2016辽宁铁道职业技术学院单招数学模拟试题(附答案解析)
2016南京铁道职业技术学院单招数学模拟试题及答案
![2016南京铁道职业技术学院单招数学模拟试题及答案](https://img.taocdn.com/s3/m/f96c7567f56527d3240c844769eae009581ba2c2.png)
2016南京铁道职业技术学院单招数学模拟试题及答案考单招——上⾼职单招⽹2016南京铁道职业技术学院单招数学模拟试题及答案⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,`只有⼀项是符合题⽬要求的.1.设集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(C U B)的充要条件是A.m>1-且n<5B.m<-1且n<5C.m>-1且n>5D.m<-1且n>52.已知cos31°=m,则sin239°·tan149°的值是A. B. C. D.-3.若a、b、c是互不相等的实数,且a、b、c成等差数列,c、a、b成等⽐数列,则a:b:c等于A.(-2)∶1∶4B.1∶2∶3C.2∶3∶4D.(-1) ∶1∶34.若直线mx+2ny-4=0(m,n∈R)始终平分圆x2+y2-4x-2y-4=0的周长,则m·n的取值范围是A.(0,1)B.(0,1]C.(-∞,1)D.(-∞,1]5. 设函数f(x)=1og a x(a>0且a≠1),若f(x1·x2·x3·…·x2006)=50,则f(x12)+f(x)+f(x)+…+f(x)的值等于A.2500B.50C.100D.2log6. 设z∈C,z=(1-i)2+,则(1+z)7展开式的第5项是A.35iB.-21iC.21D.35考单招——上⾼职单招⽹7. 在正⽅体ABCD-A1B1C1D1中,E、F分别在A1D、AC上,且A1E=A1D,AF=AC,则A.EF⾄多与A1D、AC之⼀垂直B.EF是A1D、AC公垂线C.EF与BD1相交D.EF与BD1异⾯8. ⼝袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ζ表⽰取出的球的最⼤号码,则Eζ等于A.4B.5C.4.5D.4.759.若x∈R,n∈N*,定义: =x(x+1)(x+2)…(x+n-1),例如M3-5=(-5)·(-4)(-3)=-60,则函数f(x)=M7x-3cosA.是偶函数不是奇函数B.是奇函数不是偶函数C.既是奇函数⼜是偶函数D.既不是奇函数也不是偶函数10.已知椭圆的离⼼率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的⼀个交点,若e|PF2|=|PF1|,则e的值为A. B. C. D.以上均不对11.函数f(x)=ax3+bx2-2x(a、b∈R,且ab≠0)的图像如图所⽰,且x1+x2<0,则有A.a>0,b>0B.a<0,b<0C.a<0,b>0D.a>0,b<012.⼀机器狗每秒钟前进或后退⼀步,程序设计师让机器狗以前进3步,再后退2步的规律移动,如果将此机器狗放在数轴的原点,⾯向正⽅向,以⼀步的距离为⼀个单位长,令P(n)表⽰第n秒时机考单招——上⾼职单招⽹器狗所在位置的坐标,且P(0)=0,那么下列结论中错误的是 A. P (3)=3B. P (5)=1C. P (101)=21D.P(103)t第Ⅱ卷(⾮选择题,共90分)⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分,把答案填在题中横线上.13.已知在整数集合内,关于x的不等式2x2-4<22(x-a)的解集为{1},则实数a的取值范围是_________.14.若半径为R的球与正三棱柱的各个⾯相切,则球与正三棱柱的体积⽐是________.15.把座位编号分别为1,2,3,4,5,6的六张电影票全部分给甲、⼄、丙、丁四⼈,每⼈⾄少分1张,⾄多分两张,且分得两张票必须是连号的,那么不同的分法种数是_________.16.已知x∈N*,f(x)= ,其值域设为D,给出下列数值:-26,-1,9,14,27,65,则其中属于集合D的元素是_________.(写出所有可能的数值)三、解答题:本⼤题共6⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤.17.(本⼩题满分12分)已知向量m=(1,1),向量n与向量m的夹⾓为,且m·n=-1.(1)求向量n;(2)设向量a=(1,0),向量b=(cos x,2cos2()),其中0n·a=0,试求|n+b|的取值范围.18.(本⼩题12分)设函数f(x)=的图像关于原点对称,f(x)的图像在点P(1,m)处的切线的斜率为-6,且当x=2时f(x)有极值.(1)求a、b、c、d的值;(2)若x1、x2∈[-1,1],求证:|f(x1)-f(x2)≤|.19.(本⼩题满分12分)新上海商业城位于浦东陆家嘴⾦融贸易区中⼼地带,它由第⼀⼋佰伴、时代⼴场等18幢⾼层商厦,10000平⽅⽶中⼼茶园,九座天桥以及600⽶长的环形步⾏街有机组成,是⼀座集购物、餐饮、娱乐、休闲、办公于⼀体的综合性、多功能的现代化商城,其中某⼀新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场⽇营业额(指每卖出商品所收到的总⾦额)为60万元,根据经验,各部商品第1万元营业额所售货员⼈数如表1,每1万元营业额所得利润如表2,商场将计划⽇营业额分配给三个经营部,同时适当安排各部的营业员⼈数,若商场预计每⽇的总利润为c(19≤c≤19.7)万元,商场分配给经营部的⽇营业额为正整数万元,问这个商场怎样分配⽇营业给三个经营部?各部分别安排多少名售货员?表1 各部每1万元营业额所需⼈数表表2 各部每1万考单招——上⾼职单招⽹元额所得利润表部门⼈数部门利润百货部5百货部0.3万元服装部4服装部0.5万元家电部2家电部0.2万元20.(本⼩题满分12分)如图,正⽅形A1BA2C的边长为4,D是A1B的中点,E是BA2上的点,将△A1DC及△A2EC分别沿DC和EC折起,使A1、A2重合于A,且⼆⾯⾓A—DC—E为直⼆⾯⾓.(1)求证:CD⊥DE;(2)求AE与⾯DEC所成⾓的正弦值;(3)求点D到平⾯AEC的距离.考单招——上⾼职单招⽹21.(本⼩题满分12分)如图,P是以F1、F2为焦点的双曲线C:上的⼀点,已知(1)求双曲线的离⼼率e;(2)过点P作直线分别与双曲线的两渐近线相交于P1,P2两点,若==0求双曲线C的⽅程.22.(本⼩题满分14分)已知正项数列{a n}和{b n}中,a1=a(0a n=a n-1b n,b n=.(1)证明:对任意n∈N*,有a n+b n=1;(2)求数列{a n}的通项公式;(3)记c n=a为数列{c n}的前n项和,求S n的值.参考答案考单招——上⾼职单招⽹⼀、1.A 2.B 3.A 4.D 5.C 6.D 7.B 8.C 9.B 10.C11.A 12.D⼆、13.2≤a<14.15.144 16.-26,14,65三、17.(1)令n=(x,y),则即,故n=(-1,0)或n=(0,-1)(2)∵a=(1,0)n·a=0 ∴n=(0,-1) n+b=故=1+=1+=1+∵0则-1≤cos18.(1)∵y=f(x)的图像关于原点对称,∴由f(-x)=-f(x)恒成⽴有b=d=0.则f(x)=⼜∵f‘(1)=-6,f‘(2)=0∴故a=2,b=0,c=0,d=0.考单招——上⾼职单招⽹(2)∵f(x)=f(x)<0,f(x)在[-1,1]上递减⽽x1∈[-1,1]∴f(1)≤f(-1) 即同理可得|f(x2)|≤故。
辽宁铁道职业技术学院单招数学模拟试题(附答案解析)
![辽宁铁道职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/d2420e1949649b6649d74795.png)
辽宁铁道职业技术学院单招数学模拟试题(附答案解析) 一、本题共小题,每小题分,共分,在每小题给出的四个选项中只有一个选项是符合题目要求的..(文)已知命题甲为>;命题乙为,那么().甲是乙的充分非必要条件.甲是乙的必要非充分条件.甲是乙的充要条件.甲既不是乙的充分条件,也不是乙的必要条件(理)已知两条直线∶++=,直线∶++=,则=是直线的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.(文)下列函数中,周期为的奇函数是()....(理)方程(是参数,)表示的曲线的对称轴的方程是().....在复平面中,已知点(,),(,),(,),(,).给出下面的结论:①直线与直线平行;②;③;④.其中正确结论的个数是().个.个.个.个.(文)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为∶,则锥体被截面所分成的两部分的体积之比为().∶.∶.∶.∶(理)已知数列的通项公式是,其中、均为正常数,那么与的大小关系是()....与的取值相关.(文)将张互不相同的彩色照片与张互不相同的黑白照片排成一排,任何两张黑白照片都不相邻的不同排法的种数是()....(理)某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表市场供给量表市场需求量().(,)内.(,)内.(,)内.(,)内.椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为().....若曲线在点处的切线平行于直线=,则点的坐标为().(,).(,).(,).(,).已知函数是上的偶函数,且在(∞,上是减函数,若,则实数的取值范围是().≤.≤或≥.≥.≤≤.如图,、分别是三棱锥的棱、的中点,=,=,=,则异面直线与所成的角为().°.°.°.°.圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是().....双曲线的虚轴长为,离心率,、分别是它的左、右焦点,若过的直线与双曲线的右支交于、两点,且是的等差中项,则等于()......如图,在正方形中,、、、是各边中点,是正方形中心,在、、、、、、、、这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有().个.个.个.个二、填空题:本题共小题,共分,把答案填在题中的横线上.若是数列的前项的和,,则..若、满足则的最大值为..有、、、、五名学生参加网页设计竞赛,决出了第一到第五的名次,、两位同学去问成绩,教师对说:“你没能得第一名”.又对说:“你得了第三名”.从这个问题分析,这五人的名次排列共有种可能(用数字作答)..若对个向量,…,存在个不全为零的实数,,…,,使得成立,则称向量,,…,为“线性相关”.依此规定,能说明(,),(,),(,)“线性相关”的实数,,依次可以取(写出一组数值即中,不必考虑所有情况).三、解答题:本大题共小题,共分,解答应写出文字说明,证明过程或演算步骤..(分)已知,求的值..(分)已知等比数列的公比为,前项的和为,且,,成等差数列.()求的值;()求证:,,成等差数列..(分)一个口袋中装有大小相同的个白球和个黑球.()从中摸出两个球,求两球恰好颜色不同的概率;()从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.注意:考生在(甲)、(乙)两题中选一题作答,如果两题都答,只以(甲)计分.甲.(分)如图,正三棱柱的底面边长为,点在边上,△是以点为直角顶点的等腰直角三角形.()求证点为边的中点;()求点到平面的距离;()求二面角的大小.乙.(分)如图,直三棱柱中,底面是以∠为直角的等腰直角三角形,=,=,为的中点,为的中点.()求直线与所成的角;()在线段上是否存在点,使⊥平面,若存在,求出;若不存在,说明理由..(分)已知双曲线:(>,>),是右顶点,是右焦点,点在轴正半轴上,且满足、、成等比数列,过作双曲线在第一、第三象限的渐近线的垂线,垂足为.()求证:;()若与双曲线的左、右两支分别相交于点、,求双曲线的离心率的取值范围..(分)设函数,,且方程有实根.()证明:<≤且≥;()若是方程的一个实根,判断的正负并加以证明.参考答案.(文)(理).(文)(理)..(文)(理).(文)(理)...........只要写出,,(≠)中一组即可,如,,等.解析:..解析:()由,,成等差数列,得,若=,则,,由≠得,与题意不符,所以≠.由,得.整理,得,由≠,,得.()由()知:,,所以,,成等差数列..解析:()记“摸出两个球,两球恰好颜色不同”为,摸出两个球共有方法种,其中,两球一白一黑有种.∴.()法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为,摸出一球得白球的概率为,摸出一球得黑球的概率为,∴()=×++×=法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.∴∴“有放回摸两次,颜色不同”的概率为..解析:(甲)()∵△为以点为直角顶点的等腰直角三角形,∴且.∵正三棱柱,∴底面.∴在底面内的射影为,⊥.∵底面为边长为的正三角形,∴点为边的中点.()过点作⊥,由()知⊥且⊥,∴⊥平面∵在平面内,∴⊥,∴⊥平面,由()知,,且.∴.∴.∴点到平面的距离为底面边长为.()过点作⊥于,连,∵⊥平面,∴为在平面内的射影,∴⊥,∠是二面角的平面角.在直角三角形中,,,∴∠=°,∴二面角的大小为°(乙)解:()以为原点,建立如图所示的空间直角坐标系.∵=,∠=°,∴.∴(,,),(,,),(,,),(,,),(,,),(,,).∴,,,,,,∴,,,,,.∴,,∴,∴.故与所成的角为.()假设存在点,要使⊥平面,只要且.不妨设=,则(,,),,,,,,,,,,∵,∴恒成立.或,故当或时,平面..解析:()法一::,解得,.∵、、成等比数列,∴,∴,,,,,∴,.∴--法二:同上得,.∴⊥轴..∴.()∴.即,∵,∴,即,.∴,即..解析:().又<<,故方程()+=有实根,即有实根,故△=即或又<<,得<≤,由知.(),.∴<<∴.∴.∴的符号为正.--。
2016辽宁装备制造职业技术学院单招数学模拟试题(附答案解析)
![2016辽宁装备制造职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/53c2502683c4bb4cf7ecd187.png)
考单招——上高职单招网2016辽宁装备制造职业技术学院单招数学模拟试题(附答案解析)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.(理)全集设为U,P、S、T均为U的子集,若()=()则()A.B.P=T=SC.T=U D.=T(文)设集合,,若U=R,且,则实数m的取值范围是()A.m<2B.m≥2C.m≤2D.m≤2或m≤-42.(理)复数()A.B.C.D.(文)点M(8,-10),按a平移后的对应点的坐标是(-7,4),则a=()A.(1,-6)B.(-15,14)C.(-15,-14)D.(15,-14)3.已知数列前n项和为,则的值是()A.13B.-76 C.46D.76考单招——上高职单招网4.若函数的递减区间为(,),则a的取值范围是()A.a>0B.-1<a<0C.a>1D.0<a<15.与命题“若则”的等价的命题是()A.若,则B.若,则C.若,则D.若,则6.(理)在正方体中,M,N分别为棱和之中点,则sin (,)的值为()A.B.C.D.(文)已知三棱锥S-ABC中,SA,SB,SC两两互相垂直,底面ABC上一点P到三个面SAB,SAC,SBC的距离分别为,1,,则PS的长度为()A.9B.C.D.37.在含有30个个体的总体中,抽取一个容量为5的样本,则个体a被抽到的概率为()A.B.C.D.8.(理)已知抛物线C:与经过A(0,1),B(2,3)两点的线段AB有公共点,则m的取值范围是()A.,[3,B.[3,C.,D.[-1,3]考单招——上高职单招网(文)设,则函数的图像在x轴上方的充要条件是()A.-1<x<1B.x<-1或x>1C.x<1D.-1<x<1或x<-19.若直线y=kx+2与双曲线的右支交于不同的两点,则k的取值范围是()A.,B.,C.,D.,10.a,b,c(0,+∞)且表示线段长度,则a,b,c能构成锐角三角形的充要条件是()A.B.C.D.11.今有命题p、q,若命题S为“p且q”则“或”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(理)函数的值域是()A.[1,2]B.[0,2]C.(0,D.,(文)函数与图像关于直线x-y=0对称,则的单调增区间是()A.(0,2)B.(-2,0)考单招——上高职单招网C.(0,+∞)D.(-∞,0)二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.等比数列的前n项和为,且某连续三项正好为等差数列中的第1,5,6项,则________.14.若,则k=________.15.有30个顶点的凸多面体,它的各面多边形内角总和是________.16.长为l0<l<1的线段AB的两个端点在抛物线上滑动,则线段AB中点M到x轴距离的最小值是________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)从一批含有13只正品,2只次品的产品中不放回地抽取3次,每次抽取一只,设抽得次品数为.(1)求的分布列;(2)求E(5-1).18.(12分)如图,在正三棱柱中,M,N分别为,BC之中点.考单招——上高职单招网(1)试求,使.(2)在(1)条件下,求二面角的大小.19.(12分)某森林出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.问应该派多少消防队员前去救火,才能使总损失最少?20.(12分)线段,BC中点为M,点A与B,C两点的距离之和为6,设,.(1)求的函数表达式及函数的定义域;(2)(理)设,试求d的取值范围;(文)求y的取值范围.21.(12分)定义在(-1,1)上的函数,(i)对任意x,(-1,1)都有:;(ii)当(-1,0)时,,回答下列问题.(1)判断在(-1,1)上的奇偶性,并说明理由.(2)判断函数在(0,1)上的单调性,并说明理由.考单招——上高职单招网(3)(理)若,试求的值.22.(14分)(理)已知O为△ABC所在平面外一点,且a,b,c,OA,OB,OC两两互相垂直,H为△ABC的垂心,试用a,b,c表示.(文)直线l∶y=ax+1与双曲线C∶相交于A,B两点.(1)a为何值时,以AB为直径的圆过原点;(2)是否存在这样的实数a,使A,B关于直线x-2y=0对称,若存在,求a的值,若不存在,说明理由.参考答案1.(理)A(文)B2.(理)B(文)B3.B4.A5.D6.(理)B(文)D7.B8.(理)C(文)D9.D10.D11.C12.(理)A(文)A13.1或014.15.10080°16.17.解析:(1)的分布如下(2)由(1)知.考单招——上高职单招网∴.18.解析:(1)以点为坐标原点,所在直线为x轴,所在直线为z 轴,建立空间直角坐标系,设,(a,(0,+∞).∵三棱柱为正三棱柱,则,B,,C的坐标分别为:(b,0,0),,,,,,,(0,0,a).∴,,,,,.(2)在(1)条件下,不妨设b=2,则,又A,M,N坐标分别为(b,0,a),(,,0),(,,a).∴,.∴同理.∴△与△均为以为底边的等腰三角形,取中点为P,则,为二面角的平面角,而点P坐标为(1,0,),∴,,.同理,,.∴.考单招——上高职单招网∴∠NPM=90°二面角的大小等于90°.19.解析:设派x名消防员前去救火,用t分钟将火扑灭,总损失为y,则y=灭火劳务津贴+车辆、器械装备费+森林损失费=125tx+100x+60(500+100t)===当且仅当,即x=27时,y有最小值36450.故应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.20.解析:(1)当A、B、C三点不共线时,由三角形中线性质知;当A,B,C三点共线时,由在线段BC外侧,由或x=5,因此,当x=1或x=5时,有,同时也满足:.当A、B、C不共线时,考单招——上高职单招网定义域为[1,5].(2)(理)∵.∴d=y+x-1=.令t=x-3,由,,两边对t求导得:关于t在[-2,2]上单调增.∴当t=2时,=3,此时x=1.当t=2时,=7.此时x=5.故d的取值范围为[3,7].(文)由且,,∴当x=3时,.当x=1或5时,.∴y的取值范围为[,3].21.解析:(1)令,令y=-x,则在(-1,1)上是奇函数.(2)设,则,而,.即当时,.∴f(x)在(0,1)上单调递减.(3)(理)由于,考单招——上高职单招网,,∴.22.解析:(理)由平面,连AH并延长并BC于M.则由H为△ABC的垂心.∴AM⊥BC.于是BC⊥平面OAH OH⊥BC.同理可证:平面ABC.又,,是空间中三个不共面的向量,由向量基本定理知,存在三个实数,,使得=a+b+c.由且==0b=c,同理.∴.①又AH⊥OH,∴=0②联立①及②,得③又由①,得,,,代入③得:,,,考单招——上高职单招网其中,于是.(文)(1)联立方程ax+1=y与,消去y得:(*)又直线与双曲线相交于A,B两点,∴.又依题OA⊥OB,令A,B两点坐标分别为(,),(,),则.且,而由方程(*)知:,代入上式得.满足条件.(2)假设这样的点A,B存在,则l:y=ax+1斜率a=-2.又AB中点,在上,则,又,代入上式知这与矛盾.故这样的实数a不存在.。
2016年哈尔滨铁道职业技术学院单招数学模拟考试题[卷][附的答案解析]
![2016年哈尔滨铁道职业技术学院单招数学模拟考试题[卷][附的答案解析]](https://img.taocdn.com/s3/m/4dbb188c69dc5022aaea0078.png)
2016哈尔滨铁道职业技术学院单招数学模拟试题(附答案)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M 为( ) A.{}01,B.{}2345,,,C.{}02345,,,,D.{}12345,,,,2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.πD.2π3.函数1()lg 4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,,4.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( )A.2-B.1-C.1D.26.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1D.328.若π02x <<,则下列命题正确的是( ) A.2sin πx x <B.2sin πx x >C.3sin πx x <D.3sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AD =A B ,间的球面距离是( )A.π6B.π3C.2π3D.5π610.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >> C.324h h h >>D.241h h h >>12.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y f x -=的图象必经过点.16.如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩ ≤满足29()8f c =.(1)求常数c 的值;(2)解不等式()18f x >+.18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求AB 与平面11AAC C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥;(2)求和:212321232n nn T a a a a =-+--. 22.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A B ,两点.问:是否存在λ,使1F AB △是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得,当102x <<12x <<, 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===.(2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA 的中点,02y =所以点P 的坐标为0π22x ⎛- ⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-=⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =. 19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,,则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20. 解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C . 连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为BH =,AB =sin BH BAH AB ==∠.AB 与面11AAC C 所成的角为arcsin10BAH =∠.(3)因为2BH =,所以222213B AAC C AA C C V S BH -=.1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C . (2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,10m AB AB m AB>==-则sin θ=所以AB 与面11AAC C 所成的角为arcsin 10. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =.(2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n nn nT --=-+-++-,…………② +①②得:2232124111121333333n n nn T -=-+-+-- 2211231313n n n -=-+ 22333843n nn --= 所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d dd d d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F 为焦点,实轴长2a =方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,(01)λ=,故存在1217λ-=方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AF FS AF AF λ==△,121212BF F S BF BF λ==△.则1(2AF B S λ=△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==+△.②由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d = 平方得:221)4(1)d λ=-.④ 由③④消去d 可解得,12(01)17λ-=∈,完美格式整理版范文范例参考故存在1217λ-=。
高职大专单独招生考试数学题库与参考答案
![高职大专单独招生考试数学题库与参考答案](https://img.taocdn.com/s3/m/53d14010fd4ffe4733687e21af45b307e871f99b.png)
2021年辽宁职业学院单独招生考试数 学 模 拟 题一、选择题(共15题,每题3分,计45分)在A 、B 、C 三个答案中选择一个正确答案,把答案序号填在括号里1、若集合{}c b a S ,,=,则 ( A )A. S a ∈B. S b ∉C. S d ∈2、=︒60 弧度 ( A )A.3π B. 2πC. 6π3、等差数列{}n a 中,51-=a ,12-=a ,则=3a ( A ) A. 3 B. 8 C. 94、3sinπ的值是 ( C )A.21 B. 22 C. 235、=81log 3 ( C ) A. 2 B. 3 C. 46、已知:0tan <α,0cos >α则角α是 ( C ) A. 第三象限角 B. 第二象限角 C. 第四象限角7、直线5+-=x y 的倾斜角为 ( A )A.43π B. 3π C. 6π8、实数1与16的等比中项为 ( B )A . 4- B. 4± C. 49、已知正方体的边长是4,则正方体的体积为 ( A )A. 64B. 8C. 2710、已知角A 为第二象限角,53sin =A ,则=A cos ( C ) A. 52- B. 53- C. 54-11、不等式3≥x 的解集是 ( B )A. {}3-≤x xB. {}33≥-≤x x x 或 C. {}3≥x x12、下列函数为奇函数的是 ( B ) A. 4x y = B. 31x y =C. 54+=x y 13、设431)(+=x x f ,则)35(f = ( C )A. 2B. 1C.3114、若角α终边上一点)5,12(-P ,则αtan 的值为 ( B )A. 1312-B. 125- C. 135- 15、若函数x y -=2,则其定义域为 ( C )A. [)+∞-,2B. [)+∞,2C. (]2,∞-二、填空题(共10题,每题4分,计40分)把正确答案填在横线上1、{}2,1-{}=2,1 {}2 2、数列 6,1,4-的前五项和为 303、函数⎪⎭⎫ ⎝⎛-=621cos πx y 的最小正周期是 π44、若5log 2=x ,则=x 325、已知:2tan =α,则ααtan 61tan ++= 83 6、在︒0~︒360之间,与︒400角终边相同的角是 407、若复数i z 53+-=,则复数的虚部为 58、若圆的标准方程为16)1(22=++y x ,则圆面积为 π169、数列, (161),91,41,11的第n 项为 21n10、函数542-+=x x y 的图像与x 轴的交点坐标是 ()()0,1,0,5-三、解答题(共2题,计15分)1、(7分)已知:设全集为实数集R ,{}71<<-=x x A ,{}2≥=x x B ,{}4≤=x x C 求:B A ;B A ;C B A 解:{}72<≤=x x B A{}1->=x x B A {}42≤≤=x x C B A2、(8分)已知:等差数列3-,2,7,.......求:(1)公差d ;(2)通项公式n a ;(3)第8项8a ;(4)前8项的和8S 解:(1)5=d(2)85)1(1-=-+=n d n a a n (3)把8=n 代入(1)得328=a (4)1162)323(82)(8818=+-=+=a a s。
2016辽宁职业学院单招数学模拟试题(附答案解析)
![2016辽宁职业学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/3e8bdbe4b7360b4c2f3f647c.png)
2016辽宁职业学院单招数学模拟试题(附答案解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知抛物线,则它的焦点坐标是A. B. C. D.2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y= -x2,值域为{—1,—9}的“同族函数”共有A.8个B.9个C.10个D.12个3.下表是某班数学单元测试的成绩单:学号123 (484950)成绩135128135 (1089497)全部同学的学号组成集合A,其相应的数学分数组成集合B,集合A中的每个学号与其分数相对应.下列说法:①这种对应是从集合A到集合B的映射;②从集合A到集合B的对应是函数;③数学成绩按学号的顺序排列:135 ,128 ,135 ,…,108 ,94 ,97组成一个数列.以上说法正确的是A.①② B.①③ C.②③ D.①②③4.已知x=a+错误!(a>2),y=(错误!)(b<0) ,则x,y之间的大小关系是A.x>y B.x<y C.x=y D.不能确定5.已知A是三角形的内角,且sin A+cos A=,则cos2A等于A. B.- C. D.-6.已知二面角的大小为,和是两条异面直线,则在下列四个条件中,能使和所成的角为的是A.∥,∥ B.∥,C. D. ,∥7.已知函数反函数为,若,则最小值为A. 1 B.C. D.8.下图是某企业2000年至2003年四年来关于生产销售的一张统计图表(注: 利润=销售额-生产成本). 对这四年有以下几种说法:(1)该企业的利润逐年提高;(2) 2000年-2001年该企业销售额增长率最快;(3) 2001年—2002年该企业生产成本增长率最快;(4) 2002年—2003年该企业利润增长幅度比2000年—2001年利润增长幅度大.其中说法正确的是A。
(1)(2)(3) B。
2016年辽宁高职单招数学模拟题
![2016年辽宁高职单招数学模拟题](https://img.taocdn.com/s3/m/a755f8c680eb6294dd886c58.png)
A.−1 B.−2 C.2 D. 4
第23题:
第24题:log29×log34=()
第25题:
A.关于原点对称B.关于x轴对称
C.关于y轴对称D.关于直线y=x对称
第12题:
A.-3 B.3 C.-2 D.2第13题:
A.1 B.2 C.3 D.4
第14题:下列函数中,在区间(0,+∞)内为增函数的是( ).
第15题:
第16题:
A.−297 B.−252 C.297 D.207
第17题:直线y=−2x+1在y轴上的截距是( ).
A.0 B.1 C.−1 D.0.5
第18题:从数字1,2,3,4,5中随机抽取两个数字(不允许重复),那么这两个数字的和是奇数的概率为()
第19题:
第20题:抛物线y=ax²(a<0)的焦点坐标为( ).
第21题:若U={1,2,3,4},M={1,2},N={2,3},则CU(M∪N)=()
A. {4} B. { 1,2} C. {1,2,3} D.{3,4}
同时掷两枚骰子,所得点数之和为5的概率为()
第4题:
第5题:过点(−1,2)且与直线2x−3y+4=0垂直的直线方程是()
A.3x+2y-1=0 B.3x+2y+7=0 C.2x-3y+5=0 D.2x-3y+8=0
第6题:已知集合A={x│x>2},B={x│0<x<4},则A∪B=()
A.{x│2<x<4}B.{x│0<x<2}C.{x│x>0}D.{x│x>4}
辽宁铁道职业技术学院单招数学模拟试题(附答案解析)
![辽宁铁道职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/3c19b18626fff705cc170a97.png)
2016辽宁铁道职业技术学院单招数学模拟试题(附答案解析)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.(文)已知命题甲为x>0;命题乙为,那么()A.甲是乙的充分非必要条件B.甲是乙的必要非充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件(理)已知两条直线∶ax+by+c=0,直线∶mx+ny+p=0,则an=bm是直线的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(文)下列函数中,周期为的奇函数是()A.B.C.D.(理)方程(t是参数,)表示的曲线的对称轴的方程是()A.B.C.D.3.在复平面中,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:①直线OC与直线BA平行;②;③;④.其中正确结论的个数是()A.1个B.2个C.3个D.4个4.(文)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶B.1∶9C.1∶D.1∶(理)已知数列的通项公式是,其中a、b均为正常数,那么与的大小关系是()A.B.C.D.与n的取值相关5.(文)将4张互不相同的彩色照片与3张互不相同的黑白照片排成一排,任何两张黑白照片都不相邻的不同排法的种数是()A.B.C.D.(理)某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量表2市场需求量()A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内6.椭圆的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C.2D.47.若曲线在点P处的切线平行于直线3x-y=0,则点P的坐标为()A.(1,3)B.(-1,3)C.(1,0)D.(-1,0)8.已知函数是R上的偶函数,且在(-∞,上是减函数,若,则实数a的取值范围是()A.a≤2B.a≤-2或a≥2C.a≥-2 D.-2≤a≤29.如图,E、F分别是三棱锥P-ABC的棱AP、BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为()A.60°B.45°C.0°D.120°10.圆心在抛物线上,并且与抛物线的准线及x轴都相切的圆的方程是()A.B.C.D.11.双曲线的虚轴长为4,离心率,、分别是它的左、右焦点,若过的直线与双曲线的右支交于A、B两点,且是的等差中项,则等于()A.B.C.D.8.12.如图,在正方形ABCD中,E、F、G、H是各边中点,O是正方形中心,在A、E、B、F、C、G、D、H、O这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有()A.6个B.7个C.8个D.9个二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.若是数列的前n项的和,,则________.14.若x、y满足则的最大值为________.15.有A、B、C、D、E五名学生参加网页设计竞赛,决出了第一到第五的名次,A、B两位同学去问成绩,教师对A说:“你没能得第一名”.又对B说:“你得了第三名”.从这个问题分析,这五人的名次排列共有________种可能(用数字作答).16.若对n个向量,…,存在n个不全为零的实数,,…,,使得成立,则称向量,,…,为“线性相关”.依此规定,能说明(1,2),(1,-1),(2,2)“线性相关”的实数,,依次可以取________(写出一组数值即中,不必考虑所有情况).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(12分)已知,求的值.18.(12分)已知等比数列的公比为q,前n项的和为,且,,成等差数列.(1)求的值;(2)求证:,,成等差数列.19.(12分)一个口袋中装有大小相同的2个白球和3个黑球.(1)从中摸出两个球,求两球恰好颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.注意:考生在(20甲)、(20乙)两题中选一题作答,如果两题都答,只以(19甲)计分.20甲.(12分)如图,正三棱柱的底面边长为a,点M在边BC上,△是以点M为直角顶点的等腰直角三角形.(1)求证点M为边BC的中点;(2)求点C到平面的距离;(3)求二面角的大小.20乙.(12分)如图,直三棱柱中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,=3a,D为的中点,E为的中点.(1)求直线BE与所成的角;(2)在线段上是否存在点F,使CF⊥平面,若存在,求出;若不存在,说明理由.21.(12分)已知双曲线C:(a>0,b>0),B是右顶点,F是右焦点,点A在x轴正半轴上,且满足、、成等比数列,过F作双曲线C在第一、第三象限的渐近线的垂线l,垂足为P.(1)求证:;(2)若l与双曲线C的左、右两支分别相交于点D、E,求双曲线C的离心率e的取值范围.22.(14分)设函数,,且方程有实根.(1)证明:-3<c≤-1且b≥0;(2)若m是方程的一个实根,判断的正负并加以证明.参考答案1.(文)A(理)C2.(文)A(理)B3.C4.(文)D(理)B 5.(文)D(理)C6.A7.C8.B9.A10.D11.A12.C 13.3314.715.1816.只要写出-4c,2c,c(c≠0)中一组即可,如-4,2,1等17.解析:.18.解析:(1)由,,成等差数列,得,若q=1,则,,由≠0得,与题意不符,所以q≠1.由,得.整理,得,由q≠0,1,得.(2)由(1)知:,,所以,,成等差数列.19.解析:(1)记“摸出两个球,两球恰好颜色不同”为A,摸出两个球共有方法种,其中,两球一白一黑有种.∴.(2)法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为B,摸出一球得白球的概率为,摸出一球得黑球的概率为,∴P(B)=0.4×0.6+0.6+×0.4=0.48法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.∴∴“有放回摸两次,颜色不同”的概率为.20.解析:(甲)(1)∵△为以点M为直角顶点的等腰直角三角形,∴且.∵正三棱柱,∴底面ABC.∴在底面内的射影为CM,AM⊥CM.∵底面ABC为边长为a的正三角形,∴点M为BC边的中点.(2)过点C作CH⊥,由(1)知AM⊥且AM⊥CM,∴AM⊥平面∵CH在平面内,∴CH⊥AM,∴CH⊥平面,由(1)知,,且.∴.∴.∴点C到平面的距离为底面边长为.(3)过点C作CI⊥于I,连HI,∵CH⊥平面,∴HI为CI在平面内的射影,∴HI⊥,∠CIH是二面角的平面角.在直角三角形中,,,∴∠CIH=45°,∴二面角的大小为45°(乙)解:(1)以B为原点,建立如图所示的空间直角坐标系.∵AC=2a,∠ABC=90°,∴.∴B(0,0,0),C(0,,0),A(,0,0),(,0,3a),(0,,3a),(0,0,3a).∴,,,,,,∴,,,,,.∴,,∴,∴.故BE与所成的角为.(2)假设存在点F,要使CF⊥平面,只要且.不妨设AF=b,则F(,0,b),,,,,0,,,,,∵,∴恒成立.或,故当或2a时,平面.21.解析:(1)法一:l:,解得,.∵、、成等比数列,∴,∴,,,,,∴,.∴法二:同上得,.∴PA⊥x轴..∴.(2)∴.即,∵,∴,即,.∴,即.22.解析:(1).又c<b<1,故方程f(x)+1=0有实根,即有实根,故△=即或又c<b<1,得-3<c≤-1,由知.(2),.∴c<m<1∴.∴.∴的符号为正.。
(word完整版)2016辽宁铁道职业技术学院单招语文模拟试题及答案,推荐文档
![(word完整版)2016辽宁铁道职业技术学院单招语文模拟试题及答案,推荐文档](https://img.taocdn.com/s3/m/bb6eb468e2bd960590c677cd.png)
考单招——上高职单招网2016辽宁铁道职业技术学院单招语文模拟试题及答案一、(18分,每小题3分)3、下列加点字读音完全正确的一项是()A、倩(qiàn)影杉(shā)木混(hùn)沌殒(yǔn)身不恤B、芜(wǔ)杂悄(qiāo)然嶙(lín)峋不可估量(liáng)C、埋(mái)怨孱(cán)弱眼眶(kuàng) 度(dù)长絜大D、上溯(sù) 啃噬(shì) 伺(sì)候怅望低徊(huái)4、下列词语书写完全正确的一项是()A、屠戳端倪发愤图强一蹋糊涂B、璀璨诀窍潸然泪下渡过难关C、梦魇傀儡大名顶顶祸起萧墙D、斟酌悖谬要言不繁焦燥不安3.下列句子标点符号使用正确的一项是()A、这一带在古代就是一个“少草木,多大沙”的地方。
(《汉书•匈奴传》)B、然而她是从四叔家出去就成了乞丐的呢?还是先到卫老婆子家然后再成乞丐的呢?那我可不知道。
C、宋祁《木兰花》一词中“红杏枝头春意闹”一句历来是炼字的典型,作者用一闹字给人以丰富的联想,把一派春意盎然、生机勃勃的景色表现得淋漓尽致。
D、实在,虽然我们埋葬了别里科夫,可是这种装在套子里的人,却还有许多,将来也还不知道有多少呢!4、依次填入下列各句横线处的词语,恰当的一组是()①足见有感觉的动物,有的人类,对于秋,总是一样的能特别引起深沉,,严厉,萧索的感触来的。
考单招——上高职单招网②眼下有许多青年在结婚前先做好财产公证,专业人士认为,这样做是青年意识强的表现。
③小说《呼啸山庄》的各章各篇都着一种神秘的气氛。
A、情致幽远法治贯穿B、情趣幽远法制贯串C、情趣幽怨法制贯穿D、情致幽怨法治贯串5、下列各句中加点成语使用正确的一项是()A、对社会观察的深刻,往往使他独抒新见,入木三分。
B、要不然,则当佳节大典之际,他们拿不出东西,只好磕头贺喜,讨一点残羹冷炙作奖赏。
2016辽宁轨道交通职业学院单招数学模拟试题附答案解析
![2016辽宁轨道交通职业学院单招数学模拟试题附答案解析](https://img.taocdn.com/s3/m/2ced0d8a0b4c2e3f562763aa.png)
2016辽宁轨道交通职业学院单招数学模拟试题(附答案解析)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
,若且1.已知集合则()C.D.A.B..函数的反函数的图象是()2,则成立的一个充分不必要的条件是()3.若D. C. A.B..实数,则4满足的值为().与或-8 Dθ有关8.-8 A.B8 C.在棱BCDA.如图,正三棱锥—中,点E在棱上,点F AB5为异面α,其中CD上,并使,设所成的角,BD与EF为异面直线所成的角,AC与直线EFβ的值为()则α+β.B .A有关的变量.与C.D轴的直线与F且垂直于x的左,右焦点,过,F分别双曲线F6.已知点112,的范围是ABF是锐角三角形,则该双曲线的离心率双曲交于A e B两点,若△2()-11,)B1 A.(,+∞).(1,1+)D.(C.(),有.函数7与x有相同的定义域,且对定义域中任何)(g,若(x)=1的解集是{x|x=0},则函数Fx是()= B.偶函数A .奇函数D.非奇非偶函数C .既是奇函数又是偶函数.在轴截面是直角三角形的圆锥内,有一个体积最大的内接圆柱,则内接圆柱的体积8 与圆锥的体积的比值是()..D A.B.C-14n2+…+2q,则p,q=5p+q,其中为非负整数,且1+2+2且∈Nn≥2时,0≤q <5.当9n的值为() A.0B.2C.2D.与n有关的P,C交曲线于不同两点PP,线段22P作直线.过曲线10C:x+ay=a外一点Ml22111的值为(),则a点和坐标原点l中点为P,直线过PO,若ll⊥212A.1.无法确定.-C1 D2B.4sinA+2cosB=1,2sinB+4cosA=311ABC.在△中,如果C则,∠的大小是()120°或60°.D150°或30°.C 150°.B 30°.Aa.若函数的图象如图,则12 的取值范围是()),0∞,-1)B.(-1 A.(-+∞)1)D.(1,C.(0,)卷(非选择题第Ⅱ分,把答案填在题中横线上。
2016包头铁道职业技术学院数学单招试题测试版(附答案解析)
![2016包头铁道职业技术学院数学单招试题测试版(附答案解析)](https://img.taocdn.com/s3/m/ad04d37eaf1ffc4ffe47ac57.png)
考单招——上高职单招网[时间:45分钟 分值:100分]基础热身1.数列{a n }:1,-58,715,-924,…的一个通项公式是( ) A .a n=(-1)n +12n -1n 2+n (n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n +12n -1n 2+2n(n ∈N +) D .a n=(-1)n -12n +1n 2+2n(n ∈N +) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .643.设数列{a n }的通项公式为a n =20-4n ,前n 项和为S n ,则S n 中最大的是( ) A .S 3 B .S 4或S 5 C .S 5 D .S 64.已知数列{a n }中,a 1=12,a n +1=1-1a n (n ∈N *),则a 16=________.能力提升5.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图K27-1).则第7个三角形数是( )图K27-1考单招——上高职单招网A.27 B.28C.29 D.306.已知S n是非零数列{a n}的前n项和,且S n=2a n-1,则S2 011等于() A.1-22 010 B.22 011-1C.22 010-1 D.1-22 0117.已知数列{a n},a1=2,a n+1=a n+2n(n∈N*),则a100的值是() A.9 900 B.9 902C.9 904 D.11 0008.已知数列{a n}中,a1=1,1a n+1=1a n+3(n∈N*),则a10=()A.28 B.33C.133 D.1289.已知数列{a n}的通项a n=nanb+c(a,b,c∈(0,+∞)),则a n与a n+1的大小关系是()A.a n>a n+1 B.a n<a n+1C.a n=a n+1 D.不能确定10.已知数列{a n}满足a1=2,且a n+1a n+a n+1-2a n=0(n∈N*),则a2=________;并归纳出数列{an}的通项公式a n=________.11.已知数列{a n}的前n项和S n=n2+2n-1,则a1+a3+a5+…+a25=________.12.若数列{a n}的前n项和S n=n2-10n(n=1,2,3,…),则数列{a n}的通项公式为________________________________________________________________________;数列{nan}中数值最小的项是第________项.考单招——上高职单招网13.若f(n)为n2+1(n∈N*)的各位数字之和,如62+1=37,f(6)=3+7=10.f1(n)=f(n),f2(n)=f(f1(n)),…,f k+1(n)=f(f k(n)),k∈N*,则f2013(4)=________.14.(10分)在2 011年10月1日的国庆阅兵式上,有n(n≥2)行、n+1列的步兵方阵.(1)写出一个数列,用它表示当n分别为2,3,4,5,6,…时方阵中的步兵人数;(2)说出(1)题中数列的第5、6项,并用a5,a6表示;(3)把(1)中的数列记为{a n},求该数列的通项公式a n=f(n);(4)已知a n=9900,问a n是第几项?此时步兵方阵有多少行、多少列?(5)画出a n=f(n)的图象,并利用图象说明方阵中步兵人数有可能是56,28吗?考单招——上高职单招网15.(13分)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的单调性;(3)当n ≥2时,T 2n +1-T n <15-712log a (a -1)恒成立,求a 的取值范围.难点突破16.(1)(6分若数列⎩⎨⎧⎭⎬⎫n (n +4)23n 中的最大项是第k 项,则k =________.(2)(6分)若数列{a n }满足:对任意的n ∈N *,只有有限个正整数m 使得a m <n 成立,记这样的m 的个数为(a n )*,则得到一个新数列{(a n )*}.例如,若数列{a n }是1,2,3,…,n ,…,则数列{(a n )*}是0,1,2,…,n -1,….已知对任意的n ∈N *,a n =n 2,则(a 5)*=________,((a n )*)*=________.考单招——上高职单招网参考答案【基础热身】1.D [解析] 观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.2.A [解析] 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,则a 8=2×8-1=15,故选A.3.B [解析] 由a n =20-4n ≥0得n ≤5,故当n >5时,a n <0,所以S 4或S 5最大,选B.4.12 [解析] 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,…,则此数列为周期数列,周期为3,故a 16=a 1=12.【能力提升】5.B [解析] 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28,故选B.6.B [解析] 当n =1时,S 1=2a 1-1,得S 1=a 1=1; 当n ≥2时,a n =S n -S n -1,代入S n =2a n -1,得 S n =2S n -1+1,即S n +1=2(S n -1+1),∴S n +1=(S 1+1)·2n -1=2n ,∴S 2011=22011-1,故选B. 7.B [解析] a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1 =2(99+98+…+2+1)+2 =2·99·(99+1)2+2=9902,故选B. 8.D [解析] 对递推式叠加得1a 10-1a 1=27,故a 10=128.考单招——上高职单招网9.B [解析] 把数列{a n }的通项化为a n =na nb +c =ab +cn,∵c >0,∴y =c n 是单调递减函数,又∵a >0,b >0,∴a n =ab +c n 为递增数列,因此a n <a n +1,故选B.10.43 2n 2n -1 [解析] 当n =1时,由递推公式,有a 2a 1+a 2-2a 1=0,得a 2=2a 1a 1+1=43; 同理a 3=2a 2a 2+1=87,a 4=2a 3a 3+1=1615,由此可归纳得出数列{a n }的通项公式为a n =2n2n -1. 11.350 [解析] 当n =1时,a 1=S 1=12+2-1=2, 当n ≥2时,a n =S n -S n -1=(n 2+2n -1)-[(n -1)2+2(n -1)-1]=2n +1,又a 1=2不适合上式,则数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2.所以a 1+a 3+a 5+…+a 25=(a 1+1)+a 3+a 5+…+a 25-1=(3+51)2×13-1=350.12.a n =2n -11 3 [解析] n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11;n =1时,a 1=S 1=-9符合上式. ∴数列{a n }的通项公式为a n =2n -11. ∴na n =2n 2-11n ,∴数列{na n }中数值最小的项是第3项.考单招——上高职单招网13.5 [解析] 因为42+1=17,f (4)=1+7=8,则f 1(4)=f (4)=8,f 2(4)=f (f 1(4))=f (8)=11,f 3(4)=f (f 2(4))=f (11)=5,f 4(4)=f (f 3(4))=f (5)=8,…,而2013=3×671, 故f 2013(4)=5.14.[解答] (1)该数列为6,12,20,30,42,…; (2)a 5=42,a 6=56; (3)a n =(n +1)(n +2)(n ∈N *);(4)由9900=(n +1)(n +2),解得n =98,a n 是第98项,此时步兵方阵有99行,100列;(5)f (n )=n 2+3n +2,如图,图象是分布在函数f (x )=x 2+3x +2上的孤立的点,由图可知,人数可能是56,不可能是28.15.[解答] (1)当n =1时,a 1=2, 当n ≥2时,a n =S n -S n -1=2n -1(n ≥2).∴数列{b n}的通项公式为b n=⎩⎨⎧23,n =1,1n ,n ≥2.(2)∵c n =T 2n +1-T n , ∴c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1,考单招——上高职单招网∴c n +1-c n =12n +2+12n +3-1n +1<0,∴数列{c n }是递减数列.(3)由(2)知,当n ≥2时c 2=13+14+15为最大,∴13+14+15<15-712log a (a -1)恒成立, ∴1<a <5+12. 【难点突破】16.(1)4 (2)2 n 2 [解析] (1)设最大项为第k 项,则有⎩⎨⎧k (k +4)⎝⎛⎭⎫23k ≥(k +1)(k +5)⎝⎛⎭⎫23k +1,k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,∴⎩⎪⎨⎪⎧ k 2≥10,k 2-2k -9≤0⇒⎩⎪⎨⎪⎧k ≥10或k ≤-10,1-10≤k ≤1+10⇒k =4.(2)本题以数列为背景,通过新定义考查学生自学能力、创新能力、探究能力,属于难题.因为a m <5,而a n =n 2,所以m =1,2,所以(a 5)*=2.因为(a 1)*=0,(a 2)*=1,(a 3)*=1,(a 4)*=1,(a 5)*=2,(a 6)*=2,(a 7)*=2,(a 8)*=2,(a 9)*=2,(a 10)*=3,(a 11)*=3,(a 12)*=3,(a 13)*=3,(a 14)*=3,(a 15)*=3,(a 16)*=3, 所以((a 1)*)*=1,((a 2)*)*=4,((a 3)*)*=9,((a 4)*)*=16, 猜想((a n )*)*=n 2.考单招——上高职单招网。
辽宁铁道职业技术学院单招数学模拟试题(附答案解析)
![辽宁铁道职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/d2420e1949649b6649d74795.png)
辽宁铁道职业技术学院单招数学模拟试题(附答案解析) 一、本题共小题,每小题分,共分,在每小题给出的四个选项中只有一个选项是符合题目要求的..(文)已知命题甲为>;命题乙为,那么().甲是乙的充分非必要条件.甲是乙的必要非充分条件.甲是乙的充要条件.甲既不是乙的充分条件,也不是乙的必要条件(理)已知两条直线∶++=,直线∶++=,则=是直线的().充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件.(文)下列函数中,周期为的奇函数是()....(理)方程(是参数,)表示的曲线的对称轴的方程是().....在复平面中,已知点(,),(,),(,),(,).给出下面的结论:①直线与直线平行;②;③;④.其中正确结论的个数是().个.个.个.个.(文)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为∶,则锥体被截面所分成的两部分的体积之比为().∶.∶.∶.∶(理)已知数列的通项公式是,其中、均为正常数,那么与的大小关系是()....与的取值相关.(文)将张互不相同的彩色照片与张互不相同的黑白照片排成一排,任何两张黑白照片都不相邻的不同排法的种数是()....(理)某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表市场供给量表市场需求量().(,)内.(,)内.(,)内.(,)内.椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为().....若曲线在点处的切线平行于直线=,则点的坐标为().(,).(,).(,).(,).已知函数是上的偶函数,且在(∞,上是减函数,若,则实数的取值范围是().≤.≤或≥.≥.≤≤.如图,、分别是三棱锥的棱、的中点,=,=,=,则异面直线与所成的角为().°.°.°.°.圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是().....双曲线的虚轴长为,离心率,、分别是它的左、右焦点,若过的直线与双曲线的右支交于、两点,且是的等差中项,则等于()......如图,在正方形中,、、、是各边中点,是正方形中心,在、、、、、、、、这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有().个.个.个.个二、填空题:本题共小题,共分,把答案填在题中的横线上.若是数列的前项的和,,则..若、满足则的最大值为..有、、、、五名学生参加网页设计竞赛,决出了第一到第五的名次,、两位同学去问成绩,教师对说:“你没能得第一名”.又对说:“你得了第三名”.从这个问题分析,这五人的名次排列共有种可能(用数字作答)..若对个向量,…,存在个不全为零的实数,,…,,使得成立,则称向量,,…,为“线性相关”.依此规定,能说明(,),(,),(,)“线性相关”的实数,,依次可以取(写出一组数值即中,不必考虑所有情况).三、解答题:本大题共小题,共分,解答应写出文字说明,证明过程或演算步骤..(分)已知,求的值..(分)已知等比数列的公比为,前项的和为,且,,成等差数列.()求的值;()求证:,,成等差数列..(分)一个口袋中装有大小相同的个白球和个黑球.()从中摸出两个球,求两球恰好颜色不同的概率;()从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.注意:考生在(甲)、(乙)两题中选一题作答,如果两题都答,只以(甲)计分.甲.(分)如图,正三棱柱的底面边长为,点在边上,△是以点为直角顶点的等腰直角三角形.()求证点为边的中点;()求点到平面的距离;()求二面角的大小.乙.(分)如图,直三棱柱中,底面是以∠为直角的等腰直角三角形,=,=,为的中点,为的中点.()求直线与所成的角;()在线段上是否存在点,使⊥平面,若存在,求出;若不存在,说明理由..(分)已知双曲线:(>,>),是右顶点,是右焦点,点在轴正半轴上,且满足、、成等比数列,过作双曲线在第一、第三象限的渐近线的垂线,垂足为.()求证:;()若与双曲线的左、右两支分别相交于点、,求双曲线的离心率的取值范围..(分)设函数,,且方程有实根.()证明:<≤且≥;()若是方程的一个实根,判断的正负并加以证明.参考答案.(文)(理).(文)(理)..(文)(理).(文)(理)...........只要写出,,(≠)中一组即可,如,,等.解析:..解析:()由,,成等差数列,得,若=,则,,由≠得,与题意不符,所以≠.由,得.整理,得,由≠,,得.()由()知:,,所以,,成等差数列..解析:()记“摸出两个球,两球恰好颜色不同”为,摸出两个球共有方法种,其中,两球一白一黑有种.∴.()法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为,摸出一球得白球的概率为,摸出一球得黑球的概率为,∴()=×++×=法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.∴∴“有放回摸两次,颜色不同”的概率为..解析:(甲)()∵△为以点为直角顶点的等腰直角三角形,∴且.∵正三棱柱,∴底面.∴在底面内的射影为,⊥.∵底面为边长为的正三角形,∴点为边的中点.()过点作⊥,由()知⊥且⊥,∴⊥平面∵在平面内,∴⊥,∴⊥平面,由()知,,且.∴.∴.∴点到平面的距离为底面边长为.()过点作⊥于,连,∵⊥平面,∴为在平面内的射影,∴⊥,∠是二面角的平面角.在直角三角形中,,,∴∠=°,∴二面角的大小为°(乙)解:()以为原点,建立如图所示的空间直角坐标系.∵=,∠=°,∴.∴(,,),(,,),(,,),(,,),(,,),(,,).∴,,,,,,∴,,,,,.∴,,∴,∴.故与所成的角为.()假设存在点,要使⊥平面,只要且.不妨设=,则(,,),,,,,,,,,,∵,∴恒成立.或,故当或时,平面..解析:()法一::,解得,.∵、、成等比数列,∴,∴,,,,,∴,.∴--法二:同上得,.∴⊥轴..∴.()∴.即,∵,∴,即,.∴,即..解析:().又<<,故方程()+=有实根,即有实根,故△=即或又<<,得<≤,由知.(),.∴<<∴.∴.∴的符号为正.--。
2016辽宁体育运动职业技术学院单招数学模拟试题(附答案解析)
![2016辽宁体育运动职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/c8b951f232d4b14e852458fb770bf78a65293a00.png)
2016辽宁体育运动职业技术学院单招数学模拟试题(附答案解析)考单招——上高职单招网2016辽宁体育运动职业技术学院单招数学模拟试题(附答案解析)一、选择题(本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,有且只有一个是正确的)1、已知集合,则集合B的非空真子集的个数为()A、14B、15C、4D、16甲乙丙丁89985.76.25.76.42、甲、乙、丙、丁四名射击选手在选拔赛中所得的平均环数及其方差如下表所示,则选送参加决赛的最佳人选是()A、甲B、乙C、丙D、丁3、函数()A.B.C.D.考单招——上高职单招网4、已知平面上直线l的方向向量e=点O(0,0)和A(1,-2)在l上的射影分别是O′和A′,则e,其中= ( )(A) (B) (C)2 (D)-25、已知点,,动点,则点P的轨迹是()(A) 圆(B) 椭圆(C) 双曲线(D) 抛物线6、某校高三年级举行的一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位. 若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()(A) (B) (C) (D)7、命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=的定义域是(-∞,-1∪[3,+∞,则()(A)“p或q”为假(B)“p且q”为真 (C) p真q假(D) p假q真考单招——上高职单招网8、已知,椭圆与双曲线和抛物线的离心率分别为,则() A 、B 、C 、D 、9、定义在上的函数都有反函数,又与的图象关于直线对称,若,则()A 、B 、C 、D 、10、双曲线的一条准线被它的两条渐近线所截得线段长度恰好等于它的一个焦点到一条渐近线的距离,则双曲线的离心率为()A .3B .2C .D .11、已知数列{a n }的通项公式a n =log 2n+2n+1(n ?N *),设其前n 项和为S n ,则使S n <-5成立的自然数n ()A .有最小值63B .有最大值63C .有最小值31D .有最大值31 12、某中学拟于下学年在高一年级开设《矩阵与变换》、《信息安全与密码》、《开关电路与布尔代数》等三门数学选修课程。
2016辽宁石化职业技术学院单招数学模拟试题(附答案解析)
![2016辽宁石化职业技术学院单招数学模拟试题(附答案解析)](https://img.taocdn.com/s3/m/aa81c1849b6648d7c0c74634.png)
2016辽宁石化职业技术学院单招数学模拟试题(附答案分析)一、本题共12小题,每小题5分,共60分,在每小题给岀的四个选项中只有一个选项是符合题目要求的・1 .满足条件{0,1,2}的集合共有()A . 3个B . 6个C . 7个D . 8个2 .(文)等差数列佃』中,若叫■丐+幻=势,些+ %4■吗二27,则前9项的和屯等于()A . 66B . 99C . 144D . 297(理)复数Z = , Z2=l-i ,则2 = ^%的复平面内的对应点位于()A•第一象限B.第二象限C•第三象限D.第四象限3.函数的反函数图像是()C D4 •已知函数/X©二创为奇函数,则卩的一个取值为()5 .从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两 种种子不能放入第1号瓶内,那么不同的放法共有()A.种B.空种C.胶种D.曲种6 .函数^=2^-3^-12^+5在〔° , 3]上的最大值、最小值分别是()211 1A . 3B . -3C . 48 •过球面上三点乂 B 、C 的截面和球心的距离是球半径的一半,且M 二6,庞二 8 , AC= 10 ,则球的表面积是()100 400-- JL--- TLA. 100M B . 300M c. 3 D . 39 .给出下面四个命题:①"直线a 、b 为异面直线"的充分非必要条件是:直线 a 、b 不相交;②"直线』垂直于平面比内所有直线"的充要条件是:2丄平面比;③ "直线a 丄胪的充分非必要条件是"a 垂直于b 在平面比内的射影";④"直线皿11 平面的必要非充分条件是"直线a 至少平行于平面戸内的一条直线"•其中正确 命题的个数是()A . 1个B . 2个C . 3个D . 4个10 .若0<a<l ,且函数乳© W 蚯《工1 ,则下列各式中成立的是()A . 5 , -15B ・ 5 , -4C ・ 一4 , 一15D ・ 5 , T6展开式的第7项为4 ,则实数天的值是()(理回"爭g ) 为()21展开式的第7项为4 ,则+_ +X )的值C2r-7.(文)已知A B用)》皿"◎/^)>f&>旳旳 > > 畑^3 D11.如果直线7=加+ 1和圆"十M + h'1■哪一山°交于x A'两点,且M ”关于Ax—y+l>0Jkr-»y<0直线天+ y二0对称,则不等式组:^y~Q表示的平面区域的面积是()1 1A. 4B.丞C . 1 D . 212.九0年度大学学科能力测验有12万名学生,各学科成绩采用15级分,数学学科能力测验成绩分布图如下图:请问有多少考生的数学成绩分高于11级分?选出最接近的数目()A・4000人B・10000人C • 15000 人D ・ 20000 人第口卷(非选择题,共90分)二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.已知:皿1 =2,剧=血,飞和'的夹角为45。
2022年辽宁职业学院单招数学模拟试题附答案解析
![2022年辽宁职业学院单招数学模拟试题附答案解析](https://img.taocdn.com/s3/m/c7dba742bf1e650e52ea551810a6f524ccbfcb8d.png)
(3) —该公司生产成本增长率最快;
(4) —该公司利润增长幅度比—利润增长幅度大.
其中说法对旳旳是
A.(1)(2)(3) B.(1)(3)(4) C.(1)(2)(4) D.(2)(3)(4)
9.在圆周上有 10 个等分点,以这些点为顶点,每三个点可以构成一种三角形,如果随机选择 三个点,正好构成直角三角形旳概率是
.∴
n≤
≤
.
【点评】本题中在平面图形背景下设计了一种数 列问题,考察了数列旳通项与求和等基本知识点,显 得较有新意。
20.(1)∵G 为正△ABC 旳中心,∴D 为 BC 中点.
∴DE:EB1=BD:B1C1=1:2=DG:GA.
∴GE//AB1.∵GE面 AA1B1B,AB1面 AA1B1B, ∴GE//面 AA1B1B.
【点评】解析几何中有关公式与措施必须要纯熟掌握和运用。 14.36π
将三棱锥补成正方体,三棱锥旳外接球即为正方体旳外接球。由
三棱锥旳外接球旳体积为
。
【点评】“割补法”是解决立体几何问题旳重要旳思想措施。
15.5
得 R=3,因此
射影为点 B(2,1,0), 则
=5。
【点评】要理解点在平面上投影旳概念。
A. ①②
B.①③
C.②③
D.①②③
1
1
4.已知 x=a+a-2(a>2),y=(2) (b<0) ,则 x,y 之间旳大小关系是
A. x>y
B . x<y
C. x=y
D.不能拟定
5.已知 A 是三角形旳内角,且 sinA+cosA= ,则 cos2A 等于
A.
B.-
C.
D.-
6.已知二面角
旳大小为 , 和 是两条异面直线,则在下列四个条件中,能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016辽宁铁道职业技术学院单招数学模拟试题(附答案解
析)
一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.
1.(文)已知命题甲为x>0;命题乙为,那么()
A.甲是乙的充分非必要条件
B.甲是乙的必要非充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件,也不是乙的必要条件
(理)已知两条直线∶ax+by+c=0,直线∶mx+ny+p=0,则an=bm是直线的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.(文)下列函数中,周期为的奇函数是()
A.B.
C.D.
(理)方程(t是参数,)表示的曲线的对称轴的方程是()A.B.
C.D.
3.在复平面中,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面的结论:
①直线OC与直线BA平行;
②;
③;
④.
其中正确结论的个数是()
A.1个B.2个C.3个D.4个
4.(文)在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()
A.1∶B.1∶9C.1∶D.1∶
(理)已知数列的通项公式是,其中a、b均为正常数,那么与的大小关系是()
A.B.
C.D.与n的取值相关
5.(文)将4张互不相同的彩色照片与3张互不相同的黑白照片排成一排,任何两张黑白照片都不相邻的不同排法的种数是()
A.B.C.D.
(理)某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:
表1市场供给量
表2市场需求量。