数控车床上应用宏程序加工梯形螺纹

合集下载

梯形螺纹的数控车削加工

梯形螺纹的数控车削加工

梯形螺纹的数控车削加工摘要:梯形螺纹的加工是数控车削的一个难点, 针对在数控车床加工梯形螺纹时容易出现扎刀等现象,本文介绍使用GSK980TDa系统的数控车床,运用调用子程序和编制宏程序两种编程方法,对梯形螺纹进行分层切削加工,较好的解决了加工过程中梯形螺纹车刀各切削刃的受力分配问题,有效避免了扎刀现象,为数控车削梯形螺纹提供一个实用的加工方法。

关键词:梯形螺纹;数控车削;宏程序;调用子程序;分层切削法一、前言梯形螺纹在传动中应用越来越广泛, 精度要求越来越高, 这就对梯形螺纹提出了高精度高效率的制造要求。

在车床上加工梯形螺纹是一项技术难度较高的工作, 梯形螺纹的车削在普通车床上应用比较广泛, 但要求工人要有比较熟练的操作技巧, 劳动强度大,螺纹加工的精度和效率受人为因素影响比较大,废品率较高。

数控车床稳定的高精度加工性能为梯形螺纹的车削提供了良好的加工基础, 但在数车上加工梯形螺纹编程与控制比较困难, 因此有人错误地认为数车不适合用来车削梯形螺纹, 实际上如果所编制的梯形螺纹加工程序工艺合理, 在数车上车削梯形螺纹也会取得很好的效果。

二、数控车加工梯形螺纹的难点1.数控车不能直接使用普通车床的梯形螺纹加工方法普通车床所使用的梯形螺纹加工方法如左右切削法、直槽法、阶梯槽法等都不能直接用于数控车。

因为数控车取消了普通车床上的机械传动链,通过装在主轴末端的同步传动带与主轴脉冲编码器连接,从而构成了主轴与大滑板传动丝杆之间的传动链。

主轴脉冲编码器在车螺纹时,同时输出两路信号:一路是按编程人员在加工程序中给定的主轴转速和螺距值,确定伺服电机的转速,保证主轴和伺服电机两种转速形成严格的传动比;另一路是控制彳轴的定位,保证螺纹车刀在多次循环切削过程中,车刀刀尖始终在螺旋槽内而不乱牙。

如果在加工过程中因出现扎刀或刀具损坏需要更换螺纹车刀而使数控车床停止旋转时,主轴脉冲编码器停止工作,上述两路信号停止输出,此时重新安装的螺纹车刀就很难准确地落在前一把螺纹车刀车出的螺旋槽内,从而加大对刀难度,甚至出现乱牙现象。

在数控车床上用宏程序加工梯形螺纹

在数控车床上用宏程序加工梯形螺纹

不是理想的加工方法。
ቤተ መጻሕፍቲ ባይዱ
为了解决“直进分”和“斜进法”的缺点,就
必须改善刀具的切削方式。通过分析,最后选用
(见图3)“分层切削法”。“分层切削法”是先
把螺纹X向分成若干层,
每层Z向再进行若干次粗
切削,再进行左、右精车
切削。每层刀具只需沿左
右牙型线切削,背吃刀量
小,从而使排屑比较顺
利,刀具的受力和受热情
图3 分层切削法
起刀点Z轴偏 移量(CE)的计 算公式为
图7
CE=BE-BC=(AH+tan15°×HE)-BC =(P/4+tan15°×HE)-BC 即起刀点Z轴偏移量(螺纹右侧留0.1mm的精 加工量)参数变量为
#8=#2/4+TAN[15]*[#1-#3]/2-#6/2-0.1;
每层Z轴的切削余量(DF)的计算公式为
M 机床自动化 achine Tools Automation
在数控车床上用宏程序加工梯形螺纹
中国北车永济新时速电机电器有限责任公司 (山西 044502) 陈建军 永济电机高级技工学校 (山西 044500) 张丽波
一、梯形螺纹在数控车床上的加工工艺
数控车加工螺纹有三种指令:G32、G92、 G76。其中G32、G92的进刀方式为“直进法” (见图1);G76的进刀方式为“斜进法”(见图 2)。
DF=BF-BD=2(AH+tan15°×HE)-BD
即每层Z轴的切削余量(螺纹左侧留0.1mm的 精加工量)参数变量为
#9=#2/2+TAN[15]*[#1-#3]-#6-0.1
(3)外螺纹Tr36×6程序
O8888; M03S200; G00X100Z50; T0101; G00X40Z10; #1=36;(螺纹大径及公称直径) #2=6;(螺距) #3=#1-#2/2;(螺纹中径) #4=0.5;(牙顶间隙) #5=#1-#2-2*#4;(螺纹小径) #6=1(T型螺纹刀刀尖宽) #7=0.366*#2-2*TAN[15]*#4;(牙底槽宽) #8=#2/4+TAN[15]*[#1-#3]/2-#6/2-0.1;(起 到点Z轴偏移量,右侧留0.1mm) #9=#2/2+TAN[15]*[#1-#3]-#6-0.1;(每层Z 轴的切削余量,左侧留0.1mm) #10=0.5(X轴的吃刀量) N1IF[#1LE#5]GOTO4;(判断切削直径,如果X值 ≤小径,则执行N4程序段) N2IF[#9LE0.1]GOTO3;(判断每层Z轴切削余量如 果余量≤0.1mm,则执行N3程序段) G00Z[10+#8];(Z轴起刀点) G92X#1Z-42F#2;(切削螺纹) #8=#8-0.3;(重新计算Z轴起刀点偏移量,递减0.3mm) #9=#9-0.3;(重新计算每层Z轴切削余量,递减0.3mm) GOTO2;(无条件执行N2程序段) N3#1=#1-#10;(重新计算切削直径X值) #8=#2/4+TAN[15]*[#1-#3]/2-#6/2-0.1(重新 计算Z轴起刀点偏移量) #9=#2/2+TAN[15]*[#1-#3]-#6-0.1;(重新计 算每层Z轴切削余量) IF[#1GE33]THEN#10=0.5(判断切削直径,对X轴吃刀 量重新赋值)

宏程序在数控车床加工阀杆梯形螺纹中的应用

宏程序在数控车床加工阀杆梯形螺纹中的应用
IF〔#504GE#502〕THEN#505 = 0. 2; ……如果#504 ≥ # 502 条件成立则执行#505 = 0. 2
#504 = #504 + #505; ………………………… 循环相加 IF〔#504GT#503〕THEN#504 = #503; ……如果#504 > # 503 条件成立则#504 = #503 IF〔#504GE#502〕THEN#510 = 0……如果#504≥#502 条 件成立则#510 = 0 IF〔#502GE6. 0〕THEN#508 = #501 + 0. 1* #510; ……如 果#502≥6. 0 条件成立执行“左右借刀法”即#508 = #501 或 者#508 = #501 - 0. 1 END1; ………………………………………… 循环结束
2011 年第 5 期 文章编号:1002-5855(2011)05-0021-02


— 21 —
宏程序在数控车床加工阀杆梯形螺纹中的应用
李双喜,吴尖斌 ( 浙江石化阀门有限公司,浙江 温州 325025)
摘要 介绍了宏程序在阀杆梯形螺纹加工中节约编程调试时间,改善切削条件,提高加工精度
等方面的广泛适用性和应用过程。给出了阀杆梯形螺纹运用宏程序在数控机床上的加工工艺。
LI Shuang-xi,WU Jian-bin
( Zhejiang Petrochemical Valve Co. ,ltd Wenzhou,325025,China)
Abstract: Introduces applicability and application process of macro program in the aspect of saving time on programming and adjusting in the process of machining stem acme thread; improving cutting conditions; increasing machine finish and so on,gives machining process of stem acme thread by applying macro program by numerically controlled lathe. Key words: stem; macro program; acme thread; lathe machining; CAM

宏程序加工梯形螺纹的好处

宏程序加工梯形螺纹的好处

宏程序加工梯形螺纹的好处姓名:韩志刚班级:074101学号: 28指导老师:许洪伟(单位: 江苏省盐城技师学院邮编:224002 )2010-3-15宏程序加工梯形螺纹的好处【摘要】梯形螺纹是应用很广泛的传动螺纹,它有大的传动比,能实现定比传动。

它在普车上加工速度慢,而且加工的精度不高,在数车上加工快。

在数控车床上加工梯形螺纹是一个全新的课题,本文通过对梯形螺纹加工的工艺分析和加工方法的研讨,总结出一套能在数控车床上加工出合格的并快速的加工出梯形螺纹的发案,并加以推广。

【关键词】宏程序工艺分析加工方法合格快速一、前言在普车上加工梯形螺纹课题是最基本的课题,但在数控车床的实习过程中,由于加工工艺和加工方法选择的问题,很少有梯形螺纹加工实习,难道在数控车床上不能加工出合格的梯形螺纹吗?其实不然,只要你选择合理的加工指令和工艺路线,也能高效的加工出合格的梯形螺纹。

二、梯形螺纹的加工工艺分析1.梯形螺纹的标记梯形螺纹的标记是由螺纹代号、公差代号及旋和长度代号组成,彼此用“—”分开。

根据国标(GB5796—86)规定,梯形螺纹代号由螺纹种类代号Tr和螺纹“公称直径×导程”来表示。

螺纹的旋和长度分为三组,分别称为短旋和长度(S)、中等旋和长度(N)、和长旋和长度(L)。

在一般情况下,中等旋和长度(N)用的较多,可以不标注。

梯形螺纹的标记示例:Tr50×7—7H—LTr:螺纹种类代号50:大径7:螺距7H :内螺纹公差带L :旋和长度代号2.梯形螺纹的牙型国标规定梯形螺纹的牙型角为30°。

牙型如图1D M C图 1 内外梯形螺纹3. 梯形螺纹在数控车上的加工方法直进法 螺纹车刀轴向间歇进给至牙深处(如图2a )。

采用此种方法加工梯形螺纹时,螺纹车刀的三面都参加切削,导致加工排屑困难,切削力和切削热增加,刀尖磨损严重。

当进刀量过大时,还可能产生“扎刀”和“爆刀”现象。

斜进法 螺纹车刀沿牙型角方向斜向间歇进给至牙深处(如图2b )。

采用含变量参数的宏程序加工不同类型梯形螺纹

采用含变量参数的宏程序加工不同类型梯形螺纹
系统 、一卡通 系 统 以及 车辆 管理 系统 等子系 统 的综
合 集成 ,并 兼顾 C NS和 O AS的系 统集成 ,即 B MS
《 能建筑 设计 标准 》可知 ,智 能建筑 是一个 综合 智
的集 成的系统 ,因此智能建筑系统集成是 必须 的 。
参考 文献
[] 杨绍胤.智能建筑 实用技术 [ . 1 M] 北京: 机械工业 出版
/ 二层 3 / 第 4至 3 , 深 01 T 2切 .ml l
20 3 I ! GE 2 JT N ≠ = .5 Fl} {1 j 9 HE } 00 4
改为
N2 0 I[ 1 G 0 T E 3 F# E3 1 H N 4 00 =. 5
/eist isr —c数控车床的应用实践 。针对采 用含 变量 参数的宏程序加工不同类型梯形螺纹,分析了梯形螺纹 加工方 e
案的确定和采用参数变量的宏程序编程 。总结出一套梯形螺纹编程加工的有效方法,可为 国内其他企业在采用 数 控车削梯形螺纹及非标梯形螺纹编程加工 时提供参考 。 关键词 梯形螺纹 宏程序 编程 变量
24 0 GO 0 Z5
/ / 第三层 3 2至 3 , 深 0 5T l 0切 . t 0 1n 其他 程序 照写 ,即可加 工 出螺距 不 同,牙 深相 同 的 非标 梯形 螺纹 。
2 左 右侧 螺距不 同 的非标梯 形螺 纹 ) 如 图 3所 示螺纹 ,左右 两侧 螺距变 得不 同 ,其 中左侧螺距 6 mm( 与原螺距相 同) 右侧螺距 61 n。 , .t i o
路 , 即对 不 同类 型 的梯 形 螺纹 ,采用 同一 种加 工方 案 , 序框 架不 变 , 据情 况改 变其 中的变量 参数 , 程 根
达 到加 工要 求 。

梯形螺纹的宏程序加工

梯形螺纹的宏程序加工

梯形螺纹的宏程序加工摘要:梯形螺纹是数控车工加工的难点,宏程序是数控编程的难点,然而二者结合起来就会使数控机床加工梯形螺纹,操作者只要修改参数的数值就可以完成不同螺距与长度的梯形螺纹加工,十分的方便快捷。

关键词:数控车床FANUC系统梯形螺纹宏程序#1=A 梯形螺纹大径#2=B 梯形螺纹小径#3=B 梯形螺纹牙底槽宽#4=I 梯形螺纹车刀刀头宽度#5=J 梯形螺纹长度L#6=K 梯形螺纹螺距#7=D 升速段长#8=E 减速段长#9= 粗车转速#10= 精车转速#19=S 精加工余量(直径值)主程序:O0001;N10 G54 G40 G21;N20 T0404;调用梯形螺纹车刀N30 G65 P333;调用梯形螺纹宏程序N40 M05;主轴停止转动N50 M30;程序结束并返回程序开头宏程序;O333N10 M03 S#9;主轴正转,转速为#9N20 #30=FUP[[#1-#2-#19]/2/#18];根据背吃刀量和精加工余量计算径向粗车循环次数(下取整)N30 #31=[#1-#2-#19]/#30;计算径向粗加工每次背吃刀量(直径值)N40 #40=FUP[#3-#4-#19/2]/2/#20;计算Z向粗车循环次数;N50 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N60 #28=1;径向切削次数初始值赋值N70 WHILE[#28GT#30]DO1;N80 G00 X[#1+3];车刀快速移动到X方向起刀位置N90 Z#7;车刀快速移动到Z方向起刀点N100 X[#1-#31];车刀径向切入一个背吃刀量N120 G32 Z-[#5+#8]F#6;粗车梯形螺纹N110 #29=1;Z向切削次数初始值赋值N130 WHILE[#29GT#40]DO2;N140 G00 X[#1+3];车刀快速返回到X方向起刀位置N150 Z#7;车刀快速移动到Z方向起刀点N160 W-#41;车刀Z向负向移动一个切削量N170 X[#1-#31];车刀径向进刀#31N180 G32 Z-[#5+#8]F#6;粗车梯形螺纹N190 G00 X[#1+3];车刀快速返回到X方向起刀位置N200 Z#7;车刀快速移动到Z方向起刀点N210W#41;车刀Z向正向移动一个切削量N220X[#1-#31];车刀径向进刀#31N230G32Z-[#5+#8]F#6;粗车梯形螺纹N240G00X[#1+3];车刀快速返回到X方向起刀位置N250Z#7;车刀快速移动到Z方向起刀点N260#29=#29+1;Z向移动次数增加1N270#41=#41*#29;Z向移动量递增N280END2;N290#28=#28+1;X向切削次数增加1N300#31=#31*#28;X向切削量递增N310END1;N320 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N330#29=1;Z向切削次数初始值赋值N340S#10;选用精加工转速N350G00X[#1+3];车刀快速返回到X方向起刀位置N360Z#7;车刀快速移动到Z方向起刀点N370X#2;车刀进给到X向精车位置N380G32Z-[#5+#8]F#6;精车螺纹牙底N390WHILE[#29GT#40]DO3;N400G00X[#1+3];车刀快速返回到X方向起刀位置N410Z#7;车刀快速移动到Z方向起刀点N420X#2;车刀进给到X向精车位置N430W-#41;车刀Z向负向移动一个切削量N440G32Z-[#5+#8]F#6;精车螺纹牙底N450G00X[#1+3];车刀快速返回到X方向起刀位置N460Z#7;车刀快速移动到Z方向起刀点N470X#2;车刀进给到X向精车位置N480W#41;车刀Z向正向移动一个切削量N490G32Z-[#5+#8]F#6;精车螺纹牙底N500#29=#29+1;Z向移动次数增加1N510#41=#41*#29;Z向移动量递增N520END3;N530G00X[#1+3];车刀快速返回到X方向起刀位置N540Z#7;车刀快速移动到Z方向起刀点N550X#2;车刀进给到X向精车位置N560W-[#3-#4]/2;车刀移动到螺纹牙右侧面起点N570G32Z-[#5+#8]F#6;精车螺纹牙牙右侧面N580G00X[#1+3];车刀快速返回到X方向起刀位置N590Z#7;车刀快速移动到Z方向起刀点N600X#2;车刀进给到X向精车位置N610W[#3-#4]/2;车刀移动到螺纹牙左侧面起点N620G32Z-[#5+#8]F#6;精车螺纹牙牙左侧面N630G0X100;N640Z100;N650M99。

浅谈在数控车床上运用宏程序加工多线梯形螺纹轴的应用

浅谈在数控车床上运用宏程序加工多线梯形螺纹轴的应用

MANUFACTURING AND PROCESS | 制造与工艺浅谈在数控车床上运用宏程序加工多线梯形螺纹轴的应用曾金平广西南宁技师学院 广西南宁市 530031摘 要: 本文以广州数控GSK980TD系统数控车床上加工多线梯形螺纹轴为例,借助于宏程序中的变量、算术代码及转移代码特点,编写出切实可行的多线梯形螺纹加工程序。

经过实践操作验证,该程序结构简单,运行可靠,其通用性、灵活性强。

关键词:宏程序 多线梯形螺纹 变量 数控车床多线梯形螺纹在机械工业应用十分广泛,多用于快速机构的传动中。

随着社会的发展,多线梯形螺纹应用的场合越来越精密,而对于加工技术要求也越来越高,无论是在普通车床上还是在数控车床上加工多线梯形螺纹,都是具有较大的挑战性。

都需要经过合理的分析图纸计算螺纹的各个参数、制定加工工艺、选择适合的刀具材料及几何角度。

而在数控车床加工中,有手工编制程序和自动编程两种。

对于大部分的零件,采用自动编程都能够达到很好的效果,而且快捷、方便。

但是在少数情况下如复杂的零件,很难采用自动编程完成,比如加工多线梯形螺纹。

本文以广州数控GSK980TD系统数控车床上加工多线梯形螺纹轴为例,对多线梯形螺纹的数控车削加工方法进行解析。

1 实例分析如图6-3所示,该零件为三线梯形螺纹轴零件,材料为:45#钢,该零件梯形螺纹部分的直径为40mm,导程为21mm,螺距为7mm,中径和顶径的公差等级为7e,牙两侧的表面粗糙度值为1.6μm,要求左端外圆φ440-0.018与右端外圆φ300-0.013同轴度达φ0.03。

该零件要求的表面质量及表面粗糙度值较高。

根据对图纸进行分析,本次装夹方式可采用一夹一顶的装夹方式进行加工。

加工步骤如下:1.工件伸出三爪自定心卡盘20mm并夹紧。

2.车平端面,钻中心孔。

3.掉头装夹,工件伸出三爪自定心卡盘45mm夹紧,车端面控制总长。

4.粗车外圆φ44.2×35mm、φ35.2×25mm5.精车外圆φ440-0.018×8mm、φ350-0.062×25mm6.使用φ23麻花钻钻孔。

Fanuc系统数控机床车梯形螺纹两种车削技巧

Fanuc系统数控机床车梯形螺纹两种车削技巧

Fanuc系统数控机床车梯形螺纹两种车削技巧作者:闫永刚来源:《职业·下旬刊》 2012年第3期文/闫永刚一、调用子程序加工方法在Fanuc系统数控机床车削较大螺距梯形螺纹时,往往采用左右车削的方法,每次车削都要编写程序,编程工作冗长麻烦,并且操作者出现差错率较高,笔者通过调用子程序和编写宏程序的方法,来实现简便编程的梯形螺纹车削操作。

如下图所示,已知梯形螺纹Tr25,螺距6mm,长54mm,牙高h=3.5mm,d1=18mm,牙顶宽1.93mm,所用刀具为30°高强度高速钢梯形螺纹车刀。

O1000T0303 3号刀为梯形螺纹刀具M03 S100G00 X30.0 Z10.0 起点M98 P1001 调用子程序车削螺纹的第一层深度G00 X30.0 Z10.05 向右赶刀M98 P1001 调用子程序车削螺纹的第一层深度G00 X30.0 Z9.95 左赶刀车削螺纹第一层深度M98 P1001G00 X30.0 Z10.0 回到起点M98 P1002 调用子程序车削螺纹的第二层深度G00 X30.0 Z10.05 向右赶刀M98 P1002G00 X30.0 Z9.95 左赶刀车削螺纹第二层深度 G00 X30.0 Z10.0 回到起点M98 P1003 调用子程序车到螺纹底径18mmG00 X30.0 Z10.05 向右赶刀M98 P1003G00 X30.0 Z9.95 向左赶刀M98 P1003G00 X100.0 Z100.0M30O1001 切削螺纹到21mmG00 X30.0#1=24.8N10 G92 X[#1] Z-54.0 F6.0#1=#1-0.1IF[#1GT21] GOTO 10G00 X30.0 Z10.0M99O1002 切削螺纹到19mm#1=20.8N10 G92 X[#1] Z-54.0 F6.0#1=#1-0.1IF[#1GT19] GOTO 10G00 X30.0 Z10.0M99O1003 切削螺纹到18mm#1=18.9N10 G92 X[#1] Z-54.0 F6.0#1=#1-0.05IF[#1GT18] GOTO 10G00 X30.0 Z10.0M99二、宏程序加工方法O1000T0303M03 S100G00 X30.0 Z10.0 螺纹起点#1=0N10 G92 X[25-2 *#1] Z-54.0 F6.0#1=#1+0.05G00 X30.0 Z10.05G92 X[25-2 *#1] Z-54.0 F6.0G00 X30.0 Z9.95G92 X[25-2 *#1] Z-54.0 F6.0IF#1LE3.5 GOTO10G00 X100.0 Z100.0M05M30通过以上加工方法车削梯形螺纹,可以大大缩短编程时间,减少差错率,这种方法具有很大的实用价值。

浅析用宏程序在数控车床上加工梯形螺纹

浅析用宏程序在数控车床上加工梯形螺纹

时也节省 了刀具损耗。本文通过对梯形螺纹加工的工艺分析和加 工方法的研讨 ,探 索出 一套可以在数控 车床 上加工 出合格梯 形螺纹的方 法并结 合 实际 生 产 验 证 了其 可 行 性 。 关键词 :梯 形螺纹 加 工方 法 宏程序 近年来数 控 大赛 受到各 方面 的重 视 ,其 大赛 的内 容也在 逐 步丰 富 ,加工梯形螺 纹课题是普通 车床 的生产实 习过 程中最基本 的实习课 题 ,现也成 为数控大赛 中的一 项重 要内容 。如 何在 数控车 床上 高效 、 高质量地加工 出合格梯形螺纹成为许 多指导教师 亟待解决 的难 题。其 实 ,只要工艺分析合理 ,使用 的加工 指令得 当,完全 可以在数控 车床 I 加1 合格 的梯形螺纹 。
刀是三面切削外 ,其余各 刀都避 免了三面切削 。也就是 说 ,每一层 的 第一刀的切削力是 最大 的,而 且每一 层 的切削深 度是相 同的 ,那 么, 只要第一层 的第一 刀不扎刀 ,后 面的加 工就不可能再扎 刀 了。 由此可
见 ,此方法 能最大 限度地避免三面切 削,减小 刀具 的切 削面积从而减

切削 ,可以很好地解决 出现 的问题 。 二、分层加工法的加工原 理 从进刀方法看 ,分层 切削法在整个 切削过程 中,除每 一层的第一
1 .切 直 槽 法
此方法粗 车时先用矩形螺纹 车刀 采用直进法 车出螺旋直槽 ,然后 用梯形螺纹精车 刀车两侧 。此方法在 切螺旋直槽 时 ,所 用 的刀具类 似 于切槽刀 ,车螺纹时 ,螺纹车刀刀尖及 两侧刀刃都参 加切削 ,这种 方
避免三个切削 刃 同时参 与切 削。在实 际操作 过 程 中,要 根 据实 际经 验 ,一边控制左右进给量 ,一边观察切屑情 况 ,既有横 向进 刀又有纵 向赶刀 ,车刀对牙侧必须重复切削 ,切 削面积较大 ,因而 ,加 工 中切 削力较大 、切削热高 、排屑困难 。加 工时对纵 向赶刀量不好 控制 ,赶 刀量太大 ,切削面积更 大 ,会 因切削力过大 而扎刀 ;赶刀量 太小 ,容 易造成三面切 削 ,此 时切 削面积 最 大,而且 排 屑困难 ,更加 容 易扎 刀。此方法对操作 者的素质有较 高的要求 。 3 .层 切 削法

基于宏程序的梯形螺纹加工

基于宏程序的梯形螺纹加工

M 9 P1 O 8 0 量 和 单 针 测 量 三 种 。 合 测 量 用 螺 纹 规 测 综 # 1 =# 1 +0. 4 4 1 量 , 们 常 用 的 测 量 方 法 采 用 中径 检 测 法 我 ENDW 即利 用 三 针 测 量 或单 针 测 量 , 量 出一 个 测 M值 , 然后 与 理论 的M值 相 比较 从而 确 定 梯 W HI E 5 E 1 6 4 L #l L [ . 3 -#9 2( /] 向右 侧 形 螺 纹 的 合 格 与 否 。 据 我 们 学 过 的 梯形 进 刀 ) 根 GO X 3 0 4
Sci ce en and Techn o J ovaton ol gy nn i He aJ r d
QQ Q: !
工 程 技 术
基 于 宏 程 序 的 梯 形 螺 纹 加 工
单小 明 马文丽 ( 河北唐 山科 技职业 技术学 院 河 北唐 山 030 ) 6 0 0
1引 言
加 工 工 艺 方 面 的 原 因 , 很 少 进 行 梯 形 螺 却 () 槽法 用于加 工p rm以 上的 梯形 4切 ≥8 a 纹 的加 工 练 习 , 至 有 人 提 出 在 数 控 车 床 螺纹 。 方 法 先 用切 槽 刀粗 切 出螺 纹 槽 , 甚 该 再 上不能 加 工 梯 形 螺 纹 , 然 这 种 提 法 是 错 用梯 形 螺纹 车 刀加 工 螺纹 两侧 面 。 种 方法 显 这 误的 。 实, 其 只要 工 艺 分 析 合 理 , 用 的 加 的 编 程 与加 工 在 数 控 车床 上 较 难 实 现 。 使 进刀) G0 X3 O 4 . 工指 令 得 当 , 全 可 以 在 数 控 机 床 上 加 工 2 2梯 形螺纹 的测 量 完 W 一# 1 4 梯 形 螺 纹 的 测 量 分 综 合 测 量 、 针 测 三 出 合格 的 梯 形 螺 纹 。 就 是 我 们 所 说 的 数 那 控宏程序。 宏程 序 , 单 的 说 , 简 它就 是 一 种 利 用 变 量 进 行表 示 的 一 种 程序 。 的 变 量 分 三种 , 它 有 : 部变量、 局 公共 变 量 、 系统 变 量 。 宏就 是 用 公 式 来加 工 零 件 的 , 比如 说 椭 圆 , 果 没 如

(完整版)T型螺纹宏程序实例

(完整版)T型螺纹宏程序实例

1、内梯形螺纹加工程序:G54G99M3S100T0101G0Z3X33#101=0.2; 每一刀的的深度(半径)#102=4 梯形螺纹的深度(半径)#103=1 分层切削的次数N90 G0U[2*#101*#103]G32Z-32F7G0X32Z[3+[#102-#101]*0.268+A];A是槽底宽-刀尖宽的一半X33U[2*#101*#103]G32Z-32F7G0X32Z[3-[#102-#101]*0.268-A] 梯形螺纹的牙顶宽:0.366x螺距梯形螺纹的牙底宽:螺距-牙顶宽-2倍的(螺纹深度Xtg15°)X33U[2*#101*#103]G32Z-32F7G0X32G0Z3X33#102=#102-0.2#103=#103+1IF[#103LE20]GOTO90;G0Z100M5M30;(3)参考程序①编程分析用宏程序编程时变量的设置是核心内容,一是要变量尽可能少,避免影响数控系统计算速度,二是便于构成循环。

经过分析本例中要4个变量,#1为刀头到牙槽底的距离,初始值为5.5mm,#2为背吃刀量(半径值),#3为(牙槽底宽—刀头宽度)/2,#4为每次切削螺纹终点X坐标。

本例中编程关键技术是要利用宏程序实现分层切削和左右移刀切削。

利用G92螺纹加工循环指令功能,左右移刀切削只需将切削的起点相应移动0.268*[#1-#2]+#3(右移刀切削)或者-0.268*[#1-#2]-#3(左移刀切削)就可以实现。

分层切削的实现通过#1和#2变量实现,每层加工三刀后,让#1=#1-#2实现进刀,而在每层中螺纹的X坐标不变,始终为#4=69.0+2*[#1-#2]。

②参考程序(此程序已运用于FANUC 0i Mate TC系统车床加工零件)参考程序注释O0001;程序号N10 T0101;换01号刀具,调用01号偏置值N20 M08;打开切削液N30 M03 S180;主轴正转,转速为180r/minN40 G00 X90.0 Z10.0;刀具快速移动到点(90,10)N50 #1=5.5; #1为刀头到牙槽底的距离,初始值为5.5mmN60 #2=0.2; #2为背吃刀量(半径值)N70 #3=(牙槽底宽—刀头宽度)/2;#3为(牙槽底宽—刀头宽度)/2N80 WHILE [#1 GE 0.2] DO1;当#1≥0.2,执行循环1,底部留0.2mm的精车余量N90 #4=69.0+2*[#1-#2];#4为每次切削螺纹终点X坐标N100 G00 Z5.0 ;移动到直进刀切削的循环起点N110 G92 X#4 Z-286.0 F10.0;直进刀车削螺纹N120 G00 Z[5+0.268*[#1-#2]+#3];移动到右移刀切削的循环起点N130 G92 X#4 Z-286.0 F10.0;右移刀车削螺纹N140 G00 Z[5-0.268*[#1-#2]-#3];移动到左移刀切削的循环起点N150 G92 X#4 Z-286.0 F10.0;左移刀车削螺纹N160 #1=#1-#2;构成循环N170 END1;当#1<0.2,跳出循环1N180 G00 X200.0 Z150.0;快速退刀N190 M09;关闭切削液N200 M30;程序结束说明:①参考程序以工件右端面中心为编程原点。

宏程序在梯形螺纹加工中的巧妙应用

宏程序在梯形螺纹加工中的巧妙应用
自动 化 与控 制
宏 程 序 在 梯 形 螺 纹 加工 中的巧妙 应 用
王 思忠 ’ 刘锦 武
( 1 . 南 车 戚 墅堰 机 车 车 辆 丁艺 研 究 所 有 限公 司 , 常州, 2 1 3 0 1 1 ; 2 . 常 州 机 电职 业 技 术学 院 , 常州 , 2 1 3 1 6 4)
“ 扎刀” 和“ 爆刀” 现象 。 而且 容 易 造成 工 件 变形 。 因 此 梯 形
所示 。采 用 此方 法 车 削 梯 形 螺纹 时 , 螺 纹 车 刀 x 向( 垂 直 于主 轴 方 向 ) 间歇 进 给至 牙 深处 。加 工 程 序较 长 。虽 然 可 以获 得 较 高 的牙 型精 度 。但 由于刀 具 三面 同时参 加 切 削 ,
由 于 切 削 刀 具 进 刀 方 式 的 不 同 ,使 这 两 种 加 工 方 法 有 所
圈 1 梯 形 螺 纹 牙 型
区别 , 各 自的 编 程 方 法 也 不 同 , 造成 加 工 误 差 也不 同, 工 件
由于 梯 形 螺 纹 相 对 而 言 , 深度较深 ( 如 图 1梯 形 螺 纹 牙型 ) , 如果采用 F A N U C S e r i e s 0 i — T C 系 统 为 用 户 配 备 的
种 切 削循 环 加 工 指令 , 每 一 种指 令都 有 各 自的加 工 特 点 ,
工 件 加 工 后 的 加 工 精 度 也 有 所 不 同 ,各 自 的 编 程 方 法 也
不 同, 我 们在 选 择 的 时 候 要 仔 细 分 析 , 合理选用 , 争 取 加
工 精 度 高 的零 件 。如 螺 纹 切 削 循 环加 工 就 有 两 种 加 工 指令 : G 9 2直 进 式 切 削 、 G 7 6斜 进 式 和 G 7 6交 错 式 切 削 。

数控车床上应用宏程序加工梯形螺纹

数控车床上应用宏程序加工梯形螺纹

数控车床上应用宏程序加工梯形螺纹梯形螺纹通常比三角螺纹螺距和牙型大,致使梯形螺纹车削时,吃刀深、走刀快、切削余量大、切削抗力大,这就导致了梯形螺纹的车削加工难度较大。

由于大多数经济型数控车低转速低扭矩原因,梯形螺纹数控车床上不得不采用小吃刀量快进给方式加工,加工中的刀路复杂,采用基本指令数控编程繁琐,而采用宏程序编程可以很好解决这一问题。

一,梯形螺纹加工方法分析普车上车削梯形螺纹,常采用高速钢刀具低速车削,有四种进刀方法:直进法、左右切削法、车直槽法和车阶梯槽法。

直进法只适用于车削螺距较小(P<4mm)的梯形螺纹,而粗车螺距较大(P>4mm)的梯形螺纹常采用左右切削法、车直槽法和车阶梯槽法。

下面分析这几种车削方法特点:以上加工方法除直进法外,其他三种车削方法都在不同程度地减轻或避免三刃同时切削,使排屑较顺畅,刀尖受力、受热情况有所改善,从而不易出现振动和扎刀现象,还可提高切削用量,改善螺纹表面品质。

二,数控车削梯形螺纹走刀方案结合数控车床特点,综合直进法效率和左右切削法效果,车削梯形螺纹采用“层切法”较合适。

把牙槽分成若干层,转化成若干个较浅的梯形槽来进行切削。

每层的切削都采用先直进后左右的车削方法,由于左右切削时槽深不变,刀具只须做向左或向右的纵向“赶刀”进给即可。

直进刀右赶刀左赶刀三,宏程序编程车削梯形螺纹本文以加工一个Tr36×6的梯形螺纹加工为例介绍用宏程序程序编写方法:图形如下:1,梯形螺纹加工尺寸计算梯形螺纹的计算式及其参数值:左(右)移刀量的计算如上图可以得出层切时左(右)赶刀量计算式为①、当刀头宽度等于牙槽底宽时,左(右)赶刀量=tan15°×(牙深—当前层背吃刀量);②、当刀头宽度小于于牙槽底宽时,左(右)赶刀量=tan15°×(牙深—当前层背吃刀量)+(牙槽底宽—刀头宽度)/22,“层切法”车削梯形螺纹的刀具选择“层切法”车削梯形螺纹所用的粗车刀和精车刀与普车用刀一样。

A类宏程序在加工大螺距梯形螺纹的应用

A类宏程序在加工大螺距梯形螺纹的应用

何用宏程序去实现这个动作 。具体的逻辑关系和梯 形 螺纹 轴 如 图 1 所示 。
图 2 牙型与刀具关 系图
3 宏程序加 工梯形螺 纹实例
3 . 1 编程 实例
图 1 逻辑关 系图和梯形螺纹轴 图
收 稿 日期 : 2 0 1 3 — 1 0 — 0 6 作者简 介 : 张伟 贤( 1 9 8 4 一) , 男, 广东梅州人 , 研究方 向 : 数控加工 。
E q u i p me n t Ma n u f a c t u r i n g T e c h n o l o g y N o . 1 , 2 01 4
A类 宏 程 序 在 加 工 大 螺 距 梯 形 螺 纹 的应 用
张伟 贤
( 梅 州 市技 师 学 院 , 广东 梅州 5 1 4 0 7 1 )
摘 要: 参照普通 车床 用直进加 左右摆 刀法加 工 在经 济型数控 车床上 实这一走
刀路线 , 以减 少刀具的磨损和提 高加 工表 面质量。 关键词 : G S K 9 8 0 T D数控 车 系统 ; A类宏程序 ; 梯形螺纹计算 中图分类号 : T G5 0 6 文献标识码 : B 文章 编号 : 1 6 7 2 — 5 4 5 X( 2 0 1 4) 0 1 — 0 1 5 8 ~ O 2
根据 图 1 所 提供 的螺 纹规 格信 息 ,我们 得 到 r 2 8 X 6的梯形螺纹的主要参数如下 : 面 的粗糙度要求 比较高 。随着梯形螺纹公称直径及 T 螺 纹 大径 ( D) =2 8 a r m; 螺纹 螺距 ( P) =6 m m; 螺 螺距 的增大 , 需切削的余量会大大增加 , 如果在普通 纹牙 高 ( )=0 . 5 P+ =3 . 5 am; r 螺 纹小 径 =D一2 h= 机床上进行加工 , 难度大且费时费力 , 成本高 。 1 m m; 牙顶宽( = 厂 =0 . 3 6 6 P =2 . 1 9 6 m m; 牙槽底宽 现阶段大部分技工 院校使用的数控车床都是经 2 W) =0 . 3 6 6 P~0 . 5 3 6 :1 . 9 2 8 。其 中 , 牙顶 间 隙 ( ) 济 型数 控 车 床 。 而经 济 型 数 控 车床 使 用 的宏 程 序指 ( 如 表 1 所示 。 令大部分是 A类 ,例如我校使用的设备就是广州数 控 生产的 G S K 9 8 0 T D系统 , A类宏指令具有不直观 , 难于理解 , 计算 功能不全等缺陷 , 但在一些 中小型的 机加厂还大量存在 。因此有必要学习和研究 A类宏 程序。因此在数控车床上加工梯形螺纹成为必然。

数控车床上应用宏程序加工梯形螺纹之欧阳体创编

数控车床上应用宏程序加工梯形螺纹之欧阳体创编

数猪乡凉仑应用宏繹瘁加3榛糅衫緩总逼常比三色綏总緩更如劳型尢,致俊梯够緩金孑 杳)时,叱刀探、走刀僅、切削会逻尢、切杳)犹力尢,迫就导致 了糅衫谡盘的■的加3姙虐筱尢。

由孑尢乡数0;埼型敌施乡傾 約速傾也艇应®,糅衫緩幺炭总乡凉£不務刁:采用J 叱刀蚤僅 逬诒方式加工,加3中的刀路夏多,采用基本北今数挖编終鑿 瘙,而采用宏程存备程可以俚阿斜块迪一向腿。

样够鯉仗加工方法分朽善乡上釦的糅衫緩盘,常采用篇速絢刀翼傾速夕树,侖国 种逍刀方:主:盍逬法、左右切树:主、孑&槽:主和乡陷榛槽:主。

盍逬注□适用孑孑削緩更殓J(Pv4mm)的糅衫緩&,而粗 孑綏鉅验尢(P>4mm)的糅衫緩&常采用左右切•的:•去、孑盍橹注 餉孑隋糅橹:主。

下而分朽迫几神孑树方:主丝点:以E 北工方:主險盍逬:主夕卜,典他三种乡剖方注都急刁:同往 虐他滅包或遊免三刀同时切杳),俊站用筱顺场,刀支登力、< 必懾况侖函改善,从而彳昌出呢链动如九刀珈兔,込可握爲切 树闱蚤,改善緩俊恚而爲煽。

X,敌滋夕树梯够経仗走刀方裔倨合数怎乡凉游点,稔合盍逬怙敘率如左右切树注敘果, 孑树糅衫谡金采创作:欧阳体用“老切:主”殓合俺。

把牙橹分戌若孑卮,fi 亿戌若彳个验濱的糅衫槽来逬矽切树。

备卮的切削都采用先益逬后左右的乡树方:主,由孑左右切削吋槽除不卷,刀翼口须筱角左或角右的以初“左刀"逬诒即可。

三,宠住厚偽終夕剖修彩縫盘本幺以力© 3 —个Tr36x6的糅衫緩幺力。

1筠例介区用宏終唐移存备富方:主:修够厶下:1,糅衫磯&加工尺寸皆愆糅的緩&的皆篇式乞豐痞数侥:左(右)紹刀蚤的讨算&上谢可以爲出尼切时左(右)左刀蚤皆篇式巧①、比刀块寃虐等孑劳橹凉寃时,左(右)為刀f =tanl5^x(劳除一老渤老背叱刀蚤);②、省刀块寃廈J孑孑牙橹凉妄时,左(右)卷刀蚤=tanl5°x (劳探一省前老背吃刀逻)+ (另橹凉寃一刀块寃虐)/22,“老切:主'’■的糅衫谡总的刀典逸择“卮切:•主"孑削梯衫緩&所用的粗孑刀如耦乡刀与善孑用刀—样。

梯形螺纹与宏程序加工详解

梯形螺纹与宏程序加工详解
= .6 0 3 6X - . 3 7 0 5 6X . O 5
= . 9m 2 2 4 m。
大 ,因此 ,在进刀方 向的刀 具后角 B要 比螺纹升 角大 3 。~5 。,同时为 了便于顺利的切削和 排屑,刀具 0 0 刀头宽度要根据螺纹牙槽底宽度来确定。
三 、合理利用 宏程序 编程

所 以选 用 的刀 具在 车 削加 工 中应 有 以下要 求 : 1 .刀 具 材 料选 用 硬 质 合 金 刀 具 ,硬 质 合 金在 高温
时 ,冲击 强 度 比较 高 ,因而 不 易崩 刀 。
2 由于 梯形螺 纹 自身的结 构特点 ,在高速 切 削 .
时 , 刀 具 由左 右 两 刃 同 时 进 行 ,切 削 力 加 大 ,会 产 生 振 动 , 并 且 前 刀 面 是 平 行 的 , 切 屑 的 形 状 呈 带 状 流

梯形 螺纹代 号及 尺寸计算
( 梯形螺纹代号 一)
我 国 的标 准 规 定 3 0 0 的梯 形 螺 纹 代 号用 “ r T ”来 表
出,操 作的安全性得不到保证 ,因此 ,在车削梯形螺
纹粗 车 时应 避免 直进 刀 ,采 用左 右 进刀 的 方式 加工 。
示 ,标 注 格 式 为 :公 称 直 径 X 导 程 ( 螺 距 )旋 向一 P 公差 代 号一 旋 合 长度 代 号 , 右 旋 螺 纹 不 注 旋 向 ,左 旋 注 “ H 。T 4 - e 示 公 称 直 径 为4 m ,螺 距 是 L” r 0 77表 X 0m 7 m 中经 和顶 径 的 公 差代 号 为 7 ,右 旋 ,中 等旋 合 长 m, e
用4 钢 。 5


螺纹大经d 4—4 螺纹小径d:0 2.9 :0 0.5 32 3 3 36 5 螺纹中经d 2 7i 牙型角a 0 : ̄3  ̄ 5臻 :3。±1’ 0

B类宏程序加工梯形螺纹的方法和技巧

B类宏程序加工梯形螺纹的方法和技巧

OCCUPATION2012 03166专业开发D evolopmentB类宏程序加工梯形螺纹的方法和技巧文/陈未峰一、B类宏程序在数控编程中的重要性在数控车削加工中,普通轴类零件的轮廓形状都可以利用G功能指令来完成加工。

但异形曲线和大螺距螺纹大大增加了零件的加工难度,G指令编程不好实现这类零件的有效加工。

例如梯形螺纹较之三角螺纹,螺距和牙型都大,而且精度高,牙型两侧表面粗糙度值较小,这样梯形螺纹车削时,吃刀深、走刀快、切削余量大、切削抗力大,导致梯形螺纹的车削加工难度较大。

与宏程序相比,一般程序的程序字为常量,一个程序只能描述一个几何形状,所以缺乏灵活性和适用性。

而用户宏程序本体中可以使用变量进行编程,还可以用宏指令对这些变量进行赋值、运算等处理,从而可以使用宏程序执行一些有规律变化的动作。

与A类宏程序相似,B类宏程序的变量也是由“#”符号和1至3位数字构成;但B类宏程序的数学运算可直接用数学符号完成,而不需采用G65语句,有效地提高了零件的编程灵活性和加工效率。

因此,使用B类宏程序加工有梯形螺纹的零件,对提高数控编程的效率是非常重要的。

二、球头梯形螺纹零件加工工艺分析1.球头梯形螺纹零件分析如图1所示,球头梯形螺纹轴由球面、曲面、退刀槽和梯形螺纹构成,其螺距为6mm,加工精度要求较高,球面和曲面加工简单。

在FANUC 0i数控系统机床上加工时,利用G73复合固定循环就可以进行有效加工,但由于梯形螺纹螺距较大和加工精度较高,致使梯形螺纹车削时,吃刀深、切削余量大、切削抗力大,车削加工难度较大。

利用普通G功能指令无法高质量、有效地完成该零件的加工,需利用B类宏程序进行切削加工。

2.计算相关尺寸,并查表确定公差该零件上梯形外螺纹为Tr36×6,螺距为6mm,公制梯形螺纹的牙型角为30°,梯形螺纹的牙型如图2所示,各基本尺寸计算结果如下:大径中径d 2=d -0.5P =36-3=33,查表确定其公差,故;牙高h 3=0.5P+ a c =3.5;小径d 3=d-2 h 3=29,查表确定其公差,故;牙顶宽f=0.366P=2.196;牙底宽W=0.366P-0.536a c =2.196-0.268=1.928螺纹中经三针测量法测量,如图3所示,用3.1mm的测量棒测量中径,则测量尺寸为M=d 2+4.864d D -1.866P=32.88,根据中径公差确定公差,则(其中d D 表示测量用量针的直径,P表示螺距)。

宏程序在数控车床上对梯形螺纹的加工及分析

宏程序在数控车床上对梯形螺纹的加工及分析

宏程序在数控车床上对梯形螺纹的加工及分析中等职业学校在“以服务为宗旨、以就业为导向、以能力为本位、以学习者为中心”的办学思想指导下,注重实践性教学,以培养学生的操作技能为核心,强调培养学生的创新能力和实践能力。

职业学校培养出的学生既是专业方面的能手,更是高素质的综合性人才。

宏程序在数控车床上对梯形螺纹的加工过程实践性、实用性、可操作性都很强,与企业的实际需求能实现零距离对接。

下面就对梯形螺纹的加工过程进行分析。

如图1所示,设定齿顶圆直、倒角等已经车削到尺寸范围,可直接进行梯形螺纹加工:图11、梯形螺纹部分的几何尺寸及加工中参数。

梯形螺纹基本尺寸及加工中需要用到的参数如下:牙型角α=30º螺距P=6mm牙顶间隙αc=0.5mm大径d=32mm小径d3=d-2h3牙高h3=0.5P+αc牙顶宽f=0.366P顶槽底宽w=0.366P-0.536αc2、加工中需要考虑的几个问题加工梯形螺纹常用方法及其特点。

梯形螺纹车削常用方法包括左右车削法、车直槽法、直进法(图2)等。

图2①左右车削法。

因在每次横向进给时,都必须把车刀向左或向右做微量移动,在普车上很不方便。

但是可防止因三个切削刀同时参加切削而产生振动和扎刀现象,此种方法适用于低速切削。

②车直槽法。

可先用主切削刀宽度等于牙槽底宽W的矩形螺纹车刀车出螺旋直槽,使槽底直径等于梯形螺纹的小径,然后用梯形螺纹精车刀精车牙型两侧,此种方法适用于粗车。

③直进法。

刀具材料一般为硬质合金,先粗车,后精车,适用于高速切削。

3、工艺分析工件材料为45钢,刀具材料选择高速钢,车梯形螺纹时,坐标原点设在工件右端面轴心处,使用G92命令实现左右切削法完成螺纹的加工,工件编程时不需要设置退尾量。

车床转速200r/mi,刀尖宽度1mm。

工件的装夹采用于一夹一顶的装夹方法。

4、梯形螺纹的测量梯形螺纹的测量分综合测量、三针测量和单针测量三种。

图3图4 图5综合测量法是用标准螺纹量规对螺纹各主要参数进行综合性测量。

在数车上加工大螺距梯形螺纹

在数车上加工大螺距梯形螺纹

在数车上加工大螺距梯形螺纹【摘要】梯形螺纹的牙型高度深,精度要求高,牙两侧表面粗糙度值较小,是较难加工的螺纹,文中介绍了在数控车床上利用宏程序粗加工大螺距梯形螺纹的方法,利用低转速精加工梯形螺纹的方法,给出了具体加工程序及其说明,提供的加工程序具有很好的实用价值。

【关键词】数控车削;梯形螺纹;大螺距;宏程序梯形螺纹作为传动螺纹,主要用于准确传递运动和动力,他用中径配合,定心准确,被广泛地用在各种机床上。

梯形螺纹较之三角螺纹,其螺距和牙型都大,而且精度高,牙型两侧面表面粗糙度值较小,导致加工梯形螺纹时,吃刀深、走刀快、切削余量大、切削抗力大,相对来说,梯形螺纹的车削难度较大,特别是容易产生扎刀和折刀现象。

在数控加工中,宏程序可以解决这样的问题。

宏程序是程序编制的高级形式,程序编制的质量与编程人员的素质息息相关,因为宏程序中应用了大量的编程技巧,如数学关系的表达、加工刀具的选择、走到方式的取舍等。

掌握宏程序可以解决复杂工件加工,避免烦琐的数学计算。

一、梯形螺纹的加工尺寸梯形螺纹基本要素及计算公式名称及代号计算公式牙型角αα=30°螺距P P牙顶间隙ac P 1.5~5 6~12 14~44ac 0.25 0.5 1大径d 公称直径中径d2 d2=d-0.5P小径d3 d3=d-2h3牙顶高h3 h3=0.5P+ac牙顶宽? ?=0.366P牙根槽宽W W=0.366P-0.536ac螺纹升角ψtanψ=np/πd2二、梯形螺纹的加工方法梯形螺纹精度要求不高时,可采用一把高速钢螺纹车刀分粗、精车车削。

当梯形螺纹精度要求较高时,可采用粗、精两把车刀进行车削。

选用高速钢右旋梯形螺纹粗车刀。

为了高效去除大部分切削余量,将刀头磨成圆弧型,以增加刀头强度,并将刀头部分的应力分散。

为了使车刀两条侧切削刃锋利且受力、受热均衡,将前刀面磨成左高右低、前高后低。

普通车床加工梯形螺纹的方法有多种,直进法、左右切削法、斜进法,车阶梯槽法等,这些加工方法对于加工螺距较小(P6)的零件,其切削效率较低,难以满足更高的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控车床上应用宏程序加工梯形螺纹梯形螺纹通常比三角螺纹螺距和牙型大,致使梯形螺纹车削时,吃刀深、走刀快、切削余量大、切削抗力大,这就导致了梯形螺纹的车削加工难度较大。

由于大多数经济型数控车低转速低扭矩原因,梯形螺纹数控车床上不得不采用小吃刀量快进给方式加工,加工中的刀路复杂,采用基本指令数控编程繁琐,而采用宏程序编程可以很好解决这一问题。

一,梯形螺纹加工方法分析
普车上车削梯形螺纹,常采用高速钢刀具低速车削,有四种进刀方法:直进法、左右切削法、车直槽法和车阶梯槽法。

直进法只适用于车削螺距较小(P<4mm)的梯形螺纹,而粗车螺距较大(P>4mm)的梯形螺纹常采用左右切削法、车直槽法和车阶梯槽法。

下面分析这几种车削方法特点:
以上加工方法除直进法外,其他三种车削方法都在不同程度地减轻或避免三刃同时切削,使排屑较顺畅,刀尖受力、受热情况有所改善,从而不易出现振动和扎刀现象,还可提高切削用量,改善螺纹表面品质。

二,数控车削梯形螺纹走刀方案
结合数控车床特点,综合直进法效率和左右切削法效果,车削梯形螺纹采用“层切法”较合适。

把牙槽分成若干层,转化成若干个较浅的梯形槽来进行切削。

每层的切削都采用先直进后左右的车削方法,由于左右切削时槽深不变,刀具只须做向左或向右的纵向“赶刀”进给即可。

直进刀右赶刀左赶刀
三,宏程序编程车削梯形螺纹
本文以加工一个Tr36×6的梯形螺纹加工为例介绍用宏程序程序编写方法:图形如下:
1,梯形螺纹加工尺寸计算
梯形螺纹的计算式及其参数值:
左(右)移刀量的计算
如上图可以得出层切时左(右)赶刀量计算式为
①、当刀头宽度等于牙槽底宽时,左(右)赶刀量=tan15°×(牙深—当前层背吃刀量);
②、当刀头宽度小于于牙槽底宽时,左(右)赶刀量=tan15°×(牙深—当前层背吃刀量)+(牙槽底宽—刀头宽度)/2
2,“层切法”车削梯形螺纹的刀具选择
“层切法”车削梯形螺纹所用的粗车刀和精车刀与普车用刀一样。

3,参考程序
①编程分析
用宏程序编程时变量的设置是核心内容,一是要变量尽可能少,避免影响数控系统计算速度,二是便于构成循环。

经过分析本例中要4个变量,#1为刀头到牙槽底的距离,初始值为3.5mm,#2为背吃刀量(半径值),#3为(牙槽底宽—刀头宽度)/2,#4为每次切削螺纹终点X坐标。

本例中编程关键技术是要利用宏程序实现分层切削和左右“赶刀”切削。

利用G82螺纹加工循环指令功能,左右“赶刀”切削只需将切削的起点相应移动0.268*[#1-#2]+#3(右赶刀切削)或者-0.268*[#1-#2]-#3(左赶刀切削)就可以实现。

层切的实现通过#1和#2变量实现,每层加工三刀后,让#1=#1-#2实现进刀,而在每层中螺纹的X坐标不变,始终为#4=29+2*[#1-#2]。

②参考程序(应用与华中系统HNC-21T系统)
4,说明:
①参考程序以工件右端面中心为编程原点。

采用直径编程。

本程序只为梯形螺纹加工一道工序的程序,采用T01为梯形螺纹刀号,在实际应用中根据刀架装刀调整。

②若螺纹的表面粗糙度要求不高,可用一把粗车刀加工即可,执行完程序后
进行测量(采用单针或三针测量法进行测量,方法同普车加工测量),根据测量结果判断是否需要调整牙槽底宽的余量。

若中径尺寸未到,可以适当调整#3的数值,直至合格为止。

背吃刀量可以根据工件材料、刀具选择,只需修改#2的数值即可。

③若螺纹的表面粗糙度要求较高,先用粗车刀粗车,除底部留有余量外,侧面余量在#3变量上调节,要留余量则在#3=(牙槽底宽—刀头宽度)/2基础上减去所留余量,如0.2的侧面余量,则#3=(牙槽底宽—刀头宽度)/2-0.2;再用精车刀精车,依然使用该程序,只修改刀具指令和#3即可。

相关文档
最新文档