自考线性代数历年真题
自考线性代数试题及答案
自考线性代数试题及答案一、选择题(每题2分,共20分)1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量v = (1, 2, 3),向量w = (4, 5, 6),则向量v与向量w 的点积为:A. 32B. 34C. 36D. 38答案:A3. 对于线性变换T: R^3 → R^2,如果T(x, y, z) = (x + z, y - z),那么T的秩是:A. 1B. 2C. 3D. 4答案:B4. 设A和B是两个n阶方阵,若AB = BA,则称矩阵A和B是可交换的。
若A和B是两个n阶实对称矩阵,且AB = BA,那么:A. A和B一定可交换B. A和B一定不可交换C. A和B可交换或不可交换D. 无法判断A和B是否可交换答案:A5. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. trace(A) = trace(A^T)D. A * A^T 一定是对称矩阵答案:C6. 设A是m×n矩阵,B是n×p矩阵,若AB = 0,则:A. 必有B = 0B. 必有A = 0C. 必有rank(A) + rank(B) ≤ max(m, p)D. rank(AB) ≤ rank(A)答案:D7. 对于n维向量空间V,以下哪个命题是线性代数的基本定理?A. 每个向量都可以由V的一组基唯一表示B. V中任意两个不同的向量都是线性无关的C. V中任意非零向量都是可逆的D. V中任意两个向量都线性相关答案:A8. 设λ是n阶方阵A的一个特征值,对应的特征向量为v,则:A. (A - λI)v = 0B. Av = vC. A^2v = λ^2vD. (A + I)v = λv答案:A9. 对于任意矩阵A,以下哪个选项是正确的?A. |A| = |A^2|B. det(A) = det(A^2)C. trace(A) = trace(A^2)D. A^2 一定是可逆的答案:B10. 设A是m×n矩阵,B是n×m矩阵,且AB = Im,则:A. B一定是A的逆矩阵B. A一定是B的逆矩阵C. A和B互为逆矩阵D. A和B不一定是方阵答案:C二、填空题(每题3分,共15分)11. 设矩阵A = [1, 2; 3, 4],则A的特征多项式为f(λ) = _______。
自考本科_线性代数_历年真题[1]
第 1 页全国2010年1月自考线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304z y x zy x则行列式( ) A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥n B.Ax =b (其中b 是m 维实向量)必有唯一解 C.r (A )=mD.Ax =0存在基础解系第 2 页8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
自考线性代数试题及答案
自考线性代数试题及答案一、选择题(每题2分,共20分)1. 在线性代数中,向量空间的基具有什么性质?A. 唯一性B. 线性无关性C. 任意性D. 可数性答案:B2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目答案:D3. 线性变换的核是指什么?A. 变换后的向量集合B. 变换前的向量集合C. 变换后为零向量的向量集合D. 变换前为零向量的向量集合答案:C4. 线性方程组有唯一解的条件是什么?A. 方程的个数等于未知数的个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩答案:D5. 特征值和特征向量在矩阵理论中具有什么意义?A. 矩阵的对角化B. 矩阵的转置C. 矩阵的行列式D. 矩阵的迹答案:A6. 以下哪个矩阵是正交矩阵?A. 对角矩阵B. 单位矩阵C. 任意矩阵D. 零矩阵答案:B7. 矩阵的迹是矩阵对角线上元素的什么?A. 和B. 差C. 积D. 比答案:A8. 线性代数中的线性组合是什么?A. 向量的加法B. 向量的数乘C. 向量的加法和数乘的组合D. 向量的点积答案:C9. 矩阵的行列式可以用于判断矩阵的什么性质?A. 可逆性B. 秩C. 正交性D. 特征值答案:A10. 线性变换的值域是指什么?A. 变换前的向量集合B. 变换后的向量集合C. 变换前的向量空间D. 变换后的向量空间答案:B二、填空题(每空1分,共10分)11. 矩阵的转置是将矩阵的______交换。
答案:行与列12. 方程组 \( Ax = 0 \) 是一个______方程组。
答案:齐次13. 矩阵 \( A \) 和矩阵 \( B \) 相乘,记作 \( AB \),其中\( A \) 的列数必须等于______的行数。
答案:B14. 向量 \( \mathbf{v} \) 的长度(或范数)通常表示为\( \left\| \mathbf{v} \right\| \),它是一个______。
自考线性代数试题库及答案
自考线性代数试题库及答案一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]答案:B2. 设向量组α1 = (1, 2, 3), α2 = (4, 5, 6), α3 = (7, 8, 9),这三个向量是否线性相关?A. 是B. 不是答案:A3. 对于矩阵A,|A|表示其行列式,若|A| = 0,则A是:A. 可逆矩阵B. 非可逆矩阵C. 零矩阵D. 单位矩阵答案:B二、填空题4. 设矩阵B是由矩阵A通过初等行变换得到的,若B = [1, 2, 3; 4, 5, 6; 7, 8, 9],则A至少包含____个非零行。
答案:三5. 对于任意的n阶方阵A,Tr(A)表示A的______。
答案:迹三、解答题6. 已知矩阵A = [2, -1; 1, 3],求A的逆矩阵A^(-1)。
答案:首先计算A的行列式,|A| = (2 * 3) - (-1 * 1) = 7。
然后计算A的伴随矩阵,即adj(A) = [(3, 1); (-1, 2)]。
最后,A^(-1) = (1/|A|) * adj(A) = [(3/7), (1/7); (-1/7), (2/7)]。
7. 设向量空间V中的向量v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (1, 1, 0)。
证明v1, v2, v3线性无关。
答案:要证明v1, v2, v3线性无关,我们需要证明对于任意的实数a, b, c,只要a * v1 + b * v2 + c * v3 = 0,那么a = b = c = 0。
设a * v1 + b * v2 + c * v3 = (a + b, b + c, a + c) = (0, 0, 0),由此可得a + b = 0,b + c = 0,a + c = 0。
通过简单的代数运算,可以得出a = b = c = 0,因此v1, v2, v3线性无关。
02198自考线性代数试卷及答案
《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
自考试题线性代数题库及答案
自考试题线性代数题库及答案线性代数是数学的一个重要分支,广泛应用于工程、物理、计算机科学等领域。
以下是一套自考试题线性代数题库及答案,供学习者参考。
一、选择题1. 下列矩阵中,哪一个是可逆矩阵?A. \( A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \)B. \( B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)C. \( C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)D. \( D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \)答案: C2. 设 \( A \) 是一个 \( n \times n \) 矩阵,\( I \) 是 \( n\times n \) 的单位矩阵,若 \( A^2 = I \),则 \( A \) 称为:A. 正交矩阵B. 反对称矩阵C. 正交变换矩阵D. 反射变换矩阵答案: D二、填空题1. 设向量 \( \mathbf{v} = (1, 2, 3) \),向量 \( \mathbf{w} =(4, 5, 6) \),这两个向量的点积为 __________。
答案: 322. 若 \( A \) 是一个 \( m \times n \) 矩阵,\( B \) 是一个\( n \times p \) 矩阵,则 \( AB \) 的行列数为 __________。
答案: \( m \times p \)三、解答题1. 证明:若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^n =I \),则 \( A \) 必定可逆。
解答:由于 \( A^n = I \),我们可以得出 \( A \) 的 \( n \) 次幂是单位矩阵。
线性代数自考试题及答案
1.设3阶方阵A的行列式为2,则= 【 B 】A.-1 B.C. D.12.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,假设|A|≠|B|,则必有【 C 】 A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A+B|≠03.设,则方程的根的个数为【 B 】A.0 B. 1C.2 D.34. 设A为n阶方阵,则以下结论中不正确的选项是:【 C 】A.是对称矩阵 B. 是对称矩阵C.是对称矩阵 D.是对称矩阵5.设,其中,则矩阵A的秩为【 B 】A.0 B. 1C.2 D.36. 设阶方阵A的秩为4,则A的伴随矩阵的秩为【 A 】A.0 B. 2C.3 D.47.设向量a=(1,-2,3)与=(2,k,6)正交,则数k为【 D 】A.-10 B. -4C.4 D.108.设3的阶方阵A的特征多项式为,则|A|= 【 A 】A.-18 B. -6C.6 D.189.已知线性方程组无解,则数a= 【 D 】A. B.0C. D.110.设二次型正定,则数a的取值应满足【 C 】A.a>9 B.3 a9C.-3<a< 3 D.a-3二、填空题(本大题共10小题,每题2分,共20分)请在每题的空格中填上正确答案。
错填、不填均无分。
11.设行列式,其第三行各元素的代数余子式之和为 0 。
12.设则AB= 。
13.设线性无关的向量组可由向量组线性表示,则r与s的关系为14.设A是4x3的矩阵且r〔A〕=2,,则r〔AB〕= 215.已知向量组 =(1,2,-1), =(2,0,t), =(0,-4,5)的秩为2,则数t=316.设4元线性方程组Ax=b的三个解,已知,,r(A)=3.则方程组的通解是.17.设方程组有非零解,且 <0,则= -2 .18.设矩阵有一个特征值=2,对应的特征向量为,则数a= 219.设3阶方阵4的秩为2,且,则A的全部特征值为 0,-5,-5 .20.设实二次型,己知A的特征值为-1,1,2,则该二次型的标准形为。
自考线性代数试题及答案
自考线性代数试题及答案线性代数是数学中的一个重要分支,其应用广泛而深入。
对于参加自考线性代数考试的考生来说,熟悉并掌握相关的试题及答案是非常重要的。
本文将为大家提供一些常见的自考线性代数试题及答案,希望能对广大考生有所帮助。
第一部分:选择题1. 下列哪个不是线性代数的基本概念?A. 向量B. 矩阵C. 整数D. 行列式答案:C2. 在矩阵运算中,AB≠BA时,那么A和B一定是什么关系?A. 逆矩阵关系B. 对称矩阵关系C. 反对称矩阵关系D. 非方阵关系答案:D3. 线性方程组Ax=b,若有解,则必须满足下列哪个条件?A. 矩阵A可逆B. 矩阵A不可逆C. 矩阵A是对称阵D. 矩阵A的秩为0答案:A第二部分:填空题1. 设A为3×3矩阵,|A|=-2,那么A的行列式展开式中,元素a11、a12、a13分别是多少?答案:a11=-2,a12=0,a13=02. 矩阵的秩与其行数、列数之间有何关系?答案:矩阵的秩小于等于其行数和列数的最小值。
3. 矩阵的转置运算满足什么性质?答案:(AB)ᵀ = BᵀAᵀ第三部分:计算题1. 计算矩阵乘法:A = 2 1 3B = 0 -10 1 2 2 1-1 0 1 1 2答案:AB = (2*0 + 1*2 + 3*1) (2*-1 + 1*1 + 3*2)(0*0 + 1*2 + 2*1) (0*-1 + 1*1 + 2*2)(-1*0 + 0*2 + 1*1) (-1*-1 + 0*1 + 1*2)= 7 64 31 3第四部分:解答题1. 证明以下等式成立:(A + B)C = AC + BC证明:设A、B、C都是m×n的矩阵,按矩阵乘法的定义,左边的矩阵乘积为:(A + B)C = [(a11 + b11)*c11 + (a12 + b12)*c21 + ... + (a1n + b1n)*cn1][(a21 + b21)*c12 + (a22 + b22)*c22 + ... + (a2n + b2n)*cn2] ...[(am1 + bm1)*c1n + (am2 + bm2)*c2n + ... + (amn + bmn)*cnn]右边的矩阵乘积为:AC + BC = [a11*c11 + a12*c21 + ... + a1n*cn1] + [b11*c11 + b12*c21 + ... + b1n*cn1][a21*c12 + a22*c22 + ... + a2n*cn2] + [b21*c12 + b22*c22+ ... + b2n*cn2]...[am1*c1n + am2*c2n + ... + amn*cnn] + [bm1*c1n + bm2*c2n + ... + bmn*cnn]可以观察到左右两边的每一项是相等的,因此左边的矩阵乘积等于右边的矩阵乘积,得证。
自考本线性代数试题及答案
自考本线性代数试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [1, 0; 0, 1]C. [2, 3; 4, 5]D. [0, 1; 1, 0]答案:B2. 设A为n阶方阵,若存在常数k使得A^2 = kA,则称A为幂等矩阵。
若A是幂等矩阵且|A|≠0,则k的值是:A. 0B. 1C. -1D. n答案:B3. 对于任意的n阶方阵A,以下哪个选项是正确的?A. |A| = |A^T|B. det(A) = det(A^T)C. tr(A) = tr(A^T)D. A + A^T 总是对称矩阵答案:C4. 设A和B是两个n阶方阵,若AB=BA,则称A和B可交换。
若A和B可交换,且|A|=5,|B|=3,则|AB|的值是:A. 15B. 5C. 3D. 无法确定答案:A5. 对于n维向量空间V,以下哪个命题是线性代数的基本假设?A. 向量加法满足交换律B. 向量加法满足结合律C. 标量乘法对向量加法满足分配律D. 所有选项都是答案:D二、填空题(每题3分,共15分)6. 设向量α=(1, 2, 3)^T,β=(-4, 5, -6)^T,向量α和β的点积α·β等于______。
答案:-37. 若矩阵A的特征值为2,则矩阵2A的特征值为______。
答案:48. 设矩阵B可以表示为B=P^(-1)AP,其中P是可逆矩阵,那么B和A 是______相似的。
答案:相似9. 对于任意矩阵A,tr(A)表示矩阵A的______。
答案:迹(或特征值之和)10. 设A是一个3×3的矩阵,且A^3 = A,则A的一个特征值可以是______。
答案:1三、解答题(共75分)11. (15分)证明任意n阶方阵A,|A^T| = |A|。
证明:设A是一个n阶方阵,其行列式为|A|。
根据行列式的性质,我们知道行列式与行(列)的置换有关。
对于矩阵A的转置矩阵A^T,它的行(列)与A的列(行)相对应。
线性代数自考试题及答案
线性代数自考试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个不是方阵?A. [1, 2; 3, 4]B. [1, 2]C. [1, 2; 3, 4; 5, 6]D. [1, 2; 3, 4; 5, 6; 7, 8]答案:B2. 对于向量空间中的向量组,线性相关的定义是什么?A. 向量组中的任意向量都可以用其他向量表示B. 向量组中存在非零向量可以表示为零向量C. 向量组中的向量线性组合为零向量D. 向量组中所有向量都是零向量答案:A3. 矩阵的特征值是什么?A. 矩阵对角线上的元素B. 使得方程Ax = λx 成立的标量λC. 矩阵的行数D. 矩阵的列数答案:B4. 对于矩阵 A,下列哪个矩阵是 A 的伴随矩阵?A. A^TB. A^(-1)C. adj(A)D. det(A)答案:C5. 如果一个向量是另一个向量的标量倍,这两个向量是什么关系?A. 线性无关B. 线性相关C. 正交D. 单位向量答案:B二、填空题(每题3分,共15分)6. 矩阵的秩是指_________。
答案:矩阵中线性无关的行(或列)的最大数目7. 向量空间的基是指一组_________的向量,它们能生成整个向量空间。
答案:线性无关8. 对于任意矩阵 A,|A| 表示_________。
答案:矩阵 A 的行列式9. 如果矩阵 A 可逆,那么 A 的逆矩阵记作_________。
答案:A^(-1)10. 线性变换 T: R^n → R^m 的标准矩阵是指_________。
答案:线性变换 T 对标准基的坐标表示矩阵三、解答题(共75分)11. (15分)设 A 是一个3×3 的实对称矩阵,证明其特征值都是实数。
答案:略12. (20分)给定两个向量 v1 = [1, 2, 3]^T 和 v2 = [4, 5, 6]^T,求它们的叉积v3 = v1 × v2,并证明 v3 与 v1, v2 都正交。
线性代数自考试题及答案
线性代数自考试题及答案一、单项选择题(每题2分,共20分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 行等价于零矩阵D. 列等价于零矩阵答案:B2. 若矩阵A的秩为r,则矩阵A的齐次线性方程组的解空间的维数为()A. rB. r-1C. n-rD. n+r答案:C3. 向量组α1,α2,…,αs线性无关,则()A. 向量组α1+α2,α2+α3,…,αs-1+αs线性无关B. 向量组kα1,kα2,…,kαs线性无关,其中k为非零常数C. 向量组α1+α2,α2+α3,…,αs-1+αs,αs线性无关D. 向量组kα1,kα2,…,kαs线性相关,其中k为非零常数答案:B4. 设A为n阶方阵,且|A|≠0,则下列命题中正确的是()A. A与A*的秩相等B. A*与A^(-1)的秩相等C. A与A^(-1)的秩相等D. A与A*的秩不相等答案:C5. 矩阵A=()A. 行最简形矩阵B. 行阶梯形矩阵C. 行等价于单位矩阵的矩阵D. 行等价于零矩阵的矩阵答案:C6. 设A为3×3矩阵,且|A|=2,则|2A|=()A. 4B. 8C. 16D. 32答案:C7. 设A为n阶方阵,且A^2=0,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:D8. 设A为n阶方阵,且A^2=E,则()A. A=0B. |A|=0C. A可逆D. A不可逆答案:C9. 设A为n阶方阵,且A^T=A,则()A. A为对称矩阵B. A为反对称矩阵C. A为正交矩阵D. A为斜对称矩阵答案:A10. 设A为n阶方阵,且|A|=1,则|A^(-1)|=()A. 0B. 1C. -1D. 2答案:B二、填空题(每题2分,共20分)11. 若A为n阶方阵,且|A|=-3,则|-2A|=______。
答案:1212. 设A为n阶方阵,且A^2=0,则矩阵A的秩r(A)满足______。
全国自考历年线性代数试题及答案
全国2010年1月高等教育自学考试 《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304z y x zy x则行列式( )A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
全国自考 线性代数 历年考试真题与答案
全国高等教育 线性代数〔经管类〕 自学考试 历年〔2021年07月——2021年04月〕考试真题及答案全国2021年7月自考线性代数〔经管类〕试卷课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A的秩;|A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每题2分,共20分)在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、多项选择或未选均无分。
1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.〔A +B 〕T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CA D.(AB )T =B T A T2.=3,那么=( ) A.-24 B.-12 C.-6D.123.假设矩阵A 可逆,那么以下等式成立的是( ) A.A =B.0=AC.2112)()(--=A AD.113)3(--=A AA =,B =,C =,那么以下矩阵运算的结果为3×2矩阵的是( ) A.ABC B.AC T B T C.CBAD.C T B T A TA :α1,α2,α3,α4,其中α1,α2,α3线性无关,那么( ) A.α1,α3线性无关B.α1,α2,α3,α4线性无关C.α1,α2,α3,α4线性相关D.α2,α3,α4线性相关6.假设四阶方阵的秩为3,那么( ) A.AAx =0有非零解 Ax =0Ax =b 必有解A 为m×n 矩阵,那么n 元齐次线性方程Ax=0存在非零解的充要条件是( ) A.A 的行向量组线性相关B.A 的列向量组线性相关C.A 的行向量组线性无关D.A 的列向量组线性无关( ) A. B.21C.D.正定的充要条件是为实对称阵)(A Ax x T =f ( )A.A 可逆B.|A |>0C.A 的特征值之和大于0D.A 的特征值全部大于010.设矩阵A =正定,那么( ) A.k>0 B.k ≥0 C.k>1D.k ≥1二、填空题(本大题共10小题,每题2分,共20分)请在每题的空格中填上正确答案。
自考本科 线性代数 历年真题
第 1 页全国2010年1月自考线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304zy x z y x 则行列式( ) A.32B.1C.2D.382.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( )A. A -1B -1C -1B. C -1B -1A -1C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( )A.-32B.-4C.4D.324.设α1,α2,α3,α4 是三维实向量,则( )A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )A.1B.2C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是() A.1 B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( )A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系第 2 页 8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( )A.(1,1,1)TB.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为() A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数自考试题及答案
线性代数自考试题及答案一、单项选择题(每题2分,共10分)1. 向量组α1,α2,α3线性无关的充分必要条件是()。
A. 齐次方程组Ax=0只有零解B. 齐次方程组Ax=0有非零解C. 齐次方程组Ax=0只有零解,且α1,α2,α3线性相关D. 齐次方程组Ax=0只有零解,且α1,α2,α3线性无关答案:A2. 矩阵A与矩阵B相等的充分必要条件是()。
A. A与B的行数相同B. A与B的列数相同C. A与B的行数相同,且A与B的列数相同D. A与B的行数相同,且A与B的列数相同,且对应元素相等答案:D3. 设A为n阶矩阵,若A的行列式|A|=0,则A是()。
A. 可逆矩阵B. 非可逆矩阵C. 正交矩阵D. 反对称矩阵答案:B4. 设A为3阶矩阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则A的迹为()。
A. 0B. 1C. 2D. -3答案:C5. 设A为3阶矩阵,且A的秩为2,则A的零度为()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共15分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|=______。
答案:42. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的逆矩阵A^{-1}=______。
答案:\(\begin{bmatrix}-2 & 1 \\ 1.5 & -0.5\end{bmatrix}\)3. 若向量α=(1,2,3),β=(4,5,6),则向量α与向量β的夹角的余弦值为______。
答案:\(\frac{1}{3}\)4. 设矩阵A的特征值λ1=2,λ2=3,对应的特征向量分别为α1和α2,则矩阵A+E的特征值λ3=______,对应的特征向量为______。
答案:3,α1;4,α25. 设矩阵A=\(\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\),则矩阵A的秩为______。
(完整版)历年全国自考线性代数试题及答案
浙02198# 线性代数试卷 第1页(共25页)全国2010年7月高等教育自学考试试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。
1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.122.计算行列式=----32320200051020203( )A.-180 B.-120C.120 D.1803.设A =⎥⎦⎤⎢⎣⎡4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示D. α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .56.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似B .|A |=|B |C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3D .248.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数自考试题及答案
线性代数自考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为()。
A. -1/2B. 1/2C. 2D. -22. 若向量α=(1, 2, 3),则向量α的模长为()。
A. √14B. √13C. 6D. √153. 设A为3×3矩阵,且|A|=0,则下列说法正确的是()。
A. A可逆B. A不可逆C. A的秩为3D. A的秩为24. 若A是n阶方阵,且A^2=I(单位矩阵),则A的特征值只能是()。
A. 0B. ±1C. 2D. -25. 设A为3阶方阵,且A的行列式为-1,则A的迹为()。
A. -1B. 1C. 0D. 3二、填空题(每题4分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置矩阵为\[\begin{bmatrix}1 & 3 \\ 2 &4\end{bmatrix}\]。
2. 若向量组α1=(1, 0, 0),α2=(0, 1, 0),α3=(0, 0, 1),则向量组α1,α2,α3是线性__的。
3. 设A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则矩阵A的特征值为__。
4. 设A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}-1 & 0 \\ 0 & 1\end{bmatrix}\],则矩阵A与B的乘积AB为\[\begin{bmatrix}-1 & 2 \\ 3 & 4\end{bmatrix}\]。
5. 若矩阵A的特征值为2,3,则矩阵A的迹为__。
三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}2 & 1 \\ 1 & 2\end{bmatrix}\],求矩阵A的逆矩阵。
线性代数自考试题及答案
线性代数自考试题及答案一、选择题(每题2分,共20分)1. 向量空间中的基是一组向量,以下哪个不是基的性质?A. 线性无关B. 线性相关C. 张成整个空间D. 可以是空间中的任意向量2. 矩阵A和矩阵B相乘,结果矩阵的行列式等于:A. A的行列式乘以B的行列式B. B的行列式乘以A的行列式C. 两个矩阵的行列式之和D. 无法确定3. 对于线性变换,以下哪个说法是错误的?A. 线性变换保持向量的加法运算B. 线性变换保持标量的乘法C. 线性变换保持向量的长度D. 线性变换保持向量的点积4. 一个矩阵的特征值是指:A. 矩阵的对角线元素B. 矩阵的行列式C. 使得矩阵的某个特征向量不为零的标量D. 矩阵的迹5. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 奇异矩阵D. 任意矩阵6. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大的线性无关行或列的数量D. 矩阵的行数或列数7. 线性方程组的解集可以是:A. 一个点B. 一条直线C. 一个平面D. 无限多个解8. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵的对角线元素之和D. 矩阵的转置矩阵9. 向量空间的维数是指:A. 空间中向量的个数B. 空间中基的向量个数C. 空间中任意向量的个数D. 空间中线性无关向量的最大个数10. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后为任意向量的集合D. 变换后为非零向量的集合二、简答题(每题10分,共30分)1. 解释什么是线性相关和线性无关,并给出一个例子。
2. 描述如何计算矩阵的特征值和特征向量。
3. 解释什么是正交矩阵,并给出正交矩阵的一个性质。
三、计算题(每题25分,共50分)1. 给定矩阵A = \[\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}\],求矩阵A的逆矩阵。
全国自学考试线性代数历年考试真题及答案
全国自学考试线性代数历年考试真题及答案2003年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。
每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。
每小题2分,共20分)请在每小题的空格中填上正确答案。
错选、不填均无分。
1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数2005年10月自考线性代数试题答案全国2004年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年7月高等教育自学考试全国统一命题考试线性代数试题 课程代码:02198试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A .(A +B )T =A T +B T B .|AB |=|A ||B | C .A (B +C )=BA +CA D .(AB )T =B T A T 2.已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A .-24 B .-12 C .-6D .123.若矩阵A 可逆,则下列等式成立的是( )A .A =||1A A *B .|A |=0C .(A 2)-1=(A -1)2D .(3A )-1=3A -14.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎦⎤⎢⎢⎣⎡-123214,C =⎥⎦⎤⎢⎣⎡--213120,则下列矩阵运算的结果为3×2的矩阵的是( ) A .ABC B .AC T B T C .CBAD .C T B T A T5.设有向量组A :4321,,,αααα,其中α1,α2,α3线性无关,则()A .α1,α3线性无关B .α1,α2,α3,α4线性无关C .α1,α2,α3,α4线性相关D .α2,α3,α4线性无关6.若四阶方阵的秩为3,则( ) A .A 为可逆阵B .齐次方程组Ax =0有非零解C .齐次方程组Ax =0只有零解D .非齐次方程组Ax =b 必有解7.已知方阵A 与对角阵B =⎥⎥⎦⎤⎢⎢⎣⎡---200020002相似,则A 2=( )A .-64EB .-EC .4ED .64E8.下列矩阵是正交矩阵的是( ) A .⎥⎥⎦⎤⎢⎢⎣⎡--100010001B .⎪⎪⎭⎫ ⎝⎛11001110121 C .⎪⎭⎫ ⎝⎛--θθθθcos sin sin cos D .⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--336102233660336122 9.二次型f =x T Ax (A 为实对称阵)正定的充要条件是( ) A .A 可逆B .|A |>0C .A 的特征值之和大于0D .A 的特征值全部大于010.设矩阵A =⎥⎥⎦⎤⎢⎢⎣⎡--4202000k k 正定,则( )A .k >0B .k ≥0C .k >1D .k ≥1二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设A =(1,3,-1),B =(2,1),则A T B =__________. 12.若12131012k =0,则k =__________.13.若ad ≠bc ,A =⎥⎦⎤⎢⎣⎡d c b a ,则A -1=__________.14.已知A 2-2A -8E =0,则(A +E )-1=__________.15.向量组α1=(1,1,0,2),α2=(1,0,1,0),α3=(0,1,-1,2)的秩为__________. 16.两个向量α=(a ,1,-1)和β=(b ,-2,2)线性相关的充要条件是__________. 17.方程组⎩⎨⎧=+=+003221x x x x 的基础解系为__________.18.向量α=(3,2,t ,1)β=(t ,-1,2,1)正交,则t =__________. 19.若矩阵A =⎥⎦⎤⎢⎣⎡4001与矩阵B =⎥⎦⎤⎢⎣⎡x a b 3相似,则x =__________. 20.二次型f (x 1,x 2,x 3)=3121232221332x x x x x x x -+-+对应的对称矩阵是__________.三、计算题(本大题共6小题,每小题9分,共54分) 21.计算三阶行列式1641421111.22.已知A =⎥⎦⎤⎢⎣⎡0132,B =⎥⎦⎤⎢⎣⎡---1213,C =⎥⎦⎤⎢⎣⎡-021110,D =⎥⎦⎤⎢⎣⎡101021,矩阵X 满足方程AX +BX =D -C ,求X .23.设向量组为α1=(2,0,-1,3)α2=(3,-2,1,-1) α3=(-5,6,-5,9) α4=(4,-4,3,-5)求向量组的秩,并给出一个最大线性无关组. 24.求λ取何值时,齐次方程组⎪⎩⎪⎨⎧=-+-=+=++050403)4(3213121x x x x x x x λλ 有非零解?并在有非零解时求出方程组的结构式通解. 25.设矩阵A =⎥⎥⎦⎤⎢⎢⎣⎡----460350361,求矩阵A 的全部特征值和特征向量.26.用正交变换化二次型f (x 1,x 2,x 3)=322322212334x x x x x -++为标准形,并求所用的正交矩阵P .四、证明题(本大题共1小题,6分)27.若n 阶方阵A 的各列元素之和均为2,证明n 维向量x =(1,1,…,1)T 为A T 的特征向量,并且相应的特征值为2.全国2010年10月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为3阶矩阵,|A|=1,则|-2A T |=( ) A.-8 B.-2 C.2D.82.设矩阵A=⎪⎪⎭⎫⎝⎛-11,B=(1,1),则AB=( )A.0B.(1,-1)C. ⎪⎪⎭⎫⎝⎛-11D. ⎪⎪⎭⎫ ⎝⎛--11113.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,则下列矩阵中为反对称矩阵的是( ) A.AB-BA B.AB+BA C.AB D.BA4.设矩阵A 的伴随矩阵A *=⎪⎪⎭⎫ ⎝⎛4321,则A -1= ( ) A.21-⎪⎪⎭⎫ ⎝⎛--1234 B. 21- ⎪⎪⎭⎫ ⎝⎛--4321 C. 21- ⎪⎪⎭⎫⎝⎛4321 D. 21-⎪⎪⎭⎫ ⎝⎛1324 5.下列矩阵中不是..初等矩阵的是( ) A.⎪⎪⎪⎭⎫⎝⎛000010101 B. ⎪⎪⎪⎭⎫⎝⎛001010100 C. ⎪⎪⎪⎭⎫⎝⎛100030001 D. ⎪⎪⎪⎭⎫⎝⎛102010001 6.设A,B 均为n 阶可逆矩阵,则必有( )A.A+B 可逆B.AB 可逆C.A-B 可逆D.AB+BA 可逆 7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( )A. α1, α2,β线性无关B. β不能由α1, α2线性表示C. β可由α1, α2线性表示,但表示法不惟一D. β可由α1, α2线性表示,且表示法惟一8.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( )A.0B.1C.2D.39.设齐次线性方程组⎪⎩⎪⎨⎧=++λ=--=+-0x x x 0x x x 0x x x 2321321321有非零解,则λ为( )A.-1B.0C.1D.210.设二次型f(x)=x T Ax 正定,则下列结论中正确的是( )A.对任意n 维列向量x,x T Ax 都大于零B.f 的标准形的系数都大于或等于零C.A 的特征值都大于零D.A 的所有子式都大于零 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式2110的值为_________.12.已知A=⎪⎪⎭⎫⎝⎛3221,则|A|中第一行第二列元素的代数余子式为_________.13.设矩阵A=⎪⎪⎭⎫ ⎝⎛--4231,P=⎪⎪⎭⎫ ⎝⎛1011,则AP 3=_________. 14.设A,B 都是3阶矩阵,且|A|=2,B=-2E,则|A -1B|=_________.15.已知向量组α1,=(1,2,3),α2=(3,-1,2), α3=(2,3,k)线性相关,则数k=_________.16.已知Ax=b 为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且,9753,4321311⎪⎪⎪⎪⎪⎭⎫⎝⎛=α+α⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α则该线性方程组的通解是_________.17.已知P 是3阶正交矩,向量=βα⎪⎪⎪⎭⎫⎝⎛=β⎪⎪⎪⎭⎫ ⎝⎛=α)P ,P (,201,231则内积_________.18.设2是矩阵A 的一个特征值,则矩阵3A 必有一个特征值为_________.19.与矩阵A=⎪⎪⎭⎫⎝⎛3021相似的对角矩阵为_________.20.设矩阵A=⎪⎪⎭⎫ ⎝⎛--k 221,若二次型f=x TAx 正定,则实数k 的取值范围是_________.三、计算题(本大题共6小题,每小题9分,共54分)21.求行列式D=.0120101221010210的值 22.设矩阵A=,000012021B ,100001010⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-求满足矩阵方程XA-B=2E 的矩阵X.23.若向量组⎪⎪⎪⎭⎫⎝⎛--=α⎪⎪⎪⎭⎫ ⎝⎛-=α⎪⎪⎪⎭⎫ ⎝⎛-=α⎪⎪⎪⎭⎫ ⎝⎛=αk 202,k 62,311,1114321的秩为2,求k 的值.24.设矩阵.012b ,121011322A ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=(1)求A -1;(2)求解线性方程组Ax=b,并将b 用A 的列向量组线性表出. 25.已知3阶矩阵A 的特征值为-1,1,2,设B=A 2+2A-E,求 (1)矩阵A 的行列式及A 的秩.(2)矩阵B 的特征值及与B 相似的对角矩阵.26.求二次型f(x 1,x 2,x 3)=- 4 x 1x 2+ 2x 1x 3+2x 2x 3经可逆线性变换⎪⎩⎪⎨⎧=+-=++=3332123211y 2x y y 2y 2x y y 2y 2x 所得的标准形.四、证明题(本题6分)27.设n 阶矩阵A 满足A 2=E,证明A 的特征值只能是1±.全国2010年7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;r (A )表示矩阵A 的秩;| A |表示A 的行列式;E 表示单位矩阵。