高考数学 考前3个月知识方法专题训练 第二部分 技巧规范篇 第一篇 快速解答选择填空题 第2讲 四种
高考数学解题训练方法与技巧汇集(共8篇)
高考数学解题训练方法与技巧聚集〔共8篇〕篇1:高考数学解题训练方法与技巧聚集数学解题训练方法与技巧第一,充分利用考前五分钟。
按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。
这五分钟是不准做题的,但是这五分钟可以看题。
发现很多考生拿到试卷之后,就从第一个题开场看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。
之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。
这六个大题的难度分布一般是从易到难。
我们为了应付这样的一次考试,提早做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。
大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。
特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就可以控制速度和质量。
假如倒数第二题也没有什么感觉,你就想,可能今年这个题出得比拟难,那么我如今的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。
第二,进入考试阶段先要审题。
审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的根底上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。
第三,一定要培养自己一次就做对的习惯。
如今有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。
殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。
高考数学 考前3个月知识方法专题训练 第一部分 知识方法篇 专题1 集合与常用逻辑用语 第5练 如何
(通用版)2017届高考数学考前3个月知识方法专题训练第一部分知识方法篇专题1 集合与常用逻辑用语第5练如何让“线性规划”不失分文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((通用版)2017届高考数学考前3个月知识方法专题训练第一部分知识方法篇专题1 集合与常用逻辑用语第5练如何让“线性规划”不失分文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(通用版)2017届高考数学考前3个月知识方法专题训练第一部分知识方法篇专题1 集合与常用逻辑用语第5练如何让“线性规划”不失分文的全部内容。
第5练如何让“线性规划”不失分[题型分析·高考展望] “线性规划”是高考每年必考的内容,主要以选择题、填空题的形式考查,题目难度大多数为低、中档,在填空题中出现时难度稍高.二轮复习中,要注重常考题型的反复训练,注意研究新题型的变化点,争取在该题目上做到不误时,不丢分.体验高考1.(2015·天津)设变量x,y满足约束条件错误!则目标函数z=x+6y的最大值为( )A.3 B.4 C.18 D.40答案C解析画出约束条件的可行域如图中阴影部分,作直线l:x+6y=0,平移直线l可知,直线l过点A时,目标函数z=x+6y取得最大值,易得A(0,3),所以z max=0+6×3=18,选C。
2.(2015·陕西)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A3212B128A。
高考数学 考前三个月复习冲刺 专题1 第2练 用好逻辑用语、突破充要条件 理
点评 利用等价命题判断命题的真假,是判断命题真假快捷 有效的方法.在解答时要有意识地去练习.
变式训练1 (2014·重庆)已知命题:
p:对任意x∈R,总有2x>0;
q:“x>1”是“x>2”的充分不必要条件.
则下列命题为真命题的是( )
A.p∧q
B.(綈p)∧(綈q)
C.(綈p)∧q
D.p∧(綈q)
常考题型精析 高考题型精练
常考题型精析
题型一 命题及其真假判断 题型二 充分条件与必要条件 题型三 与命题有关的综合问题
题型一 命题及其真假判断
常用结论: (1)原命题与逆否命题等价,同一个命题的逆命题、否命题等 价;(2)四个命题中,真命题的个数为偶数;(3)只有p、q都假, p∨q假,否则为真,只有p、q都真,p∧q真,否则为假; (4)全称命题的否定为特称命题,特称命题的否定为全称命题, 一个命题与其否定不会同真假.
例1 (1)(2015·安徽)已知m,n是两条不同直线,α,β是两 个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面
解析 对于A,α,β垂直于同一平面,α,β关系不确定,A错; 对于B,m,n平行于同一平面,m,n关系不确定,可平行、相交、异面, 故B错; 对于C,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β 交线的直线平行于β,故C错; 对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项, 故D正确. 答案 D
点评 判断充分、必要条件时应注意的问题 (1)先后顺序:“A的充分不必要条件是B”是指B能推出A, 且A不能推出B;而“A是B的充分不必要条件”则是指A能推 出B,且B不能推出A. (2)举出反例:如果从正面判断或证明一个命题的正确或错误 不易进行时,可以通过举出恰当的反例来说明. (3)准确转化:若綈p是綈q的必要不充分条件,则p是q的充分 不必要条件;若綈p是綈q的充要条件,那么p是q的充要条件.
高考前三个月冲刺:数学各题型拿高分秘诀
高考前三个月冲刺:数学各题型拿高分秘诀这些必考和常考类型及知识点一定要掌握好,相对应的题一定要做熟练,牢固掌握这些基础知识点。
张天德教授说,今年高考考题中有可能会出现一两道与实际相联系的题。
不过这样的题归根结底还是考平时学的知识和方法,只不过是将实际问题转化为数学模型,即转化为平时做过、见过的题型,考生不必紧张,只要平时牢固掌握知识点,活学活用即可。
答题技巧学会取舍,合理分配答题时间“整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。
”张教授说,往年考试中总有许多同学抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。
他表示,高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。
因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。
张教授表示,现在距高考只有不到一个月的时间了,在这最后一段时间的复习中,同学们应该重新回归基本题型,总结过去的经验,争取在填空题、选择题等基础考查中不丢分。
在各个大题中,应该全力以赴把握住前几道低难度的试题,详细解题步骤、规范答题细节,保证不该丢的分一定不能丢。
同时还要善于分析出题人的出发点以及得分要点,尽量争取拿到更多的分数。
“要舍得扔自己不会做的大题。
”张天德介绍说,首先把握住低中档题,难题能得一分是一分,但不要一味陷入其中而浪费大量时间。
如果只想得135分左右,最后两道大题只需做前一两问即可。
在高考的前一个月应该把高考模拟试卷好好做一下,多研究一下,并多注重其变形考查,掌握技巧是非常关键的。
另外,考生在平时的练习中,不要以题量来衡量,而是要以答题效果为依据,自己要真正掌握。
做题重在精,做一道是一道,贵在能举一反三。
立体几何熟记结论,巧解选择填空题“对于立体几何,应该把一些常规的东西做透,熟练掌握知识点。
”报告中张天德教授详细讲解了立体几何的做题方法,他表示,在立体几何题中,题目所给出的许多条件往往会有些固定或常见的用法,可以借助这些很快找出正确的解题思路。
2022年高考数学二轮复习教案:第二部分 专题一 选择、填空题常用的10种解法 Word版含答案
专题一 选择、填空题常用的10种解法 抓牢小题,保住基本分才能得高分________________________________________________________________________ 原则与策略:1.基本原则:小题不用大做.2.基本策略:充分利用题干和选项所供应的信息作出推断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排解后求解.解题时应认真审题、深化分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的挨次排列.2.留意基本学问、基本技能与思想方法的考查.3.解题方法机敏多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法则等,都是由定义和公理推演出来的.简洁地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1A |=|F 1F 2|,则C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由已知可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,则由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.故选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要留意动点或圆锥曲线上的点所满足的条件,机敏利用相关的定义求解.如[本例]中依据双曲线的定义和已知条件,分别把A 到两个焦点的距离求出来,然后依据椭圆定义求出其长轴长,最终就可依据离心率的定义求值. [技法体验]1.(2021·广州模拟)假如P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,若x 1+x 2+…+x n =10,则|P 1F |+|P 2F |+…+|P n F |=( ) A .n +10 B .n +20 C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2022·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排解法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排解干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略.[例2] (2022·高考浙江卷)已知实数a ,b ,c ( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:结合特殊值,利用排解法选择答案. 对于A ,取a =b =10,c =-110, 明显|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立.对于B ,取a 2=10,b =-10,c =0, 明显|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,明显|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排解法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排解干扰选项. [技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12|=-cos 12,所以f (-12)=f (12),排解A ,D ;又f (12)=-cos 12<0,故排解C.综上,选B. 答案:B2.已知E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,则1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动”直线,所以最终的结果必定是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,则AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.故选A.法二:如图2,取直线BE 作为直线PQ ,明显,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.故选A.答案:A方法三 数形结合法数形结合法,包含“以形助数”和“以数辅形”两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2021·安庆模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( )A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a 为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a 2-4a ≤6,即-1≤a ≤3, 故选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解. [技法体验]1.(2021·珠海摸底)已知|a |=|b |,且|a +b |=3|a -b |,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由已知可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,由于|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,则|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.已知点P 在抛物线y 2=4x 上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,由于点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,则点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后依据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等. [例4] (2021·天津红桥区模拟)已知椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,则椭圆C 的标准方程是( ) A.x 216+y 212=1 B.x 212+y 216=1C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,由于焦点在y 轴上,故选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中已知椭圆的焦点所在坐标轴,设出标准方程,依据已知列方程求解. [技法体验]1.若等差数列{a n }的前20项的和为100,前45项的和为400,则前65项的和为( ) A .640 B .650 C .660D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,则前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,故选D.答案:D 方法五 估值法估值法就是不需要计算出代数式的精确 数值,通过估量其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要具体的过程,因此可以猜想、合情推理、估算而获得,从而削减运算量.[例5] 若a =20.5,b =log π3,c =log 2sin 2π5,则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);由于sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .故选A. 答案:A[增分有招] 估算,省去很多推导过程和比较简单的计算,节省时间,是发觉问题、争辩问题、解决问题的一种重要的运算方法.但要留意估算也要有依据,如[本例]是依据指数函数与对数函数的单调性估量每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较. [技法体验]已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.若f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π12,π2 C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:由于函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,若取φ=π2,则2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝ ⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,若取φ=π12,则2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A.答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最终得出冲突,因此说明假设错误,从而证明白原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导冲突;(3)得结论,即说明命题成立.[例6] 已知x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,则下列说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.明显两者冲突,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少”“至多”类型的问题比较便利.其关键是依据假设导出冲突——与已知条件、定义、公理、定理及明显的事实冲突或自相冲突.如[本例]中导出等式的冲突,从而说明假设错误,原命题正确. [技法体验]假如△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,则由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,明显该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.故选D. 答案:D 方法七 换元法换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为生疏的形式,把简单的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换争辩对象,将问题移至新对象的学问背景中去争辩,从而使非标准型问题标准化、简单问题简洁化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 已知正数x ,y 满足4y -2yx=1,则x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×yx=2⎝ ⎛⎭⎪⎫当且仅当x 4y =yx ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要依据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将已知条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其开放,通过构造基本不等式的形式求解最值. [技法体验]1.(2022·成都模拟)若函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],则a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,则t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1. 令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22.∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减,∴t =0时,y max =1.答案:1 方法八 补集法补集法就是已知问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立大事,求出问题的结果,则所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多. [例8]某学校为了争辩高中三个班级的数学学习状况,从三个班级中分别抽取了1,2,3个班级进行问卷调查,若再从中任意抽取两个班级进行测试,则两个班级不来自同一班级的概率为________. 解析:记高一班级中抽取的班级为a 1,高二班级中抽取的班级为b 1,b 2, 高三班级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的全部可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一班级”为大事A ,则大事A 为抽取的两个班级来自同一班级. 由题意,两个班级来自同一班级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115. 所以两个班级不来自同一班级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,肯定要精确 把握所求问题的对立大事.如[本例]中,“两个班级不来自同一班级”的对立大事是“两个班级来自同一班级”,而高一班级只有一个班级,所以两个班级来自同一班级的可能性仅限于来自于高二班级,或来自于高三班级,明显所包含基本大事的个数较少. [技法体验]1.(2022·四川雅安中学月考)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.故选B. 答案:B2.已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,由于x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,明显函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分别参数法分别参数法是求解不等式有解、恒成立问题常用的方法,通过分别参数将问题转化为相应函数的最值或范围问题求解,从而避开对参数进行分类争辩的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要留意该种方法仅适用于分别参数后能够求解相应函数的最值或值域的状况.[例9] 若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是________.解析:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52, ∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分别参数法解决不等式恒成立问题或有解问题,关键在于精确 分别参数,然后将问题转化为参数与函数最值之间的大小关系.分别参数时要留意参数系数的符号是否会发生变化,假如参数的系数符号为负号,则分别参数时应留意不等号的变化,否则就会导致错解. [技法体验]1.(2022·长沙调研)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立, 即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,由于y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.答案:C2.(2022·湖南五校调研)方程log 12(a -2x)=2+x 有解,则a 的最小值为________.解析:若方程log 12(a -2x )=2+x 有解,则⎝ ⎛⎭⎪⎫122+x =a -2x有解,即14⎝ ⎛⎭⎪⎫12x +2x =a 有解,∵14⎝ ⎛⎭⎪⎫12x +2x ≥1,故a 的最小值为1. 答案:1 方法十 构造法构造法是指利用数学的基本思想,经过认真的观看,深化的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵格外丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点实行相应的解决方法,其基本的方法是借用一类问题的性质,来争辩另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等. [例10] 已知m ,n ∈(2,e),且1n 2-1m 2<ln mn,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.由于x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 由于f (n )<f (m ),所以n <m .故选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,依据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:令f (x )=ln x -x ,则f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。
最新-2021考前3个月 文科数学课件 技巧规范篇 第2篇 看细则、用模板、解题再规范 精品
左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48. a11 a12 a13 … a1n a21 a22 a23 … a2n a31 a32 a33 … a3n ……………
an1 an2 an3 … ann
(1)求an1和a4n;
(2)设 bn=a4n-2a4na4n-1+(-1)n·an1(n∈N*),求数列{bn}的前 n 项和 Sn.
解析答案
(2)若对任意的n∈N*,不等式λTn<n+8·(-1)n恒成立,求实数λ的取值范围.
解析答案
返回
模板4 直线与圆锥曲线的位置关系
例 4 (12 分)(2015·山东)在平面直角坐标系 xOy 中,已知椭圆 C:ax22+by22= 1(a>b>0)的离心率为 23,左、右焦点分别是 F1、F2.以 F1 为圆心、以 3 为半径的圆与以 F2 为圆心、以 1 为半径的圆相交,且交点在椭圆 C 上. (1)求椭圆C的方程;
解析答案
返回
模板6 函数的单调性、极值与最值
例6 (12分)(2015·课标全国Ⅱ)已知函数f(x)=ln x+a(1-x). (1)讨论f(x)的单调性; (2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
评分细则
构建答题模板
规范解答·评分标准
变式训练6 已知函数f(x)=(ax2+bx+c)ex在[0,1]上单调递减且满足f(0)= 1,f(1)=0. (1)求a的取值范围;
评分细则
构建答题模板
规范解答·评分标准
变式训练 1 已知函数 f(x)= 3sin2x+32sin 2x. (1)求函数f(x)的单调递减区间;
解
f(x)=
高考数学(理)考前三个月考前抢分必做 考前回扣3 三角函数、平面向量
回扣3 三角函数、平面向量1.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0).3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.5.三种三角函数的性质函数y =sin xy =cos xy =tan x图象单调性在[-π2+2k π,π2+2k π] (k ∈Z )上单调递增;在[π2+2k π,3π2+2k π] (k ∈Z )上单调递减在[-π+2k π,2k π] (k ∈Z )上单调递增;在[2k π,π+2k π](k ∈Z )上单调递减在(-π2+k π,π2+k π)(k ∈Z )上单调递增对称性对称中心:(k π,对称中心:(π2+k π,对称中心:(k π2,0)6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换: y =sin x――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)错误!y =sin(ωx +φ)――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ).7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号. 2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ.5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解. 6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件;a·b <0是〈a ,b 〉为钝角的必要不充分条件.1. 2sin 45°cos 15°-sin 30°的值等于________. 答案32解析 2sin 45°cos 15°-sin 30°=2sin 45°cos 15°-sin(45°-15°)=2sin 45°cos 15°-(sin 45°cos 15°-cos 45°sin 15°)=sin 45°cos 15°+cos 45°sin 15°=sin 60°=32. 2.要得到函数y =sin 2x 的图象,可由函数y =cos(2x -π3)向________平移________个单位长度. 答案 右π12解析 由于函数y =sin 2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin 2x 的图象.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是________. 答案332解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.4.(1+tan 18°)(1+tan 27°)的值是________. 答案 2解析 由题意得,tan(18°+27°)=tan 18°+tan 27°1-tan 18°tan 27°,即tan 18°+tan 27°1-tan 18°tan 27°=1, 所以tan 18°+tan 27°=1-tan 18°tan 27°,所以(1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=2.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形.答案 直角解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.(·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连结DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________. 答案 18解析 如图,由条件可知BC →=AC →-AB →, AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →, 所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形, 所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.7.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为________. 答案 π解析 |b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3a·b =0⇒a·b =-52,从而cos 〈a ,b 〉=a·b|a|·|b |=-1,〈a ,b 〉=π.8.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ;②若cos A a =cos B b =cos C c ,则△ABC 为等边三角形;③若sin 2A =sin 2B ,则△ABC 为等腰三角形; ④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形; ⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立.其中正确的命题为________.(写出所有正确命题的序号) 答案 ①②④解析 若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ;若cos A a =cos B b =cos C c ,则cos A sin A =cos B sin B ⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tan A )(1+tan B )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立,因此正确的命题为①②④.9.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).10.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案 25解析 ∵tan θ=3, ∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25. 11.已知单位向量a ,b ,c ,且a ⊥b ,若c =t a +(1-t )b ,则实数t 的值为________. 答案 1或0解析 c =t a +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin 2x +sin(2x -B )(x ∈R )的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin 2x +sin 2x cos2π3-cos 2x sin 2π3=32sin 2x -32cos 2x =3sin(2x -π6), 当2x -π6=π2+2k π,k ∈Z 时,f (x )取得最大值,即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.13.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值.解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin 2x -cos 2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),得k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角,∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2
回扣2 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ;③反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称. ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称. ③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换 (1)平移变换:y =f (x )――――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换: y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点; y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x 在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x 在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法 ①解方程判定法:即解方程f (x )=0.②零点定理法:根据连续函数y =f (x )满足f (a )f (b )<0,判断函数在区间(a ,b )内存在零点. ③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解. 8.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上. 9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调增区间,由f ′(x )<0的解集确定函数f (x )的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0 (x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0两侧的符号变化: 若左正右负,则x 0为极大值点; 若左负右正,则x 0为极小值点; 若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤: ①求函数y =f (x )在(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a )、f (b )的大小,最大的一个是最大值,最小的一个是最小值.11.定积分的三个公式与一个定理 (1)定积分的性质: ①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).(2)微积分基本定理:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f (f (1))等于( )A.-10B.10C.-2D.2 答案 C解析 由f (f (1))=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A.[1,+∞)B.[1,32)C.[1,2)D.[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A.(94,3)B.[94,3) C.(1,3) D.(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.设函数F (x )=f (x )+f (-x ),x ∈R ,且⎣⎡⎦⎤-π,-π2是函数F (x )的一个单调递增区间.将函数F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π,-π2 B.⎣⎡⎦⎤-π2,0 C.⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤3π2,2π 答案 D解析 ∵F (x )=f (x )+f (-x ),x ∈R ,∴F (-x )=f (-x )+f (x )=F (x ),∴F (x )为偶函数,∴⎣⎡⎦⎤π2,π为函数F (x )的一个单调递减区间.将F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是⎣⎡⎦⎤3π2,2π.5.已知函数f (x )为偶函数,将f (x )的图象向右平移一个单位后得到一个奇函数,若f (2)=-1,则f (1)+f (2)+…+f (2 016)等于( ) A.1 B.0 C.-1 003 D.1 003 答案 B解析 由条件知f (x -1)是奇函数,所以f (-x -1)=-f (x -1),又f (x )为偶函数,所以f (x +1)=-f (x -1),即f (x +2)=-f (x ),从而f (x +4)=f (x ),即函数f (x )是周期为4的函数,在f (x +2)=-f (x )中令x =-1,可得f (1)=0,再令x =1可得f (3)=-f (1)=0,令x =2可得f (4)=-f (2)=1,因此f (1)+f (2)+…+f (2 016)=504[f (1)+f (2)+f (3)+f (4)]=0,故选B.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A.2 B.0 C.-1 D.-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.a 、b 、c 依次表示函数f (x )=2x +x -2,g (x )=3x +x -2,h (x )=ln x +x -2的零点,则a 、b 、c 的大小顺序为( )A.c <b <aB.a <b <cC.a <c <bD.b <a <c 答案 D解析 a 、b 、c 为直线y =2-x 分别与曲线y =2x ,y =3x ,y =ln x 的交点横坐标,从图象可知b <a <c ,故选D.8.设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >a D.c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x ,若函数g (x )至少存在一个零点,则实数m的取值范围是__________. 答案 (-∞,e 2+1e]解析 令g (x )=x 2-2e x +m -ln xx =0,∴m =-x 2+2e x +ln xx(x >0),设h (x )=-x 2+2e x +ln xx ,令f 1(x )=-x 2+2e x ,f 2(x )=ln xx ,∴f 2′(x )=1-ln x x 2,发现函数f 1(x ),f 2(x )在x ∈(0,e)上都是单调递增,在x ∈(e ,+∞)上都是单调递减,∴函数h (x )=-x 2+2e x +ln xx 在x ∈(0,e)上单调递增,在x ∈(e ,+∞)上单调递减,∴当x =e 时,h (x )max=e 2+1e ,∴函数有零点需满足m ≤h (x )max ,即m ≤e 2+1e.11.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0, f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7.13.已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减,若t ∈(t ,1],φ′(x )>0,φ(x )在(t ,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.。
高考数学快速解题的方法及技巧(精选19篇)
高考数学快速解题的方法及技巧(精选19篇)高考数学快速解题的方法及技巧篇1考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
高考数学快速解题的方法及技巧篇21.熟悉基本的解题步骤和解题方法解题的过程,是一个思维的过程。
对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。
高考数学快速解题的方法及技巧篇3对于一道具体的习题,解题时最重要的环节是审题。
审题的第一步是读题,这是获取信息量和思考的过程。
读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。
所以,在实际解题时,应特别注意,审题要认真、仔细。
高考数学快速解题的方法及技巧篇4解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。
解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
学习学不下去了可以看下这本书,淘宝搜索《高考蝶变》购买高考数学快速解题的方法及技巧篇5在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣2
回扣2 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):a >0时,值域为⎣⎡⎭⎫4ac -b24a ,+∞,a <0时,值域为⎝⎛⎦⎤-∞,4ac -b 24a ;③反比例函数y =kx (k ≠0)的值域为{y ∈R |y ≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期.②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称. ②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称. ③若函数y =f (x )满足f (a +x )=f (b -x ), 则函数f (x )的图象关于直线x =a +b2对称.4.函数的单调性函数的单调性是函数在定义域上的局部性质. ①单调性的定义的等价形式:设x 1,x 2∈[a ,b ], 那么(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②若函数f (x )和g (x )都是减函数,则在公共定义域内,f (x )+g (x )是减函数;若函数f (x )和g (x )都是增函数,则在公共定义域内,f (x )+g (x )是增函数;根据同增异减判断复合函数y =f [g (x )]的单调性.5.函数图象的基本变换 (1)平移变换:y =f (x )――――→h >0,右移h <0,左移y =f (x -h ), y =f (x )――――→k >0,上移k <0,下移y =f (x )+k . (2)伸缩变换:y =f (x )――――→0<ω<1,伸ω>1,缩y =f (ωx ), y =f (x )――――→0<A <1,缩A >1,伸y =Af (x ). (3)对称变换: y =f (x )――→x 轴y =-f (x ), y =f (x )――→y 轴y =f (-x ), y =f (x )――→原点y =-f (-x ).6.准确记忆指数函数与对数函数的基本性质 (1)定点:y =a x (a >0,且a ≠1)恒过(0,1)点; y =log a x (a >0,且a ≠1)恒过(1,0)点.(2)单调性:当a >1时,y =a x 在R 上单调递增;y =log a x 在(0,+∞)上单调递增; 当0<a <1时,y =a x 在R 上单调递减;y =log a x 在(0,+∞)上单调递减. 7.函数与方程(1)零点定义:x 0为函数f (x )的零点⇔f (x 0)=0⇔(x 0,0)为f (x )的图象与x 轴的交点.(2)确定函数零点的三种常用方法 ①解方程判定法:即解方程f (x )=0.②零点定理法:根据连续函数y =f (x )满足f (a )f (b )<0,判断函数在区间(a ,b )内存在零点. ③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解. 8.导数的几何意义(1)f ′(x 0)的几何意义:曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,该切线的方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)切点的两大特征:①在曲线y =f (x )上;②在切线上. 9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤:①求函数f (x )的定义域;②求导函数f ′(x );③由f ′(x )>0的解集确定函数f (x )的单调增区间,由f ′(x )<0的解集确定函数f (x )的单调减区间.(2)由函数的单调性求参数的取值范围:①若可导函数f (x )在区间M 上单调递增,则f ′(x )≥0(x ∈M )恒成立;若可导函数f (x )在区间M 上单调递减,则f ′(x )≤0 (x ∈M )恒成立;②若可导函数在某区间上存在单调递增(减)区间,f ′(x )>0(或f ′(x )<0)在该区间上存在解集;③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,则I 是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤:①确定函数的定义域;②解方程f ′(x )=0;③判断f ′(x )在方程f ′(x )=0的根x 0两侧的符号变化: 若左正右负,则x 0为极大值点; 若左负右正,则x 0为极小值点; 若不变号,则x 0不是极值点.(2)求函数f (x )在区间[a ,b ]上的最值的一般步骤: ①求函数y =f (x )在(a ,b )内的极值;②比较函数y =f (x )的各极值与端点处的函数值f (a )、f (b )的大小,最大的一个是最大值,最小的一个是最小值.11.定积分的三个公式与一个定理 (1)定积分的性质: ①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x ;②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .③⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).(2)微积分基本定理:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y =a x (a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f (x )在(a ,b )上单调递增(减),则f ′(x )≥0(≤0)对∀x ∈(a ,b )恒成立,不能漏掉“=”号,且需验证“=”不能恒成立;而已知可导函数f (x )的单调递增(减)区间为(a ,b ),则f ′(x )>0(<0)的解集为(a ,b ).8.f ′(x )=0的解不一定是函数f (x )的极值点.一定要检验在x =x 0的两侧f ′(x )的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.1.若函数f (x )=⎩⎪⎨⎪⎧2x +2,x ≤0,2x -4,x >0,则f (f (1))等于( )A.-10B.10C.-2D.2 答案 C解析 由f (f (1))=f (21-4)=f (-2)=2×(-2)+2=-2,故选C.2.若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A.[1,+∞)B.[1,32)C.[1,2)D.[32,2)答案 B解析 因为f (x )的定义域为(0,+∞),y ′=2x -12x ,由f ′(x )=0,得x =12.利用图象可得,⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32,故选B.3.若函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,则实数a 的取值范围是( )A.(94,3)B.[94,3) C.(1,3) D.(2,3) 答案 D解析 因为函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,所以1<a <3且由f (7)<f (8)得,7(3-a )-3<a 2,解得a <-9或a >2,所以实数a 的取值范围是(2,3),故选D.4.设函数F (x )=f (x )+f (-x ),x ∈R ,且⎣⎡⎦⎤-π,-π2是函数F (x )的一个单调递增区间.将函数F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π,-π2 B.⎣⎡⎦⎤-π2,0 C.⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤3π2,2π 答案 D解析 ∵F (x )=f (x )+f (-x ),x ∈R ,∴F (-x )=f (-x )+f (x )=F (x ),∴F (x )为偶函数,∴⎣⎡⎦⎤π2,π为函数F (x )的一个单调递减区间.将F (x )的图象向右平移π个单位,得到一个新的函数G (x )的图象,则G (x )的一个单调递减区间是⎣⎡⎦⎤3π2,2π.5.已知函数f (x )为偶函数,将f (x )的图象向右平移一个单位后得到一个奇函数,若f (2)=-1,则f (1)+f (2)+…+f (2 016)等于( ) A.1 B.0 C.-1 003 D.1 003 答案 B解析 由条件知f (x -1)是奇函数,所以f (-x -1)=-f (x -1),又f (x )为偶函数,所以f (x +1)=-f (x -1),即f (x +2)=-f (x ),从而f (x +4)=f (x ),即函数f (x )是周期为4的函数,在f (x +2)=-f (x )中令x =-1,可得f (1)=0,再令x =1可得f (3)=-f (1)=0,令x =2可得f (4)=-f (2)=1,因此f (1)+f (2)+…+f (2 016)=504[f (1)+f (2)+f (3)+f (4)]=0,故选B.6.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且f (-1)=2,则f (2 017)的值是( ) A.2 B.0 C.-1 D.-2 答案 D解析 由题意得f (x +4)=-f (x +2)=f (x ),所以函数是以T =4的周期函数,所以f (2 017)=f (1)=-f (-1)=-2,故选D.7.a 、b 、c 依次表示函数f (x )=2x +x -2,g (x )=3x +x -2,h (x )=ln x +x -2的零点,则a 、b 、c 的大小顺序为( )A.c <b <aB.a <b <cC.a <c <bD.b <a <c 答案 D解析 a 、b 、c 为直线y =2-x 分别与曲线y =2x ,y =3x ,y =ln x 的交点横坐标,从图象可知b <a <c ,故选D.8.设a =log 32,b =log 52,c =log 23,则( ) A.a >c >b B.b >c >a C.c >b >a D.c >a >b 答案 D解析 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图象,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式得log 32>log 52,即a >b .9.若函数f (x )定义域为[-2,2],则函数y =f (2x )·ln(x +1)的定义域为________. 答案 (-1,1]解析 由题意可得⎩⎪⎨⎪⎧-2≤2x ≤2,x +1>0,∴-1<x ≤1,即函数y =f (2x )·ln(x +1)的定义域为(-1,1].10.设函数f (x )=x 3-2e x 2+mx -ln x ,记g (x )=f (x )x ,若函数g (x )至少存在一个零点,则实数m的取值范围是__________. 答案 (-∞,e 2+1e]解析 令g (x )=x 2-2e x +m -ln xx =0,∴m =-x 2+2e x +ln xx(x >0),设h (x )=-x 2+2e x +ln xx ,令f 1(x )=-x 2+2e x ,f 2(x )=ln xx ,∴f 2′(x )=1-ln x x 2,发现函数f 1(x ),f 2(x )在x ∈(0,e)上都是单调递增,在x ∈(e ,+∞)上都是单调递减,∴函数h (x )=-x 2+2e x +ln xx 在x ∈(0,e)上单调递增,在x ∈(e ,+∞)上单调递减,∴当x =e 时,h (x )max=e 2+1e ,∴函数有零点需满足m ≤h (x )max ,即m ≤e 2+1e.11.设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈[0,12]时f (x )=-x 2,则f (3)+f (-32)的值等于________.答案 -14解析 由于y =f (x )为奇函数,根据对任意t ∈R 都有f (t )=f (1-t ), 可得f (-t )=f (1+t ),所以函数y =f (x )的一个周期为2, 故f (3)=f (1)=f (0+1)=-f (0)=0, f (-32)=f (12)=-14,∴f (3)+f (-32)=-14.12.函数f (x )=x 3+ax 2+bx +a 2在x =1处有极小值10,则a +b 的值为________. 答案 -7解析 ∵f ′(x )=3x 2+2ax +b ,由已知可得⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10,解得a =4,b =-11或a =-3,b =3, 经验证,a =4,b =-11符合题意, 故a +b =-7.13.已知函数f (x )=x +1e x (e 为自然对数的底数).(1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+1e x ,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,求实数t的取值范围.解 (1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0, ∴f (x )在(-∞,0)上单调递增, 在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+(1-t )x +1e x,∴φ′(x )=-x 2+(1+t )x -t e x=-(x -t )(x -1)e x. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1;②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0;③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减,若t ∈(t ,1],φ′(x )>0,φ(x )在(t ,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·t +1e t <max{1,3-t e}.(*)由(1)知,g (t )=2·t +1e t 在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,存在t ∈(-∞,3-2e)∪(3-e2,+∞),使得命题成立.。
高考数学 考前3个月知识方法专题训练 第一部分 知识方法篇 专题1 集合与常用逻辑用语 第5练 如何
第5练 如何让“线性规划”不失分[题型分析·高考展望] “线性规划”是高考每年必考的内容,主要以选择题、填空题的形式考查,题目难度大多数为低、中档,在填空题中出现时难度稍高.二轮复习中,要注重常考题型的反复训练,注意研究新题型的变化点,争取在该题目上做到不误时,不丢分.体验高考1.(2015·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40 答案 C解析 画出约束条件的可行域如图中阴影部分,作直线l :x +6y =0,平移直线l 可知,直线l 过点A 时,目标函数z =x +6y 取得最大值,易得A (0,3),所以z max =0+6×3=18,选C.2.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元 D .18万元 答案 D解析 设甲,乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图中阴影部分所示: 可得目标函数在点A 处取到最大值. 由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元).3.(2015·课标全国Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为____________. 答案 32解析 画出约束条件表示的可行域如图中阴影部分(△ABC )所示:作直线l 0:x +y =0,平移l 0到过点A 的直线l 时,可使直线y =-x +z 在y 轴上的截距最大,即z 最大,解⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得⎩⎪⎨⎪⎧x =1,y =12,即A ⎝ ⎛⎭⎪⎫1,12,故z 最大=1+12=32. 4.(2016·山东)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12 答案 C解析 满足条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如图中阴影部分(包括边界),x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然,当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.5.(2016·浙江)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2C.322D. 5答案 B解析 已知不等式组所表示的平面区域如图所示的阴影部分, 由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,解得A (1,2),由⎩⎪⎨⎪⎧x +y -3=0,2x -y -3=0,解得B (2,1).由题意可知,当斜率为1的两条直线分别过点A 和点B 时,两直线的距离最小, 即|AB |=-2+-2= 2.高考必会题型题型一 已知约束条件,求目标函数的最值 例1 (2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5 答案 C解析 不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y=-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4.点评 (1)确定平面区域的方法:“直线定界,特殊点定域”.(2)线性目标函数在线性可行域中的最值,一般在可行域的顶点处取得,故可先求出可行域的顶点,然后代入比较目标函数的取值即可确定最值.变式训练1 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .5 答案 B解析 根据约束条件作出可行域,如图阴影部分所示.由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3,故选B.题型二 解决参数问题例2 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -,若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a x -,得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12.点评 所求参数一般为对应直线的系数,最优解的取得可能在某点,也可能是可行域边界上的所有点,要根据情况利用数形结合进行确定,有时还需分类讨论.变式训练2 (2015·山东)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a 等于( ) A .3 B .2 C .-2 D .-3答案 B解析 不等式组表示的平面区域如图中阴影部分所示,易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C ,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A ,故选B. 题型三 简单线性规划的综合应用例3 (1)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).(2)(2016·课标全国乙)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 答案 (1)⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0(2)216 000解析 (1)用表格列出各数据A 1 400所以不难看出,⎩⎪⎨⎪⎧200x+300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0.(2)设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,x ∈N *,y ∈N*目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).点评 若变量的约束条件形成一个区域,如圆、三角形、带状图形等,都可考虑用线性规划的方法解决,解决问题的途径是:集中变量的约束条件得到不等式组,画出可行域,确定变量的取值范围,解决具体问题.变式训练3 设点P (x ,y )是不等式组⎩⎪⎨⎪⎧y ≥0,x -2y +1≥0,x +y ≤3所表示的平面区域内的任意一点,向量m =(1,1),n =(2,1),点O 是坐标原点,若向量O P →=λm +μn (λ,μ∈R ),则λ-μ的取值范围是( ) A .[-32,23] B .[-6,2]C .[-1,72]D .[-4,23]答案 B解析 画出不等式组所表示的可行域,如图中阴影部分所示.由题意,可得(x ,y )=λ(1,1)+μ(2,1)=(λ+2μ,λ+μ),故⎩⎪⎨⎪⎧x =λ+2μ,y =λ+μ.令z=λ-μ=-2(λ+2μ)+3(λ+μ)=-2x +3y ,变形得y =23x +z3.当直线y =23x +z 3过点A (-1,0)时,z 取得最大值,且z max =2;当直线y =23x +z3过点B (3,0)时,z 取得最小值,且z min =-6.故选B.高考题型精练1.(2015·安徽)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( ) A .-1 B .-2 C .-5 D .1答案 A解析 约束条件下的可行域如图所示,由z =-2x +y 可知y =2x +z ,当直线y =2x +z 过点A (1,1)时,截距最大,此时z 最大为-1,故选A.2.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 A 解析 如图,(x -1)2+(y -1)2≤2①表示圆心为(1,1), 半径为2的圆内区域所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1②表示△ABC 内部区域所有点(包括边界). 实数x ,y 满足②则必然满足①,反之不成立. 则p 是q 的必要不充分条件.故选A.3.若x ,y 满足⎩⎪⎨⎪⎧y -1≥0,2x -y -1≥0,x +y ≤m ,若目标函数z =x -y 的最小值为-2,则实数m 的值为( )A .0B .2C .8D .-1 答案 C解析 画出x ,y 满足的可行域如图.可得直线y =2x -1与直线x +y =m 的交点使目标函数z =x -y 取得最小值, 由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,解得x =m +13,y =2m -13, 代入x -y =-2得m +13-2m -13=-2⇒m =8,故选C.4.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( ) A .5 B .29 C .37 D .49 答案 C解析 由已知得平面区域Ω为△MNP 内部及边界. ∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6. ∴a 2+b 2的最大值为62+12=37.故选C. 5.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( ) A .(0,4) B .(0,4] C .[4,+∞) D .(4,+∞)答案 B解析 作出不等式组表示的区域如图中阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点 A (1,1)时取最大值,∴a +b =4,ab ≤⎝ ⎛⎭⎪⎫a +b 22=4,∵a >0,b >0, ∴ab ∈(0,4],故选B.6.设实数x ,y 满足⎩⎪⎨⎪⎧ y ≤2x +2,x +y -2≥0,x ≤2,则y -1x +3的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,-15∪[1,+∞) B.⎣⎢⎡⎦⎥⎤13,1 C.⎣⎢⎡⎦⎥⎤-15,13 D.⎣⎢⎡⎦⎥⎤-15,1答案 D解析 作出不等式组⎩⎪⎨⎪⎧y ≤2x +2,x +y -2≥0,x ≤2表示的可行域如图所示,从图可看出,y -1x +3表示可行域内的点与点A (-3,1)连线的斜率,解方程知C (2,0),D (2,6), 所以其最大值为k AD =6-12+3=1,最小值为k AC =0-12+3=-15,所以y -1x +3的取值范围为[-15,1].故选D.7.已知实数x ,y 满足⎩⎪⎨⎪⎧x +1-y ≥0,x +y -4≤0,y ≥m ,若目标函数z =2x +y 的最大值与最小值的差为2,则实数m 的值为( ) A .4 B .3 C .2 D .-12答案 C解析 ⎩⎪⎨⎪⎧x +1-y ≥0,x +y -4≤0,y ≥m表示的可行域如图中阴影部分所示.将直线l 0:2x +y =0向上平移至过点A ,B 时,z =2x +y 分别取得最小值与最大值. 由⎩⎪⎨⎪⎧x +1-y =0,y =m得A (m -1,m ),由⎩⎪⎨⎪⎧x +y -4=0,y =m得B (4-m ,m ),所以z min =2(m -1)+m =3m -2,z max =2(4-m )+m =8-m ,所以z max -z min =8-m -(3m -2)=2,解得m =2. 8.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,43B.⎝⎛⎭⎪⎫-∞,13C.⎝ ⎛⎭⎪⎫-∞,-23D.⎝ ⎛⎭⎪⎫-∞,-53答案 C解析 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.9.(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤45,13解析 已知不等式组所表示的平面区域如下图:x 2+y 2表示原点到可行域内的点的距离的平方.解方程组⎩⎪⎨⎪⎧3x -y -3=0,x -2y +4=0,得A (2,3).由图可知(x 2+y 2)min =⎝⎛⎭⎪⎫|-2|22+122=45, (x 2+y 2)max =|OA |2=22+32=13.10.4件A 商品与5件B 商品的价格之和不小于20元,而6件A 商品与3件B 商品的价格之和不大于24,则买3件A 商品与9件B 商品至少需要________元. 答案 22解析 设1件A 商品的价格为x 元,1件B 商品的价格为y 元,买3件A 商品与9件B 商品需要z 元, 则z =3x +9y ,其中x ,y 满足不等式组⎩⎪⎨⎪⎧4x +5y ≥20,6x +3y ≤24,x ≥0,y ≥0,作出不等式组表示的平面区域,如图所示,其中A (0,4),B (0,8),C (103,43).当y =-13x +19z 经过点C 时,目标函数z 取得最小值.所以z min =3×103+9×43=22.因此当1件A 商品的价格为103元,1件B 商品的价格为43元时,可使买3件A 商品与9件B 商品的费用最少,最少费用为22元.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝ ⎛⎭⎪⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.(2015·浙江)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 答案 3解析 满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45. 设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.。
高考数学江苏(理)考前三个月考前抢分必做 考前回扣3 Word版含解析
回扣3 三角函数、平面向量1.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式 sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0).3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin2α=2sin αcos α.(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan2α=2tan α1-tan 2α.5.三种三角函数的性质6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换: y =sin x――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ)错误!y =sin(ωx +φ)――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ).7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号. 2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ.5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解. 6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件; a·b <0是〈a ,b 〉为钝角的必要不充分条件.1. 2sin45°cos15°-sin30°的值等于________. 答案32解析2sin45°cos15°-sin30°=2sin45°cos15°-sin(45°-15°)=2sin45°cos15°-(sin45°cos15°-cos45°sin15°)=sin45°cos15°+cos45°sin15°=sin60°=32. 2.要得到函数y =sin2x 的图象,可由函数y =cos(2x -π3)向________平移________个单位长度. 答案右π12解析由于函数y =sin2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x-π3)向右平移π12个单位长度得到函数y =sin2x 的图象. 3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是________. 答案332解析c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.4.(1+tan18°)(1+tan27°)的值是________. 答案2解析由题意得,tan(18°+27°)=tan18°+tan27°1-tan18°tan27°,即tan18°+tan27°1-tan18°tan27°=1, 所以tan18°+tan27°=1-tan18°tan27°,所以(1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=2.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形. 答案直角解析∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连结DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________. 答案18解析如图,由条件可知BC →=AC →-AB →, AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →, 所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形, 所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.7.已知a ,b 为同一平面内的两个向量,且a =(1,2),|b |=12|a |,若a +2b 与2a -b 垂直,则a 与b 的夹角为________. 答案π解析|b |=12|a |=52,而(a +2b )·(2a -b )=0⇒2a 2-2b 2+3a·b =0⇒a·b =-52,从而cos 〈a ,b 〉=a·b|a|·|b |=-1,〈a ,b 〉=π.8.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 有下列命题: ①若A >B >C ,则sin A >sin B >sin C ;②若cos A a =cos B b =cos C c ,则△ABC 为等边三角形;③若sin2A =sin2B ,则△ABC 为等腰三角形; ④若(1+tan A )(1+tan B )=2,则△ABC 为钝角三角形; ⑤存在A ,B ,C 使得tan A tan B tan C <tan A +tan B +tan C 成立. 其中正确的命题为________.(写出所有正确命题的序号) 答案①②④解析若A >B >C ,则a >b >c ⇒sin A >sin B >sin C ; 若cos A a =cos B b =cos C c ,则cos A sin A =cos B sin B⇒sin(A -B )=0⇒A =B ⇒a =b ,同理可得a =c ,所以△ABC 为等边三角形;若sin2A =sin2B ,则2A =2B 或2A +2B =π,因此△ABC 为等腰或直角三角形;若(1+tan A )(1+tan B )=2,则tan A +tan B =1-tan A tan B ,因此tan(A +B )=1⇒C =3π4,△ABC 为钝角三角形;在△ABC 中,tan A tan B tan C =tan A +tan B +tan C 恒成立,因此正确的命题为①②④.9.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A+cos 2A =1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).10.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案25解析∵tan θ=3,∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25. 11.已知单位向量a ,b ,c ,且a ⊥b ,若c =t a +(1-t )b ,则实数t 的值为________. 答案1或0解析c =t a +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2=1⇒t =0或t =1.12.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin2x +sin(2x -B )(x ∈R )的最大值. 解(1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin2x +sin2x cos 2π3-cos2x sin 2π3=32sin2x -32cos2x =3sin(2x -π6), 当2x -π6=π2+2k π,k ∈Z 时,f (x )取得最大值,即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.13.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值.解(1)f (x )=2sin x cos x -2cos 2x +1 =sin2x -cos2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),得k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角,∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.。
考前三个月数学题分攻略
高考考前三个月数学提分攻略高考越来越近,数学还没准备好的同学怎么办?如何提高数学复习的针对性和实效性?今天教你一个门道,简称“三问法”:第一问自己:“学懂了没有?”—主要解决“是什么”的问题,即学了什么知识;第二问自己:“领悟了没有?”—主要解决“为什么”的问题,即用了什么方法;第三问自己:“会用了没有?”—主要解决“做什么”的问题,即解决了什么问题。
下面,具体说说走进“门道”的《数学专项突破》。
1.认真研读《说明》《考纲》《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。
因此试题都比较新颖,活泼。
所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。
知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。
你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。
如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
高考前3个月文科数学(通用版)三轮冲刺 考前抢分知识回扣3 三角函数、平面向量 Word版含解析
回扣3 三角函数、平面向量1.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值,与α角的三角函数值的关系可按口诀记忆:奇变偶不变,符号看象限.2.同角三角函数的基本关系式sin 2α+cos 2α=1,tan α=sin αcos α(cos α≠0).3.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.(4)a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ).4.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.5.三种三角函数的性质6.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换:y =sin x ―――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(x +φ) 1(0)sin ()y x ωωωϕ>−−−−−−−−→=+横坐标变为原来的倍纵坐标不变――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 7.正弦定理及其变形a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 8.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . 9.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .10.解三角形(1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解.11.平面向量的数量积(1)若a ,b 为非零向量,夹角为θ,则a·b =|a||b |cos θ. (2)设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. 12.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 13.利用数量积求长度(1)若a =(x ,y ),则|a |=a·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2. 14.利用数量积求夹角若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 15.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号. 2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得y =sin(ωx +φ)时,平移量为⎪⎪⎪⎪φω,而不是φ.5.在已知两边和其中一边的对角时,要注意检验解是否满足“大边对大角”,避免增解. 6.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行.7.a·b >0是〈a ,b 〉为锐角的必要不充分条件;a·b <0是〈a ,b 〉为钝角的必要不充分条件.1.2sin 45°cos 15°-sin 30°的值等于() A.12B.22 C.32D .1 答案C解析 2sin 45°cos 15°-sin 30°=2sin 45°cos 15°-sin(45°-15°)=2sin 45°cos 15°-(sin 45°cos 15°-cos 45°sin 15°)=sin 45°cos 15°+cos 45°sin 15°=sin 60°=32.故选C. 2.要得到函数y =sin 2x 的图象,可由函数y =cos(2x -π3)()A .向左平移π6个单位长度得到B .向右平移π6个单位长度得到C .向左平移π12个单位长度得到D .向右平移π12个单位长度得到答案D解析 由于函数y =sin 2x =cos(π2-2x )=cos(2x -π2)=cos[2(x -π12)-π3],所以可由函数y =cos(2x -π3)向右平移π12个单位长度得到函数y =sin 2x 的图象,故选D.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是()A .3 B.932 C.332 D .3 3答案C解析c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6,① ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C.4.(1+tan 18°)(1+tan 27°)的值是() A.3B .1+ 2C .2D .2(tan 18°+tan 27°) 答案C解析 由题意得,tan(18°+27°)=tan 18°+tan 27°1-tan 18°tan 27°,即tan 18°+tan 27°1-tan 18°tan 27°=1, 所以tan 18°+tan 27°=1-tan 18°tan 27°,所以(1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=2,故选C.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为()A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案B解析 ∵b cos C +c cos B =a sin A , ∴sin B cos C +cos B sin C =sin 2A ,∴sin(B +C )=sin 2A ,∴sin A =1,∴A =π2,三角形为直角三角形.6.(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为() A .-58B.18C.14D.118 答案B解析 如图,由条件可知BC →=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →, 所以BC →·AF →=(AC →-AB →)·(12AB →+34AC →)=34AC →2-14AB →·AC →-12AB →2. 因为△ABC 是边长为1的等边三角形, 所以|AC →|=|AB →|=1,∠BAC =60°, 所以BC →·AF →=34-18-12=18.7.f (x )=12sin(2x -π3)+32cos(2x -π3)是()A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的奇函数D .最小正周期为π的偶函数 答案C解析 f (x )=12sin(2x -π3)+32cos(2x -π3)=sin(2x -π3+π3)=sin 2x ,是最小正周期为π的奇函数,故选C.8.已知a ,b 均为单位向量,(2a +b )·(a -2b )=-332,则向量a ,b 的夹角为()A.π6B.π4C.3π4D.5π6 答案A解析 因为a ,b 均为单位向量,所以(2a +b )·(a -2b )=2-2-3a ·b =-332,解得a ·b =32,所以cos 〈a ,b 〉=a ·b |a ||b |=32, 又〈a ,b 〉∈[0,π],所以〈a ,b 〉=π6.9.(2016·课标全国乙)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 答案 -43解析 由题意,得cos ⎝⎛⎭⎫θ+π4=45, ∴tan ⎝⎛⎭⎫θ+π4=34. ∴tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2 =-1tan ⎝⎛⎭⎫θ+π4=-43.10.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 答案817解析 由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4, 由sin 2A +cos 2A =1,解得sin 2A +(1-sin A 4)2=1,sin A =817(0舍去).11.若tan θ=3,则cos 2θ+sin θcos θ=________. 答案25解析 ∵tan θ=3, ∴cos 2θ+sin θcos θ=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θtan 2θ+1=1+332+1=25.12.已知单位向量a ,b ,c ,且a ⊥b ,若c =t a +(1-t )b ,则实数t 的值为________. 答案1或0解析 c =t a +(1-t )b ⇒c 2=t 2+(1-t )2=|c |2 =1⇒t =0或t =1.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足b cos A =(2c +a )cos(A +C ). (1)求角B 的大小;(2)求函数f (x )=2sin 2x +sin(2x -B )(x ∈R )的最大值. 解 (1)由已知,b cos A =(2c +a )cos(π-B ), 即sin B cos A =-(2sin C +sin A )cos B , 即sin(A +B )=-2sin C cos B , 则sin C =-2sin C cos B , ∴cos B =-12,即B =2π3.(2)f (x )=2sin 2x +sin 2x cos2π3-cos 2x sin 2π3=32sin 2x -32cos 2x =3sin(2x -π6), 即x =π3+k π,k ∈Z 时,f (x )取得最大值 3.14.已知函数f (x )=2cos x (sin x -cos x )+1. (1)求函数f (x )的最小正周期和单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且锐角A 满足f (A )=1,b =2,c =3,求a 的值.解 (1)f (x )=2sin x cos x -2cos 2x +1 =sin 2x -cos 2x =2sin(2x -π4),所以f (x )的最小正周期为π.由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),得k π-π8≤x ≤k π+3π8(k ∈Z ),所以f (x )的单调增区间为[k π-π8,k π+3π8](k ∈Z ).(2)由题意知f (A )=2sin(2A -π4)=1,sin(2A -π4)=22,又∵A 是锐角, ∴2A -π4=π4,∴A =π4,由余弦定理得a 2=2+9-2×2×3×cos π4=5,∴a = 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 四种策略搞定填空题[题型分析·高考展望] 填空题的基本特点是:(1)题目小巧灵活,结构简单;(2)答案简短明确,不反映过程,只要结果;(3)填空题根据填写内容,可分为定量型(填写数值,数集或数量关系)和定性型(填写某种性质或是有某种性质的对象).根据填空题的特点,在解答时要做到四个字——“快”“稳”“全”“细”.快——运算要快,力戒小题大做;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;细——审题要细,不能粗心大意.高考必会题型方法一 直接法根据题目中给出的条件,通过数学计算找出正确答案.解决此类问题需要直接从题设条件出发,利用有关性质或结论等,通过巧妙变化,简化计算过程.解题过程要灵活地运用相关的运算规律和技巧,合理转化、巧妙处理已知条件.例1 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b 2a +c ,则角B 的值为________. 答案2π3解析 方法一 由正弦定理, 即a sin A =b sin B =csin C=2R , 得a =2R sin A ,b =2R sin B ,c =2R sin C , 代入cos B cos C =-b 2a +c ,得cos B cos C =-sin B 2sin A +sin C ,即2sin A cos B +sin C cos B +cos C sin B =0, 所以2sin A cos B +sin(B +C )=0. 在△ABC 中,sin(B +C )=sin A , 所以2sin A cos B +sin A =0, 又sin A ≠0,所以cos B =-12.又角B 为△ABC 的内角,所以B =2π3.方法二 由余弦定理,即cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab ,代入cos B cos C =-b2a +c ,得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理,得a 2+c 2-b 2=-ac ,所以cos B =a 2+c 2-b 22ac =-ac 2ac =-12,又角B 为△ABC 的内角,所以B =2π3.点评 直接法是解决计算型填空题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解填空题的关键.变式训练1 已知数列{a n }满足a 1=1,a n +1·a n =2n,则S 2 016=____________. 答案 3·21 008-3解析 由题意得a n ·a n +1=2n,a n +2·a n +1=2n +1⇒a n +2a n=2, 因此a 1,a 3,a 5,…构成一个以1为首项,2为公比的等比数列;a 2,a 4,a 6,…构成一个以2为首项,2为公比的等比数列;从而S 2 016=(a 1+a 3+…+a 2 015)+(a 2+a 4+…+a 2 016)=1-21 0081-2+2×1-21 0081-2=3(21 008-1).方法二 特例法当填空题已知条件中含有某些不确定的量,但填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以从题中变化的不定量中选取符合条件的恰当特殊值(特殊函数,特殊角,特殊数列,特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论.为保证答案的正确性,在利用此方法时,一般应多取几个特例.例2 (1)若函数f (x )=sin 2x +a cos 2x 的图象关于直线x =-π8对称,则a =________.(2)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC的面积是________. 答案 (1)-1 (2)323解析 (1)由题意,对任意的x ∈R , 有f (-π8+x )=f (-π8-x ),令x =π8,得f (0)=f (-π4),得a =-1.(2)方法一 △ABC 为等边三角形时满足条件, 则S △ABC =332.方法二 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.点评 求值或比较大小等问题的求解均可利用特殊值代入法,但要注意此种方法仅限于求解结论只有一种的填空题,对于开放性的问题或者有多种答案的填空题,则不能使用该种方法求解.变式训练2 (1)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.(2)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.答案 (1)-32(2)2解析 (1)由题意知,函数f (x )的定义域为R , 又因为函数为偶函数,所以f (-13)-f (13)=0,即ln(e -1+1)-a 3-ln(e +1)-a3=0,ln e -1-23a =0,解得a =-32,将a =-32代入原函数,检验知f (x )是偶函数, 故a =-32.(2)用特殊值法,可设AB =AC =BM =1,因为AB →=mAM →,所以m =12,过点C 引AM 的平行线,并延长MN ,两线相交于点E ,则AE =BC =2OC ,易得AN =23AC ,因为AC →=nAN →,所以n =32,可知m +n =12+32=2.方法三 数形结合法对于一些含有几何背景的填空题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率或截距、向量的夹角、解析几何中两点间距离等,求解的关键是明确几何含义,准确、规范地作出相应的图形.例3 (1)已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是________________________________________________________________________. (2)已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________. 答案 (1)[2,16] (2)[-1,+∞) 解析 (1)画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方, 由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,∴d 2min =[|3-0-1|12+-12]2=(2)2=2.最大值为点Q 到点A 的距离的平方, ∴d 2max =16.∴取值范围是[2,16]. (2)函数y =f (x )的图象如图, 由不等式f (2-x )≤f (1)知, 2-x ≤2+1,从而得到不等式f (2-x )≤f (1)的解集为[-1,+∞).点评 数形结合在解答填空题中的应用,就是利用图形的直观性并结合所学知识便可直接得到相应的结论,这也是高考命题的热点.准确运用此类方法的关键是正确把握各种式子与几何图形中的变量之间的对应关系,利用几何图形中的相关结论求出结果.变式训练3 已知函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,3x,x ≤0且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1,+∞)解析 方程f (x )+x -a =0的实根也就是函数y =f (x )与y =a -x 的图象交点的横坐标,如图所示,作出两个函数的图象,显然当a ≤1时,两个函数图象有两个交点,当a >1时,两个函数图象的交点只有一个.所以实数a 的取值范围是(1,+∞).方法四 构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而沟通解题思路的方法.例4 (1)若a =ln 12 017-12 017,b =ln 12 016-12 016,c =ln 12 015-12 015,则a ,b ,c 的大小关系为________.(2)如图,在边长为2的正方形ABCD 中,点E 、F 分别是边AB 、BC 的中点,△AED 、△EBF 、△FCD 分别沿着DE 、EF 、FD 折起,使A 、B 、C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为________.答案 (1)a <b <c (2)62解析 (1)令f (x )=ln x -x (0<x <1), 则f ′(x )=1x-1,∵0<x <1,∴f ′(x )>0,∴f (x )为增函数. 又12 017<12 016<12 015,∴a <b <c . (2)由题意知DF =5,A ′E =A ′F =1,A ′D =2, 以A ′E 、A ′F 、A ′D 为棱,建立一个长方体, 则体对角线长为2R =12+12+22(R 为球的半径),R =62. 点评 构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.本题巧妙地构造出正方体,而球的直径恰好为正方体的体对角线,问题很容易得到解决.变式训练4 (1)若x ,y ∈[-π4,π4],a ∈R ,且满足方程x 3+sin x -2a =0和4y 3+sin y cos y +a =0,则cos(x +2y )=________.(2)如图,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.答案 (1)1 (2)6π解析 (1)对第二个等式进行变形可得:(2y )3+sin 2y +2a =0,对照两等式和所求的结论思考, 可以找到x 和2y 的关系, 构造函数f (x )=x 3+sin x ,则两个条件分别变为f (x )=2a 和f (2y )=-2a , 即f (x )=-f (2y ),因为函数f (x )=x 3+sin x 是奇函数, 所以有f (x )=f (-2y ), 又因为当x ,y ∈[-π4,π4]时,f (x )是单调递增的函数,所以有x =-2y ,即x +2y =0, 因此cos(x +2y )=1.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62, 故球O 的体积V =4πR33=6π.高考题型精练1.设ln 3=a ,ln 7=b ,则e a+e b=______(其中e 为自然对数的底数). 答案 10解析 ∵e a=3,e b=7, ∴e a+e b=10.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 答案 18解析 把平行四边形ABCD 看成正方形,则P 点为对角线的交点,AC =6,则AP →·AC →=18. 3.已知θ∈(0,π),且sin(θ-π4)=210,则tan 2θ=________.答案 -247解析 由sin(θ-π4)=210得,22(sin θ-cos θ)=210,sin θ-cos θ=15,解方程组⎩⎪⎨⎪⎧sin θ-cos θ=15,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=45,cos θ=35或⎩⎪⎨⎪⎧sin θ=-35,cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧sin θ=-35,cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-432=-247.4.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点,甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为________. 答案512解析 一共有36种情况,其中甲掷得的向上的点数比乙大的有:(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(5,1)、(5,2)、(5,3)、(5,4)、(4,1)、(4,2)、(4,3)、(3,1)、(3,2)、(2,1),共15种,所以所求概率为1536=512.5.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =________. 答案 2解析 方法一 如图所示,在△OAB 中,|OA →|=|OB →|=1,∠AOB =60°,延长BA 到C 使∠BOC =90°, 则A 为BC 的中点,c =OC →=OA →+AC →=OA →+BA →=2a -b , 则t =2.方法二 由已知b ·c =0, 即t a ·b +(1-t )b 2=0, 12t +(1-t )=0,因此t =2. 6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C =________. 答案 45解析 令a =3,b =4,c =5,则△ABC 为直角三角形, 且cos A =45,cos C =0,代入所求式子,得cos A +cosC 1+cos A cos C =45+01+45×0=45.7.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-33,33 解析 由题意,得圆心到直线的距离d =|k ·2-3+3|1+k 2=|2k |1+k2, 若|MN |≥23,则4-d 2≥(3)2, 解得-33≤k ≤33. 8.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.答案 [-∞,2]解析 f (x )的图象如图,由图象知,满足f (f (a ))≤2时,得f (a )≥-2,而满足f (a )≥-2时,得a ≤ 2.9.已知平行四边形ABCD ,点P 为四边形内部或者边界上任意一点,向量AP →=xAB →+yAD →,则0≤x ≤12,0≤y ≤23的概率是________.答案 13解析 由平面向量基本定理及点P 为ABCD 内部或边界上任意一点,可知0≤x ≤1且0≤y ≤1,又满足条件的x ,y 满足0≤x≤12,0≤y ≤23,所以P (A )=23×121×1=13.10.某程序框图如图所示,若a =3,则该程序运行后,输出的x 值为________.答案 31解析 第一次循环,x =2×3+1=7,n =2; 第二次循环,x =2×7+1=15,n =3; 第三次循环,x =2×15+1=31,n =4, 程序结束,故输出x =31.11.e 416,e 525,e636(其中e 为自然对数的底数)的大小关系是________. 答案 e 416<e 525<e636解析 由于e 416=e 442,e 525=e 552,e 636=e662,故可构造函数f (x )=exx2,于是f (4)=e 416,f (5)=e 525,f (6)=e636.而f ′(x )=(e xx 2)′=e x·x 2-e x ·2x x4=exx -2x 3, 令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增, 因此有f (4)<f (5)<f (6),即e 416<e 525<e636.12.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8,则yx -1的最小值是________.答案 1解析 作出变量x ,y 满足的平面区域,如图阴影部分所示, y x -1表示的几何意义是平面区域内的一点与点P (1,0)连线的斜率, 结合图形可知,PA 的斜率最小, 所以y x -1的最小值为23-1=1. 13.已知椭圆x 24+y 23=1的左焦点F ,直线x =m 与椭圆相交于点A ,B ,当△FAB 的周长最大时,△FAB 的面积是________.答案 3解析 不妨设A (2cos θ,3sin θ),θ∈(0,π),△FAB 的周长为2(|AF |+3sin θ)=2(2+cos θ+3sin θ)=4+4sin(θ+π6). 当θ=π3,即A (1,32)时, △FAB 的周长最大.所以△FAB 的面积为S =12×2×3=3. 14.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.答案 14解析 如图,设S △ABD =S 1,S △PAB =S 2, E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,所以V 1V 2=S 1h 1S 2h 2=14. 15.已知函数f (x )=2x -a ,g (x )=x e x ,若对任意x 1∈[0,1],存在x 2∈[-1,1],使f (x 1)=g (x 2)成立,则实数a 的取值范围为________.答案 [2-e ,1e ] 解析 f (x )=2x -a 为增函数,∵x 1∈[0,1],∴f (x 1)的范围是[-a,2-a ],易知g (x )也为增函数, 当x 2∈[-1,1]时,g (x 2)的范围是[-1e,e], 由题意得⎩⎪⎨⎪⎧ -a ≥-1e ,2-a ≤e.∴2-e≤a ≤1e. 16.若数列{a n },{b n }的通项公式分别是a n =(-1)n +2 016a ,b n =2+-1n +2 017n ,且a n <b n ,对任意n ∈N *恒成立,则实数a 的取值范围是________.答案 [-2,32) 解析 由题意,当n 为偶数时,a <2-1n恒成立, 可得a <32;当n 为奇数时,-a <2+1n恒成立, 可得a ≥-2,故-2≤a <32. 17.已知数列{a n }中,a 1=1,a n =n -a 2n ,a 2n +1=a n +1,则a 1+a 2+a 3+…+a 99=________. 答案 1 275解析 ∵a n =n -a 2n ,a n =a 2n +1-1,∴a 2n +1+a 2n =n +1,∴a 1+a 2+a 3+…+a 99=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=1+2+3+…+50=50×1+502=1 275.18.设M ,N 分别是曲线f (x )=-x 3+x 2(x <e)与g (x )=a ln x (x ≥e)上一点,△MON 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是________.答案 (0,2e -2e -1] 解析 ∵△MON 是以O 为直角顶点的直角三角形,且斜边的中点恰好在y 轴上,∴M ,N 两点的横坐标互为相反数,设M (-t ,t 3+t 2),N (t ,a ln t )(t ≥e), 由题意知OM →·ON →=0,有-t 2+(t 2+t 3)·a ln t =0,整理得1a =(t +1)ln t (t ≥e),令h (x )=(x +1)ln x (x ≥e),则h ′(x )=ln x +1+1x >0,∴h (x )在[e ,+∞)上是增函数, ∴h (t )≥h (e)=e +12,∴1a ≥e +12,解得0<a ≤2e -2e -1.。