浙大版数理统计第七章
概率论与数理统计及其应用_习题答案_(浙大_盛骤谢式千版本)
《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率1第二章随机变量及其分布9第三章随机变量的数字特征25第四章正态分布33第五章样本及抽样分布39第六章参数估计42第七章假设检验53第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+= )()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率 (1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
浙江大学概率论与数理统计第七八章复习
若
在很多情形, L关于 可微,要使L 取得最大值,
ˆ( x1 , x2 , , xn ) 为 的极大似然估计值, 则称 ˆ( X , X , , X ) 为 的极大似然估计量 称
1 2 n
ˆ) max L( x1 , x2 ,, xn ; ) L( x1 , x2 ,, xn ;
i 1 n
极大似然估计法:就是固定样本观察值 x1 , x2 , , xn ,在
ˆ, 取值的可能范围 内挑选使似然函数达到最大的参数
ˆ( x1 , x2 , , xn ) 为 的极大似然估计 作为 的估计值,若 ˆ( X 1 , X 2 , , X n ) 值,则 为 的极大似然估计量
S t 2 ( n 1) X n
(3)方差
2
的置信区间 (只介绍 未知的情况)
( n 1) S 2
取
2
~ 2 ( n 1)
方差 2 的一个置信度为1- 的置信区间:
2 ( n 1) S 2 ( n 1 ) S , 2 ( n 1) 2 ( n 1) 1 2 2
点估计常用方法:
矩估计法
用样本(原点)矩作为总体(原点)矩的估计量的方法称为 矩估计法.
矩估计法的具体做法是:令
A (l 1,2,, k )
l l
, ,, 的联立方程组。 ˆ1 , ˆ2 , , ˆk ,由于 Al 解此方程组,得到一组解 ˆl (l 1,2, , k ) 也是随机变量,则将 是随机变量,故解 ˆ1 , ˆ2 , , ˆk 分别作为 , ,, 的矩估计量.
定义3
ˆ 有效. 2 ˆ 是未知参数 设
浙江大学概率论与数理统计第4版复习笔记详解
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
浙江大学概率论与数理统计第七章
点估计
一、点估计问题的提法
二、估计量的求法 三、小结
一、点估计问题的提法
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题. 例1
在某炸药制造厂, 一天中发生着火现象的
次数 X 是一个随机变量 , 假设它服从以 0 为参 数的泊松分布, 参数 为未知, 设有以下的样本值 , 试估计参数 .
n
(二) 取对数
n i 1
ln L( ) ln p( xi ; ) 或 ln L( ) ln f ( xi ; );
i 1
n
d ln L( ) d ln L( ) 对数似 (三) 对 求导 , 并令 0,然方程 d d ˆ. 解方程即得未知参数 的最大似然估计值
a b 2 A1 , 即 2 b a 12( A2 A1 ) .
解方程组得到a, b的矩估计量分别为
3 n 2 ( X X ) , ˆ A1 3( A2 A1 ) X a i n i 1
2
n 3 2 2 ˆ X ( X X ) . b A1 3( A2 A1 ) i n i 1
i 1 n
L( ) L( x1 , x2 ,, xn ; ) f ( xi ; ),
n
L( )称为样本的似然函数 . ˆ ) max L( x1 , x2 , , xn ; ). 若 L( x1 , x2 , , xn ;
i 1
ˆ ( x1 , x2 ,, xn ) 参数 的最大似然估计值 , ˆ ( X 1 , X 2 ,, X n ) 参数 的最大似然估计量 .
《概率论与数理统计》浙江大学第四版课后习题答案
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
(浙大第四版)概率论与数理统计知识点总结
2° P(Ω) =1
3° 对于两两互不相容的事件 , ,…有
常称为可列(完全)可加性。
则称P(A)为事件 的概率。
(8)古典概型
1° ,
2° 。
设任一事件 ,它是由 组成的,则有
P(A)= =
(9)几何概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
。
连续型
X的边缘分布密度为
Y的边缘分布密度为
(6)条件分布
离散型
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为
;
在已知X=x的条件下,Y的条件分布密度为
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
,
Z=max,min(X1,X2,…Xn)
若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:
分布
设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
浙大第四版概率论与数理统计知识点总结
。
1
概率论与数理统计 公式(全)
知识点总结
(2)连 续型随 机变量 的分布 密度
(3)离 散与连 续型随 机变量 的关系 (4)分 布函数
设 F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实 数 x ,有
x
F (x) f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函数, 简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
Hale Waihona Puke m nA所包含的基本事件数 基本事件总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何概型。对任一事件 A,
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
设事件 B1, B2,, Bn 满足
1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi
2° i1 , (分类讨论的 则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
Pn(k) 表示 n 重伯努利试验中 A 出现 k(0 k n) 次的概率,
C Pn(k)
k n
pk qnk
,k
0,1,2,, n
。
第二章 随机变量及其分布
(1)离 散型随 机变量 的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值的 概率,即事件(X=Xk)的概率为
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
目录
第一章随机变量及其概率. (2)
第二章随机变量及其分布. (13)
第三章随机变量的数字特征. (30)
第四章正态分布. (39)
第五章样本及抽样分布. (49)
第六章参数估计. (55)
第七章假设检验. (68)
第一章随机变量及其概率
1,写出下列试验的样本空间:
(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S
{H ,TH ,TTH ,TTTH , };
(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o
2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求
P(A B), P(AB), P(AB), P[( A B)(AB)]。
解:P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375,
P(AB) 1 P(AB) 0.875,
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.5。
浙大版概率论与数理统计答案---第七章
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--,11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p的矩估计量为^p ==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂p p L ,求得到θ的极大似然估计值:nn n n p 22210^++= 6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
概率论与数理统计(浙大版)第七章第八章课件
解:1 矩估计
E X xk pk 2 2 3 (1 3 2) 3 5 2
X 2.2
令 E(X)=X ˆ 0.32
2 极大似然估计
L( ) ( 2)(1 3 2)( 2) (1 3 2)
1 16
3
(2
3
称 : ˆ( x1, x2,, xn )为的极大似然估计值 ˆ( X1, X2,, Xn )为的极大似然估计量
如何求 ˆ ?即求 L( ) 的最大值点问题
方法一: 若 L( )为可导函数
解方程 dL( ) 0, d
得到ˆ ˆ( X1, X2 ,, Xn )
回忆:
12
A1 A2
ˆ X
ˆ 2
1 n
n i 1
(Xi
X )2
例2:设总体X的密度为:
f
x
x 1
0
0 x 1 0为未知参数,
其他
X1,
X
,
2
,
X n 为取自X的样本,求的矩估计。
解:E X xf x dx 1 x dx
n
邻域内的概率为 f ( xi , )xi ,由极大似然原
理,最合理的
i1
的估计值
ˆ
应该是使
n
f ( xi , )xi 达到最大,由于xi是不依赖于
i1
的增量,所以我们只需求使
n
似然函数 L( ) f ( xi , ) 达到最大 i 1
求ˆ 的步骤:
(1) 写出L( ) (2) 取对数ln L( ) (3) 解方程 d ln[L( )] 0, 得到ˆ
浙江大学概率论与数理统计(盛骤第四版)——概率论部分1-90页精品文档
# 频率 反映了事件A发生的频繁程度。
15
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
i1
i1
i1
i1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
A B {甲、乙至少有一人来}
都不来}
A BAB{甲、乙至少有一人不来}
14
§3 频率与概率
例:
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
S={0,1,2,…}; 记录某地一昼夜最高温度x,最低温度y
S={(x,y)|T0≤y≤x≤T1}; 记录一批产品的寿命x S={ x|a≤x≤b }
10
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且 仅当A所包含的一个样本点发生称事件A发生。 例:观察89路公交车浙大站候车人数,S={0,1,2,…};
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
记 A={至少有10人候车}={10,11,12,…} S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ 为不可能事件,Φ 不包含
概率论与数理统计第七章课后习题及参考答案
故ˆ 是 的无偏估计.
(3)
E(X 2)
x2 f (x, )dx
0
6x3
( 3
x)
d
x
3 10
2
,
从而
D( X ) E( X 2 ) [E( X )]2 1 2 . 20
由此得 D(ˆ) D(2 X ) 4D( X ) 4 D( X ) 4 1 2 2 .
n
n 20 5n
(2) ˆ 是 的无偏估计吗? (3) 求 的方差 D(ˆ) .
解: E(X )
xf (x, )d x
0
6x2 ( 3
x)
dx
2
,
(1) 令 E( X ) X ,即 X ,由此得 的矩估计量为ˆ 2X . 2
(2) E(ˆ) E(2X ) 2E( X ) 2E( X ) 2 , 2
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
d ln L d
5n
0
,所以
ln
L(
)
是
的单调增函数,
又因为 xi ,i 1,2,, n ,故当 m1iinn{xi} 时 ln L( ) 达到最大值.由此得
的极大似然估计值为
ˆ
m1iinn{xi
}
,则其极大似然估计量为
概率论与数理统计浙大四版习题答案第七章
第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是 6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ其中θ>0,θ为未知参数。
(5)()p p m x p px X P x m xmx,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)X θcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX Xθ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp令mp = X , 解得mXp=ˆ 3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数1211)()()(+-===∏θn θn nni ix x x c θx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni i θn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini i x nθx θθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。
浙江大学概率论与数理统计(免费)ppt课件
(三) 事件的关系及运算 事件的关系(包含、相等)
1 A B : 事 件 A 发 生 一 定 导 致 B 发 生
AB 2A = B BA
B A
S
例: BA 记A={明天天晴},B={明天无雨}
BA 记A={至少有10人候车},B={至少有5人候车}
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 n A —A发生的次数(频数);n—总试验次 数。称f n ( A ) 为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
一次,则在这n次试验中“冲击亚洲”这事件发生的频率为 1 n;
不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
9
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性: 1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
BA
13
事件的运算
A与B的和事件,记为 AB
A与B的积事件,记为 A B ,A B ,A B
A B A B { x | x A 且 x B } : A 与 B 同 时 发 生 。
n i 1 n i 1
S A B
A B { x | x A 或 x B } : A 与 B 至 少 有 一 发 生 。
概率论与数理统计第7章参数估计习题及答案
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第七章数理统计习题__偶数答案
1
n i 1xi,Fra bibliotekx ,
0,
其他。
n
令 l n
xi
i 1
2
0 得ˆ 1 n
n i 1
xi
为 的极大似然估计。
8(1)
X
,E
1 n
n i 1
Xi
2
1 n
n i 1
E
Xi
2
1 n
n i 1
EX i 2 2EX i 2
2
n1
(2) E k i1
x 2 n 1 , 0,
0 x , , 其他。
故 EX n
0
2n 2n
x 2ndx
2n 2n 1
即
Eˆ2
EX n
2n 2n 1
故ˆ2
为
的有偏估计。
n
n
Xi
14(1) L
f i 1
xi ,
e i1
,
n
l() ln L X i n , i 1
l() 为 的单调递增函数,故 取最大值时 l() 取最大值。
又 不大于 min X1,, X n ,故 ˆ1 X1 min X1,, X n 为 的极大似然估计。
因 F x, x etdt 1 ex
易知 f X1
xi ,
nen
x
,
0,
x , 其他。
所以 Eˆ1 EX 1
xf X1
xi ,
dx
1 n
,即 ˆ1 是
的有偏估计。
(2)记
n
个样本的方差为
S
2
,则
n
1
2
S
2
2 n 1 , D
概率论与数理统计及其应用课后答案(浙大版)第7章 假设检验
第7章 假设检验1,解:这是一个方差已知的正态总体的均值检验,属于右边检验问题,检验统计量为nx Z /18σ-=。
代入本题具体数据,得到8665.19/62.418874.20=-=Z 。
检验的临界值为645.105.0=Z 。
因为645.18665.1>=Z ,所以样本值落入拒绝域中,故拒绝原假设0H ,即认为该工人加工一工件所需时间显著地大于18分钟。
2,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /4.38-=。
代入本题具体数据,得到0844.115/5.74.385.40=-=t 。
检验的临界值为1448.2)14(025.0=t 。
因为1448.20844.1<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为平均摄取量显著地为38.4%。
3,解:这是一个方差未知的正态总体的均值检验,属于左边检验问题,检验统计量为ns x t /42.8-=。
代入本题具体数据,得到4.149/025.042.83.8-=-=t 。
检验的临界值为8965.2)8(01.0-=-t 。
因为8965.24.14-<-=t (或者说8965.24.14>=t ),所以样本值落入拒绝域中,故拒绝原假设0H ,即认为铜含量显著地小于8.42%。
4,解:这是一个方差未知的正态总体的均值检验,属于双边检验问题,检验统计量为ns x t /64.72-=。
代入本题具体数据,得到0134.016/338.864.72668.72=-=t 。
检验的临界值为1315.2)15(025.0=t 。
因为1315.20134.0<=t ,所以样本值没有落入拒绝域中,故接受原假设0H ,即认为该地区成年男子的平均体重为72.64公斤。
5,解:这是一个方差未知的正态总体的均值检验,属于右边检验问题,检验统计量为ns x t /200-=。
浙江大学《概率论与数理统计》第7章
n 2 2
2
故S 2是 2的无偏估计.
36
例2:检验7.1节例6(即总体X 服从0, 上的均匀分布)
的矩估计量ˆ 2X 与 极大似然估计量ˆL Xn的无偏性。
解:Q X U 0, ,
E
X
2
,
由于X1,L , X n与X同分布
E ˆ E 2X
2 n
n
i 1
E
Xi
2 nΒιβλιοθήκη n2因此ˆ 2X 是的无偏估计
6
注:在实际应用时,为求解方便,也可以用
中心矩 i 代替原点矩i,相应地以样本中心矩Bi 估计 i .
7
例1:设总体X 服从均匀分布U (a,b),a和b是 未知参数,样本X1,L , Xn,求a和b的矩估计。
8
解(1)求矩关于参数的函数
1 E( X
)
a
2
b
,
2
(a b)2 12
(2)求参数关于矩的反函数
38
为考察ˆL Xn的无偏性,先求Xn的分布,
由第三章第5节知: FXn x F xn ,
于是
f Xn
x
nxn1
n
0
0 x
其它
因此有:E ˆL E Xn
0
x nxn1
n
dx
n
n
1
所以ˆL Xn是有偏的。
39
纠偏方法
如果 E ˆ a b, ,其中a,b是常数,且a 0
ˆ 0.4
7.2 估计量的评选准则
从前一节看到,对总体的未知参数可用不 同方法求得不同的估计量,如何评价好坏?
四条评价准则:
无偏性准则,有效性准则,均方误差准则和 相合性准则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 某种木材横纹抗压力的实验值 服从正态分布,对10个试件作横纹 抗压力试验,得数据如下(单位: 公斤/ 平方厘米): 482,493,457,471,510, 446,435,418,394,469 试例对P7该4例木1材平均横纹抗压力
进行区间估计( 0.05).
解 2未知,用区间
( X t /2 (n 1)
其中 1,试分别用矩估计法
0 其他
f
(
x)
(
1)x
,0
(
x 1
0)
例 设总体X的概率密度为
得的矩估计量为ˆ
1 2X
X。 1
令E( X
)
A1,即
2 1
X
,
0 1
(1
)
x
dx
1
2 1
,
E( X ) xf (x; )dx
解
d 1 i1 ln xi ,令 d 0
d ln L n
2
2
2
2
n i1
n
1 E(X ) 1 n E(X )
n
n i1
n i1
(2)E( X ) E( 1 X i ) 1 E( X i )
n
n
解 (1)E( X i ) E( X ) .
设
1( X1, X2 ,..., Xn ),2 ( X1, X2 ,..., Xn )
均为参数的无偏估计,如 果对于任意 ,有
2
2
(2) X是的无偏估计( );
(1) X i是的无偏√估√ 计(对 );
判断:
对
X的样本,E( X ) , D(否X ) 2
例 设X 1, X 2 ,...,X n是来否自总体
/n
2
2
2
(4)E( X ) D( X ) (E( X ))
2
2
( 0) 2
(3)E( X i ) D( X i ) (E( X i ))
n
i1
Ci X i是的无偏估计,其中
n
X1, X 2 ,...,X n是X的样本,证明:
例 设总体X的数学期望存在,
i1
故 Ci X i是的无偏估计。
n
i1
i 1
Ci Ci
n
n
i1
i 1
解 E( Ci X i ) Ci E(X i )
n
n
E( X )的无偏估计量。 k
矩 n i1 X i 是总体k阶原点矩
D(ˆ 1 ) D(ˆ 2 )
则称 1 比 2 有效。
设 ˆ (X1 , X2 ,..., Xn ) 为 的一个估计量,如果
>0
lim
n
P(|
ˆ n
|
)
1
则称 为的相合估计量。
定义:设总体分布中含未知参数, 如果统计量
(X1, X 2,..., X n ), (X1, X 2,..., X n )
对给定值(0<<1),满足
P( ) ≥1-
则称1-为置信水平,称 ( , )为的
置信水平为1-的置信区间。
总体X~N(, 2),方差 2 未知,求均值的置信度 为1-的置信区间。
总体X~N(, 2),方差 2 未知,均值的置信度为 1-的置信区间:
( X t /2 (n 1)
S) n
f Xi (x) =f(x; 1,2,...,k), (i=1,2,…,n)
X1,X2,...,Xn的联合密度为
f (x1, x2 ,..., xn )
f X1 (x1) f X2 (x2 )... f Xn (xn )
n
f (xi ;1,2 ,...,k ) i 1
称
n
L1,2,...,k P(xi ;1,2,...,k )
1
,
...,
的矩估计。
k
例 设总体X的分布律为
X 1 2
p 1 1 1
X
1
,
X
2
,...
,X
是来自
n
X的样
本,求未知参数 的矩估计。
E(X ) 1 1 2 1 ... 1
[ (1 ) ] 1 1
2
2
令E( X ) A1,即
1 X,解得
2
ˆ 2 X 1即为的矩估计。
例 设总体X的概率密度为
n 9, x 5, 将它们代入
(X
z / 2
n
,X
z / 2
)
n
例即P得74所例1求区间(4.412,5.588)。
2.方差2 未知,均值的置 信度为1-的置信区间:
如果总体X的分布函数 的形式已知,它的参数未知, 通过X的一组样本观测值 x1,x2,…,xn估计总体的参数, 称为参数的点估计问题。
设总体X的分布函数为F(x,
),其中为待估计参数,
用样本X1, X2, …, Xn 构造统
计量 ^
^
( X1, X 2 ,..., X n )
去估计总体未知参数,我
且对任意 有
E( )=, 则称 为的无偏估计量。
E( ) -
称为用 估计时估计的
系统误差。无偏估计的 实际意义就是无系统误 差。
设X1, X 2 , X 3为总体X的 一个样本,统计量
(1)T1
2 5
X1
1 5
X2
2 5
X3
(2)T2
1 6
X1
1 6
X2
1 6
X3
哪个是总体X的均值E( X )的
X1,X2,...,Xn的联合分布律
P{X1 x1, X 2 x2 ,..., X n xn} P{X1 x1}P{X 2 x2}...P{X n xn}
n
P(xi ;1,2,...,k ) i 1
设总体X的概率密度为:
f (x)=f(x; 1,2,...,k), 其中1,2,...,k为待估参数, 设X1,X2,...,Xn是来自X的样 本,则Xi的概率密度为
或
i 1
n
L1,2,...,k f (xi ;1,2,...,k ) i 1 为样本的似然函数。
如:甲箱有990只红球,10只 白球,乙箱有10只红球,990 只白球,现随机地取一箱, 从中任取5球,结果都是红 球,问此5球取自何箱?
极大似然法的思想:如果在一次观察
中一个事件出现了,那么可以认为此
但E ( 1
n
n
(X i
i 1
X )2)
D(X )
即,样本k阶矩Ak
1 n
n i 1
X
k i
是
总体X的k阶矩的无偏估计;
样本均值X是总体均值E( X )
的无偏估计;
样本方差S 2是总体方差D( X )
的无偏估计.
(4) X 是 的无偏估计( )。
2
2
(3) X i 是 的无偏估计( );
W W ( X1, X 2,...,X n; ), 要求W分布已知,且包含待估参数
而不含其它未知参数①;
(2)对给定值 ,确定a,b,使得 P{a W b} 1
(3)由上式确定
P{ } 1, ( , )即为所求。
含义: 若反复抽样多次,每
个样本确定一个区间( , ),其 中包含真值的区间约占 100(1 )%,不包含真值的 区间约占100 %。
k
k
k
k
故X1 , X 2 ,...,X n 也与X 同分布,所以
k
k
k
k
解 因为X1, X 2 ,...,X n与X同分布,
(1)
E(1 n
n i 1
X
k i
)
E(X k )
(2) E( X ) E( X ),
E(S 2) D(X ),
注:E(
1 n 1
n
(X
i 1
i
X )2) D(X )
无偏估计量。
解E( X1) E( X 2 ) E( X 3) E( X )
(1)E(
2 5
X1
1 5
X
2
2 5
X
3)
2 5
E(X1)
1 5
E(X
2
)
2 5
E(
X3
)
(2 1 2)E(X ) E(X ) 555
(1)E ( 1 6
X1
1 6
X
2
1 6
X
3)
1 2
E(X
)
i1
Ci 1,Ci 0。
计量与极大似然估计量分别相同。 (2)正态总体数学期望和方差的矩估 直接求之。
max 1,2 ,...,
k
{L(1
,
2
,...,
k
)}
L(ˆ1,ˆ2 ,...,ˆk )
i
ln L
0(i
1,2,...,n)无解,可按定义
注:(1)若方程组
设估计量
ˆ= (X1,X2,...,Xn)
的数学期望E( ) 存在,
1 N
N i 1
X
2 i
,
X
nˆ
(1
(X )2 X)X 1
N
N i1
即为矩估计。
X
2 i
Байду номын сангаас 注:不论总体X 服从什么分布
X的均值和方差 2的矩估计
都为(例3)
ˆ
X ,ˆ 2
1 n
n i1
(Xi
X )2
设总体X的分布律为:
P{X=x}=P(x; 1,2,...,k), 其中1,2,...,k为待估参数, 设X1,X2,...,Xn是来自X的样 本,则Xi的分布律 P{Xi=x}=P(x; 1,2,...,k), (i=1,2,…,n) ,