大气激光信道模型
用于大气激光通信的数字图像水印研究
lzd y e .T e Ga si n n ie c a n lmo e s p e e t A r b s ma e w tr r lo t m s p o o e a e n h u sa os h n e d li r s n . o u t i g a ema k ag r h i rp s d b s d o i
Absr c Th n u n e o t s h rc te ain a d t r ln e o a e r n miso r r fu l n — t a t: e if e c fa mo p e atnu to n u bue c t ls r ta s s in a e p o o ndy a a l i
( . o ee o l t n s n nom t n E g e r g h nc u nvri f ce c n eh ooy h n c u 3 0 2 C ia 1 C l g f e r i dI f ai n i ei ,C a g h n U ie t o i ea d T c n l ,C a g h n 1 0 2 , hn ; l E co c a r o n n sy S n g
摘
要 : 过 分析 大气 衰减 和 大气 湍流 , 通 可认 为 大 气信道 模 型 是 高斯 噪 声信 道 , 出 了结 合 多 提
小波 S I T和低 密度奇偶 校验 码 ( D C) PH L P 的数 字图像 水 印算 法作 为联 合信 源信道 编 码 用 于大 气激 光通 信. 算 法利 用 了多小波 S I T算 法的信 源 编码 高效性 、 棒 性 和 L P 该 PH 鲁 D C码 的 低误 码 性 能 , 根 据信 源 编码 后 数据在 重 建 时的重要程 度 , 行 不 同等 纠错 保 护 的信 道 编 码. 真 结 果表 明 , 加性 进 仿 在 高斯 白噪 声 ( WG 信道 中采 用 P M 调制 方式 , A N) P 信噪 比为 1 d 4 B时 , 经过 大气激光信 道 恢复 出的 水
第八讲-光在大气和水中的传播、激光损伤
I2 [ln(I / I 0 )]2 4[ln(A / A0 )]2 4 2
(2.1-10)
2 式中, 2 可通过理论计算求得,而 I 则可由实际测量 得到。在弱湍流且湍流强度均匀的条件下:
2 1.23Cn (2 ) 6 / 7 L11 / 6 2 12.8Cn (2 ) 6 / 7 L11 / 6 I2 4 2 2 6 / 7 11 / 6 0.496Cn (2 ) L 2 1.28Cn (2 ) 6 / 7 L11 / 6
10.4
9.6
2、 大气分子散射, m
(1)散射的基本概念
大气中总存在着密度起伏,破坏了大气的光学均匀性,
造成部分光会向其他方向传播,从而导致光在各个方向上的
散射(实质是反射、折射和衍射的综合反映)。散射主要发生 在可见光波段,其性质和强度取决于大气中分子或微粒的半
径r与被散射光的波长λ二者之间的对比关系。
3
4
(2.1-6)
式中
m为瑞利散射系数(cm-l);
N为单位体积中的分子数(cm-3);
A为分子的散射截面(cm2);
为光波长(cm)。
m 0.827 N A /
3
4
波长越长,散射越弱;波长越短,散射越强烈。 因此可见光散射大于红外光散射,而蓝光散射又大 于红光散射: • 在晴朗天空,其他微粒很少,因此瑞利散射是主 要的,又因为蓝光散射最强烈,故明朗的天空呈 现蓝色。 • 而黎明和黄昏时,太阳辐射穿过大气的路程长, 蓝绿光已被散射殆尽,只剩下黄红光,所以阳光 呈黄红色。
(2)散射的类型
瑞利散射(Rayleigh-Scattering),选择性散射
大气分子的半径是10-4 m量级的,在可见光(0.4-
大气无线激光通信心疼
无线激光通信概念图 光学接收 机
激光器
调制器
发射机光学天 线
接收机光学 天线
调制器 激励器 光信号
无线电接 收机
编码器 已还原信号 信息 信息信 号
解码器
因此ATP是光通信成功的关键所在。使之始终保证双方处于对准状态。光天线在接收到光 信号之后,经过光学分束,信标光的一部分至粗对准探测器,输出信号由粗对准控制,驱 动粗对准机完成粗对准,信标光的另一部分经精对准机构,分光片至精对准探测器,由精 对准控制器控制精对准机构王城双方的精确对准和跟踪,信号有信号探测器检测。在发送 端和接收端各有一个光收发信机,将需要传送的信息调制到激光信号上,通过大气信道传 输到接收端。由于大气对光信号具有衰减效应,大气湍流还会引起光斑的漂移,因此在收 发端机用自动跟踪瞄准系统来修正大气湍流残剩的光斑漂移,但是由于大气中存在多种随 机现象,接收机检测到的关心好会有强度的起伏和光斑中心的随机抖动。而对于短距离激 光通信我们也可以采用望远镜, 2.光发射机主要包括激光器,调制解调器,核心是激光器。激光器需要两只,一只是信标 激光器,一只是信号激光器。信标激光器用作ATP系统,信号激光器具有良好的光束质量 和频率响应。激光器的波长应该选择比较成熟的技术,具有良好的可靠性。 3.接收机主要包括光探测,低噪声前置放大和信号处理电路。光探测器的主要功能是(1) 探测对方发过来的信标光,确定信标光的位置,计算位置误差信号,驱动ATP单元,校正 接收天线的方向和完成天线的粗对准。(2)在粗对准完成之后,利用信号光在四象限探 测器上的位置,由ATP系统完成双方天线的精对准和跟踪。(3)探测双方发过来的光信号, 解调出有用的信息 4.信号源的信号可以是语音,图像和数据以及视频,经过编码后,调制为双方约定的格式, 有天线发射出去,编码可以采用开关键控,相位调制编码ppm等 5.通信信道 大气中的各种自然现象会对光信号的传输照成影响,但他们会对不同波长的光照成的影响 不一样,所以选择合适的波长的光来保证光信号传输足够远的距离。这里窗口就是在介子 中合适某段激光传送的波段。
大气激光信道模型ppt课件
喇曼散射
• 米耶散射 又称微粒散射 散射粒子线度与波长 同量级
瑞利散射
• 波长四次方反比 • 强度随方向改变 • 散射光偏振度与观察方向有关
I
(2 )2 4R2
(n 1)2
Байду номын сангаас
V N1
I0 (1 cos2 )
米耶散射
• 针对球形质点粒子 • 存在吸收 • 散射光强度随粒子尺度改变 • 散射光偏振性随粒子尺度改变 • 近似处理气溶胶粒子散射
c2
1.92Cn2z3(2a0 )1/3
• 光束漂移是一种0.1~10Hz的低频率抖动
光束漂移
• 束心位移概率密度
P(c )
c
2
e
c2 2
s2l
2
I0
c sl
2
• 漂移引起的光强起伏概率密度
(P)
a2
2
P0 P
a2
2
Pe
s2l
2
2
I0
a2
2
P0
ln
P0 P
到达角起伏
• 由于氮、氧、臭氧分子的吸收作用,λ<0.3μm紫 外光和λ>20μm 红外光被大气吸收
• 激光在大气中传输时,吸收带中透射率较高的波段, 形成大气窗口
• 可见光、1μm 、3~5μm 、8~12μm 是常用的大气窗 口
大气散射模型
弹性散射
• 瑞利散射 又称分子散射 散射粒子线度在1/10 波长以下
2
4.787/8 (sec )11/6
hA hT
Cn2
(h)h5
/
6dh
• Rytov 近似下
2
ACn2k07/6 z11/6
面向激光通信的大气随机信道分析与研究
iswi e b n wi t t d a d d h,s l s ae a d h g e r c .I a mp ra tme n n nd p o sn r s e t mal c l n ih s c e y th s i o tn a i g a r mii g p o p c .Ch r c e sis a a tr tc i o p c t s h rc rnd m h n e a e i l t d e fs a e amo p e a o c a n lh sbe n man y su id,e p cal h fe to h a d m ha n lt a e i s e ily t e e fc ft e r n o ct ha n lwa u l ,a d t e f c l i lto s d n y c mp tr h a u a r o d lo he c n e sb it n h a u a smu ain wa o e b o u e ,t e f c l e we e c mpa e t r d wih t e p t .W e a ay e t a t r ha k h a e a v ro rt e ls rt o g t s h r .W ih t i y - h hoo n l z hef co st tma e t e l s rbe m a iusf h a e hru h amo p e e o t h ss s
Ke r s:wiee so tc c mmu ia in;amo p r a d m h n e ;r a me s o n y wo d r l s p i o nc t o t s he e r n o c a n l e hi h wi g;ls r b a a e e m
大气信道对激光信号传输的影响以及MATLAB仿真
[ ]
㈩
在紫外线 (. 一 . 02 m 04 m)的 0 m 0 6 . ~ . m 间存在 氧的弱吸 2 2
收, 主要的吸收来源于臭氧 ,. ~ . m是 它的强吸收带 。可见光 O m 0 6 3 3
射 的 误 差n l < %。
当空气中气体 的分子大于入射 光的波长或 者和光的波长可 比拟 的 时候 , 产生米 氏散射 , 因此米 氏散射理论与实际上是对气溶胶散射 的一 种较好 的近似 。米氏散射的系数 由下式确定 :
』()r ( , vr叮 m) r () 3
1 无 线激光通信在 大气信道 中的衰 减
部温度 、 压强等参数的随机变化引起大气密度 的随机变化 , 导致激光信
号在大气中传输时产生两种效应 , 一是使 得光在大气中传输时 , 波阵面
产生随机畸变, 传播方 向发生 随机偏转 ; 二是在观察 平面上产生光照度随
一
般而言, 于半径 r O 3 对 < . m 的粒子 , 0 波长在 1 m附近, 瑞利散
低, 施工简便 、 迅速 , 它结合 了光纤通信和微波通信的优势 , 已成 为一种
新兴的宽带无线接入方式。 但是 自由空间光通信是以大气信道为传输媒 介 的, 而大气的特性很复杂 , 会对传输 的激 光产生 吸收、 散射 、 湍流的效 应, 因而有其 自身的缺点, 以研究大气对激光传输的影响成为关键。 所
”孚 3
6p [ — 手 +一 一 =【 7 3 西3  ̄
J ]
¨ ( 1 , )
() 2
其 中, n为粒子的折射率 ; A为激光的波长 ; ^ 为粒子数的密度。 ( )
自由空间光通信系统信道模型建立方法
自由空间光通信系统信道模型建立方法自由空间光通信系统的主要信道特性包括路径损耗、大气衰落和大气湍流等。
路径损耗是指光信号在传输过程中由于能量扩散和散射而导致信号功率逐渐减小的现象。
大气衰落是指光信号在通过大气层时受到大气分子的吸收、散射和折射等影响而导致信号强度波动的现象。
大气湍流是指大气层中存在的湍流现象对光信号传输造成的相位扰动,从而导致信号相位波动的现象。
根据以上信道特性,可以采用数学模型来描述自由空间光通信系统的信道。
首先,路径损耗可以使用功率衰减模型来表示,其中包括自由空间传输损耗和反射损耗。
自由空间传输损耗主要与传输距离相关,可以使用距离的幂律关系来描述。
反射损耗主要与信号的入射角度和反射系数相关,可以使用反射系数和反射角度的余弦平方关系来表示。
大气衰落可以采用大气传输模型来描述。
大气传输模型包括了大气吸收、散射和折射等因素对信号强度的影响。
常用的大气传输模型有Beer-Lambert定律和Mie散射理论等。
Beer-Lambert定律描述了光信号在大气中的吸收衰减规律,而Mie散射理论描述了光信号在大气中的散射过程。
大气湍流可以使用相位结构函数来建立模型。
相位结构函数描述了光信号相位波动的统计特性,可以通过大气湍流的相关参数来计算。
常用的相位结构函数模型有Rytov模型和Kolmogorov模型等。
这些模型将大气湍流的统计特性与光信号相位波动之间建立了数学关系,可以用于分析大气湍流对光通信系统性能的影响。
通过以上建模方法,可以建立自由空间光通信系统的信道模型。
这些模型可以帮助我们准确地预测系统性能,并为系统设计和优化提供理论依据。
此外,信道模型的建立还可以帮助我们研究光信号传输过程中的噪声、干扰和误码率等问题,为系统性能的提升提供指导。
自由空间光通信系统信道模型的建立方法是通过对系统中的主要信道特性进行建模,以数学模型的形式描述信道的传输特性。
这些模型可以帮助我们理解和分析系统性能,为系统设计和优化提供指导。
大气激光通信
大气激光通信技术及应用摘要:大气激光通信其载波光信号通过大气作为传输信道完成点到点或点到多点的信息传输,并采用半导体激光器为光源,所构成的通信系统为无线数字通信系统,主要用于固定点使用,也可用作应急抢通,其潜在的应用领域是在数据网、电话网、微蜂网及微微蜂窝网的入网应急设备及不便敷设电缆及光缆的近距离场合。
大气激光通信设备具有无电磁干扰、组网机动灵活、安装维护方便、通信可靠性高、保密性好、性能价格比优等优点,可传输多种速率的数据、话音、图像,具有广阔的应用前景。
随着技术的不断完善和新器件的不断出现,大气激光通信技术已成为当今信息技术的一大热门技术,其作用和地位已能和光纤通信、微波通信相提并论,是构筑未来世界范围通信网必不可少的一种技术。
本文主要论述大气激光通信的基本原理、关键技术及其发展现状和应用领域。
关键词:大气激光通信、军事应用、激光器、通信系统大气激光通信技术即无纤光通信技术,是近年来出现的一种新兴技术。
1、激光传输大气传输激光通信系统是由两台激光通信机构成的通信系统,它们相互向对方发射被调制的激光脉冲信号(声音或数据),接收并解调来自对方的激光脉冲信号,实现双工通信,可传递语音以及进行计算机间数据通信。
受调制的信号通过功率驱动电路使激光器发光,这样载有语音信号的激光通过光学天线发射出去。
接收是另一端的激光通信机通过光学天线将收集到的光信号聚到光电探测器上,将这一光信号转换成电信号,再将这一光信号放大,用阈值探测方法检出有用信号,再经过解调电路滤去基频分量和高频分量,还原出语音信号,最后通过功放经耳机接收,完成语音通信。
当传递数据时进行计算机间通信,这相当于一个数字通信系统,它由计算机、接口电路、调制解调器、大气传输信道等几部分组成。
其中含有接口电路,它的作用是将计算机与调制解调器连接起来,使之能同步、协调工作。
调制器的作用是把二进制脉冲变换成或调制成适宜在信道上传输的波形通信使激光器发光,其目的是在不改变传输结果的条件下,尽量减少激光器发射总功率。
一种大气激光通信信道测试系统的设计
一种大气激光通信信道测试系统的设计冯杰;徐林【摘要】介绍了一种大气激光通信信道测试系统的设计方案,并使用该系统在桂林进行了长期的大气信道测试.通过对测试数据的处理分析,给出了天气状况与FSO设备通信质量的关系.%A testing system about laser atmospheric transmission characteristics for free space optical communication (FSO) is introduced in this paper. Using the system, a long-term laser atmospheric transmission characteristics test was completed. The testing data is analyzed and the relation of weather status and FSO communication quality is present.【期刊名称】《光通信技术》【年(卷),期】2012(036)005【总页数】3页(P51-53)【关键词】FSO;大气激光通信;信道测试;环境指标【作者】冯杰;徐林【作者单位】总参信息化部驻桂林地区军事代表室,广西桂林541004;中国电子科技集团公司第三十四研究所,广西桂林541004【正文语种】中文【中图分类】TN929.120 引言大气激光通信是一种无需光纤进行通信的方式,是现代光纤通信技术与无线电通信技术的结合。
大气激光通信不使用光纤等导波介质,直接利用激光在大气环境中进行信息传递。
它与其它无线通信技术相比具有带宽大、抗电磁干扰能力强、对其它传输设备不干扰、保密性强、小型化、成本低、安装便捷、使用方便等优点,因此在目前的高科技通信领域已引起了各国的高度重视。
虽然大气激光通信技术具有上述的种种优点,但由于其传输信道是大气,易受雨、雪、雾、霾、云、尘埃、大气湍流等各种环境影响,造成大气激光通信系统的稳定性较差,例如在晴天通信距离能达到5km的大气激光通信系统,大雾时可能连1km也无法保证。
大气激光通信123
m
a
大气湍流信道
湍流结构常数C n
2
描述大气光学湍流强度
白天,太阳辐射增温,地温高于气温,大气处于不稳定
层结,热量向上传递,动力湍流能量加强,C 2 较强 n
夜间,地面冷却,气温高于地温,大气处于稳定层结状
态,湍流能量较弱,C 2 也较小 n
转换时刻(日出后1小时和日落前1小时)地面温度
和大气温度大约相等,此时湍流最弱
总结
大气激光通信系统使用大气作为传输信道,其性 能和大气的传输性能密切相关,因此我们着重分析 了大气通道对激光束的衰减作用以及大气湍流对激 光束传播的影响,并简要介绍了大气通信的关键器 件,大气激光通信的调制技术,以及大气激光通信 系统的构成与应用。 本课题重点 大气对激光束传播的影响 大气信道的特点 本课题难点 大气衰减,激光束传输损耗,激光束的 准直与扩束原理
红宝石激光器,氦~氖激光器, CO2激光器(10.6um,大气信道传输的低损耗窗口) 和Nd :YAG激光器
低谷:(20世纪70~80年代)
①
② ③
受气候条件影响大 大气湍流 光纤通信的发展(但在军事反面存在巨大潜在应用)
复苏:(20世纪90年代~至今)
1988年,巴西,便携式半导体激光大气通信系统.(双筒望远镜)。(1km) 1989年,美国,短距离、隐藏式大气激光通信系统。 1990年,美国,紫外光波通信系统。(2~5km)
快速业务开通
其他特殊场合 军事应用
八、大气激光通信面临的问题
(大气信道本身的特点)
对大气信道衰减大以及衰减随机变化量大的
补偿技术问题
大气湍流的影响,使信道折射率发生不均匀
的随机变化,使接收斑产生所谓的闪烁现象 和飘移现象
大气湍流下自由光通信信道模型的数值仿真
南 京 邮 电 大 学 学 报 ( 自 然 科 学 版 ) Ju a o 粕j gU ie i f ot adTlcm u i tn ( aua S i c ) or l f n N i nvr t o s n e o m nc i s N trl c ne n sy P s e ao e
中 图 分 类 号 :N 2 .2 T 9 9 1 文献标识码 : A 文 章 编 号 :6 35 3 (0 2 0 - 3 -6 17 - 9 2 1 )40 20 4 0
Nu e ia i u a inso O a n lTh o g m o p e e Tu b e c m rc lS m lto fFS Ch n e r u h At s h r r u n e l
mo p e e t r ln e s h r u bu e c . Ke r y wo ds: t s h rc t r u e c amo p e u b l n e;fe —pa e o tc lc mmu ia in;r n o p a e s r e i r e s c p ia o nc t o a d m h s c e n;c a n hna l ta s s in f n to r n miso u ci n;BER
功 率损 失和 随机 功 率 衰 落 的影 响 , 大 地 影 响 了 系统 的 通 信 质 量 。文 中基 于 随机 相 位 屏 模 型 , 值 仿 真 了 光 束 在 极 数
大气湍流中传输 , 分析和比较不 同条件 下大气湍流效应对激 光传输质 量的影 响。在 此基础 上, 出了一种基 于 大 给 气湍流效应 的 自由空间光通信信道模型 , 通过大量数值 计算方法 , 到 F O湍流信道传输 函数 的概 率 密度 函数 曲 得 S 线, 计算 出在 大气湍流影响下 系统的误 码率性能。 关键词 : 大气湍流 ; 自由空间光通信 ; 随机相位屏 ; 信道传输函数 ; 误码率
蓝绿激光下行通信大气衰减信道特性研究
( v u ma ieAc d my,Qig a 2 6 7 ) Na yS b rn a e n d o 6 0 1
Ab ta t Esa l hn h leg e nls rd wnik p o a ain c a n lcn rai o s r c tb i ig teb u - re ae o l r p g to h n e a e l ec mmu iain t u m aie s n z ncto o s b r .At n — mo p e i atn a in c a n li l eg e n ls rd wnik cmm u iaini n lzd a dr sa c e .Ch rceitc fa— s h rc te u t h n e n bu - re a e o l o o n nc t sa ay e n e erh d o aa trsiso t
波长 为 的光 的大气 透射 率 ; 是 与 波长 有 关 的 ( )
仿 真结果 如 图 1 ~2所示 。
g g
衰减 系数 , 由下式 求得 : 可
2 1 大气 透射 率 .
蓝绿激光对潜通信不受电磁以及核爆炸的影响 , 通 信频带 宽 , 据传输 能力 强 , 发 送静 止 图像 , 数 可 波束
宽度 窄 , 向性 好 , 有 较强 的抗 干 扰 能 力 和 抗 截 方 具
获能力 , 可在天气不正常、 大暴雨 、 海水混浊等恶劣
的条件 下使用 , 是未 来有 极大潜 力 和应 用前 景 的对 潜通信 手段 , 是 目前来 看可 实现 潜 艇 隐蔽 、 向 、 也 双 高速通 信 的有 效手 段 。因此 , 蓝 绿激 光对 潜 通信 对
光电检测技术
如何选择最佳负载:作光电池伏安特性曲线,过Voc和Isc作特性曲线的切线,他们相交与PQ点,连接PQ点和原点O的直线即为最佳负载线。次直线与特性曲线交与PM,最大输出功率PM等于矩形O IM PM VM面积,此时流过负载RM上的电流为IM RM上的压降为VM
1、光电检测基本模型:光发射机(光源、光学系统)---光学信道(大气、光纤、水)---光接收机
2、光电检测技术优缺点:缺点:外界干扰光影响大,使用温度有限 优点:非接触式测量,响应速度快,检测范围宽,应用广。
3、光电效应:当光照射到物体上使物体发射电子,或导电率发生改变,或产生电动势等,这种因光照而引起物体电学性质的改变统称为光电效应。
4、外光电效应:物质受到光照后向外发射电子的现象称为外光电效应。
4.1、本征吸收:半导体材料吸收光电原因,在于光与处于各种状态的电子、晶格原子和杂质原子的相互作用。其中最主要的光吸收是由于光子的作用使电子由价带跃迁到导带而引起的,称为本征吸收;
14.5、PMT 的引起暗电流Id的因素:1)光电阴极和第一倍增极的热电子发射。2)极间漏电流,由于光电倍增管各级绝缘强度不够或极间灰尘放电引起漏电流。3)离子和光电反馈作用;4)场致放射;5)放射性同位素和宇宙射线的影响;
14.6、减少暗电流ቤተ መጻሕፍቲ ባይዱ方法:1)主要是选好PMT的极间电压。2)在阳极回路中加上与暗电流相反的直流成分来补偿;3)在倍增管输出电路中加一选频或锁相放大滤波暗电流;4)利用冷却法减少热电子发射;
工作原理:???
29、光电检测电路由光电器件、输入电路、和前置放大器
30、将光电信号转换成0,1数字量的过程称为光电信号的二值化处理。
激光在大气中的传输损耗实用计算方法
激光在大气中的传输损耗实用计算方法
张瑜;杨豪强;张明高
【期刊名称】《光通信技术》
【年(卷),期】2007(31)3
【摘要】大气随机信道对激光传输性能的影响是制约激光通信的重要因素之一,因此开展对大气信道的研究对实现激光通信具有非常重要的意义.通过研究,给出了激光在大气中传输损耗的实用计算方法.经仿真计算,得到了一些有益结论,并以此提出了激光通信设计时的一些相应的解决途径.
【总页数】3页(P62-64)
【作者】张瑜;杨豪强;张明高
【作者单位】河南师范大学,物理与信息工程学院,河南,新乡,453007;河南师范大学,物理与信息工程学院,河南,新乡,453007;河南师范大学,物理与信息工程学院,河南,新乡,453007
【正文语种】中文
【中图分类】TN929.1;TN248.4
【相关文献】
1.不同入射角激光束在大芯径SI-PDF光纤中的传输损耗 [J], 张美;魏福利;邱孟通;王奎禄;王培伟;盛亮;彭博栋;李志来
2.KrCl和XeCl激光在铅蒸气中的受激喇曼转换[J], Е.,ГС;李蓉芳
3.氟掺杂对大芯径能量光纤传输损耗性能的影响 [J], 马洪虎;王金忠;石飞
飞;Alhadi Mohammed Alarabi Abakar;黄跃武;赵霞;刘礼华
4.强紫外激光在空气中长程传输受激旋转拉曼散射效应 [J], 李廷红;张彬;蔡邦维;李恪宇;马驰
5.“标记”芘的激基缔合物荧光在水溶性高分子研究中的应用 [J], 高峰;任碧野;童真
因版权原因,仅展示原文概要,查看原文内容请购买。
非视线光散射通信的大气传输模型
文章编号:0258 7025(2006)11 152205非视线光散射通信的大气传输模型冯 涛,陈 刚,方祖捷(中国科学院上海光学精密机械研究所,上海201800)摘要 利用大气对光的散射作用可以实现非视线通信.在单次散射假定下,研究了非视线光散射通信系统的大气传输模型.利用该模型分析了光源发散角、接收视场和收发仰角等系统几何参数与接收散射光能量之间的关系;重点讨论了大气分子散射和气溶胶散射各自对接收散射光能量的贡献.结果表明当系统的收发仰角较大时,接收光能量主要来自大气分子散射;反之,气溶胶散射则成为接收光能量的主要部分.对于工作在日盲紫外光谱区的非视线通信系统,增加接收视场可以有效地增大系统的信噪比.发现在两种典型的收发仰角情况下,接收散射光能量随光源发散角的变化趋势是相反的,这说明光源发散角要根据实际的应用场合设计确定.关键词 光通信;光散射通信;非视线;大气传输;单次散射中图分类号 T N 929.12 文献标识码 AAtmospheric Propagation Model in Non Line of Sight Optical Scattering C ommunicationFENG Tao,CH EN Gang,FANG Zu jie(Shanghai I nstitute of Op tics and F ine M echanics ,T he Chinese A cademy of S ciences ,S hanghai 201800,China )Abstract Based on the assum ption of sing le scatter ing,atmospheric pr opagation model of no n line of sig ht optical scatter ing communicat ion sy st em is studied.T he mo del is used to analyze the co rr elations between r eceived scattered energ y and par amet ers of sy st em,including sour ce div erg ence angle,r eceiver field o f view ,and apex ang les o f transmitter and r eceiv er in an optical scatter ing communicat ion system.Contributio n o f atmospher ic mo lecular scatter ing and aer osol scatt ering of receiv ed scattered ener gy is discussed.T he r esult s sho w t hat received scattered energ y is attributed to molecular scattering at la rg er tr ansmitter and receiv er apex ang les,but with the decr ease o f apex ang les,aer osol scatter ing w ill be do minant in receiv ed scatter ed energ y.Enhancing of the receiver f ield o f view can effect ively improv e the signal no ise r atio fo r co mmunicatio n systems o per ating in the so lar blind ultr aviolet (U V)spectral r egio n.I n addition,the evo lution tendency o f r eceiv ed scatt er ed ener gy v ersus the source div erg ence ang le is inverse for tw o t ypical tr ansmitt er and receiver apex ang les.T his r esult sugg ests that diver gence angle of source should be desig ned according to specif ied situatio n.Key words o ptical communication;optical scattering communicatio n;non line o f sight;atmo spheric pro pag atio n;sing le scatter ing收稿日期:2006 04 24;收到修改稿日期:2006 05 23作者简介:冯 涛(1979 ),男,河南三门峡人,中国科学院上海光学精密机械研究所博士研究生,主要从事无线激光通信技术研究.E mail:tfeng@导师简介:方祖捷(1942 ),男,浙江宁波人,中国科学院上海光学精密机械研究所研究员,博士生导师,目前主要从事光电子器件和光通信技术方面的研究.E mail:zjfang @1 引 言近年来,自由空间光通信(FSO)技术[1]得到迅速发展,目前已进入商用阶段.自由空间光通信是一种视线(line of sihg t)通信技术,在发射和接收端之间存在障碍物或者收发光学系统偏离对准时,链路就会中断.如果利用大气对光波的散射来进行信号传送,就可以实现非视线通信,20世纪70年代,人们就对大气光散射信道进行了初步研究并预测了光散射通信的潜在应用价值[2,3].相对于红外和可见光波段,紫外光的波长较短,因而具有更强的大气散射效应,特别是在日盲紫外光谱区,近地面大气中几第33卷 第11期2006年11月中 国 激 光CHIN ESE JOU RNA L OF LA SERSV ol.33,N o.11No vember,2006乎不存在这一波段的太阳辐射,大大有利于微弱的散射光信号的接收.由于大气对紫外光的衰减较强,有限的传输距离有利于实现短程保密通信,不易被干扰和截获.正是由于这些特点,日盲紫外波段是实现非视线光散射通信的最佳选择,随着紫外波段光电器件的迅速发展和成熟,非视线紫外通信技术越来越引起人们的兴趣[4~6].相对于视线光通信技术,非视线光散射通信系统通常采用较大发散角的光源和大视场的接收器,传统的光传输模型不适用于分析这种非视线的情况[7],Luettgen等发展的一种非视线单次散射模型[7]非常适用于分析大气中光的非视线传输.2000年,Shaw等[5]利用该模型研究了短距离非视线紫外通信,并提出将这一技术用于分布式传感器网络节点间的通信.但是,上述研究中仅仅考虑了大气中分子散射对通信系统接收光能量的贡献,并且进一步地将分子散射简化为各向同性散射.事实上,大气中的气溶胶散射也会影响到接收光能量.此外,非视线光散射通信一般用于低速通信,其受大气湍流的影响不像高速视线光通信那么严重.通过改变发射光源和接收装置的仰角、光源发散角等系统几何参数,非视线光散射通信可以灵活地部署以满足各种实际需求.可见,深入研究非视线光散射通信系统接收散射光能量的机制,研究大气分子散射和气溶胶散射各自对系统接收光能量的贡献以及系统各几何参数的影响,对于评估和设计非视线光散射通信系统是非常必要的.文中将忽略大气散射粒子的随机性,在单次散射假定下研究非视线光散射通信的大气传输模型,利用该模型对光在大气中的非视线传输进行模拟计算,讨论大气分子散射和气溶胶散射对非视线光通信系统的作用,以及光源和接收端各几何参数对接收光能量的影响.2 大气传输模型图1所示为光散射通信系统.发射端光源以发散角2 T向空间发出光信号,接收器的视场角为2 R,发射与接收仰角分别为 T和 R,发射光束与接收视场在空间的重叠区域的大气形成一个收发连接的散射体.发射光信号经过大气的衰减到达散射体,接收器收集来自该散射体对光信号的散射,这样就完成了信号的非视线传送.由于散射光通常都很微弱,人们一般通过增大接收视场以接收到更多的散图1散射光通信链路的收发示意图Fig.1Schematic diagram of scatter ing communication link射光.假设t=0时刻一个能量为Q t(单位为J)的激光脉冲向空间发射,考查在图1所示的几何关系下接收端的光能量.在满足单次散射的基础上,利用长球面坐标系研究非视线光传输是很方便的[7].在这种坐标系中,空间中的每个点可由径向分量,角坐标!和方位坐标∀唯一确定(如图2所示).若发射端和接收端分别位于长球面的两个焦点上,则某一给定长球面上的任意一点与两个焦点之间的距离之和为一常数,从而这个长球面就可以看作是一个等时延面.图2长球面坐标系Fig.2Pr olate spherio dal coor dinates考查有效散射体内的任一点P(,!,∀),则包含P点的体积元#V可看作一个二次辐射源,它向整个空间辐射出的总能量为#Q P=k s Q T exp(-k e r2)∃T r22#V,(1)式中∃T=4%sin2( T/2)表示光源发射立体角,k s为大气散射系数(单位为m-1),k e为大气消光系数(等于吸收系数与散射系数之和,单位为m-1),r2表示光源与P点之间的距离(单位为m).该二次源在接收端单位面积上的散射能量可以表示为#H R=Q T k s cos(&)exp[-k e(r1+r2)]4%∃T(r1r2)2p( s)#V,(2)152311期 冯 涛等:非视线光散射通信的大气传输模型式中r1表示二次源与接收端之间的距离(单位为m),p( s)为散射相函数,表示散射强度随散射角的依赖关系,&为接收视场轴线和二次源与接收端连线之间的夹角,cos(&)是考虑接收器的有效接收面积而引入的.长球面坐标系中的体积元可以表示为#V=r38(2-!2)##!#∀,(3)式中的r表示光源与接收端的间距.将r1和r2用长球面坐标表示,并利用(3)式,(2)式就可重写成#H R=Q T k s cos(&)exp(-k e r)2%∃T r(2-!2)p( s)##!#∀.(4) 由于长球面=(r1+r2)/r表示一个等时延面,它散射的能量在t=(r1+r2)/c时刻到达接收端,因此有如下关系式=ct/r,(5)#=c#t/r,(6)将(5),(6)式代入(4)式,两端同时除以#t并令#t趋于零,即得到长球面上的一个微分面积元在接收端处产生的辐照度(单位为W m-2)#E()=Q T ck s cos(&)exp(-k e r)2%∃T r2(2-!2)p( s)#∀#!,(7)将(7)式对由确定的长球面积分就得到在t=r/c时刻接收到的辐照度E()=Q T ck s ex p(-k e r)2%∃T r2!!2()!1()!∀2(,!)∋1(,!)cos(&)p( s)(2-!2)d∀d!,(8)若将(8)式再对时间t进行积分,即可得到接收端的能量密度(单位J m-2)H R=!t ma x t min E(ct/r)d t,(9)这里的积分限是由空间有效散射体所决定的,有效散射体的范围依赖于光源发散角、接收视场以及系统的几何关系等参数.3 接收散射能量的分析从上一部分的结果可以看到,只要通信系统各参数和大气对光的消光与散射特性确定,就可以对系统进行计算分析了.光信号经光源发出后,在大气中经过大气分子和气溶胶的散射到达接收端.前者属于瑞利散射,而后者需用Mie散射理论处理.由于大气中的散射现象满足独立散射和非相干散射的条件[8],这两种散射可以分别进行处理,接收端总散射能量密度可表示成H R=H RR+H R M,(10)式中右边的第一项表示大气分子散射的贡献,第二项表示气溶胶散射的贡献.光信号在传输过程中受到的大气衰减可用消光系数来表示,消光系数可写为k e=k a+k sR+k sM,(11)式中k a表示大气吸收系数,k sR表示大气分子的瑞利散射系数,k sM表示气溶胶散射系数.非偏振光的瑞利散射相函数具有很简单的表达形式,可写为P R( s)=34(1+cos2 s).(12) 而Mie散射相函数却没有精确的解析解,这里拟采用Cornette等[9]提出的一种相函数表达式p M((,g)=321-g22+g21+(2(1+g2-2g()3/2,(13)式中(=cos s,g称为非对称因子,可表示为g=59(-43-2581(2x-1/3+x1/3,(14)式中 (表示散射角余弦的平均值,x可写为x=59(+125729(3+6427-325243(2+12502187(41/2,(15)非对称因子g表征了前向散射与后向散射的比例关系,当g∀0时(13)式就退化为瑞利散射相函数,随着g的增大前向散射将随之增强.图3为计算所得到的一些给定非对称因子的散射相函数.图3单次散射相函数F ig.3Sing le scattering phase functio n大气对光辐射的吸收和散射特性与辐射波长和天气状况(如霾、雾、雨等)密切相关,以中紫外波段日盲光谱区266nm的辐射波长为例进行分析,并设大气能见度为20km.根据文献数据报道,在此能见度1524中 国 激 光 33卷下该波长的大气消光系数k e = 1.45 10-3m-1[10],瑞利散射系数k sR =0.257 10-3m -1[11].该波段的吸收主要是由近地面大气中少量臭氧引起的,取臭氧的体积分数为27 10-9[12],则吸收系数k a =图4接收端单次散射能量密度随收发仰角的变化F ig.4Evo lutio n o f r eceived sing le scattering energ ydensit ies v ersus tr ansmitter and receiver apex ang les for differ ent receiver half field o f view0.67 10-3m-1[13].由(11)式可得,k sM =0.523 10-3m -1.图4给出了对于不同的接收视场,接收端单次散射能量密度随发射和接收仰角(为简单起见,假定接收和发射仰角相等)变化的计算结果.计算中所取的参数为:r =500m,Q T =1m J, T =45#, ( =0.8.从图中可以看到,随着收发仰角的增大,接收到的散射能量逐渐减小,特别是当仰角等于接收视场半角的时候,散射能量开始显著减小.另外,仰角较小时,接收到的能量主要来自气溶胶的Mie 散射,这是由于此时散射角较小,Mie 前向散射很强的缘故.随着仰角的逐步增大,能够到达接收端的光能量主要来自后向散射,此时大气分子的瑞利散射能量就成为接收光能量的主要贡献.对比图4中不同接收视场的三种情况,发现增加接收视场可以增大接收的散射能量.对于实际的通信系统,通过增加接收视场来增大接收光能量的同时,也增大了由背景辐射所引起的系统噪声,这也正是选择日盲紫外光谱区作为光散射通信工作波长的原因.图5接收端单次散射能量密度随光源发散角的变化F ig.5Evo lutio n o f receiv ed single scatt ering energ ydensities ver sus diverg ence ang le of sour ce对于不同的应用场合,系统的收发仰角应当合理取值以建立合乎要求的非视线通信链路.这里就两种情况作为例子进行分析:1)仰角 T = R =90#,即发射和接收轴线互相平行,这种情况适用于短距离内分布式的非视线通信;2)仰角 T = R =45#,例如收发端之间存在障碍物时的点对点非视线通信.两种情况下的半视场角均取 R =22.5#,其余参数和大气传输特性参数与上述的取值相同,并在计算中令 T < T (非视线传输),计算结果分别如图5(a),(b)所示.在发射光信号能量不变的前提下,发散角增大将导致信号强度的降低,同时也会增大空间的有效散射体,前者导致散射能量密度减小,后者则导致散射能量密度增加,两者的综合作用决定了接收散射能量的变化.从图中可以看到,两种情况下接收的散射光能量随光源发散角的变化趋势是相反的,随着光源发散角的增大,无论接收散射能量增加还是减小,其变化幅度并不大.在设计实际系统时,当发射信号功率一定的情况下,光源的发散角要根据应用场合设计确定.152511期 冯 涛等:非视线光散射通信的大气传输模型4 结 论研究了非视线光散射通信的大气传输模型,确定了系统接收端散射光能量密度与系统各参数和大气传输参数之间的联系,详细讨论了系统的收发仰角、接收视场和光源发散角对接收散射光能量的影响,对于实际系统的设计具有一定的指导意义,所提供的分析方法可用于评估实际通信系统的路径损耗和功率预算.散射光通信是靠接收大气分子和气溶胶对光信号的散射来工作的,大气状况会直接影响通信系统的性能,如大气能见度的降低会引起消光系数的增加从而限制系统的最大通信距离,因此进一步研究各种大气状况特别是低能见度时的系统工作特性是非常必要的.此外,在信号传送过程中存在多径传输现象,这就会导致光信号脉冲展宽,从而限制了系统的最大可用带宽.在今后的工作中将就上述问题进行更深入的研究.参考文献1 C hen Gang,Dong Zuoren,Geng J ianx in et al..155/622M b/sm ultiple transmitter laser communication s ystems[J].Chinese J.L aser s,2004,31(5):583~587陈 刚,董作人,耿健新等.155/622M b/s多发射器激光通信系统[J].中国激光,2004,31(5):583~5872 R.S.Ken nedy.C om munication th rou gh optical scatteringchannels:An in tr odu ction[J].Pr oc.I EE E,1970,58(10): 1651~16653 R.M.L erner, A. E.H olland.Th e optical scatter chan nel[J].Pr oc.I EEE,1970,58(10):1547~15634 R. D.Shute.Electrodeless ultraviolet com munications system[J].IE EE A erospac e and Elec tr onic S ystems M ag az ine,1995, 10(11):2~75 G. A.S haw,M.Nischan,M.Iyengar et al..NLOS U Vcomm unication for distributed sen sor systems[C].SP I E, 2000,4126:83~966 Sh engli Chan g,Jian kun Yang,Jun cai Yang et al..T heex perim ental r esear ch of U V commu nication[C].SPI E,2004, 5284:344~3487 M.R.Luettg en,J.H.Shapiro, D.M.Reilly.Non line ofsigh t single scatter propagation m odel[J].J.Op t.Soc.A m.A,1991,8(12):1964~19728 E.J.M cCartn ey.Trans lated by Pan Naixian,M ao Jietai e tal..Optics of the Atmosph ere[M].Beijing:Science Pr ess, 1988.25E.J.麦卡特尼著,潘乃先,毛节泰等译.大气光学[M].北京:科学出版社,1988.259 W.M.Cornette,J.G.Sh ank s.Phys ically r easonable an alyticex pres sion for the single scattering phase fun ction[J].App l.Opt.,1992,31(16):3152~316010 W. A.Baum,L.Dun kelm an.H orizontal atten uation ofultraviolet light by the low er atmosph ere[J].J.Op t.S oc.A m.,1955,45(3):166~17511 R.Penn dorf.Tables of the refractive index for standard air an dthe Rayleigh scatterin g coefficien t for the spectral region betw een0.2and20.0(m and their ap plication to atmosph eric optics[J].J.Op t.S oc.A m.,1957,47(2):176~18212 E.T rak hovsky.Ozone amount determined by transmittancemeas urem ents in the solar blind ultraviolet spectral region[J].Ap p l.Op t.,1985,24(21):3519~352213 Edw ard C.Y.Inn,Y.Tanaka.Absorption coefficient of ozonein the ultraviolet an d visible regions[J].J.Op t.S oc.A m., 1953,43(10):870~8731526中 国 激 光 33卷。
大气湍流下自由光通信信道模型的数值仿真_王孛
Vol. 32 No. 4 Aug. 2012
大气湍流下自由光通信信道模型的数值仿真
王
摘
孛, 施
鹏, 赵生妹
( 南京邮电大学 信号处理与传输研究院, 江苏 南京 210003 )
space optical communication, FSO ) 系统同时受到平均光信号 要:由于大气湍流作用, 使得自由空间光通信( free-
2 n
1
大气湍流模型数值仿真
为了研究大气湍流对光传输的影响, 现采用一
系列的随机相位屏数值模拟大气湍流对光束传播的 [11 - 12 ] , 影响 同时假设光束在随机相位屏间进行自由 传输。这样, 相位屏对光束产生的相位变化, 最终可 转化为幅度的变化。 假设相位屏平面为 XY 平面, 光束在 Z 方向上传 输。现使用高斯光束来模拟传输光束, 用 U 表示, 其 中 U 为复数, 它的模值表示光场的幅度, 它的角度表 示光场的相位信息, 在 z = 0 处, 高斯光束可表示为: U0 ( x , y) = 2 I0 x2 + y2 - exp 2 W2 π W0 0
Numerical Simulations of FSO Channel Through Atmosphere Turbulence
WANG Bei, SHI Peng, ZHAO Shengmei
Nanjing University of Posts and Telecommunications, Nanjing 210003 , China ) ( Institute of Signal Processing and Transmission,
DOI:10.14132/ki.1673-5439.2012.04.012
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瑞利散射
波长四次方反比 强度随方向改变 散射光偏振度与观察方向有关
(2π ) 2 2 V Iθ = 4 2 (n 1) I 0 (1 + cos 2 θ ) N1 λ R
当 2ω ≈ l 时 当 2ω l时
光束漂移
均匀各向同性弱起伏大气 Markov 近似束心漂移位移方差
2 σ ρ =< ρc2 >= 1.92Cn2 z 3 (2a0 ) 1/ 3
光束漂移是一种0.1~10Hz的低频率抖动
光束漂移
束心位移概率密度
ρc P( ρc ) = 2 e σρ
2 2 ρc + ρ sl 2 2σ ρ
2 c 2 c
σ 02
2v
(1 e 2 vz )
等晕角
θ 0 = 0.058λ 6 / 5 (cos γ )3/ 5 ∫ Cn2 (h)h5/ 3dh
2 3/ 5
0
θ1 = θ 0 (1 e 2 vz ) / vz
到达角起伏
均匀各向同性弱起伏大气 到达角起伏概率密度
θ P (θ , z ) = 2 e σc
Rytov 近似下
2 σ χ = ACn2 k07 / 6 z11/ 6
光强闪烁
对数强度起伏方差
σ
误码率
2 ln I
= 4σ χ
2
1 BER = erfc 2
4 2σ
2 ln I
�
米耶散射
针对球形质点粒子 存在吸收 散射光强度随粒子尺度改变 散射光偏振性随粒子尺度改变 近似处理气溶胶粒子散射 霾,云滴,冰晶,冰雹,雪花
s = π ∫ Qs ( x, n)n(r )r 2 dr
0
∞
大气湍流模型
光束宽度 ω 与湍流尺度 l 的相对大小相关
当 2ω
l时
光束漂移 到达角起伏 光束扩展 光强闪烁
大气窗口
碰撞加宽和多普勒加宽形成综合加宽,大气通过综 合加宽线型吸收光谱 由于氮,氧,臭氧分子的吸收作用,λ<0.3m紫 外光和λ>20m 红外光被大气吸收 m 激光在大气中传输时,吸收带中透射率较高的波段, 形成大气窗口 可见光,1m ,3~5m ,8~12m 是常用的大气窗 口
大气散射模型
Pχ ( χ ) = 1 2πσ χ
( χ < χ > ) 2
2 2σ χ
σ χ < 0.3
e
A χ = ln A0
光强闪烁
5~20km,γ<60°,红外和夜间 弱起伏大气 对数振幅起伏方差
σ χ = 4.78λ
2
7 / 8
(sec γ )
11/ 6
∫
hA
hT
2 Cn (h)h5 / 6 dh
大气激光信道模型
大气吸收模型 大气散射模型 大气湍流模型
大气吸收模型
比尔定律
I (v, z) = I 0 (v)e(α + s ) z
吸收系数 α 由分子吸收光谱决定 完整描述分子吸收特性应包括: 光频率 分子谱线线型 光强度
分子吸收谱线
线型函数 g (v, v0 )
气体分子谱线加宽机理 谱线加宽 均匀加宽 自然加宽 碰撞加宽 非均匀加宽 多普勒加宽
θ 2 +θ12 2 2σ c
θθ1 I0 2 σc
到达角起伏光强分布
% P0 σ ρ %) = ( P e 2 % % σ ρ P0 P a
2
2
ቤተ መጻሕፍቲ ባይዱ
a2
θ12 2 2σ c
2a 2 ln( P / P)θ 0 1 I0 2 σc
光强闪烁
均匀各向同性弱起伏湍流大气 闪烁概率分布 对数正态分布
ρc ρ sl I0 2 σ ρ
漂移引起的光强起伏概率密度
% a 2 P0 σ ρ2 % % ρ ( P) = 2 Pe % σρ P
a2
2 ρ sl 2 2σ ρ
% a2 P0 I 0 2 P0 ln % σ ρ P
到达角起伏
到达角起伏方差
σ =< α >=