1-6 静止无功发生器(上)和 晶闸管投切电容器(下)
1.3 电力电子技术的应用
◆电子装置用电源
☞各种电子装置一般都需要不同电压等级的直流电 源供电。通信设备中的程控交换机所用的直流电 源以前用晶闸管整流电源,现在已改为采用全控 型器件的高频开关电源。大型计算机所需的工作 电源、微型计算机内部的电源现在也都采用高频 开关电源。
☞在大型计算机等场合,常常需要不间断电源 (Uninterruptible Power Supply__ UPS)供电, 不间断电源实际就是典型的电力电子装置。
1.3 电力电子技术的应用
◆家用电器 ☞电力电子照明电源体积小、发光效率高、可节省大量能源,
正在逐步取代传统的白炽灯和日光灯。 ☞空调、电视机、音响设备、家用计算机, 不少洗衣机、
电力电子新技术
第1章 绪论
1.1 什么是电力电子技术 1.2 电力电子技术的发展史 1.3 电力电子技术的应用 1.4 本教材的内容简介
1.1 什么是电力电子技术
■电力电子技术的概念 ◆可以认为,所谓电力电子技术就是应