新人教版八年级数学上轴对称全章导学案精编版

合集下载

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案

新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。

2、会作轴对称图形的对称轴。

3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。

教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。

教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。

(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。

一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。

教师作总结,肯定学生的积极表现。

归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。

看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。

八年级第13章《轴对称》导学案资料.doc

八年级第13章《轴对称》导学案资料.doc

新人教版八年级数学上册第13 章《轴对称》导学案施甸一中八年级数学导学案(第 13 章轴对称)新人教版八年级数学上册第13 章《轴对称》导学案13.1.1轴对称及其性质导学案【学习目标】1.知识技能(1)通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两(2)在具体的学习过程中加强的观察能力、思维能力、操作能力、归力的培养。

2.解决问题按要求做出简单的平面图形的轴对称图形,初步体会从对称的对称图案掌握线段的垂直平分线、角的平分线的性质及应用能够简单应用.【学习重难点】1.重点:由具体情境抽象出轴对称与轴对称图形的概念.2.难点:理解轴对称与轴对称图形之间的区别与联系.【知识回顾】一、基础知识填空欣赏下面几张美丽的图片,【探究 1】1. 轴对称图形:如果一个图形沿着一条直线称图形。

折痕所在的这条直线叫做__ 分别在上面图形中画出它们的对称轴。

,两侧的图形能够___。

图形上能够重合的2.轴对称:欣赏下面几幅图片,并完成问题。

新人教版八年级数学上册第13 章《轴对称》导学案2、下列图形中不是轴对称图形的有()A1个B2个C3个D4个3、以下汽车标志中,和其他三个不同的是()A B C D4、哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们 ABCDEFGHIJKLMNOPQRSTUVWXYZ5、观察下列各种图形,判断是不是轴对称图形.新人教版八年级数学上册第13 章《轴对称》导学案13.1.2线段垂直平分线的性质导学案【学习目标】1.知识技能(1)了解两个图形成轴对称性的性质,了解轴对称图(2)探究线段垂直平分线的性质.2.解决问题(1)理解轴对称的性质.(2)会利用线段垂直平分线的定理和逆定理解决相关问【学习重难点】1.重点:( 1)轴对称的性质.( 2)线段垂直平分线的性质.2.难点:体验轴对称的特征【知识回顾】1 、轴对称图形的对称轴是一条_____________ 。

2、写出五个成轴对称的汉字:______3、写出 3 个是轴对称图形的英文字母:________________4、如图,△ABCA′ B′ C′关于直线MN 和△对称,点 A′、 B′、 C′分别是点 A、 B、 C 的对称点,猜想一下线段 AA′、 BB′、 CC′与直线 MN有什么关系?MN垂直平分_____.MN垂直平分___.MN垂直平分_ ____.探究一:如下图.木条是 L 上的点,有什么发现?思考方法L 与 AB 钉在一起, L 垂直平分 AB, P1, P2, P3,?分别量一量点 P1, P2, P3,到 A 与 B 的距离,你1 .用平面图将上述问题进行转化,先作出线段AB,过 AB 中点作上取 P、P、P,连结AP、 AP、BP 、BP、CP、 CP1 2 3 1 2 1 2 1 22 .作好图后,用直尺量出AP1、 AP2、 BP1、 BP2、 CP1、 CP2讨论发现用我们已有的知识来证明这个结论吗?讨论给出证明.新人教版八年级数学上册第13 章《轴对称》导学案操作:1.用平面图形将上述问题进行转化.作线段AB ,取其中点 P ,过连结 AP 、 AP 、 BP 、 BP . 会有以下两种可能.1 2 1 22 .讨论:要使 L 与 AB 垂直, AP 1、 AP 2 、 BP 1 、BP 2 应满足什么条件?【巩固练习】1. 在 AE 的垂直平分线上, AB 、 AC 、 CE 的长度有什么关系?AB+BD 与 DE 有什么关系?2.如下图,AB=AC , MB=MC .直线 AM 是线段 BC 的垂直平分线吗?3、已知: MN AB 的垂直平分线,下列说法中,正确的是(是线段A. 与 AB 距离相等的点在 MN 上B.与点 A 和 B 距离 C MNAB 上 D AB 垂直平分 MN .与 距离相等的点在. 4、如图1 , PA=PB , QA=QB ,则直线 PQ 是线段 AB 的____________证明:因为 PA=PB (已知)所以P点在线段AB的中垂线上( ___________________因为QA=QB(已知)所以 Q 点在线段 AB 的中垂线上( ___________________所以 _____________________________( 两点确定一条直线新人教版八年级数学上册第13 章《轴对称》导学案13.2.1作轴对称图形导学案【学习目标】1.通过具体实例学做轴对称图形,认识轴对称变形,探索它的基本性2.能按要求作出简单平面图形经过一次或两次轴对称后的图形。

新人教版八年级数学上册导学案(全-有答案)

新人教版八年级数学上册导学案(全-有答案)

省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的局部能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合〞是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状一样,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两局部,那么必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜测归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

新人教版八年级数学上册导学案第十三章 轴对称复习导学案

新人教版八年级数学上册导学案第十三章 轴对称复习导学案

第十三章轴对称复习导学案学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。

2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。

重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用导学过程:欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。

折痕所在的这条直线叫做______。

图形上能够重合的点叫。

分别在上面图形中画出它们的对称轴。

2.轴对称:欣赏下面几幅图片,并完成问题。

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。

两个图形中的对应点叫。

如图,写出一对对称点是。

3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。

可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。

4.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。

5.角的平分线的性质角的平分线的性质上的点到的距离相等。

6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。

等边三角形的各角都是,有条对称轴。

一、独立完成发现问题(自主学习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。

而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。

联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。

如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称

新人教八年级数学上册导学案:13.1.1 轴对称【学习目标】1.初步认识轴对称图形;2. 理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,能用概念判断一个图形是否是轴对称图形;3.通过动手实验,掌握关于某条直线成轴对称的两个图形是全等的。

重点:轴对称图形的性质难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。

一、【预习导学】【问题探究一】轴对称图形1、观察课本P58图13.1-1中的6幅图,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处随意剪出一个图形,展开后得到的图形是的,即能够沿完全重合。

【归纳总结】如果一个平面图形沿一条_____折叠,_____两旁的部分能够互相_____,这个图形就叫做轴对称图形,这条____就是它的对称轴,这时,我们也说这个图形关于这条____(成轴) 对称.【探究一自测】下面的图形是轴对称图形吗?如果是,指出对称轴。

【问题探究二】轴对称观察课本P59的图13.1-3中的3幅图形,并沿虚线折叠,虚线两旁的部分能。

【归纳总结】一个图形沿着某条直线折叠,如果他能够与________重合,那么就说这两个图形关于这条直线对称,这条直线叫做_______,折叠后________叫做对称点.【讨论】1、成轴对称的两个图形全等吗?为什么?班级姓名第小组2、全等的两个图形成轴对称吗?试举例说明。

(可以画图说明)【问题探究三】轴对称的性质阅读课本P59最后一个“思考”及P60“练习”前面的内容,解决下列……………………………………1.(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?(PA =,∠MPA==度)(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线 .【归纳总结】如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。

数学人教八年级上册(2013年新编)13-1-1 轴对称(导学案)

数学人教八年级上册(2013年新编)13-1-1 轴对称(导学案)

13.1.1 轴对称导学案一、学习目标:1.通过展示轴对称图形的图片,初步认识轴对称图形.2.能够识别简单的轴对称图形及其对称轴.3.理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,探索轴对称现象共同特征.重点:轴对称图形的概念.难点:能够识别轴对称图形并找出它的对称轴.二、学习过程:课前预测在我们的生活中对称现象无处不在,你能举例说说对称之美都出现在哪些地方吗?___________________________________________________________________自主感知仔细观察下面图形,它们有什么共同的特点?(先独立思考,再和同伴说一说)【归纳】如果一个平面图形沿一条直线_______,直线两旁的部分能够互相_______,这个图形就叫做_____________,这条直线就是它的__________.这时,我们也说这个图形关于这条直线(成轴)对称.任务:请用笔画出上述图形的对称轴?(注意用虚线)合作探究一思考1:下面的每对图形有什么共同特点?(动笔画一画,先独立思考,然后在小组内向其他人分享你的想法)【归纳】像这样,把一个图形沿着某一条直线________,如果它能与______图形________,那么就说这两个图形_________________________,这条直线叫做__________,折叠后重合的点是对应点,叫做___________.思考2:成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?_________________________________________________________________________________ _______________________________________________________对比分析对比分析轴对称图形与两个图形成轴对称的异同?【针对练习】1.下面的图形是轴对称图形吗?如果是,指出它的对称轴.2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出他们的对称轴,并找出一对对称点.合作探究二观看动画演示并思考:线段AA′,BB′,CC′与直线MN有什么关系?_________________________________________________________________________________ _____________________________________________________【归纳】线段的垂直平分线的定义:经过线段_______并且_________这条线段的______,叫做这条线段的垂_______________.几何语言:_____________________________,_____________________________.【归纳】图形轴对称的性质:_________________________________________________________________________________ _______________________________________________________典例解析例1.如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠BCD的度数是()A.130° B.150° C.40° D.65°【针对练习】如图,在△ACE中,AE=7,AC=9,CE=12,点B、D分别在边CE、AE上,若△ACD 与△BCD关于CD所在直线对称,则△BDE的周长为____.例2.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A.4cm2 B.8cm2 C.12cm2 D.16cm2【针对练习】如图,直线a,b垂直相交于点O,曲线C的对称轴为直线b,点A和A′.是对称点,AB⊥a于点B,A′D⊥b于点D.若OB=OD=3,则图中阴影部分的面积为_____.例3.如图,把一张长方形纸片ABCD(AD//BC)沿EF折叠后,点D,C分别落在点D′,C′的位置上,ED′交BC于点G,若∠EFG=60°,求∠1与∠2的度数.【针对练习】将长方形ABCD沿AE折叠,得如图所示的图形,已知∠CED′=72°,则∠AED为()A.36° B.54° C.62°D.72°例4.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,求∠1−∠2的度数.达标检测1.在下列各电视台的台标图案中(不考虑颜色),是轴对称图形的是( )2.“羊”字象征着美好和吉祥,下图都与“羊”字有关,其中是轴对称图形的个数是( )A.1B.2C.3D.43.下列图案中,有且只有三条对称轴的是( )4.如图,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是( )A.AB∥DFB.∠B=∠EC.AB=DED.AD的连线被MN垂直平分5.如图,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5cm,CD=3.5cm,则四边形ABCD的周长为______cm.6.如图,从标有数字1,2,3, 4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是_____.7.如图,Rt△AB C中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A'处,折痕为CD,则∠A'DB的度数为______.8.如图,△ABC和△A'B'C'关于直线l对称.△ABC____△A'B'C',BC=_______,∠ABC=___________,BM=______,∠APN=_______,直线l__________CC'.9.如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN上.若ED=4cm,FC=1cm,∠BAC=76°,∠EAC=58°.(1)求出BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?。

新人教版八年级数学上册导学案:13.1 轴对称

新人教版八年级数学上册导学案:13.1  轴对称

新人教版八年级数学上册导学案:13.1 轴对称教学目标知识技能:1、理解轴对称图形和两个图形关于某条直线对称的概念。

2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴,对应点。

3、掌握线段的垂直平分线的概念。

4、理解和掌握轴对称的性质。

过程与方法:经历观察、操作、实践的过程,发现轴对称图形与两个图形对称轴的性质和特点。

情感态度与价值观:通过对轴对称图形和两个图形成轴对称的学习,激发学生学习的欲望,主动参与数学学习活动。

教学重难点重点:轴对称图形和两个图形关于某直线对称的概念。

难点:轴对称图形与两个图形关于某直线对称的区别于联系。

教学准备:三角板、剪刀、多媒体课件。

教学过程:一、情境导入展示章前图以及图13.1-1,多媒体课件展示收集到的生活中的图片,让学生欣赏,并初步感知对称图形,请学生列举所见到的类似图形。

(过程中,师需明确轴对称的重要性及本节的探究内容为轴对称的性质)二、探究新知活动一:1、把一张长方形纸对折,剪出一个图案,再打开就能剪出美丽的窗花,你能剪出什么样的窗花呢?2、观察剪出的窗花和图13.1-1中的图形,你能发现它们有什么共同特征吗?3、联系实际,你能举出一个轴对称图形的例子吗?(师可先示范剪纸,生再动手操作,观察交流后,归纳轴对称图形及对称轴的概念,并板书概念)活动二、思考:1、教材图13.1-3中,每对图形有什么共同特征?2、联系实际,你能举出一些生活中两个图形成轴对称的例子吗?你能正确地完成教材第60页的练习吗?(学生观察交流,师引导得出两个图形关于某直线堆成及对称轴,对称点的概念,并板书概念)活动三、1、结合教材图13.1-2和13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?2、如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?成轴对称的两个图形全等吗?如果把一两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?(学生观察比较,教师引导得出区别)活动四:1、成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?2、在教材图13.1-3中,你能标出A、B、C的对称点吗?活动五:1、观察教材图13.1-4中,线段AA’,BB’,CC’与直线MN有什么关系?(师引导从位置上进行观察,并用课件动态演示,归纳得出线段垂直平分线段的定义)1、揭示线段与对称轴MN的关系:(1)垂直(2)平分归纳轴对称的性质:2、在图13.1-5中,你能测量出线段AA’,BB’,CC’与直线l的夹角吗?它们与直线l垂直吗?你能用刻度尺测量出点A与A’到直线l的距离吗?B与B’到直线l呢?类比归纳轴对称图形的性质:。

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

八年级数学上册 13.1.1 轴对称导学案(含解析)(新版)新人教版

轴对称一、新课导入1、轴对称图形是我们经常见到的图形,你能列举出日常生活中见到过的轴对称图形吗?2、对于轴对称图形,你了解了哪些方面的知识?你能画一个轴对称图形吗?二、学习目标1、掌握关于轴对称的概念;2、掌握掌握轴对称的性质,利用轴对称的性质解决问题。

三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本要求:知道轴对称的定义;能说出关于某直线轴对称的两个图形的对应点、对应边、对应角。

一边阅读一边完成检测一。

检测练习一、1、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的两点叫对应点也叫对称点,重合的两个角叫对应角,重合的两条边叫对应边。

2、如图,把△ABC沿直线MN折叠后,可以与△A′B′C′重合,则△ABC与△A′B′C′关于直线MN轴对称,直线MN是对称轴,点A′、B′、C′分别是点A、B、C 的对称点,线段AB、AC、BC分别是线段A′B′、A′C′、B′C′的对应边,∠A、∠B、∠C分别是∠A′、∠B′、∠C′的对应角。

3、轴对称是两个图形的位置关系,对称轴是一条直线。

4、如下图所示,把左边的五边形沿虚线折叠后可以与右边的五边形重合,这两个五边形关于这条直线轴对称,这条直线是这两个五边形的对称轴,点A的对称点是点B,点C的对称点是点D。

研读二、认真阅读课本要求:理解轴对称与轴对称图形的联系与区别;下图中蝴蝶左边的翅膀与右边的翅膀关于直线轴对称,这个蝴蝶是轴对称图形;6、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于对称轴轴对称。

7、轴对称图形是具有特殊性质的一个图形;轴对称是两个图形的位置关系。

结论:轴对称图形只涉及到一个图形,轴对称涉及到两个图形.检测练习二、8、等腰三角形是轴对称图形,等腰三角形有1条对称轴,等腰三角形的对称轴是底边上的高所在的直线;9、圆是轴对称图形,圆有无数条对称轴,圆的对称轴是圆的直径所在的直线。

精选新编部编版八年级数学上册人教版:13.1 轴对称第一课时 导学案

精选新编部编版八年级数学上册人教版:13.1 轴对称第一课时 导学案

13.1.1轴对称教学稿教学目标:1、了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系。

2、探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比的方法在研究数学问题中的作用。

3、了解线段的垂直平分线的概念。

教学重点:轴对称的概念和性质。

教学难点:轴对称的概念和性质。

教学过程:导学一、创境引入欣赏一些图片,让学生明白对称现象无处不在,体会到数学与实际生活的密切联系。

二、自主预习学生独立看书P58---P60,初步感知本节课所要学习的内容,要求带着问题看书,并独立完成下面的填空:1、如果一个平面图形沿着,直线两旁的部分能够,这个图形就是轴对称图形。

这条直线就是它的。

2、如果把一个图形沿着折叠,如果它能够与另一个图形,那么这两个图形关于这条直线,这条直线叫做,叫对称点。

师生活动:教师安排好任务,学生先独立看书,并思考,教师巡视,及时发现问题。

通过预习,让学生对本节课要学习的内容有一个初步的感知,学习更有目的性,方向性更明确。

互动三、组内互助1、了解轴对称图形和轴对称的概念问题1、准备一张纸,先把这张纸对折,再在对折的纸上画出任意图形,然后把对折后的纸沿线条剪下,再打开这张对折的纸,观察这个图案有什么特征?师生活动:学生通过观察发现这个图形是对称的,图形从中间分开后,左右两部分都能够完全重合,教师再在课件上展示蝴蝶的翻折过程,再次指出轴对称的概念,并强调其中的关键词,引导学生体会轴对称、对称轴的意思。

追问1:你能再举出一些轴对称图形的例子吗?师生活动:学生思考,并举例。

追问2、小练习,下面的图形是轴对称图形吗?问题2、教师准备一张白纸,在上面滴一滴墨水,然后对折,打开后让学生观察,这两处墨汁水的印记有什么特征?再让学生把刚才剪的图案沿对称轴剪开,摆好位置,观察它们之间的关系,提出问题:你能类比前面的内容概括出它们的共同特征吗?师生活动:学生观察思考,并相互交流,教师利用课件再次展示,进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称。

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案

新人教版八年级数学上册《13.1——13.2轴对称复习》导学案班级小组姓名一、学习目标:目标:对轴对称的概念、性质、判定及画法的进一步巩固和应用二、知识点回顾三、考点透视考点1:轴对称的概念及性质:1、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是(写出序号即可),理由是.2、已知△ABC与△A1B1C1关于直线MN对称,且BC与B1C1交于直线MN上一点O,则() A.点O是BC的中点; B.点O是B1C1的中点; C.线段OA与OA1关于直线MN对称; D.以上都不对.3、已知平面上的两点A、B,下列说法不正确的是()A.点A、B关于AB的中垂线对称B.点A、B可以看作以直线AB为轴的轴对称图形C.点A、B是轴对称图形,有且只有一条对称轴D.点A、B是轴对称图形,有两条对称轴4、如图,若两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x= .5、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 .6、在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A. 21:02B. 21:05C. 20:15D. 20:05考点2:线段垂直平分线的性质7、 如图,有A 、B 、C 三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有( ) A.1处 B. 2处 C. 3处 D. 4处8、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.9、如图,已知AB 比AC 长3cm ,BC 的垂直平分线交AB 于D ,交BC 于E ,△ACD•的周长是15cm ,求AB 和AC 的长.考点3:线段垂直平分线的判定:10、点P 是△ABC 中边AB 的垂直平分线上的点,则一定有( ) A .PB=PC B.PA=PC C.PA=PB D.点P 到∠ABC 的两边距离相等(7题)(8题)∶(4题)(5题)(6题)(9题)11、下列说法错误的是()A.D、E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线12、已知E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB 垂足分别为C、D.求证:OE是CD的垂直平分线.考点4:轴对称的作图13、如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形。

新人教版八年级上《轴对称》优秀导学案1

新人教版八年级上《轴对称》优秀导学案1
(2)指图形的相互关系
(1)对个图 形而言
(2)指 图 形的特殊形状
联系
(1)沿某条直线对折后都能够重合
(2)把关于一条直线对称的两个图形看做一个整 体,也就是一个图形;
反过来一个轴对称图形也可以分为关于对称的两个图形。
探究三:




1、找出下列图形的对称轴
知识整理
反思提升
《轴对称》导学案
学 习
目标
1.在生活实例 中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.
3 .掌握轴对称图形和关于直线成轴对称这两个概念
重难点
分析
1.准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
2.轴对称图形和关于直线成轴对称的区别和联系。




阅读课本,完成下面填空题
1、如果图形沿一条直线折叠,直线两旁的部分能够互相,这个图形就叫做。这条直线就是它的 。
2、把图形沿一条直线折叠,如果它 能够与另一个图形重合,那么 就说这0图形关于 。
学法指导




探究一:下面的图形是轴对称图形吗?如果是,画出它们的对称轴
探究二:下面给出的两找出一对对称点.
赏识重 点




两个图形关于一条直线对称
轴对称 图形
区别
(1)对个图形而言

八年级数学上册13.1.1轴对称导学案(新版)新人教版

八年级数学上册13.1.1轴对称导学案(新版)新人教版

八年级数学上册13.1.1轴对称导学案(新版)新人教版【学习目标】XXXXX:1、理解轴对称图形、两个图形关于某直线对称的概念。

2、了解轴对称图形的对称轴,两个图形关于某直线对称的对称轴、对应点。

3、了解轴对称图形与两个图形关于某直线对称的区别和联系【学习重点】XXXXX:轴对称图形与两个图形关于某条直线对称的概念【课前预习】XXXXX:1、一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?车牌号码是。

2、观察下列吉祥物,它们有什么共同特征?总结:如果图形沿一条折叠,直线两旁的部分能够 ,这个图形就叫做。

这条直线就是它的对称轴、【课堂学习】XXXXX:【合作探究释疑】XXXXX:1、观察下面的图形,哪些是轴对称图形?试找出它们的对称轴、(1)(2)(3)(4)(5)(6)2、P59第一个思考中的每对图形有什么共同特点?小结:两个图形成轴对称: 把一个图形沿着某一条直线折叠,如果它能够与另一个图形 ,那么就说这关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点、3、将一张矩形纸片折叠,然后用笔尖扎出“14”这个数字,将纸打开后铺平,如图所示、(1)图中的两个“14”有什关系?(2)∠C和∠有什么关系?∠D和∠呢?、(3)线段CD和线段有什么关系?、(4)连结对应点E和点的线段与折痕所在的直线有什么关系、EELP′N我们抽出这两个点来看:线段EE与直线l有什么关系?线段EP与线段E′P相等吗?你能说明理由吗?类似地,点B 与点B,点C与点C等各组点是否也有同样的关系?你能用语言归纳上述发现的规律吗?2、线段的垂直平分线:经过并且于这条线段的直线,叫做这条3、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线、4、上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢? 类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线---------------------AA’BB’CC’-----------如图:L垂直平分L垂直平分 L垂直平分图形长方形正方形平行四边形等边三角形圆是否是轴对称图形对称轴的条数【知识拓展】XXXXX:1、(1)成轴对称的两个图形全等吗? 全等的两个图形一定成轴对称吗?(2)轴对称图形和两个图形成轴对称有什么区别吗?(3)如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个图形、2、总结:轴对称图形和关于直线成轴对称的区别和联系:区别: 轴对称是个图形的位置关系,轴对称图形是说个具有特殊形状的图形。

初中数学人教八年级上册(2023年更新)第十三章 轴对称1 课题学习 最短路径问题 导学案

初中数学人教八年级上册(2023年更新)第十三章 轴对称1 课题学习 最短路径问题 导学案

课题学习最短路径问题导学案【学习目标】能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。

【学习重点】利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。

【学习难点】如何利用轴对称将最短路径问题转化为线段和最小问题。

【课前准备】三角板、直尺、圆规、铅笔、橡皮擦等【学习过程】一、自主学习1、如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?2、三角形的三边关系:三角形的两边之和________第三边;两边之差________第三边。

3、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离。

4、如图,点A、B关于直线l对称,则PA=_______二、合作探究问题1 如图,点A、B分别在直线l 的两侧,如何在直线l上找到一个点,使得这个点到点A、点B的距离之和最小?.Al.B问题2将军饮马有一个将军,凯旋归来。

他的马非常任性,非要从图中的A 地出发,到一条笔直的河边l 饮水,然后到军营B 地.将军到河边什么地方饮马可使他所走的路线最短?小组成员讨论完成以下问题:(1)这是一个实际问题,你能将它抽象为数学问题吗?答:将A、B两地抽象为两个_____,将河l抽象为一条______,题目要求在直线l上找到一个点C,使线段_____和线段_____的和最小。

(2)问题2和问题1有什么异同?答:相同点:都是要在一条直线上找______点,使它到已知两点的距离之和最________。

不同点:问题1的两点在直线的______侧;问题2的两点在直线的______侧。

(3)你能利用轴对称的知识将问题2转化为问题1吗?试一试,怎么做?(4)你能用所学的知识证明AC +BC最短吗?三、例题精讲例1、如图:在正方形ABCD中,点M是AB的中点,在AC上找一点N,使 MN+NB最小。

例2、如图:点A是∠MON内任意一点,在∠MON的两边OM、ON上各取一点B、C,组成三角形,使△ABC周长最小.四、学以致用1、如图,直线l为一条水渠,水渠两侧有两个鱼塘A、B,若想挖水渠引水到两个鱼塘,下列哪种作图方式才能使挖的水渠长度最短?()A、①B、②2、如图,直线l为一条水渠,水渠同侧有两个鱼塘A、B,若想挖水渠引水到两个鱼塘,下列哪种作图方式才能使挖的水渠长度最短?()A、①B、②3、如图,在l上求作一点M,使得AM+BM最小.4、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。

13.1.1轴对称导学案 2022-2023学年人教版八年级上册数学

13.1.1轴对称导学案 2022-2023学年人教版八年级上册数学

13.1.1 轴对称导学案2022-2023学年人教版八年级上册数学一、轴对称的基本概念轴对称是几何中的一个重要概念,即物体可以通过某条轴进行翻转得到自身。

在二维几何中,轴对称通常是指围绕一个直线进行对称。

例如,一个圆形是轴对称的,因为如果我们把它分成两半并将其翻转,两半就完全重合了。

二、轴对称的特征和性质1.轴对称的物体具有完全或部分的对称性,即它们的一侧与另一侧是镜像关系。

2.物体上的每个点在轴对称下都有一个对称点,即轴与物体上的每个点对称。

3.轴对称物体可以在轴的两侧进行旋转,旋转后的物体仍然保持轴对称。

三、轴对称的判定方法判定一个图形是否具有轴对称性有以下几种方法:1.观察图形的对称轴:首先,我们应该仔细观察图形,看是否存在一个直线可以把图形分成两个完全对称的部分。

如果存在这样一个直线,那么图形就是轴对称的。

2.观察图形的对称性质:如果图形上的每一个点都有一个对称点,且对称点关于某条直线对称,那么图形就是轴对称的。

四、轴对称的应用轴对称在日常生活和实际问题中都有广泛的应用。

1.轴对称的艺术作品:许多艺术作品利用轴对称创造对称美,例如绘画、雕塑等。

2.轴对称的建筑设计:许多建筑物利用轴对称设计,使其具有优雅的对称美,例如宫殿、庙宇等。

3.轴对称的产品设计:许多产品利用轴对称设计,使其更加美观和实用,例如家具、汽车等。

五、课堂练习1.判断下列图形是否具有轴对称性,并写出对称轴的方程:图形1图形1图形2图形2图形3图形3图形4图形42.找出具有轴对称性的图形,并写出对称轴的方程:图形5图形5图形6图形6图形7图形7图形8图形8六、总结轴对称是一个重要的几何概念,在数学和实际生活中都具有广泛的应用。

通过本节课的学习,我们了解了轴对称的基本概念、特征和性质,学会了判定一个图形是否轴对称以及找出轴对称图形的方法。

在今后的学习和实践中,我们可以运用轴对称的知识解决更多的问题。

新人教八年级数学上册第13章第1节轴对称(第2课时)导学案

新人教八年级数学上册第13章第1节轴对称(第2课时)导学案

CB AD 新人教八年级数学上册第13章第1节轴对称(第2课时)导学案【学习目标】1.了解轴对称(图形)的性质,会准确画出轴对称(图形)的对称轴; 2.理解线段垂直平分线的性质;3.通过轴对称性质的学习加强学生对事物的内在联系,增强学生创造 美好生活的信心.【学习重点】理解线段垂直平分线的性质. 【学习难点】线段垂直平分线的性质应用.【学前准备】认真阅读课本P59—P60,完成练习1.如图1,△ABC 和△A 1B 1C 1关于y 轴对称. (1)点A 的对应点是 ,y 轴经过线段AA 1的中点吗? y 轴垂直线段AA 1吗? 其它对应点有同样的结论吗?(2)线段垂直平分线的定义: 经过 并且 的直线,叫做这条线段的垂直平分线.2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线. 如图1,y 轴垂直平分 ;y 轴垂直平分 ;y 轴垂直平分 ; 3.如下图,直线l 垂直平分线段AB ,在直线l 上任取..一点P ,连结PA 、PB ,通过测量、折叠等方法判断PA 、PB 的关系是 .猜想线段的垂直平分线有什么性质,并用简练的语言叙述出来: 试证明以上猜测:【课堂探究】4.归纳:线段垂直平分线的性质:线段垂直平分线上的点与 相等.符号语言的表述:如图:∵AD⊥ , BD= (或AD 是线段BC 的垂直平分线) ∴ = ( )A 1B 1C 1 图1BA lCB AD EDCB A5.如图,线段AB 的垂直平分线l 交AB 于点C ,点P 在l 上,PA=5,AC=4,求△PAB 的周长.6.探究:如图,AD⊥BC,BD=DC ,点C 在AE 的垂直平分线上,AB 、AC 、CE 的长度有什么关系?AB+BD 与DE 有什么关系?【课堂检测】1.如图,△ABC 中,AD 垂直平分BC ,则AD⊥ ,CD =_____,原因是: ;AB =_______,原因是 .2.如图,△ABC 中, AD 是边BC 的垂直平分线,若AB=10cm ,BC=12 cm ,则AC= cm ,BD= cm . 3.如图, DE 是AC 的垂直平分线,AE=3,△ABD 的周长为cm 31,求△ABC 的周长.【课堂小结】1.线段垂直平分线的定义:经过 并且 的直线,叫做这条线段的垂直平分线. 2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线.3.线段垂直平分线的性质:线段垂直平分线上的点与 相等.课后作业1302--轴对称 (课时2)1.如图,在△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________. 2.如图,在 ABC 中,AB 、BC 的垂直平分线相交于三角形内一点P , 下列结论中,错误的是( )A .PA=PB B .PA=PC C .PB=PCD .点P 到AB 、BC 、CA 的距离相等第1、2题(第2题)3.如图,已知AE =CE , BD ⊥AC .求证:AB +CD =AD +BC .4.如图,在△ABC 中,DE 是AB 的垂直平分线,(1)请写出相等的线段 _________________________; (2)若BC =10cm ,AC =6cm ,求△ADC 的周长.5.如图所示,已知在△ABC 中,AB 与AC 的垂直平分线分别交AB 于点D ,交AC 于点E ,它们相交于点F ,求证:BF=FC .6.如图所示,在△ABC 中,AC=12,BC=7,DE 垂直平分AB 交AC 于D ,交AB 于E , 求△BCD 的周长.7.如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABC 的周长为22,AE=5,求△ABD 的周长.※ 8.如图,点P 在AOB 内,点M 、N 分别为点P 关于直线AO 、BO 的对称点,M 、N 的连线与AO 、B O 交与E 、F .若△PEF 的周长为20cm ,求线段MN 的长.【教学反思】 答案: 课堂探究:4.线段两个端点的距离解:BC DC AB AC 线段垂直平分线上的点与线段两个端点的距离相等. 5.解:∵PC 是线段AB 的垂直平分线,∴∠ACP=∠BCP=90° ∵PA=5,AC=4 ∴BC=AC=4,PB=AP=5FEM PNA B第1题第2题∴△PAB的周长为:5+5+8=186.AB+BD=DE.∵AD⊥BC,BD=DC(垂直平分线)∴AB=AC.∴AC+CD=AB+BD又∵点C在AE的垂直平分线上,∴AC=EC.又∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=DE.【课堂检测】1.BC BD 线段垂直平分线的定义AC 线段垂直平分线上的点与线段两个端点的距离相等2.10 63.如图:AE=3∵DE为AC的垂直平分线∴AE=EC=3 AD=DC又∵△ABD的周长为13 即:AB+AD+BD=13∴△ABC的周长为AB+AC+BD=AB+(AE+EC)+(BD+DC)=13+6=19课后作业:1.52.D3.∵AE=CE ,BD⊥AC∴BA=BC, DA=DC(线段的垂直平分线的点到这条线段的2个端点相等)∴AB+CD=AD+BC4.(1)AD=BD,AE=BE(2)∵DE是AB的垂直平分线∴AD=DB∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=16cm5.证明:连接AF∵CD为AB的垂直平分线,∴AF=BF∵EF为AC的垂直平分线,∴AF=FC∴BF=FC6.解:AC=12 ,∵DE垂直平分AB,∴BE=AE,∴BE+EC=AE+EC=AC,∵BC=7,∴△BCE的周长=BC+BE+EC=BC+AC=7+12=19.7.解:∵DE是边AC的垂直平分线,∴AD=CD,AE=EC,∵AE=5,△ABC的周长为22,∴AC=AE+EC=5+5=10,△ABC的周长=AB+BC+AC=22∴AB+BC=22-10=12△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=12,8.∵点M是点P关于AO,的对称点,∴AO垂直平分MP,∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+PF,∵△PEF的周长为20cm,∴MN=EP+EF+PF=20cm.。

【最新人教版八年级数学上册全套导学案58份】13.1.1轴对称导学案(1)

【最新人教版八年级数学上册全套导学案58份】13.1.1轴对称导学案(1)

第4题 (A ) (B ) (C ) (D ) 13.1.1轴对称【学习目标】1.通过展示轴对称图形的图片,初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3.培养良好的动手试验能力、归纳能力和语言表述能力。

学习重点:理解轴对称图形的概念学习难点:判断图形是否是轴对称图形一、预习新知1、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________A 直线B 射线C 线段6、课本P30练习题。

7、下面的图形是轴对称图形吗?如果是,指出对称轴。

二、课堂展示1.我国的文字非常讲究对称美,分析图中的四个图案,图案( )有别于其余三个图案.思路分析:所用知识点:2.如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:所用知识点:三、随堂练习A 组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。

2、课本练习题1,3、课本复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗四、小结与反思如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

那么,怎样才能学好数学呢,现介绍几种方法以供参考:一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上轴对称全章导学案精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】(A ) (B ) (C ) (D ) .1 轴对称一、学习目标1、认识轴对称和轴对称图形,并能找出对称轴;2、知道轴对称和轴对称图形的区别和联系。

3、掌握轴对称的性质; 二、自主探究 合作展示探究(一) 自学课本58页,完成以下问题。

1、什么是轴对称图形?你能举几个轴对称图形的例子吗?2、试一试:下面的图形是轴对称图形吗?如果是,画出它的对称轴。

(1) (2) (3)(4) (5)探究(二) 自学课本59页,完成以下问题。

1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗? 探究(三)成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗? 归纳:区别:轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。

轴对称指的是_____个图形沿一条直线折叠 ,这个图形能够与另一个图形_________。

联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称) 练习1、我国的文字非常讲究对称美,下面四个图案中不是轴对称图形的是( ).2、下列图形中不是轴对称图形的有( )A 1个B 2个C 3个D 4个3、以下汽车标志中,和其他三个不同的是( )A B C D4、下列图形中对称轴最多的是( )A.圆B.正方形C.角D.线段5、写出英文26个大写字母中是轴对称图形的字母,写出三个是轴对称图形的汉字:6、美国哈佛大学在一次数学考试中,有这样一道填空题:要求在横线上填上适当的图形.你能完成吗?探究(四) 轴对称的性质1、如图(1),△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、 B ′、C ′分别是点A 、B 、C 的对称点,线段AA ′、BB ′、CC ′ 与直线MN 有什么关系?(1) 设AA ′交对称轴MN 于点P ,将△ABC 和△A ′B ′C ′沿MN 折叠后,点A 与A ′重合吗?于是有PA =,∠MPA = = 度(2)对于其他的对应点,如点B ,B ′;C ,C ′也有类似的情况吗? (3)那么MN 与线段AA ′,BB ′,CC ′的连线有什么关系呢? 2、垂直平分线的定义:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线. 3、轴对称的性质:如果两个图形关于某条直线对称,那么 是任何一对对应点所连线段的 。

类似地,轴对称图形的对称轴,是任何一对对应点所连线段的 。

练习1、教材60页1、2(在教材上完成)2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成) 学习小结与反思:线段垂直平分线的性质一、学习目标1、掌握线段垂直平分线的性质2、掌握线段垂直平分线的判定3、运用线段垂直平分线的性质解决问题二、复习右面的图形是轴对称图形吗?如果是,画出它的对称轴。

三、探究(一)探究教材61页探究问题1、量出AP 1、AP2、AP3、与BP 1、BP 2、BP 3…讨论发现什么样的规律: 。

总结线段垂直平分线的性质 : 2、你能利用判定两个三角形全等的方法证明这个性质吗?如图(1),直线l AB ⊥,垂足是C ,AC=BC,点P 在l 上。

求证: PA PB = 探究(二)反过来,如果PA=PB,那么点P 是否在线段AB 的垂直平分线上呢?说明理由. (1)已知: (2)求证:(3)需要作辅助线吗?写出证明过程: 总结线段垂直平分线的性质判定:图四、练习1.如右图所示,△ABC 中,BC =10,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,BE =6,求△BCE 的周长。

2、如图,△ABC 中,AB =AC =18cm ,BC = 10cm ,AB 的垂直平分线ED 交AC 于D 点,求:△BCD 的周长。

3,如图,在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC的中垂线如交BC 与E ,则△ADE 的周长等于___ ___.4、如图,△ABC 中,∠ACB=90°,AD 平分∠BAC, DE 丄AB 于E ,求证:AD 是CE 的垂直平分线.5、如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,⑴AB ,AC ,CE 的长度有什么关系? ⑵AB+BD 与DE 有什么关系?6、如图,在Rt △ABC 中,∠C=90°,沿着过点B 的一条直线BR 折叠△ABC 使点C 恰好落在AB 边的中点D 处,则∠A 的大小等于 .7、如图,△ABC 中,AD 垂直平分边BC 交BC 于D ,AE 丄BE 于E, AF 丄CF 于F ,AE= AF ,求证:∠BAE =∠BAF.8题图8、(2013年泰州市)如图,△ABC 中,AB+AC=6 cm, BC 的垂直平分线L 与AC 相交于点D,则△ABD 的周长为cm.五、9、如图,在△ABC 中,E,F 分别为AB ,AC 上的点,∠B=40°且EF 小结与反思:轴对称(2)一、学习目标1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。

3、运用线段垂直平分线的性质解决实际问题ECD BAD BCAE二、复习1、设A、B两点关于直线MN对称,则______垂直平分________.2、轴对称图形的对称轴与对应点所连线段的垂直平分线有什么关系?3、如图:不通过折叠的方法,你能验证出这两个四边形是否关于直线MN对称吗?二、预习新知P62—P631、成轴对称的两个图形其对称轴是所连接的。

2、作轴对称图形的对称轴就是做作出一对对应点所连线段的_____________ 。

三、探究新知预习63页例2思考:(1)为什么要分别以点A、B为圆心,大于1/2AB的长为半径画弧?(2)为什么直线CD就是AB垂直平分线?也是线段AB的对称轴?四、练习1、画出下边两个轴对称图形的对称轴。

2、课本P64练习题1、2、33、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。

长方形正方形三角形等腰三角形等边三角形平行四边形任意梯形等腰梯形圆图形长方形正方形三角形等腰三角形等边三角形平行四边形任意梯形等腰梯形圆4、如图,已知线段AB. (1)用尺规作图的方法作出线段AB 的垂直平分线L(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线L 上任意取两点M,N(线段AB 的上方),连接AM, AN, BM,BN, 求证:∠MAN=∠MBN.5、如图,在中,∠C=90°,用直尺和圆规在AC 上作点P ,使P 到A,B 的距离相等(保留作图痕迹,不写作法和证明).6、如图,△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合, 折痕交BC 边于点D,交AC 边于点E ,连接AD ,若AE=4cm , 求△ABD 的周长。

7、如图,已知,△ABC 中,AD 是角平分线,DE 丄AB 于E ,DF 丄AC 于F,求证:AD 是EF 的垂直平分线. 8、已知△ABC 中,BC 的垂直平分线DE 与∠BAC 的平分线AE 交于E ,EF 丄AB 于F,EH 丄AC 于H ,求证:BF=CH. 小结与反思:画轴对称图形一、学习目标1、认识轴对称图形,探索并了解它的基本性质;2、能够按要求作出简单平面图形经过一次对称后的图形; 二、温故知新1、什么是轴对称图形?2、请画出下列图形的对称轴。

三、自主探究 合作展示 探究(一)自学:认真阅读教材67页图。

1、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?2、归纳:(1)由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的 、 完全相同;(2)新图形上的每一点,都是原图形上的某一点关于直线l 的 点; (3)连接任意一对对应点的线段被对称轴 。

探究(二)1、请同学们尝试解决以下问题;E DCBA图(2) 如图(1),实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。

问题:(1)你可以通过什么方法来验证你画的是否正确? (2)和其他同学比较一下,你的方法是最简单的吗?2、如图(2),已知点A 和直线l ,试画出点A 关于直线l 的对称点A ′。

A ·3、如图,已知点A 和直线l ,试画出线段AB 关于直线l 的对称图形。

B A ·4、如图已知△ABC ,直线l ,画出△ABC 关于直线l 的对称图形。

四、双基检测1、把下列图形补成关于l 对称的图形。

2、小明在平面镜中看到身后墙上钟表显示的时间是12:15,这时的实际时间应该是 。

、以直线MN 为对称轴,画出△ABC 的对称图形△111C B A 。

(保留作图痕迹,不写画法,不要证明)3、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(-3, 5), B(-4, 3); C(-l, 1). (1)作出△ABC 向右平移6个单位长度的△111C B A (2)作出关于x 轴对称的△222C B A ,并写出点2C 的坐标.4、完成课本62页练习及65页第6题,66页第10、、13题 五、学习反思用坐标表示轴对称一、学习目标1、能够经过探索利用坐标来表示轴对称;2、掌握关于x 轴、y 轴对称的点的坐标特点。

二、温故知新如图:(1)观察图(1)中两个圆脸有什么关系?(2)若已知图(1)中圆脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1), 左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆 脸上左眼,右眼及嘴角两端点的坐标吗? 三、自主探究 合作展示 探究(一)1、在如图(2)所示平面直角坐标系内画出下列已知点以及对称点,并把坐标填在已知点 A (2,-3) B (-1,2) C (-6,-5) D (,1) E (4,0)图图(1) lA BC yxAB C关于x 轴对称的点 'A ( ) 'B ( ) 'C ( )'D ( )'E ( )关于y 轴对称的点'A ( )'B ( )'C ( ) 'D ()'E ( )2、归纳:点(x ,y )关于x 轴对称的点的坐标是 ;点(x ,y )关于y 轴对称的点的坐标是探究(二)例题:如图(3),四边形ABCD 的四个顶点的坐标分别为A (-5,1),B (-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形。

相关文档
最新文档