研究生《数值分析》课程作业(二) (含答案)
数值分析课后习题答案
0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0
1 2
0 0 0 1 1 0
1 2
1 2
1 2
1
0 0 0 1 0
1 2
1 2
0
1 2
1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3
解
16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5
解
2 A 1
1 3
1 2
2 11
22
1
5 2
1
3 21来自,所以 A12
1
2 1 1
5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6
解
3 2 6 4 10 7 0 7 10 7 0 7
r1r2
消元
10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
数值分析习题含答案
x1 )
f (x0)
(x
x 0 )( x x0 x1
x1 )
f ' ( x0 )
(x ( x1
x0)
2 2
x0 )
f ( x1 )
R ( x)
其中 R(x) 由以下计算得到: 构造辅助函数:
(t ) f (t ) N 2 (t ) (t (x x0 ) (t x0 ) ( x
2 2
x1 ) x1 )
f [ 2 ,2 ] =-2089 ,
0 1 2 7
0 1 7
f (x)
M ,
x
[ a , b ] ,证明:在任意相邻两节点间
R1 ( x )
1 8
Mh
2
。
x xi x xi M
1
f ( ) R1 i ( x ) 2 M 8 h 2,
h ,
2
x
8 ,n
[ xi , xi
1
]
R1 ( x )
max R1 i ( x )
1 2
s
2
[( x
xi
1
))( x
x
i
1 2
)( x
x i )]
e
4
h
3
[ s( s
1)( s
1)] 24
3 9
e h
4
3
10
6
3!
8
h
1 . 317
则用二次插值的步长应:
h
0 .6585
10
2
2-6 对区间 [a,b] 作步长为 h 的剖分,且 做线性插值,其误差限为 证明:区间上的误差限: 误差限: 2-7 设 f ( x ) 解: 自变量 1 2
数值分析第二章答案
1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。
数值分析课后题答案
数值分析 第二章2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式. 解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =为互异节点,求证:(1)0()nkkj j j x l x x=≡∑ (0,1,,);k n =(2)()()0nk jj j xx l x =-≡∑ (0,1,,);k n =证明(1) 令()kf x x = 若插值节点为,0,1,,j x j n =,则函数()f x 的n 次插值多项式为0()()nkn j j j L x x l x ==∑.插值余项为(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤(1)()0()0n n f R x ξ+∴=∴=0()nk kj j j x l x x =∴=∑ (0,1,,);k n =000(2)()()(())()()(())nk j j j n nj i k i k j j j i nnik ii kj j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑0i n ≤≤又 由上题结论可知()nk ij jj x l x x ==∑()()0ni k i ik i k C x x x x -=∴=-=-=∑原式∴得证。
数值分析作业答案
第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
数值分析课后习题及答案
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析第二次作业答案
练习1 已知410=x,211=x,432=x。
(1)推导以这3点作求积节点在[0,1]上的插值求积公式;(2)指明该求积公式所具有的代数精度; (3)用所求的公式计算dxx ⎰12解:按题设原式是插值型的,故有32434121414321100=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A同样,容易计算出3202==A A ,于是有求积公式⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≈⎰433221314132)(1f f f dx x f由于原式含有3个节点,按定理1它至少有2阶精度。
考虑到其对称性,可以猜到它可能有3阶精度。
事实上,对于3)(x x f =原式左右两端相等。
此外,容易验证原式对4)(x x f =不准确,故所构造的求积公式确实有3阶精度。
(3)31]43221412[31222102=⎪⎭⎫⎝⎛⨯+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⨯⨯≈⎰dx x31432141214341101-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎰dx x x A2. 取7个等距节点(包括区间端点)分别用复化梯形公式和复化辛甫生公式求积分2lnxdx的近似值(取6位小数)解:(1)复化梯形公式])(2)()([2)(11∑⎰-=++=≈n k k ban x f b f a f h T dx x f385139.0])(2)2()1([1211616=++=∴∑-=k k x f f f T(2)复化辛甫生公式])(2)(4)()([6)(11021∑∑⎰-=-=++++=≈n k k n k k n bax f xf b f a f h S dx x f ∴ ])(2)(4)2()1([3161212213∑∑==++++⨯=k k k k x f xf f f S≈0.386 287而 38629436.0ln21=⎰xdx3. 用梯形格式求解初值问题⎩⎨⎧=≤<++-='2)1(6.,y x x y y )1(1 1 ,(取步长h =0.2,小数点后至少保留6位) 解:梯形格式为)],(),([2111+++++=n n n n n n y x f y x f h y y ,于是⇒++-+++-+=+++ 1 1 ,)]()[(2111n n n n n n x y x y h y y),(222112 +++++-=++n n n n x x hh y hh y,2,1,0=n取步长h =0.2,由初值20=y 计算得147709.2)6.1(069422.2)4.1(018182.2)2.1(321=≈=≈=≈y y y y y y4. 对初值问题⎩⎨⎧=>=+'1)0(00y x y y , 试证明用欧拉预-校格式所求得的近似解为,2,1,022, )-(1=+=n hh y nn (其中h 为步长)证明: ,2,1,0)],(),([2),(1111 =⎪⎩⎪⎨⎧++=+=++++n y x f y x f hy y y x hf y y n n n n n n n n n n 将y y x f -=) ( ,代入,于是有⎪⎩⎪⎨⎧--+=-=+++)(2)1(111n n n n n n y y hy y y h y 整理后,有)-(1n n y hh y 221+=+反复递推得 )-(101212y hh y n n +++=由1)0(0==y y ,故得,2,1,022, )-(1=+=n hh y nn。
《数值分析》练习题及答案解析
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。
数值分析参考答案第二章
第二章插值法1.当兀= 1—2时,/(%) = 0-3,4^/(%)的二次插值多项式。
解:X。
= I/】=—l,x2 = 2, /Uo) =0,/(^)=-3,/(X2) = 4;一丄(兀+i)(一2),0(人)=Oo — xJOo — xJ 2加)=(_兀)(—心=丄(一1)(一2)(兀一兀)(州一呂)6(A-.VoX.V-Vj l(Y_1)(x+1)(x2-x Q)(x2-x t) 3则二次拉格朗口插值多项式为2厶⑴=£)恥)k=0=-3/0(X)+4/2(X)1 4= --U- 1)(A—2) + -(x-l)(x + 1)5r 3 7=-X" +—x--6 2 3/(x) = liix2.用线性插值及二次插值计算1110.54的近似值。
解:由表格知,x0 = 0・4,兀=0.59X2 = 0.6, x3 = 0.7,x4 = 0.8; f(x Q) = -0.916291,/(xj = -0.693147 /(A) = —0.510826,/a)= -0.356675 /(x4) =-0.223144若采用线性插值法计算hiO.54即/(0.54),则0.5 <0.54 <0.6/1(x) = ^—^ = -10(.v-0.6) 人一无X —X /.(%) = -__ =-10(x-0.5)厶⑴=/U1XW + /(x 2)/2(x)=6.93147(x — 0.6) - 5・ 10826(.— 0.5)・・・厶(0.54) = -0.6202186 « -0.620219若采用二次插值法计算lnO.54时, (V f _亠)=50(x-0.5)(x- 0.6)(x Q -xj(x 0-x 2)(工7。
)(工_亠)=-100(x- 0.4)(x — 0.6)(兀一 Xo )(X 】一XJ厶(x) = /UoVoW+/U1XW+/(x 2)/2(x )=-50 x 0.916291(%-0.5)(A -0.6)+ 69.3147(x-0.4)(x-0.6)-0.510826 x50(x-0.4)(x-0.5).14(0.54) = -0.61531984 « -0.615320 3.给全cosx,0 <x<90°的函数表,步长/? = r = (l/60)\若函数表具有5位有效数字,研 究用线性插值求cos 兀近似值时的总误差界。
数值分析第二章作业答案
第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。
证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。
2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。
解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。
解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。
,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。
1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。
数值分析参考答案(第二章)doc资料
证明:
(1)
得证。
+
得证。
14. 求 及 。
解:
若
则
15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知
且
可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,
则
若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
硕士课程—数值分析题集(附答案).docx
2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。
设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。
,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。
》0 —IT。
〉;+1| = 1。
|光 - 司 < 1。
5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。
1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。
,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。
R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。
进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。
数值分析作业答案(第2章)
2.2.给出x x f ln )(=的数值表:用线性插值及二次插值计算54.0ln 的近似值。
解 线性插值。
由于54.0=x ,介于0.5和0.6之间,故取5.00=x ,6.01=x ,这时插值余项中的))(()(10x x x x x w --=的绝对值最小,于是147693.00-=y ,826510.01-=y ,代入拉格朗日线性插值多项式,得219620.0)826510.0(5.06.05.054.0)147693.0(6.05.06.054.0)54.0(11001011-≈-⨯--+-⨯--=⋅--+⋅--=y x x x x y x x x x L所以219620.0)54.0(54.0ln 1-≈≈L 。
当然还可以按其他方式取0x ,1x ,但近似程度可能差些。
二次插值。
由于54.0=x ,与0.5,0.6及0.4距离较近,故取4.00=x ,5.01=x ,6.02=x ,这时插值余项中的))()(()(210x x x x x x x w ---=的绝对值最小,于是291916.00-=y ,147693.01-=y ,826510.02-=y ,代入拉格朗日二次插值多项式,得320615.0)826510.0()5.06.0)(4.06.0()5.054.0)(4.054.0()147693.0()6.05.0)(4.05.0()6.054.0)(4.054.0()291916.0()6.04.0)(5.04.0()6.054.0)(5.054.0())(())(())(())(())(())(()54.0(2120210121012002010212-≈-⨯----+-⨯----+-⨯----=⋅----+⋅----+⋅----=y x x x x x x x x y x x x x x x x x y x x x x x x x x L所以320615.0)54.0(54.0ln 2-≈≈L 。
数值分析课后习题答案
x2 6.6667x2 8.205
再解
1
15 56
x31.785,7得 x35.769
1 25069x4 0.47847x4 1.4872
1 x5 5.3718 x5 5.3718
2-10.证明下列不等式:
(1)x-yx-z+z-y; (2)|x-y|x-y;
证明 (1)x-y=(x-z)+(z-y)x-z+z-y
b.用Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=0.
102 x Байду номын сангаасy 1
100y 100
再用列主元Gauss消元法
102 x y 1 x y 2
回代得解: y=1, x=1.
x y
y 1
2
2-8.用追赶法求解方程组:
4 1
x1 100
1 4 1
x2 0
3-8.判定求解下列方程组的SOR方法的收敛性.
2 1 0 0 x1 1
1
0 0
2 1 0
1 2 1
0 12
x2 x3 x4
0 00
解 直接可验证系数矩阵A是负定矩阵,所以-A是对称
1-3.为了使101/2的相对误差小于0.01%,试问应取几位 有效数字?
解 因为101/2=3.162…=0.3162…10,若具有n位有效 数字,则其绝对误差限为0.5 101-n ,于是有
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623
1 2
0
12 1,
1 2
1 2
0
12
数值分析第二次作业答案answer2
S4 = 0.11157238253891,S8 = 0.11157181325263。 同学们根据自己理解计算 S4 ,S8 都可。 复合梯形公式和复合 Simpson 公式的代码已重复多次,同学们自己整 理。 3. 用 Simpson 公式计算积分 误 差 为 |R(f )| = | − η ∈ (0, 1)。 4. 推导下列三种矩形求积公式: ∫b f (x)dx ∫a b f (x)dx ∫a b a f (x)dx = (b − a)f (a) + = (b − = (b −
14.7 53.63 从而 a = −7.855048,b = 22.25376。 2. 已知实验数据如下: 。 xi 19 25 31 38
44
yi 19.0 32.3 49.0 73.3 97.8 用最小二乘法求形如 y = a + bx2 的经验公式。 答案:两个待定常数,只能两个 φ。 φ0 ,φ1 也必须形如 y = a + bx2 。 可设 φ0 = 1,φ1 = x2 。法方程为: ( 5 5327 )( a b ) = ( 271.4 369321.5 )
第三章 函数逼近 1. 观测物体的直线运动,得出以下数据: 时间 t(s) 0 0.9 1.9 3.0 3.9 5.0 距离 s(m) 0 求运动方程。 ( 10 φ0 = 1,φ1 = t。法方程为: 6 14.7 )( a b ) = ( 280 1078 )
6
1. 用 LU 分解及列主元高斯消去法解线性方程组 8 10 −7 0 1 x1 −3 2.099999 6 2 x 5.900001 2 = 5 5 − 1 5 − 1 x 3 x4 1 2 1 0 2 输出 Ax = b 中系数 A = LU 分解的矩阵 L 及 U ,解向量 x 及 det A;列 主元法的行交换次序,解向量 x 及 det A;比较两种方法所得的结果。 代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; x=A\b;x(1) 结果:1.7764e-016 LU分解代码: A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2]; b=[8,5.900001,5,1]'; [m,n] = size(A); if m~=n, error('A matrix needs to be square'); end for i=1:n-1 pivot = A(i,i); if abs(pivot)<50*eps, error('zero pivot encountered'); end for k = i+1:n A(k,i) = A(k,i)/pivot; A(k,i+1:n) = A(k,i+1:n) - A(k,i)*A(i,i+1:n); end end 7
哈工大研究生数值分析试题与答案
哈⼯⼤研究⽣数值分析试题与答案---WORD 格式--可编辑--1. 3,2x =-分别是⽅程328120x x x --+= 的根;讨论⽤Newton 迭代法求它们近似值的收敛阶。
取初值02x =-计算根3x =-的近似值,要求迭代3次。
(结果保留4位⼩数)解:设 32()812f x x x x =--+2()328f x x x '=--()62f x x ''=-(3)0,(3)0f f '-=-≠,(2)0,(2)0,(2)100f f f '''===≠则:3-是()0f x =的单根,故Newton 迭代在3-附近是平⽅收敛; 2是()0f x =的⼆重根,故Newton 迭代在2附近是线性收敛;取02x =-,Newton 迭代: 3212()812()328n n n n n n n n f x x x x x x x f x x x +--+=-=-'-- 223634n n n x x x ++=+ 2001023634x x x x ++==+ 2112123634x x x x ++==+ 2223223634x x x x ++==+2. 设常数0a ≠ ,求出a 的取值范围使得解⽅程组112233212313a x b a x b a x b --?????? ??? ?-= ??? ? ??? ????的Jacobi 迭代法收敛。
解: Jacobi 迭代:(1)()k k J x B x g +=+ 10210211203203130130J a B a a a -----?????? ? ? ?=--=-- ? ? ? ? ? ???????112a b g a b -???? ? ?= ? ? ? ?a谱半径:()1JBaρ=<时Jacobi迭代收敛故:a>3. 设(1)⽤Crout三⾓分解法求解⽅程组1232325xx?=??;(2)⽤乘幂法求⽅程组系数阵的按摸最⼤的特征值和对应的特征向量。
(完整版)数值分析课后习题答案
第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
《数值分析》第二章答案
习题21. 分析下列方程各存在几个根,并找出每个根的含根区间:(1) 0cos =+x x ; (2) 0cos 3=-x x ; (3) 0sin =--x e x ; (4) 02=--x e x 。
解:(1) 0cos =+x x (A) x x x f cos )(+= ,0sin1)(≥-='x x f ,),(∞-∞∈x10cos 0)0(=+=f ,01cos 1)1cos(1)1(<+-=-+-=-f ∴ 方程(A) 有唯一根 ]0,1[*-∈x (2) 0cos 3=-x x (B) x x x f c o s 3)(-=,0sin 3)(>+='x x f , ),(∞-∞∈x 时010c o s03)0(<-=-⨯=f ,01cos 31cos 13)1(>-=-⨯=f ∴ 方程(B) 有唯一根 ]1,0[*∈x (3)sin =--xex (C)xex -=sinx x f sin )(1=, xex f -=)(2方程(C)有无穷个正根,无负根 在[22,2πππ+k k ] 内有一根 )(1k x ,且0]2[lim )(1=-∞→πk x k k在[ππππ++k k 2,22]内有一根)(2k x ,且0])12([lim )(2=+-∞→πk x k k (示图如下) 3,2,1,0=k)(2x f x(4)02=--xex(D) xex-=2,)(21x x f = xex f -=)(2方程(D) 有唯一根 ]1,0[*∈x 当 0<x 时 (D)与方程2x ex -=- (E) 同解 当 0<x 时 (E)无根 2. 给定方程 012=--x x ; (1)(2)若在[0 , 2]上用二分法求根,要使精确度达到6位有效数,需二分几次? 解:012=--x x1) 01)(2=--=x x x f 1)1(-=f , 025.0)5.1(<-=f ,1)2(=f]2,5.1[*∈x, 618034.1251*=+=x)(5.1- 1.75(+) 2(+) )(5.1- 1.625(+) 1.75(+) )(5.1-1.5625(+) 1.625(+))(5625.1- )(59375.1-1.625(+)1102103125.02)5625.1625.1(-⨯<=-6.159375.1*≈≈x2位有效近似值为 1.6 2)00==a a , 20==b b)(21k k k b a c +=kk k a b c x 2121*=-≤-+5102121-⨯≤k,51102≥-k60.162ln 10ln 51=≥-k∴ 只要2等分18次3. 为求0353=--x x 的正根,试构造3种简单迭代格式,判断它们是否收敛,且选择一种较快的迭代格式求出具有3位有效数的近似根。
数值分析课后第二章习题解答
3
x n +1 = x n −
3 2 xn + 2 xn + 10 x n − 20 2 3 x n + 4 x n + 10
容易验证 f(1) f(2) < 0,故方程在[1,2]区间内至少有一根。取初值 x0=1,计算结果如下 1.4117647 1.3693364 1.3688081 1.3688081 取初值 x0=2,计算结果如下 1.4666666 1.3715120 1.3688102 1.3688081 取初值 x0=1.5,计算结果如下 1.3736263 1.3688148 1.3688081 由此可知,方程在区间[1,2]内有一根,其近似值为 x* ≈1.3688081 注:用 MATLAB 求多项式零点命令 roots([1 2 10 – 20 ])可得该方程的三个根近似值 x1 = -1.6844 + 3.4313i,x2 = -1.6844 - 3.4313i,x3 = 1.3688 3 2 8 已知方程 x – x – 1 = 0 在 x0 = 1.5 附近有根,试判断下列迭代格式的收敛性。 (1) x n +1 = 1 + 1 / x n ; (2) x n +1 = 1 /
6
x1=fi(x0); er=abs(x1-x0); x0=x1;k=k+1; end disp([x0,k]) 4 给出求 x n =
2 + 2 + L + 2 的迭代格式,并证明 lim x n = 2 。
n→∞
解 取初值: x1 =
2 ,迭代格式: x n +1 = 2 + x n
( n =1,2,…… )。
产生的迭代序列化简得1011解方程124用此迭代法求方程根的近似值误差不超过1034用迭代法计算得3564233920335413348333475103成立取方程根的近似值1016利用matlab绘图命令将33475附近不为零故迭代法是一阶收敛
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生《数值分析》课程作业(二)
姓名: 学号: 专业: 1、据如下函数值表,建立二次的Lagrange 插值多项式及Newton 插值多项式。
20012222()()()()()()()
(1)(2)(0)(2)(-0)(1)59
3143
(01)(02)(10)(12(20)(21)22
L x f x l x f x l x f x l x x x x x x x x x =++-----=⨯
+⨯+⨯=-+------解: 二次 l agr ange插值
)
Newton 插值多项式:
200100120122()()[,](-)[,,](-)(-)
5559
32(0)(0)(1)32()3
2222
N x f x f x x x x f x x x x x x x x x x x x x x x =++=-⨯-+--=-+-=-+ ()y f x =2、已知单调连续函数在如下采样点处的函数值
*()0[2,4],f x x =求方程在内根的近似值使误差尽可能小。
解:1
()()y f x x f y -==解:
对的反函数进行二次插值
1110201122012010210122021(0)(0)(0)(0)(0)(0)
(0)()
()()
()()()()()()
(0 2.25)(05)(03)(05)(03)(0 2.25)
2 3.54(
3 2.25)(35)(2.253)(2.255)(53)(5 2.25)
y y y y y y L f y f y f y y y y y y y y y y y y y ---------=++--------+-+-=⨯
+⨯+⨯
----+-+- 2.945
≈()(1)01(1)1()[,]()(,),()[,],()
()()()()
(1)!
,n n n n n n n n f x a b f x a b a x x x b L x x a b f R x f x L x x n a b x ξωξ+++≤<<<≤∈=-=+∈ 3、证明:设在上连续,在内存在,节点是满足拉格朗日插值条件的多项式,则对任何插值余项
这里()且依赖于。
0110101(0,1,,)()()0()()()()()()()()[,]()()()()()()()
(),,,(k n n k n n n n n n x k n R x R x R x K x x x x x x x K x x K x x x a b t f t L t K x t x t x t x t x x x x t ωφφφ+===---==----- 证由条件知节点是的零点,即。
于是其中是与有关的待定函数。
现把看成上的固定点,作函数
根据插值条件和余项定义,知在点及处均为零。
故明:1111)[,]2()[,]1()()[,]()(,)(,),()()(1)!()0
()()(,),(1)!
n n n n a b n t a b n t t a b n t a b a b f n K x f K x a b x
n φφφφξφξξξξ++++'+'''+∈=-+==∈+()
()
()()在上有个零点,根据罗尔定理,在内至少有个零点。
对再应用罗尔定理,可知在内至少
有个零点。
依次类推,在上至少有一个零点,记为
使
于是
,
且依赖于于是得到插值余项。
证毕。
44、试用数据表建立不超过次的埃尔米特插值多项式。
解:(用重节点的均差表建立埃尔米特多项式)
22322
2222232432432
()(0)[0,0](0)[0,0,1](0)[0,0,1,1](0)(1)
[0,0,1,1,2](0)(1)19
00(0)1(0)(1)(0)(1)(0)(1)4
19192127(2)4424H x f f x f x f x x f x x x x x x x x x x x x x x x x x
=+-+-+--+--=+⨯-+⨯-+-⨯--+
--=-++-+=-+。