-2017年高考文科数学真题汇编:数列高考题学生版

合集下载

2017高考真题数列.doc

2017高考真题数列.doc

2017高考真题(数列部分)一.选填题1.(浙江2017)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(北京2017)若等差数列和等比数列满足a 1=b 1=–1,a 4=b 4=8,则=_______.3.(江苏2017)等比数列{}n a 的各项均为实数,其前n 项的和为Sn ,已知36763,44S S ==,则8a =4.(全国卷二2017)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑____________.5.(全国卷三2017)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .24-B .3-C .3D .86.(全国卷三2017)设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________。

记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .87.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8 二.解答题1.(浙江2017)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)().证明:当时,(Ⅰ)0<x n +1<x n ;(Ⅱ)2x n +1− x n ≤; (Ⅲ)≤x n ≤. {}n a {}n b 22a b n N *∈n N *∈12n n x x +112n -212n -2.(天津2017)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;3.(山东2017)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,KS5U 求由该折线与直线y =0,x =x i (x {x n })所围成的区域的面积n T .Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .4.(北京2017)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,n c M n >;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 5.(江苏2017)对于给定的正整数k ,若数列l a n l 满足a a a a a a --+-++-++++++=1111......2n k n k n n n k n k n k =2ka n 对任意正整数n(n> k) 总成立,则称数列l a n l 是“P(k)数列”. (1)证明:等差数列l a n l 是“P(3)数列”; (2)若数列l a n l 既是“P(2)数列”,又是“P(3)数列”,证明:l a n l 是等差数列.赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

C. A≤1000 和 n n 1
D. A≤1000 和 n n 2
11. △ ABC 的 内 角 A , B , C 的 对 边 分 别 为 a , b , c . 已 知
sin B sin A(sin C cos C) 0 , a 2 , c 2 ,则 C ( )
C. (1 i)2
D. i(1 i)
4.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和
白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部
分的概率是( )
A.
1 4
B.
π 8
C.
1 2
D.
π 4
5.已知 F 是双曲线 C :x2 y 2 1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 3
A.
A
I
B


x|x

3 2
B. A I B

C.
AU
B


x|x


3
2
D. A U B R
2.为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位: kg )
分别为 x1 , x2 ,……, xn ,下面给出的指标中可以用来评估这种农作物亩产量稳定程
π
π
π
π
A.
B.
C.
D.
12
6
4
3
12. 设 A , B 是 椭 圆 C : x2 y2 1 长 轴 的 两 个 端 点 , 若 C 上 存 在 点 M 满 足 3m
AMB 120 ,则 m 的取值范围是( A. (0,1]U [9, )

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列)

2017年高考试题分类汇编(数列)考点1 等差数列1.(2017·全国卷Ⅰ理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 CA .1B .2C .4D .82.(2017·全国卷Ⅱ理科)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 21n n + 3.(2017·浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是 “465+2S S S >”的 CA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考点2等比数列1.(2017·全国卷Ⅲ理科)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =____.8-2.(2017·江苏卷)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 32 3.(2017·全国卷Ⅱ理科)我国古代数学名著《算法统宗》中有如下问题:“远 望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是: 一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍, 则塔的顶层共有灯 BA .1盏B .3盏C .5盏D .9盏 考法3 等差数列与等比数列综合1.(2017·全国卷Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为 AA .24-B .3-C .3D .82.(2017·北京理科)若等差数列{}n a 和等比数列{}n b 满足11a b ==-,44a b =8=,则22a b =____. 1 3.(2017·全国卷Ⅰ文科)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (Ⅰ)求{}n a 的通项公式;(2)n n a =-(Ⅱ)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.4.(2017·全国卷Ⅱ文科)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的 前n 项和为n T .11a =-,11b =,222a b +=.(Ⅰ)若335a b +=,求{}n b 的通项公式; 12n n b -= (Ⅱ)若321T =,求3S . 321S =或36S =-.5.(2017·北京文科)已知等差数列{}n a 和等比数列{}n b 满足111a b ==,24a a +10=,245b b a ⋅=.(Ⅰ)求{}n a 的通项公式;21n a n =- , (Ⅱ)求和:13521n b b b b -++++.312n T -=.6.(2017·天津理科)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 1328433n n n T +-=⨯+ 7.(2017·天津文科)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首 项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; 32n a n =-,2n n b = (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 2(34)216n n T n +=-⨯+8.(2017·山东理科)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=.(Ⅰ)求数列{}n x 的通项公式; 12n n x -=(Ⅱ)如图,在在平面直角坐标xOy 中,依次连接点11(,1)P x ,22(,1)P x ,,11(,1)n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域面积n T .1211222n n n T --=⨯+9.(2017·山东文科)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =.(Ⅰ)求数列{}n a 通项公式; 2n n a =(Ⅱ){}n b 为各项非零的等差数列,其前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 15(25)()2n n T n =-+⨯考法4 一般数列1.(2017·全国卷Ⅲ文科)设数列{}n a 满足123(21)2n a a n a n +++-=.(Ⅰ)求{}n a 的通项公式;221n a n =- (Ⅱ)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 221n n S n =+。

17年高考真题—文科数学4:数列与不等式

17年高考真题—文科数学4:数列与不等式

2017高考真题分类汇编:数列与不等式1.【2017山东 3】已知,x y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值是( )(A )3- (B )1- (C )1 (D )32.【2017北京 4】若,x y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩, 则2x y +的最大值为( )(A )1(B )3 (C )5 (D )93.【2017浙江 4】若,x y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是( )(A )[]0,6(B )[]0,4 (C )[)6,+∞ (D )[)4,+∞4.【2017课标III 5】设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是( )(A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,35.【2017浙江 6】已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的( ) (A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件6.【2017课标I 7】设,x y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为( )(A )0 (B )1 (C )2 (D )37.【2017课标II 7】设,x y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值为( )(A )15- (B )9- (C )1 (D )98.【2017江苏 9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a =_________。

9.【2017江苏 10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是_________。

2017年全国高考数学(文科)真题汇总(6套)附答案

2017年全国高考数学(文科)真题汇总(6套)附答案

第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2017年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前2017年普通高等学校招生全国统一考试全国卷1文科数学本试卷满分150分,考试时间120分钟考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .3|2A B x x ⎧⎫=<⎨⎬⎩⎭IB .A B =∅IC .3|2A B x x ⎧⎫=<⎨⎬⎩⎭UD .A B =R U2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为1x ,2x ,……,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,……,n x 的平均数B .1x ,2x ,……,n x 的标准差C .1x ,2x ,……,n x 的最大值D .1x ,2x ,……,n x 的中位数3.下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A的坐标是(1,3),△APF 的面积为( )A .13B .1 2C .2 3D .326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________数学试卷 第3页(共46页) 数学试卷 第4页(共46页)7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z x y =+的最大值为( )A .0B .1C .2D .38.函数sin21cos xy x=-的部分图像大致为( )A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000nn->的最小偶数n ,个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =( )A .π12B .π6C .4D .π312.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( )A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U二、填空题:本题共4小题,每小题5分,共20分.13.已知向量)2(–1,=a ,)1(,m =b .若向量+a b 与a 垂直,则m =________. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22.23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.18.(12分)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=o ,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min ,从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16经计算得119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78ii x x i =--=-∑,其中ix 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 21.(12分)已知函数2()()xxe ef x a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共46页) 数学试卷 第8页(共46页)(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到la . 23.[选修4−5:不等式选讲](10分)已知函数2()4f x x ax =-++,g()|1||1|x x x =++-. (1)当1a =时,求不等式()g()f x x ≥的解集;(2)若不等式()g()f x x ≥的解集包含[1,1]-,求a 的取值范围.2017年普通高等学校招生全国统一考试全国卷1文科数学答案解析一、选择题 1.【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A .2.【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.【答案】C【解析】由2(1)2i i +=为纯虚数,选C . 4.【答案】B【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积π2S =,则对应概率ππ248P ==,故选B .5.【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D .6.【答案】A【解析】由B ,AB MQ ∥,则直线AB ∥平面MNQ ;由C ,AB MQ ∥,则直线AB ∥平面MNQ ;由D ,AB NQ ∥,则直线AB ∥平面MNQ .故A 不满足,选A . 7.【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .数学试卷 第9页(共46页) 数学试卷 第10页(共46页)8.【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,排除D ;当1x =时,sin 201cos2y =>-,排除A ,故选C .9.【答案】C【解答】解:Q 函数()ln ln(2)f x x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故选:C . 10.【答案】D【解析】由题意选择321000n n ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D . 11.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()0C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin 4=1sin 2C =,得π6C =,故选B . 12.【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=o,则tan 60ab ≥o≥01m <≤;当3m >,焦点在y轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab ≥=o ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .二、填空题 13.【答案】7【解析】由题得(1,3)m +=-a b , 因为()0+=g a b a ,所以(1)230m --+⨯=解得7m =14.【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.15. 【解析】π(0,)2α∈Q ,tan 2α=,sin2cos αα∴=,22sin cos 1αα+=Q,解得sinα=,cos α=πππcos()cos cos sin sin 444ααα∴-=+=,16.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥因为平面SAC ⊥平面SBC数学试卷 第11页(共46页) 数学试卷 第12页(共46页)所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为24π36πr = 三、解答题17.【答案】(1)(2)n n a =- (2)1n S +,n S ,2n S +成等差数列.【解析】(1)设等比数列{}n a 首项为1a ,公比为q ,则332628a S S ==--=--,则31228a a q q -==,328a a q q-==, 由122a a +=,2882q q--+=,整理得2440q q ++=, 解得:2q =-,则12a =-,1(2)(2)(2)n n n a =--=﹣-. (2)由(1)可知:11(1q )1[2(2)]13n n n a S q +-==-+--, 则211[2(2)]3n n S ++=-+-,321[2(2)]3n n S ++=-+-,由231211[2(2)][2(2)]33n n n n S S +++++=-+--+-=12114(2)(2)[](2)(2)3n n ++-+-⨯-+-⨯-111142(2)2(2(2)33[][)]n n ++=-+⨯-=⨯-⨯+-2n S =,即122n n n S S S +++=所以1n S +,n S ,2n S +成等差数列.18.【答案】(1)90BAP AB PA ∠=︒⇒⊥Q ,90CDP CD PD ∠=︒⇒⊥AB CD Q ∥,PA PD P =I ,AB PAD ∴⊥平面 AB PAD ⊂Q 平面PAB PAD ∴平面⊥平面(2)6+【解析】(1)见答案(2)由(1)知AB PAD ⊥平面,90APB ∠=︒Q ,PA PD AB DC ===.取AD 中点O ,所以OP ABCD ⊥底面,,OP AB AD =,1833P ABCDV AB AB -∴=⨯= 2AB ∴=AD BC ∴==,2PA PD AB DC ====,POPB PC ∴===11112222PAD PAB PDC PBC PA PD PA PB DC PD BC S S S S S =⨯⨯+⨯⨯+⨯⨯+⨯∴=+++V V V V 侧111122222222226=⨯⨯+⨯⨯+⨯⨯+⨯=+ 19.【答案】(1)0.18-(2)(i )需要对当天的生产过程进行检查. (ii )均值为10.02,标准差约为0.09. 【解析】(1)16()(8.5)0.18ixx i r --==≈-∑因为||0.25r <,所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )39.9730.2129.334x s -=-⨯=,39.9730.21210.636x s +=+⨯=所以合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内, 因此需要对当天的生产过程进行检查. (ii )剔除离群值后,剩下的数据平均值为169.22169.979.2210.021515x -⨯-==,数学试卷 第13页(共46页) 数学试卷 第14页(共46页)0.09s =≈.20.【答案】(1)1 (2)7y x =+【解析】(1)设()()1122,,,A x y B x y , 则2221212121214414ABx xy y x x K x x x x --+====-- (2)设200(,)4x M x ,则C 在M 处的切线斜率'00112AB y K K x x x ====- 02x ∴=,则()12,1A ,又AM BM ⊥,22121212121111442222AM BM x x y y K K x x x x ----==----g g g()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y x m =+,代入24x y = 得2440x x m --=124x x ∴+=,124x x m =-48200m =-++7m ∴=故AB :y x =+721.【答案】(1)当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增, 当0a <时,()f x 在(,ln())2a -∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)34]21[,e -.【解析】(1)222()x x x x f x e e a a x e e a a x =-=-()--, 222(2)()x x x x f x e ae a e a e a ∴'==-+-()﹣,①当0a =时,()0f x '>恒成立,()f x ∴在R 上单调递增.②当0a >时,20x e a +>,令()0f x '=,解得ln x a =, 当ln x a <时,()0f x '<,函数()f x 单调递减, 当ln x a >时,()0f x '>,函数()f x 单调递增,③当0a <时,0x e a -<,令()0f x '=,解得ln()2a x =-,当ln()2ax -<时,()0f x '<,函数()f x 单调递减,当ln()2ax ->时,()0f x '>,函数()f x 单调递增.综上所述,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增, 当0a <时,()f x 在(,ln())2a-∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)①当0a =时,2()0x f x e =>恒成立,②当0a >时,由(1)可得2()()ln 0min f x f lna a a ==-≥,ln 0a ∴≤,01a ∴≤<.③当0a <时,由(1)可得:223()(ln(-))ln(-)0242mina a af x f a ==-≥,3ln(-)24a ∴≤,3420e a ∴≤﹣<,综上所述a 的取值范围为34]21[,e -. 22.【答案】(1)(3,0)和(,2125)4225- (2)16a =-或8a =【解析】(1)当1a =-时,14,:1,x t L y t =-+⎧⎨=-⎩(t 为参数),L 消参后的方程为430x y +-=,数学试卷 第15页(共46页) 数学试卷 第16页(共46页)曲线C 消参后为221x y y +=,与直线联立方程221,430,x y y x y ⎧+=⎪⎨⎪+-=⎩解得3,0,x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩椭圆C 和直线L 的交点为(3,0)和(,2125)4225-.(2)L 的普通方程为440x y a +--=, 设曲线C 上任一点为()3cos ,sin P θθ,由点到直线的距离公式,d =,d=,max d =∴()max5sin 417aθϕ+--=,当()sin 1θϕ+=时最大,即5417a --=时,16a =-, 当()sin 1θϕ+=-时最大,即917a +=时,8a =, 综上:16a =-或8a =.23.【答案】(1)(1.(2)a 的取值范围是[]1,1-.【解析】(1)当1a =时,21()4a f x x x ==-++时,,是开口向下,对称轴为12x =的二次函数,2,1,()112|,1,|12,1,x x g x x x x x x ⎧⎪=++-=-⎨⎪--⎩>≤≤<当(1)x ∈+∞,时,令242x x x ++=-,解得x =,()g x 在(1)+∞,上单调递增,()f x 在(1)+∞,上单调递减,此时()()f xg x ≥的解集为(1;当,1[]1x ∈-时,()2g x =,()(1)2f x f ≥-=.当(1)x ∈-∞,-时,()g x 单调递减,()f x 单调递增,且(1)(1)2g f -=-=.综上所述,()()fx g x ≥的解集为(1; (2)依题意得:242x ax -++≥在[]1,1-恒成立,即220x ax -≤-在[]1,1-恒成立,则只需221120,(1)(1)20,a a ⎧--⎨----⎩g ≤≤解得11a -≤≤, 故a 的取值范围是[]1,1-.数学试卷 第17页(共46页) 数学试卷 第18页(共46页)绝密★启用前2017年普通高等学校招生全国统一考试全国卷2文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2017年高考全国名校试题数学分项汇编专题06 数列(原卷版)

2017年高考全国名校试题数学分项汇编专题06 数列(原卷版)

一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知数列{}n a 满足181a =,1311log ,2,(*)3,21n n n a a n k a k N n k ---+=⎧=∈⎨=+⎩,则数列{}n a 的前n 项和n S 的最大值为 .2. 【2016高考冲刺卷(7)【江苏卷】】已知公差不为0的等差数列{}n a ,其前n 项和为n S ,若134,,a a a 成等比数列,则3253S S S S --的值为 .3. 【2016高考冲刺卷(6)【江苏卷】】对于数列{}n a ,定义数列{}n b 满足:)(*1N n a a b n n n ∈-=+,且)(1*1N n b b n n ∈=-+,13=a ,14-=a ,则=1a4. 【2016高考冲刺卷(5)【江苏卷】】若数列{}n a 是首项为13a =,公比1q ≠-的等比数列,n S 是其前n 项和,且5a 是14a 与32a -的等差中项,则19S = ▲5. 【2016高考冲刺卷(3)【江苏卷】】数列{}n a 中,12a =,23a =,12n n n a a a --=(n *∈N ,3n ≥),则2011a = . 6. 【2016高考冲刺卷(1)【江苏卷】】n S 是等差数列{a n }的前n 项和,若2412++=n n S S n n ,则=53a a ________. 7. 【2016高考押题卷(2)【江苏卷】】若,ab 是函数()2(0,0)f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于8. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】设公差为d (d 为奇数,且1d >)的等差数列{}n a 的前n 项和为n S ,若19m S -=-,0m S =,其中3m >,且*m ∈N ,则na = ▲ .9. 【2016高考冲刺卷(4)【江苏卷】】若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是 ▲ .10. 【2016高考冲刺卷(2)【江苏卷】】 设n S 是等比数列{}n a 的前n 项和,0n a >,若6325S S -=,则96S S -的最小值为 ▲11. 【2016高考押题卷(1)【江苏卷】】设等比数列{}n a 的前n 项和为n S ,若,63,763==S S 则=++987a a a _______.12. 【2016年第一次全国大联考【江苏卷】】若m b 为数列{2}n 中不超过3*()Am m N ∈的项数,2152=b b b +且310b =,则正整数A 的值为_______.13. 【2016年第四次全国大联考【江苏卷】】已知等比数列{}n a 的前n 项和为n S ,满足243n n S S +=+,且30S <,则 2a 的值为_______.14. 【2016年第三次全国大联考【江苏卷】】已知公比q 不为1的等比数列}{n a 的首项112a =,前n 项和为n S ,且223344,,a S a S a S +++成等差数列,则=+n n S a . 15. 【2016年第三次全国大联考【江苏卷】】已知数列{}n a 满足:对任意n *∈N 均有991-+=+k ka a n n ,其中k 为不等于0与 1的常数,若{}2016,216,32,9,84,684---∈i a ,5,4,3,2=i ,则满足条件的1a 所有可能值的和为 .16. 【 2016年第二次全国大联考(江苏卷)】已知数列{}n a 的首项为1,等比数列{}n b 满足1n n na b a +=,且10081b =,则2016a 的值为_______.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分16分)已知数列{}n a 满足*1221212221,2,2,3,()n n n n a a a a a a n N +-+===+=∈.数列{}n a 前n 项和为n S .(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若12m m m a a a ++=,求正整数m 的值; (Ⅲ)是否存在正整数m ,使得221mm S S -恰好为数列{}n a 中的一项?若存在,求出所有满足条件的m 值,若不存在,说明理由.2. 【2016年第三次全国大联考【江苏卷】】(本小题满分16分)已知数列{}n c 的通项公式是n n n b a c =,前n 项和为n T ,其中{}n a 是首项为11=a 的等差数列,且0>n a ,数列{}n b 为等比数列,若32)32(+⋅-=nn n T(1)求数列{}n a 、{}n b 的通项公式; (2)是否存在,p q *∈N ,使得2016)1(212=-+q p b a 成立,若存在,求出所有满足条件的,p q ;若不存在,说明理由;(3)是否存在非零整数λ,使不等式12112sin )111()111)(111(+<+-+-+-n n n a a a a a πλΛ 对一切n *∈N 都成立?若存在,求出λ的值;若不存在,说明理由.3. 【2016年第四次全国大联考【江苏卷】】(本小题满分16分)已知数列{}n a 中任意连续三项的和为零,且212 1.a a ==- (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足*1111(N ),n n n b b a n b a ++=∈=,求数列{}n b 的前n 项和n S 的取值范围.4. 【2016年第一次全国大联考【江苏卷】】(本小题满分16分)设首项为1的正项数列{}n a 的前n 项和为n S ,且131n n S S +-=. (1)求证:数列{}n a 为等比数列;(2)数列{}n a 是否存在一项k a ,使得k a 恰好可以表示为该数列中连续*(,2)r r N r ∈≥项的和?请说明理由; (3)设*1(),n n nb n N a +=∈试问是否存在正整数,(1)p q p q <<使1,,p q b b b 成等差数列?若存在,求出所有满足条件的数组(,)p q ;若不存在,说明理由.5. 【2016高考押题卷(1)【江苏卷】】(本小题满分16分)等差数列{}n a 的前n 项和为n S ,已知12a =,622S =.(1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<<L L ,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.6. 【2016高考押题卷(3)【江苏卷】】(本小题满分16分)已知数列}{n a 的前n 项和为n S ,且),,(+*∈∈+=R r p N n r pn a S nn. (1)若32,31==r p ,求数列}{n a 的前n 项和n S ; (2)设*∈N k ,先计算33)1(k k -+的值,再借用这个结论求出2222321nT n +⋅⋅⋅+++=的表达式(用n 表示)并在(1)的前提下,比较n T 与n S 的大小关系; (3)若120162016a a =,求r p ,的值.7. 【2016高考押题卷(2)【江苏卷】】(本小题满分16分) 已知数列{}n a 中,01=a ,)(,21R p p a a n n ∈+=+,(1)当12-=p 时,试证明:432,,a a a 成等差数列;(2)若432,,a a a 成等比数列,试求实数p 之值; (3)当41>p 时,试证明:存在*N k ∈,使得2016>k a . 8. 【2016高考冲刺卷(2)【江苏卷】】(本小题满分16分)设数列{}n a 共有(3)m m ≥项,记该数列前i 项12,,,i a a a L 中的最大项为i A ,该数列后m i -项12,,,i i m a a a ++L 中的最小项为i B ,(1,2,3,,1)i i i r A B i m =-=-L .(1)若数列{}n a 的通项公式为2nn a =,求数列{}i r 的通项公式;(2)若数列{}n a 满足11a =,2i r =-,求数列{}n a 的通项公式;(3)试构造一个数列{}n a ,满足n n n a b c =+,其中{}n b 是公差不为零的等差数列,{}n c 是等比数列,使得对于任意给定的正整数m ,数列{}i r 都是单调递增的,并说明理由. 9. 【2016高考冲刺卷(4)【江苏卷】】 (本小题满分16分)已知等差数列{a n }、等比数列{b n }满足a 1+a 2=a 3,b 1b 2=b 3,且a 3,a 2+b 1,a 1+b 2成等差数列,a 1,a 2,b 2成等比数列. (1)求数列{a n }和数列{b n }的通项公式; (2)按如下方法从数列{a n }和数列{b n }中取项: 第1次从数列{a n }中取a 1, 第2次从数列{b n }中取b 1,b 2, 第3次从数列{a n }中取a 2,a 3,a 4, 第4次从数列{b n }中取b 3,b 4,b 5,b 6, …第2n ﹣1次从数列{a n }中继续依次取2n ﹣1个项, 第2n 次从数列{b n }中继续依次取2n 个项, …由此构造数列{c n }:a 1,b 1,b 2,a 2,a 3,a 4,b 3,b 4,b 5,b 6,a 5,a 6,a 7,a 8,a 9,b 7,b 8,b 9,b 10,b 11,b 12,…,记数列{c n }的前n 项和为S n ,求满足S n <22014的最大正整数n . 10. 【南京市2016届高三年级第三次模拟考试】(本小题满分16分) 已知数列{a n }的前n 项的和为S n ,记b n =1n S n+. (1)若{a n }是首项为a ,公差为d 的等差数列,其中a ,d 均为正数. ①当3b 1,2b 2,b 3成等差数列时,求ad的值; ②求证:存在唯一的正整数n ,使得a n +1≤b n <a n +2.(2)设数列{a n }是公比为q (q >2)的等比数列,若存在r ,t (r ,t ∈N *,r <t )使得22t r b t b r +=+求q 的值.11. 【2016高考冲刺卷(1)【江苏卷】】(本小题满分16分)已知数列{},{}n n a b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和.(1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求数列{}n a 的通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列其他两项之积.12. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分16分)已知数列{}n a 的前n 项和为n S ,且1111,22n n n a a a n++==. (1)求{}n a 的通项公式;(2)设*),2(N n S n b n n ∈-=,若*,N n b n ∈≤λ恒成立,求实数λ的取值范围; (3)设*,)1(2N n n n S c nn ∈+-=,n T 是数列{}n c 的前n 项和,证明143<≤n T .13. 【江苏省扬州中学2015—2016学年第二学期质量检测】 (本题满分16分)已知两个无穷数列{}{},n n a b 分别满足其中*n N ∈,设数列{}{},n n a b 的前n 项和分别为,n n S T ,(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2k ≥),使得1k k c c -<,称数列{}n c 为“k 坠点数列”①若数列{}n a 为“5坠点数列”,求n S ;②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由.14. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】设数列{}n a 的各项均为正数,{}n a 的前n 项和2)1(41+=n n a S ,*N n ∈. (1)求证:数列{}n a 为等差数列;(2)等比数列{}n b 的各项均为正数,21n n n S b b ≥+,*N n ∈,且存在整数2≥k ,使得21k k k S b b =+.(i )求数列{}n b 公比q 的最小值(用k 表示);(ii )当2≥n 时,*N b n ∈,求数列{}n b 的通项公式.15. 【2016高考冲刺卷(7)【江苏卷】】已知等差数列{}n a 的前n 项和n S 满足:530S =,10110S =,数列{}n b 的前n 项和n T 满足:11b =,121n n b T +-=.(Ⅰ)求n S 与n b ;(Ⅱ)比较n n S b 与2n n T a 的大小,并说明理由.16. 【2016高考冲刺卷(9)【江苏卷】】(本小题满分16分)已知数列{}n a 满足11a =,1nn n a a p +-=,其中N n *∈, p 是不为1的常数.(Ⅰ)证明:若{}n a 是递增数列,则{}n a 不可能是等差数列;(Ⅱ)证明:若{}n a 是递减的等比数列,则{}n a 中的每一项都大于其后任意()N m m *∈个项的和;(Ⅲ)若2p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.。

江西省各地2017届高三最新考试数学文试题分类汇编:数列含答案

江西省各地2017届高三最新考试数学文试题分类汇编:数列含答案

江西省各地2017届高三最新考试数学文试题分类汇编数学科网列 2017。

02一、选择、填空题1、(红色七校2017届高三第二次联考)已知{}na 是公比为q 的等比数列,nS 是{}n a 的前n 项和,且369SS =,若正数,a b 满足:24q a b +=,则2112a b +--的最小值为( ).A .2B .322C .52D .3214+2、(红色七校2017届高三第二次联考)已知数列{}na 的前n 项和21n S n n =++,则135a a a ++=;3、(江西省师大附中、临川一中2017届高三1月联考)已知数列{}na 、{}n b 满足2log ,n n b a n N +=∈,其中{}nb 是等差数列,且920094a a =,则=++++2017321.....b b b b ( )A 。

2017 B.4034 C. 2log 2017D 。

201724、(新余市2017高三上学期期末考试)已知等比数列{a n }中,a n+1=36,a n+3=m ,a n+5=4,则圆锥曲线+=1的离心率为( ) A . B . C .或 D .5、(新余市2017高三上学期期末考试)若等差数列{a n }的前7项和S 7=21,且a 2=﹣1,则a 6= 7 .6、(江西省重点中学协作体2017届高三下学期第一次联考)等差数列{}na 的前n 项和为n S ,若公差,0>d 0))((5958<--S S S S,则( )A .78||||aa > B .78||||aa < C .78||||aa = D .70a=7、(江西省重点中学协作体2017届高三下学期第一次联考)已知等比数列{}na 满足:1611=a,12573-=a a a ,则______3=a 。

8、(江西师范大学附属中学2017届高三12月月考)在等差数列{}na 中,已知386a a +=,则2163aa +的值为( )A.24 B 。

(word完整版)历年高考真题汇编数列,推荐文档

(word完整版)历年高考真题汇编数列,推荐文档
历年高考真题汇编数列(含)
、(年新课标卷文)
已知等比数列{an}
中,
a1
1 3
,公比
q
1 3

()
Sn
为{an}
的前项和,证明:
Sn
1 an 2
()设 bn log3 a1 log3 a2 log3 an ,求数列{bn}的通项公式.
解:(Ⅰ)因为 an
1 (1)n1 33
1 3n
.
Sn
1 (1 1 ) 3 3n
①②得
(1 22 ) Sn 2 23 25 22n1 n 22n1 。

Sn
1 [(3n 9
1)22n1
2]
、(年全国新课标卷文)
设等差数列an 满足 a3 5 , a10 9 。
(Ⅰ)求 an 的通项公式;
(Ⅱ)求an的前 n 项和 Sn 及使得 Sn 最大的序号 n 的值。
解:()由 ()及,得
1 1
1 1 3n
2
,
3
所以 Sn
1 an 2
,
(Ⅱ) bn log 3 a1 log 3 a2 log 3 an
所以{bn }的通项公式为 bn
n(n 1) . 2
(1 2 ....... n)
n(n 1) 2
、(全国新课标卷理)
等比数列an 的各项均为正数,且 2a1 3a2 1, a32 9a2a6. ()求数列 an 的通项公式.
1,
Sn a1 a2 an .
2 24
2n
所以,当 n 1时,
3 / 12
Sn 2
a1
a2
2
a1
an an1 an
2n1

2017高考十年高考数学(文科)分项版 专题06 数列(浙江专版)(解析版) 含解析

2017高考十年高考数学(文科)分项版 专题06 数列(浙江专版)(解析版) 含解析

一.基础题组1。

【2010年。

浙江卷。

文5】设ns 为等比数列{}na 的前n 项和,2580aa +=则52SS =(A )—11 (B )—8 (C)5 (D )11【答案】A【解析】:通过2580aa +=,设公比为q ,将该式转化为08322=+q a a,解得q =—2,带入所求式可知答案选A,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式2。

【2010年。

浙江卷。

文14】在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是【答案】n n+23。

【2009年。

浙江卷.文11】设等比数列{}na 的公比12q =,前n 项和为n S ,则44S a = .【答案】15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--4。

【2008年。

浙江卷.文4】已知{}na 是等比数列,41252==a a ,,则公比q =(A )21- (B )2- (C )2 (D)21【答案】D【解析】:本小题主要考查等比数列通项的性质.由3352124a a q q ==⋅=⋅,解得1.2q =5. 【2015高考浙江,文17】(本题满分15分)已知数列na 和nb 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈。

(1)求na 与nb ; (2)记数列n na b 的前n 项和为nT ,求nT .【答案】(1)2;n n n a b n ==;(2)1*(1)22()n n T n n N +=-+∈【解析】【考点定位】1。

等差等比数列的通项公式;2.数列的递推关系式;3。

错位相减法求和. 二.能力题组1. 【2011年。

浙江卷。

文17】若数列2(4)()3nn n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______。

2017-2019年高考真题数学(文)分项汇编_专题12 数列

2017-2019年高考真题数学(文)分项汇编_专题12 数列

专题12数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A .当101,102b a => B .当101,104b a => C .当102,10b a =-> D .当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,当1102+≤时,即90b -…时,总存在12a +=,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭,则2981102a a =+>, 21091102a a =+>, 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230l n a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=,结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=.由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++()()135212142632n n n a a a a a b a b a b a b -=+++++++++123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦()2123613233n n n =+⨯+⨯++⨯.记1213233n n T n =⨯+⨯++⨯,① 则231313233n n T n +=⨯+⨯++⨯,②②−①得,()12311313(21)332333331332n n n n nn n T n n +++--+=---⨯=-+⨯=--+-. 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列的通项公式,借助于的通项公式求得数列的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==,∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---由12()4n n n n S T T T a b ++++=+可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1)75[,]32;(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. (1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-.故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. (1)由等比数列通项公式解得2q =-,12a =-即可求解; (2)利用等差中项证明S n +1,S n ,S n +2成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 【答案】(1);(2)当时,.当时,.【解析】设的公差为d ,的公比为q ,则.由得d +q =3.①(1)由得②联立①和②解得(舍去),因此的通项公式为.(2)由得.解得.当时,由①得,则.当时,由①得,则.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和. 27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为+3+…+(2n −1) =2n ,故当n ≥2时,+3+…+(−3)=2(n −1).两式相减得(2n −1)=2,所以= (n ≥2).又由题设可得=2,从而{}的通项公式为=.(2)记{}的前n 项和为,由(1)知 = = − .则= − + −+…+ −= .【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+. 28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=.【名师点睛】本题考查了数列求和,一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式;②裂项相消法求和,一般适用于1+=n n n a a cc ,nn c c n ++=1等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【答案】(1)2nn a =;(2)2552n nn T +=-【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2nn a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+, 令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n n n n T c c c --+=+++=+++++ 又234113572121222222n nn n n T +-+=+++++, 两式相减得2111311121()222222n n n n T -++=++++-, 所以2552n nn T +=-. 【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2n n b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(12)42626262(62)24(612n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k nnnk n ka aa a aa --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d , 则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 【名师点睛】本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.。

近五年(2017-2021)高考数学真题分类汇编07 数列

近五年(2017-2021)高考数学真题分类汇编07 数列

1 + a n, 4 2 84 2 8 近五年(2017-2021)高考数学真题分类汇编七、数列一、单选题(2021·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 S 2 = 4 ,S 4 = 6 ,则 S 6 =()A .7B .8C .9D .102.(2021·浙江)已知a , b ∈ R, a b > 0 ,函数 f ( x ) = ax 2+ b (x ∈ R) .若 f (s - t ), f (s ), f (s + t ) 成等比数列,则平面上点(s ,t ) 的轨迹是()A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线3.(2021·全国(理))等比数列{a n }的公比为 q ,前 n 项和为S n ,设甲: q > 0 ,乙: {S n } 是递增数列,则()A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件4.(2021·浙江)已知数列{a } 满足a = 1, a = a n (n ∈ N *).记数列{a }的前 nn1n +1n项和为S n ,则( )A . 3< S< 3B .3 < S < 4C . 4 < S< 9D . 9< S < 52100100100221005.(2020·北京)在等差数列{a n }中,a 1 = -9 ,a 5 = -1 .记T n = a 1a 2…a n (n = 1, 2,…) ,则数列{T n }().A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项(2020·浙江)已知等差数列{a n }的前n 项和S n ,公差d ≠0n ∈ N * ,下列等式不.可.能.成立的是( )a 1≤ 1 .记b 1=S 2,b n+1=S 2n+2–S 2n , dA .2a 4=a 2+a 6B .2b 4=b 2+b 6C . a 2= a a D . b 2= b b7.(2020·全国(文))设{a n } 是等比数列,且a 1 + a 2 + a 3 = 1 , a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ()a k +1 k +2 k +10A .12B .24C .30D .32S n 8.(2020·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=n( )A .2n –1B .2–21–nC .2–2n –1D .21–n –19.(2020·全国(理))数列{a n } 中,a 1 = 2 , a m +n = a m a n ,若a + a ++ a = 215 - 25 , 则 k = ( )A .2B .3C .4D .510.(2020·全国(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌 9 块扇面形石板构成第一环,向外 每环依次增加 9 块,下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加9 块,已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石) ( )A .3699 块B .3474 块C .3402 块D .3339 块11.(2020·全国(理))0-1 周期序列在通信技术中有着重要应用.若序列 a 1a 2 a n 满足a i ∈{0,1}(i = 1, 2,) ,且存在正整数 m ,使得 a i + m = a i (i = 1, 2,) 成立,则称其为 0-1 周期序列,并称满足 a i + m = a i (i = 1, 2,) 的最小正整数 m 为这个序列的周期.对于周期为 m C (k ) = 1 ma a(k = 1, 2,, m - 1)的 0-1 序列 a 1a 2 a n , ∑ i =1i i + k 是描述其性质的重要指标, 下列周期为 5 的 0-1 序列中,满足C (k ) ≤ 1(k = 1, 2, 3, 4) 的序列是( )5A .11010B .11011C .10001D .1100112.(2019·全国(理))已知各项均为正数的等比数列{a n } 的前 4 项和为 15,且a 5 = 3a 3 + 4a 1 ,则 a 3 =A .16B .8C .4D .2m32 n 13.(2019·全国(理))记S n 为等差数列{a n } 的前 n 项和.已知 S 4 = 0,a 5 = 5 ,则A. a n = 2n - 5B. a n = 3n -10C. S n = 2n 2- 8nD. S n= 1 n 2- 2n214.(2018·浙江)已知 a 1 , a 2 , a 3 , a 4 成等比数列,且 a 1 + a 2 + a 3 + a 4 = ln(a 1 + a 2 + a 3 ) .若a 1 > 1 ,则A . a 1 < a 3 , a 2 < a 4C .a 1 < a 3 ,a 2 > a 4 B . a 1 > a 3 ,a 2 <a 4D .a 1 > a 3 ,a 2 > a 415.(2018·北京(理))“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个 单音的频率的比都等于12 2 .若第一个单音的频率为 f ,则第八个单音的频率为A.fC . 12 25 fD . 12 27 f16.(2017·全国(理))等差数列{a n } 的首项为1,公差不为0 .若a 2 、a 3 、a 6 成等比数列,则{a n }的前6 项的和为( )A . -24B. -3C. 3D . 817.(2017·上海)已知 a 、b 、c 为实常数,数列{x n }的通项 x = an 2+ bn + c ,n∈ N * ,则“存在 k ∈ N * ,使得x 100+k 、 x 200+k 、 x 300+k 成等差数列”的一个必要条件是( )A. a ≥ 0B. b ≤ 0C. c = 0 D . a - 2b + c = 018.(2017·全国(理))(2017 新课标全国 I 理科)记S n 为等差数列{a n } 的前 n 项和.若a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为A .1B .2C .4D .819.(2017·浙江)已知等差数列{a n }的公差为 d,前 n 项和为 S n ,则“d>0”是 " S 4 +S 6 > 2S 5 "的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B . 3 22 fn 20.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏21.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏二、填空题22.(2020·海南)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前 n 项和为.23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如⎧ n (n +1) ⎫ ⎧ n (n +1) ⎫ *数列⎨ 2 ⎬ 就是二阶等差数列,数列 ⎨ 2 ⎬ (n ∈ N ) 的前3 项和是.⎩ ⎭ ⎩ ⎭24.(2020·江苏)设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和 S = n 2 - n + 2n-1(n∈ N + ) ,则 d +q 的值是 .25.(2020·全国(文))数列{a n } 满足 an +2 + (-1)na = 3n -1,前 16 项和为 540,则 a 1 =.26.(2020·全国(文))记 S n 为等差数列{a n }的前 n 项和.若 a 1 = -2, 则S 10 = .a 2 + a 6 = 2 ,27.(2019·江苏)已知数列{a n }(n ∈ N *) 是等差数列, S n 是其前 n 项和.若a 2a 5 + a 8 = 0, S 9 = 27 ,则 S 8 的值是 . 28.(2019·全国(文))记S n 为等差数列{a n }的前n 项和,若 a 3 = 5, a 7 = 13 ,则 S 10 = . 29.(2019·全国(理))记 S n 为等差数列{a n }的前 n 项和,a 1≠0,a 2 = 3a 1 ,则 n1 S 10S 5= .30.(2019·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a= 1,S = 3,则S 4=.13431.(2019·全国(理))记 S n 为等比数列{a n }的前 n 项和.若 a = 1,a 2= a ,则S 5=.134 6(2018·上海)记等差数列{a n }的前 n 项和为 S n ,若 a 3 = 0 ,a 6 + a 7 = 14 ,则 S 7 = .33.(2018·全国(理))记 S n 为数列{a n }的前 n 项和,若 S n = 2a n +1,则 S 6 = .34.(2017·上海)已知数列{a } 和{b },其中 a = n 2, n ∈ N * ,{b } 的项是互不相等nnnn的正整数,若对于任意 n ∈ N * ,{b n } 的第 a n 项等于{a n } 的第b n 项,则lg(b 1b 4b 9b 16 ) =lg(b 1b 2b 3b 4 ).2017·全国()2017 新课标全国 II 理科)等差数列{a n } 的前n 项和为 S n ,a 3 = 3 ,S = 10 ,则∑1 = .4 k =1 S36.(2017·北京(理))若等差数列{a n }和等比数列{b n }满足 a 1 = b 1 = -1,a 4 = b 4 = 8 , 则 a 2 = . b 237.(2017·江苏)等比数列{ a }的各项均为实数,其前n 项为 S ,已知 S = 7,S = 63,n则a 8 = .n 346438.(2021·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm ,20dm ⨯ 6dm 两种规格的图形,它们的面积之和 S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果nkS对折n 次,那么∑ Sk= dm 2 .k =139.(2019·北京(理))设等差数列{a n }的前 n 项和为 S n ,若 a 2=−3,S 5=−10,则 a 5=,S n 的最小值为 .三、解答题40.(2021·全国(文))设{a }是首项为 1 的等比数列,数列{b } 满足b =na n.已知 na 1 , 3a 2 , 9a 3 成等差数列.(1) 求{a n } 和{b n }的通项公式;n n3(2) 记 S 和T 分别为{a }和{b }的前 n 项和.证明: T <S n. nnnnn241.(2021·浙江)已知数列{a }的前 n 项和为S , a = - 9,且4S = 3S - 9 .n(1) 求数列{a n } 的通项;n14n +1n(2) 设数列{b n }满足3b n + (n - 4)a n = 0 ,记{b n }的前 n 项和为Tn,若T n ≤ λb n 对任意 n ∈ N * 恒成立,求λ的范围.42.(2021·全国(理))已知数列{a n }的各项均为正数,记S n 为{a n }的前 n 项和,从 下面①②③中选取两个作为条件,证明另外一个成立. ①数列{a n }是等差数列:②数列{ S n}是等差数列;③ a2= 3a 1 .注:若选择不同的组合分别解答,则按第一个解答计分.43.(2021·全国(理))记 S n 为数列{a n }的前 n 项和, b n 为数列{S n } 的前 n 项积,已知2 + 1nb n = 2 .(1) 证明:数列{b n }是等差数列;(2) 求{a n } 的通项公式.44.(2020·海南)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 求 a a - a a+⋯+ (-1)n -1 a a .1 22 3n n +145.(2020·天津)已知{a n }为等差数列, {b n }为等比数列,na ann a a 1 = b 1 = 1, a 5 = 5(a 4 - a 3 ), b 5 = 4(b 4 - b 3 ) . (Ⅰ)求{a n } 和{b n }的通项公式; (Ⅱ)记{a }的前 n 项和为 S ,求证: S S< S 2(n ∈ N *) ;nnn n +2⎧(3a n - 2)b n n +1(Ⅲ)对任意的正整数n ,设c n⎪⎪a n a n +2 ⎨ a, n 为奇数, 求数列{c n } 的前 2n 项和. ⎪ n -1 , ⎩ b n +1n 为偶数. 46.(2020·北京)已知{a n }是无穷数列.给出两个性质:①对于{a }中任意两项 a i , a j (i > 2j) ,在{a }中都存在一项a ,使 i= a ;n n mm j2②对于{a n }中任意项a n (n 3) ,在{a n }中都存在两项a k , a l (k > l ) .使得 a n = k.a l(Ⅰ)若 a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;(Ⅱ)若 a = 2n -1(n = 1, 2,) ,判断数列{a }是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明: {a n }为等比数列. 47.(2020·浙江)已知数列{a n },{b n },{c n }中,a =b =c = 1, c = a - a , c= b n ⋅ c (n ∈ N * ) .111nn +1n n +1b n +2(Ⅰ)若数列{b n }为等比数列,且公比 q > 0 ,且b 1 + b 2 = 6b 3 ,求 q 与{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差 d > 0 ,证明: c + c++ c < 1 + 1.(n ∈ N * ) 12nd48.(2020·山东)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 记b m 为{a n } 在区间(0, m ](m ∈ N * ) 中的项的个数,求数列{b m } 的前100 项和 S 100 .49.(2020·全国(理))设数列{a n }满足 a 1=3,a n +1 = 3a n - 4n . (1) 计算 a 2,a 3,猜想{a n }的通项公式并加以证明; (2) 求数列{2n a n }的前 n 项和 S n .50.(2020·全国(理))设{a n } 是公比不为 1 的等比数列, a 1 为 a 2 , a 3 的等差中项.(1)求{a n } 的公比;n = ⎪(2)若 a 1 = 1 ,求数列{na n }的前 n 项和.a n 2b nn1n51.(2020·全国(文))设等比数列{a n }满足a 1 + a 2 = 4 , a 3 - a 1 = 8 . (1) 求{a n }的通项公式;(2) 记 S n 为数列{log 3a n }的前 n 项和.若 S m + S m +1 = S m +3 ,求 m .52.(2019·江苏)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1) 已知等比数列{a n }满足: a 2 a 4 = a 5 , a 3 - 4a 2 + 4a 1 = 0 ,求证:数列{a n }为“M -数列”;(2) 已知数列{b }满足: b= 1, 1= 2 - 2 ,其中 S为数列{b }的前 n 项和.S n b n b n +1①求数列{b n }的通项公式;②设 m 为正整数,若存在“M -数列”{c n },对任意正整数 k ,当 k ≤m 时,都有c k b k c k +1成立,求 m 的最大值.53.(2019·北京(文))设{a n }是等差数列,a 1=–10,且 a 2+10,a 3+8,a 4+6 成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前 n 项和为 S n ,求 S n 的最小值.54.(2019·浙江)设等差数列{a n } 的前n 项和为 S n ,a 3 = 4 ,a 4 = S 3 ,数列{b n }满足:对每 n ∈ N *, S n + b n , S n +1 + b n , S n +2 + b n 成等比数列.(1) 求数列{a n },{b n } 的通项公式;(2) 记C =, n ∈ N *, 证明: C + C ++ C < 2 n , n ∈ N *.n1 2n55.(2019·天津(文)) 设{a n }是等差数列, {b n }是等比数列,公比大于0 ,已知a 1 =b 1 = 3 , b 2 = a 3 , b 3 = 4a 2 + 3 .(Ⅰ)求{a n }和{b n } 的通项公式;⎧⎪1,n 为奇数,(Ⅱ)设数列{c } 满足c= ⎨b n 为偶数, 求a c + a c ++ a c(n ∈ N *).nnn⎩21 12 22n 2n56.(2019·全国(文))已知{a n } 是各项均为正数的等比数列,a 1 = 2, a 3 = 2a 2 +16 . n(1)求{a n } 的通项公式;n →∞{ }(2) 设b n = log 2 a n ,求数列{b n } 的前 n 项和.57.(2019·全国(文))记 S n 为等差数列{a n }的前 n 项和,已知 S 9=-a 5.(1) 若 a 3=4,求{a n }的通项公式;(2) 若 a 1>0,求使得 S n ≥a n 的 n 的取值范围.58.(2019·全国(理))已知数列{a n }和{b n }满足 a 1=1,b 1=0,4a n +1 = 3a n - b n + 4 (1) 证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2) 求{a n }和{b n }的通项公式.59.(2019·上海)已知数列{a n },a 1 = 3 ,前 n 项和为 S n . (1) 若{a n } 为等差数列,且a 4 = 15 ,求 S n ; (2) 若{a n } 为等比数列,且 lim S n < 12 ,求公比q 的取值范围.,4b n +1 = 3b n - a n - 4 .60.(2019·上海)已知等差数列{a n }的公差d ∈(0,π] ,数列{b n }满足b n = sin (a n ) ,集合 S = {x | x = b n , n ∈ N *}.(1) 若 a 1(2) 若 a = 0, d =2π,求集合 S ; 3= π,求 d 使得集合 S 恰好有两个元素;12(3) 若集合 S 恰好有三个元素: b n +T = b n , T 是不超过 7 的正整数,求T 的所有可能的值.61.(2019·天津(理))设{a n } 是等差数列, {b n }是等比数列.已知a 1 = 4,b 1 = 6 ,b 2 = 2a 2 - 2,b 3 = 2a 3 + 4 .(Ⅰ)求{a n } 和{b n }的通项公式;⎧1, 2k < n < 2k +1, (Ⅱ)设数列 c n 满足c 1 = 1, c n = ⎨ b , n = 2k ,其中 k ∈ N * . ⎩ k(i ) 求数列{a 2n(c2n-1)}的通项公式;2n(ii ) 求∑ a i ci(n ∈ N *).i =162.(2018·江苏)设{a n } 是首项为 a 1 ,公差为 d 的等差数列,{b n } 是首项为b 1 ,公比为 q 的等比数列.(1)设 a 1 = 0,b 1 = 1, q = 2 ,若| a n - b n |≤b 1 对 n = 1, 2,3, 4 均成立,求 d 的取值范围;(2)若 a = b > 0, m ∈ N *, q ∈ (1, m 2] ,证明:存在 d ∈ R ,使得| a n - b n |≤ b 1 对11n = 2, 3,, m +1 均成立,并求 d 的取值范围(用b 1, m , q 表示).63.(2018·江苏)设 n ∈ N * ,对 1,2,···,n 的一个排列i 1i 2 i n ,如果当 s <t 时,有i s > i t ,则称(i s , i t ) 是排列i 1i 2i n 的一个逆序,排列i 1i 2 i n 的所有逆序的总个数称为其逆序数.例如:对 1,2,3 的一个排列 231,只有两个逆序(2,1),(3,1),则排列 231 的逆序数为 2.记 f n (k ) 为 1,2,···,n 的所有排列中逆序数为 k 的全部排列的个数. (1)求 f 3 (2), f 4 (2) 的值;(2) 求 f n (2)(n ≥ 5) 的表达式(用 n 表示).64.(2018·全国(文))记 S n 为等差数列{a n } 的前 n 项和,已知 a 1 = -7 , S 3 = -15 .(1) 求{a n } 的通项公式;(2) 求 S n ,并求 S n 的最小值.65.(2018·北京(文))设{a n } 是等差数列,且a 1 = ln 2, a 2 + a 3 = 5 l n 2 .(Ⅰ)求{a n } 的通项公式;(Ⅱ)求e a 1 + e a 2 ++ e a n .66.(2018·全国(理))等比数列{a n }中,a 1 = 1,a 5 = 4a 3 . (1) 求{a n }的通项公式;(2) 记S n 为{a n }的前n 项和.若 S m = 63 ,求 m . 67.(2018·浙江)已知等比数列{a n }的公比 q >1,且a 3+a 4+a 5=28,a 4+2 是 a 3,a 5 的等差中项.数列{b n }满足 b 1=1,数列{(b n +1−b n )a n }的前 n 项和为 2n 2+n . (Ⅰ)求 q 的值;(Ⅱ)求数列{b n }的通项公式.68.(2018·全国(文))已知数列{a }满足a = 1 , na= 2(n +1) a,设b = an.(1)求b 1 ,b 2 ,b 3 ;n 1 n +1n nn(2) 判断数列{b n } 是否为等比数列,并说明理由;n n k =1⎩⎭⎩ n n n (3) 求{a n } 的通项公式.69.(2018·天津(理))设{a }是等比数列,公比大于 0,其前 n 项和为 S (n ∈ N *),{b n }是等差数列.已知a 1 = 1 , a 3 = a 2 + 2 , a 4 =b 3 + b 5 , a 5 = b 4 + 2b 6 . (I ) 求{a n }和{b n }的通项公式;(II ) 设数列{S }的前 n 项和为T (n ∈ N *) ,(i ) 求T n ;n(T k+ bk +2)b k=2n +2 - ∈ *(ii )证明∑ (k +1)(k + 2)n + 22 (nN ) .70.(2018·天津(文))设{a n }是等差数列,其前 n 项和为 S n (n ∈N *);{b n }是等比数列,公比大于 0,其前 n 项和为 T n (n ∈N *).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求 S n 和 T n ;(Ⅱ)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.71.(2017·全国(文))设数列{a n } 满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n . (1) 求{a n } 的通项公式;⎧ a n ⎫ (2) 求数列的前 n 项和. ⎨ 2n +1⎬72.(2017·上海)根据预测,某地第n (n ∈ N * ) 个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),⎧5n 4 +15, 1 ≤ n ≤ 3其中 a n = ⎨-10n + 470, ,b n = n + 5 ,第n 个月底的共享单车的保有量是前 n 个n ≥ 4月的累计投放量与累计损失量的差.(1) 求该地区第 4 个月底的共享单车的保有量;(2) 已知该地共享单车停放点第 n 个月底的单车容纳量 S = -4(n - 46)2+ 8800 (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点 的单车容纳量?73.(2017·天津(文))已知{a n } 为等差数列,前 n 项和为 S n(n ∈ N * ) ,{b } 是首项为2 的等比数列,且公比大于 0,n2n n n 1 n n +1 b 2 + b 3 = 12,b 3 = a 4 - 2a 1 , S 11 = 11b 4 .(Ⅰ)求{a n } 和{b n } 的通项公式;(Ⅱ)求数列{a b } 的前 n 项和(n ∈ N *) .74.(2017·山东(理))已知{x n } 是各项均为正数的等比数列,且x 1 + x 2 = 3,x 3 - x 2 = 2 (Ⅰ)求数列{x n } 的通项公式;(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点P 1 ( x 1 ,1),P 2 ( x 2 , 2)⋯ P n +1 ( x n +1 , n +1) 得到折线 P 1P 2 ⋯P n +1 ,求由该折线与直线y = 0 , x = x 1,x = x n +1 所围成的区域的面积T n ..75.(2017·浙江)已知数列{x } 满足: x =1 , x = x + ln (1+ x ) (n ∈ N *)证明:当 n ∈ N * 时,(I )0 < x n +1 < x n ;(II )2x- x ≤ x n x n +1 ;(III ) n +112n -1 n≤x n ≤ 21 2n -2 . 76.(2017·全国(文))记 S n 为等比数列{a n }的前 n 项和,已知 S 2=2,S 3=-6.(1) 求{a n } 的通项公式;(2) 求 S n ,并判断 S n +1,S n ,S n +2 是否成等差数列.77.(2017·山东(文))已知{a n }是各项均为正数的等比数列,且a 1 + a 2 = 6, a 1a 2 = a 3 . (I) 求数列{a n }通项公式;n +1(II){b }为各项非零的等差数列,其前n 项和S ,已知S=b b ⎧b n ⎫,求数列的前n 项n n 2n+1n n+1⎨a ⎬⎩n ⎭和Tn.78.(2017·北京(理))设{a n}和{b n}是两个等差数列,记c n = max{b1-a1n,b2-a2n,⋅⋅⋅,bn-ann} (n = 1, 2, 3,⋅⋅⋅) ,其中max{x1, x2 , ⋅⋅⋅, x s} 表示x1 , x2 ,⋅⋅⋅, x s 这s 个数中最大的数.(Ⅰ)若a n =n ,b n = 2n -1,求c1 , c2 , c3 的值,并证明{c n }是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,cn >M ;或者存在正n整数m ,使得c m , c m+1, c m+2 , ⋅⋅⋅是等差数列.(2017·北京(文))已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1 +b3 +b5 +…+b2 n-1 .80.(2017·全国(文))已知等差数列{a n }的前n 项和为S n,等比数列{b n }的前n 项和为T n ,且 a1 = 1 ,b1 =1,a2 +b2 = 4 .(1)若a3+b3=7,求{b n }的通项公式;(2)若T3 = 13 ,求S5 .81.(2017·江苏)对于给定的正整数k,若数列{a n}满足a +a +...a +a +...a +a = 2k an-k n-k+1 n-1 n+1 n+k-1 n+k n对任意正整数n(n> k) 总成立,则称数列{a n} 是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.近五年(2017-2021)高考数学真题分类汇编七、数列(答案解析)1.A【解析】∵S n 为等比数列{a n}的前n项和,∴S2 ,S4 -S2 ,S6 -S4 成等比数列∴S2 = 4 ,S4 -S2 = 6 - 4 = 2 ,∴S6 -S4 = 1,∴S6 = 1+S4 = 1+ 6 = 7 .故选:A.2.C【解析】由题意得f (s -t) f (s +t) = [ f (s)]2 ,即⎡⎣a(s-t)2+b⎤⎦⎡⎣a(s+t)2+b⎤⎦=(as2+b)2,对其进行整理变形:(as2+at2-2ast+b)(as2+at2+2ast+b)=(as2+b)2,(as2+at2+b)2-(2ast)2-(as2+b)2=0,(2as2+at2+2b)at2-4a2s2t2=0,-2a2s2t2+a2t4+2abt2=0,s 2-t 2所以-2as2 +at 2 + 2b = 0 或t = 0 ,其中b 2b = 1为双曲线,t = 0 为直线.a a故选:C.3.B【解析】由题,当数列为-2, -4, -8,时,满足q > 0 ,但是{S n }不是递增数列,所以甲不是乙的充分条件.若{S n }是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q > 0 成立,所以甲是乙的必要条件.故选:B.4.A【解析】因为a= 1, a=an (n ∈ N*),所以a > 0 ,S >1 .1 n+1n 100 21 +ana n a n a n +1 a na n + 1a n2 2 ⎝⎭ ⎝ ⎭ < 1 2 a 1 1 1⎛ 1 1 ⎫ 1 由a n +1 = n ⇒ = + = + ⎪ -1+∴ 1 ⎛ 1a+ 1 ⎫ 2 ⎪ a n +1 2⇒a n ⎝ 1 < 1 + 1 2 2 ⎭ 4,即-1 < 12n +1 ⎝ ⎭1 根据累加法可得,≤ 1+n -1 = n +1,当且仅当 n = 1 时取等号,∴a ≥ 4 ∴a = a n ≤ a n= n +1 a n (n +1)2 n +1 1+ 2 n +1n + 3 n ∴a n +1 ≤ n +1 ,a n n + 3由累乘法可得 a n ≤ 6(n +1)(n + 2),当且仅当 n = 1 时取等号,由裂项求和法得:所以 S ≤ 6⎛ 1 - 1 + 1 - 1 + 1 - 1 ++ 1-1 ⎫ = 6 ⎛ 1 -1 ⎫ < 3 , 即 1< S< 3 .1002 3 3 4 4 5 101 102 ⎪ 2 102 ⎪2 100故选:A .【小结】本题解题关键是通过倒数法先找到a n ,的不等关系,再由累加法可求得a ≥4,由题目条件可知要证 S 小于某数,从而通过局部放缩得到a , a 的不等 n(n +1)2100 n n +1关系,改变不等式的方向得到 a n ≤6(n +1)(n + 2),最后由裂项相消法求得 S 100 < 3 .5.B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在 最大项和最小项. 【解析】由题意可知,等差数列的公差d =a 5 - a 1 = -1+ 9= 2 , 5 -1 5 -1则其通项公式为: a n = a 1 + (n -1)d = -9 + (n -1)⨯ 2 = 2n -11 ,a n a n a n1+ a n a n +1注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1<a7 <,且由T5 < 0 可知T i < 0 (i ≥ 6,i ∈N ),Ti 由Ti-1 =ai>1(i≥7,i∈N)可知数列{T n }不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 = 1,故数列{T n }中的正项只有有限项:T2= 63 ,T4= 63⨯15 = 945 .故数列{T n }中存在最大项,且最大项为T4.故选:B.【小结】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.6.D【分析】根据题意可得,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,而b1 =S2 =a1 +a2 ,即可表示出题中b 2 , b4, b6, b8,再结合等差数列的性质即可判断各等式是否成立.【解析】对于A,因为数列{a n}为等差数列,所以根据等差数列的下标和性质,由4 + 4 = 2 + 6 可得,2a4 =a2+a6,A 正确;对于B,由题意可知,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,b1 =S2 =a1 +a2 ,∴b2 =a3 +a4 ,b4 =a7 +a8 ,b6 =a11 +a12 ,b8 =a15 +a16 .∴2b4=2(a7+a8),b2+b6=a3+a4+a11+a12.根据等差数列的下标和性质,由3 +11 = 7 + 7, 4 +12 = 8 + 8 可得b 2+b6=a3+a4+a11+a12=2(a7+a8)=2b4,B正确;对于C,a2-a a=(a+3d)2-(a+d)(a+7d)=2d2-2a d=2d(d-a),4 2 8 1 1 1 1 14 2 8 1 1 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1⎪a q a q 12 ⎨ 当a 1 = d 时, a 2= a a ,C 正确;对于 D , b 2 = (a + a )2 = (2a + 13d )2= 4a 2 + 52a d + 169d 2 ,478111b b = (a + a )(a + a ) = (2a + 5d )(2a + 29d )= 4a 2 + 68a d + 145d 2 ,2 83415161111b 2 - b b = 24d 2 - 16a d = 8d (3d - 2a ) .42 811当 d > 0 时, a ≤ d ,∴ 3d - 2a = d + 2 (d - a ) > 0 即b 2 - b b > 0 ;11142 8当 d < 0 时,a ≥ d ,∴ 3d - 2a = d + 2 (d - a ) < 0 即b 2 - b b > 0 ,所以b 2 - b b > 0 ,11142 842 8D 不正确. 故选:D.7.D【解析】设等比数列{a } 的公比为q ,则 a + a + a= a (1+ q + q2) = 1 ,a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2 ) = q = 2 ,因此, a + a + a = a q 5+ a q 6+ a q 7= a q 5(1+ q + q 2) = q 5= 32 .故选:D.8.B【解析】设等比数列的公比为q ,⎧ 4 - 2= 由a -a =12,a -a =24可得: ⎨1 1⇒⎧q = 2 ,5364⎪⎩a q5 - a q 3= 24 a (1- q n ) 1- 2n ⎩a 1 =1 S 2n-11-n 所以 a = a q n -1 = 2n -1, S =1 = = 2n -1,因此 n = =2 - 2 . n 1 n1- q 1- 2 a 2n -1故选:B.9.C【解析】在等式 a= a a中,令 m = 1,可得 a= a a = 2a ,∴a n +1= 2 ,m +nm nn +1n 1nn所以,数列{a n } 是以 2 为首项,以 2 为公比的等比数列,则a n = 2 ⨯ 2n -1= 2n ,na2 ⋅(1- 2 ) 5 i =1 5 5∴a + a++ a=a k +1 ⋅(1- 210 ) k +110= = 2k +1 (210 -1) = 25 (210 -1),k +1k +2k +101- 2 1- 2∴ 2k +1 = 25 ,则 k +1 = 5 ,解得 k = 4 .故选:C.10.C【解析】设第 n 环天石心块数为 a n ,第一层共有 n 环,则{a n } 是以 9 为首项,9 为公差的等差数列, a n = 9 + (n - 1) ⨯ 9 = 9n , 设 S n 为{a n } 的前 n 项和,则第一层、第二层、第三层的块数分 别为 S n , S 2n - S n , S 3n - S 2n ,因为下层比中层多 729 块, 所以 S 3n - S 2n = S 2n - S n + 729 , 即3n (9 + 27n ) - 2n (9 + 18n ) = 2n (9 + 18n ) - n (9 + 9n ) + 729 2 2 2 2即9n 2 = 729 ,解得n = 9 ,所以 S 3n = S 27= 27(9 + 9 ⨯ 27)= 3402 .故选:C 211.C1 5【解析】由a i +m = a i 知,序列 a i 的周期为 m ,由已知,m = 5 ,C (k ) = ∑a i ai +k, k = 1, 2,3, 4i =1对于选项 A ,1 51 1 1 1C (1) = 5 ∑a i a i +1 = 5 (a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = 5 (1 + 0 + 0 + 0 + 0) = ≤i =1 5 5 1 51 1 2C (2) = 5 ∑a i a i +2 = 5 (a 1a 3 + a 2a 4 + a 3a 5 + a 4a 6 + a 5a 7 ) = 5 (0 +1 + 0 +1 + 0) = 5,不满足;对于选项 B ,1 5 C (1) = ∑a i a i +1 = i =1对于选项 D ,(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = ,不满足;1 5C (1) = ∑a i a i +1 = i =1(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6) = ,不满足; 1 1 35 5 (1 + 0 + 0 +1 +1) = 511(1 + 0 + 0 + 0 +1) =25 5 51 1 1 ⎩故选:C12.C⎧a + a q + a q 2 + a q 3 = 15,【解析】设正数的等比数列{a n }的公比为q ,则⎨ ⎩1 1 1 1 , a q 4 = 3a q 2+ 4a解得⎧a 1 = 1, ,∴ a = a q 2= 4 ,故选 C .⎨q = 2 3 1 13.A 【解析】⎧S = 4a + d ⨯ 4 ⨯ 3 = 0⎧a = -3 ⎪ 4 1 由题知, 2,解得⎨ 1,∴ a = 2n - 5 ,故选 A . ⎨ ⎪⎩a 5 = a 1+ 4d = 5 ⎩d = 2 n14.B 【解析】令 f (x ) = x - ln x -1, 则 f ' (x ) = 1- 1,令 f '(x ) = 0, 得 x = 1 ,所以当 x > 1 时, f '(x ) > 0 ,x当0 < x < 1 时, f '(x ) < 0 ,因此 f (x ) ≥ f (1) = 0,∴ x ≥ ln x +1 ,若公比 q > 0 ,则 a 1 + a 2 + a 3 + a 4 > a 1 + a 2 + a 3 > ln(a 1 + a 2 + a 3 ) ,不合题意;若公比q ≤ -1 ,则 a + a + a + a = a (1+ q )(1+ q 2) ≤ 0,12341但ln(a + a + a ) = ln[a (1+ q + q 2)] > ln a > 0 ,12311即a 1 + a 2 + a 3 + a 4 ≤ 0 < ln(a 1 + a 2 + a 3 ) ,不合题意;因此-1 < q < 0, q 2 ∈(0,1) ,∴ a > a q 2 = a , a < a q 2= a< 0 ,选 B.113224【小结】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 x ≥ ln x +1,e x ≥ x +1, e x ≥ x 2 +1(x ≥ 0).15.Dn n -1 +【解析】因为每一个单音与前一个单音频率比为12 2 ,所以 a = 122a (n ≥ 2, n ∈ N ) ,又a 1 = f ,则 a = a q 7 = f (12 2)7 = 12 27 f故选 D.8116.A 【分析】根据等比中项的性质列方程,解方程求得公差 d ,由此求得{a n }的前6 项的和.【解析】设等差数列{a } 的公差为 d ,由 a 、 a 、 a 成等比数列可得 a 2= a a ,n 2 3 6 3 2 6即(1+ 2d )2 = (1+ d )(1+ 5d ) ,整理可得 d 2 + 2d = 0 ,又公差不为 0,则d = -2 ,故{a n } 前6 项的和为 S 6 = 6a 1 +6⨯(6 -1)d = 6⨯1+6⨯(6 -1)⨯(-2) = -24 .22故选:A 17.A 【解析】存在 k ∈ N + ,使得 x 100+k , x 200+k , x 300+k 成等差数列,可得2[a (200 + k )2 + b (200 + k ) + c ] = a (100 + k )2 + b (100 + k ) + c + a (300 + k )2 + b (300 + k ) + c,化简可得 a = 0 ,所以使得 x 100+k , x 200+k , x 300+k 成等差数列的必要条件是 a ≥ 0 . 18.C 【解析】设公差为d , a 4 + a 5 = a 1 + 3d + a 1 + 4d = 2a 1 + 7d = 24 ,S = 6a + 6 ⨯ 5 d = 6a+15d = 48 ,联立⎧ 2a 1 + 7d = 24 , 解得d = 4 ,故选 C. 6 1 21⎨6a +15d = 48 ⎩ 119.C 【解析】由 S 4 + S 6 - 2S 5 = 10a 1 + 21d - 2(5a 1 + 10d ) = d ,可知当 d > 0 时,有 S 4 + S 6 - 2S 5 > 0 ,即 S 4 + S 6 > 2S 5 ,反之,若 S 4 + S 6 > 2S 5 ,则 d > 0 ,所以“d >0”是“S 4 + S 6>2S 5”的充要条件, 选 C .20.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .21.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .22. 3n 2 - 2n【解析】因为数列{2n -1} 是以 1 为首项,以 2 为公差的等差数列, 数列{3n - 2}是以 1 首项,以 3 为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以 1 为首项,以 6 为公差的等差数列, 所以{a }的前 n 项和为 n ⋅1+n (n -1)⋅ 6 = 3n 2 - 2n ,故答案为: 3n 2 - 2n .n223.10【解析】因为 a= n (n +1) a = 1, a= 3, a= 6 . n21 2 3即 S 3 = a 1 + a 2 + a 3 = 1+ 3+ 6 = 10 .故答案为:10 .24. 4【解析】设等差数列{a n } 的公差为 d ,等比数列{b n }的公比为q ,根据题意 q ≠ 1.1 ⎪ n +2 n =等差数列{a }的前 n 项和公式为 P = na +n (n -1) d = d n 2 + ⎛a - d ⎫n , nn12 2 12 ⎪等比数列{b }的前 n 项和公式为Qb (1-q n) ⎝ ⎭= - b 1q n+ b 1,nn 1- q 1- q 1- q依题意 S = P + Q ,即 n 2 - n + 2n -1 = d n 2 + ⎛a - d ⎫n -b 1 q n + b ,n n n 21 2 ⎪ 1 - q 1 - q⎧ d= 12 ⎝ ⎭⎧d = 2 ⎪ d ⎪ ⎪a 1 - = -1 ⎪a 1 = 0通过对比系数可知⎨ 2 ⇒ ⎨q = 2 ,故 d + q = 4 .故答案为: 4⎪q = 2 ⎪⎪ b ⎩⎪b 1 = 1 ⎪ 1 = -1 ⎩1- q25.7【解析】 a + (-1)na = 3n -1,当n 为奇数时, a n +2 = a n + 3n - 1 ;当 n 为偶数时, a n +2 + a n = 3n - 1 .设数列{a n } 的前 n 项和为 S n , S 16 = a 1 + a 2 + a 3 + a 4 + + a 16= a 1 + a 3 + a 5+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .26. 25 【解析】{a n }是等差数列,且 a 1 = -2 , a 2 + a 6 = 2设{a n } 等差数列的公差 d ,根据等差数列通项公式:a n = a 1 + (n -1) d 可得 a 1 + d + a 1 + 5d = 2 ,即: -2 + d + (-2) + 5d = 2 ,整理可得: 6d = 6 解得: d = 1⎪ 1⎪ ⎨ d = 2根据等差数列前 n 项和公式: S n= na 1 + n (n - 1) d , n ∈ N *2可得: S = 10 ( -2 ) + 10 ⨯ (10 - 1) = -20 + 45 = 25 ,∴ S = 25 . 10 21027.16.⎧a 2 a 5 + a 8 = (a 1 + d )(a 1 + 4d ) + (a 1 + 7d ) = 0 【解析】由题意可得: ⎨⎪⎩ S 9 = 9a 1 + 9 ⨯ 8 d = 27 , 2解得: ⎧a 1 = -5 ,则 S ⎩ 8 = 8a 1+ 8⨯ 7d = -40 + 28⨯ 2 = 16 . 228.100【解析】 ⎧a 3 = a 1 + 2d = 5 , 得⎧a 1 = 1, ∴S= 10a+ 10⨯ 9 d = 10⨯1+ 10⨯ 9⨯ 2 = 100. ⎨a = a + 6d = 13 ⎨d = 2 10 1 2 2⎩ 7 1⎩29.4.【解析】因 a 2 = 3a 1 ,所以 a 1 + d = 3a 1 ,即 2a 1 = d ,S 1010a 1 = + 10 ⨯ 9 d2= 100a 1 = 4所以 S 5⨯ 4 25a .5 5a 1 + d1 2530. .8【解析】设等比数列的公比为q ,由已知S = a + a q + a q 2 = 1+ q + q 2 = 3 ,即 q 2 + q + 1 = 0 解得 q = - 1, 3 1 1 144 4 2 1- (- 1 )4所以 S = a 1 (1- q ) =2 = 5. 4 1- q 1- (- 1) 8231.121 .3【解析】设等比数列的公比为q ,由已知 a = 1, a 2= a 1 3 2 1 5 ,所以 = q , 又q ≠ 0 , 134 651(1- 35 ) ( q )33所以 q = 3, 所以 S =a 1 (1- q ) = 3 = 121 . 5 1- q 1- 3 332.14【解析】∵等差数列{a n }的前 n 项和为 S n ,a 3=0,a 6+a 7=14,⎧ a 1 + 2d = 0 ∴ ,解得 a =﹣4,d=2,∴S =7a + 7 ⨯ 6d =﹣28+42=14. ⎨a + 5d + a + 6d = 14 1 7 1⎩ 1 1故答案为 14.33. -63【解析】根据 S n = 2a n +1,可得 S n +1 = 2a n +1 +1 , 两式相减得a n +1 = 2a n +1 - 2a n ,即 a n +1 = 2a n , 当 n = 1 时, S 1 = a 1 = 2a 1 +1,解得 a 1 = -1, 所以数列{a n }是以-1 为首项,以 2 为公比的等比数列,所以 S 6 = -(1- 26 )1- 2= -63 ,故答案是-63 .34.2【解析】由 a = n 2 ,若对于任意 n ∈ N +,{b } 的第 a 项等于{a }的第b 项,n则b = a = (b )2 ,则b= 1 = (b )2 , b n= (b )2, b n= (b )2 , b n n= (b )2a nb nn114293164lg(b b b b ) lg(b b b b ) 2 2 lg(b b b b )所以b b b b = (b b b b )2 ,所以 1 4 9 16 = 1 2 3 4= 1 2 3 4 = 2 . 1 4 9 16 1 2 3 4 lg(b b b b ) lg(b b b b ) lg(b b b b )1 2 3 41 2 3 41 2 3 435.2nn +1【解析】2S1S ⎧a1 + 2d = 3⎧a = 1设等差数列的首项为a ,公差为d ,由题意有⎪4 ⨯3,解得⎨ 1 ,1 ⎨4a + d = 10 ⎩d = 1⎩⎪12数列的前 n 项和Sn =na1+n (n -1)2d =n ⨯1+n (n -1)2⨯1 =n (n +1)2裂项可得=2= 2(1-1) ,S k k (k +1)k k +1n 1= 2[(1-1) + (1-1) ++ (1-1)] = 2(1-1) =2n所以∑k =1 k2 2 3n n +1n +1n +1.36.1【解析】设等差数列的公差和等比数列的公比分别为d 和q,则-1+ 3d =-q3 = 8 ,求得q =-2 ,d = 3,那么a2b2=-1+ 3= 1 ,故答案为1.237.32【解析】⎧=a1⎪ 3 1-q(1-q3 ) =741-q6由题意可得 q ≠ 1,所以⎨⎪S⎩=a11-q(1-q 6 ) =634两式相除得1-q3= 9, q3 = 8, q = 2, 代入得a =1, a =1⨯ 27 = 25 = 32 ,填32.1 4 8(4)38.5 72015 (3 +n)2n-4【解析】(1)由对折2 次共可以得到5dm⨯12dm,10dm⨯6dm ,20dm⨯3dm三种规格的图形,所以对着三次的结果有:5⨯12,5⨯6,10⨯3;20⨯3,共4种不同规格(单位dm2);2 2,62 ( )故对折 4 次可得到如下规格: 5⨯12 , 5 ⨯ 6 , 5⨯ 3 ,10 ⨯ 3 , 20 ⨯ 3 ,共 5 种不同规格; 4 2 2 4(2) 由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格1 如何,其面积成公比为 2的等比数列,首项为 120 (dm 2),第 n 次对折后的图形面积为⎛ 1 ⎫n -1120 ⨯ ⎪ ⎝ ⎭,对于第 n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想 S n = 120(n +1) ,2n -1设 S =∑ S = 120⨯ 2 + 120⨯ 3 + 120⨯ 4 +L + 120(n +1) ,k =12021 222n -1则 1S =120 ⨯ 2 + 120 ⨯ 3++ 120n + 120(n +1) ,2 2122两式作差得:2n -1 2n 1 S = 240 +120⎛ 1 + 1++ 1 ⎫ - 120(n +1) 2 2 222n -1 ⎪ 2n⎝ ⎭60 ⎛1 - 1 ⎫ 2n -1 ⎪ 120(n +1) 120 120(n +1) 120(n + 3) = 240 + ⎝ ⎭ -= 360 - - = 360 - , 1- 1 2n22n -1 2n 2n240(n + 3) 15(n + 3)因此, S = 720 - = 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -439.0. -10.【解析】等差数列{a n }中, S 5 = 5a 3 = -10 ,得 a 3 = -2, a 2 = -3 ,公差 d = a 3 - a 2 = 1, a 5 = a 3 + 2d = 0 ,由等差数列{a n } 的性质得 n ≤ 5 时, a n ≤ 0 , n ≥ 6 时, a n 大于0,所以 S n 的最小值为 S 4 或 S 5 , 即为-10 .k n。

湖北省各地2017届高三最新考试数学文试题分类汇编:数列含答案

湖北省各地2017届高三最新考试数学文试题分类汇编:数列含答案

湖北省各地2017届高三最新考试数学文试题分类汇编数列 2017.02一、选择、填空题1、(黄冈市2017届高三上学期期末)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数"问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”。

“中国剩余定理"讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}na ,则此数列的项数为 。

2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)在正数数列{}na 中,12a =,且点221(,)n n a a -在直线90x y -=上, 则{}n a 的前n 项和nS 等于A .31n- B .()132n-- C .132n+D .232n n+ 3、(荆门市2017届高三元月调考)如果[]{}x x x =+,[]x Z ∈,0{}1x <≤,就称[]x 表示x 的整数部分,}{x 表示x 的小数部分.已知数列{}na 满足51=a ,}{1][1n n n a a a +=+,则2017a = ▲ 。

4、(荆州市五县市区2017届高三上学期期末)如果等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于( )A .21B .30C .35D .405、(天门、仙桃、潜江市2017届高三上学期期末联合考试)正项等比数列{}na 的前n 项和为nS ,若1371,4a S==,则6a = ▲ .6、(武汉市武昌区2017届高三1月调研)设等差数列{}na 的前n 项和为nS ,已知19a=,2a 为整数,且5n S S ≤,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前9项和为 .7、(武汉市武昌区2017届高三1月调研)设公比为()0q q >的等比数列{}na 的前项和为nS ,若2232Sa =+,4432S a =+,则1a =()A .—2B .—1 C.12D .238、(襄阳市2017届高三1月调研)在数列{}na 中,若存在非零实数T,使得()n Tn aa N n *+=∈成立,则称数列{}n a 是以T 为周期的周期数列.若数列{}nb 满足11n n n bb b +-=-,且()121,0b ba a ==≠,则当数列{}nb 的周期最小时,其前2017项的和为A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1
1 4
,
a3a5
4a4
1
,则
a2


A.2
B.1 C. 1
D. 1
2
8
13、(2016 年全国 I 理)已知等差数列{an} 前 9 项的和为 27, a10 =8 ,则 a100 =
(A)100
(B)99
(C)98
(D)97
14.(2014 辽宁)设等差数列{an}的公差为 d,若数列{2a1an } 为递减数列,则( )
A.1
B.2
C.3
D.4
3.(2014 福建理)等差数列{an}的前 n 项和 Sn ,若 a1 2, S3 12 ,则 a6 ( )
A.8
B.10
C .12
D.14
4.(2017·全国Ⅰ理)记 Sn 为等差数列{an}的前 n 项和.若 a4+a5=24,S6=48,则{an}的公差为( )
25.(2012 浙江理) 设公比为 q(q>0)的等比数列{a n}的前 n 项和为{S n}.若 S2 3a2 2 ,
S4 3a4 2 ,则 q=__.
26.(2015 年广东理科)在等差数列an 中,若 a3 a4 a5 a6 a7 25 ,则 a2 a8 =
27.(2015
A.1 B.2 C.4 D.8
5.(2012 辽宁文)在等差数列{an}中,已知 a4+a8=16,则 a2+a10=
(A) 12
(B) 16 (C) 20
(D)24
6.(2014 新标 2 文) 等差数列{an}的公差是 2,若 a2 , a4 , a8 成等比数列,则{an} 的前 n 项和 Sn
()
A. n(n 1)
B. n(n 1)
C. n(n 1) 2
D. n(n 1) 2
7.(2012 安徽文)公比为 2 的等比数列{ an } 的各项都是正数,且 a3 a11 =16,则 a5 ( )
( A) 1
(B) 2
(பைடு நூலகம்)
(D)
8.(2014 大纲文)设等比数列{an}的前 n 项和为 Sn,若 S2=3,S4=15,则 S6=( )
(B) Sn 3an 2
(C) Sn 4 3an (D) Sn 3 2an
11.(2015 年新课标 2 文)设 Sn 是等差数列{an}的前 n 项和,若 a1 a3 a5 3 ,则 S5 ( )
A. 5 B. 7 C. 9 D.11
12.(2015
年新课标
2
文)已知等比数列 {an } 满足
数是上一层灯数的 2 倍,则塔的顶层共有灯( )
A.1 盏
B.3 盏
C.5 盏
D.9 盏
18、(2017·全国Ⅲ理,9)等差数列{an}的首项为 1,公差不为 0.若 a2,a3,a6 成等比数列,则{an}的前 6
项和为( )
A.-24
B.-3
C.3
D.8
19.(2012 广东理)已知递增的等差数列an 满足 a1 1 , a3 a22 4 ,则 an ______________.
Sn ,
a5
5, S5
15 ,则数列
1
an
an
1
的前
100
项和为
A. 100 101
B. 99 101
C. 99 100
D. 101 100
17、(2017·全国Ⅱ理,3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加
增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯
A. d 0 B. d 0 C. a1d 0 D. a1d 0
15.(2015 年新课标 2 理)等比数列{an}满足 a1=3, a1 a3 a5 =21,则 a3 a5 a7 ( )
(A)21
(B)42
(C)63 (D)84
16.(2012
大纲理)已知等差数列an 的前
n
项和为
年安徽文科)已知数列{an}中, a1
1, an
an1
1 2

n
2
),则数列 {an } 的前
9

和等于

28.(2015
年江苏)数列{an}满足 a1
1,且 an1
an
n
1( n
N * ),则数列{ 1 }的前 an
10

和为
29、(2016 年江苏省)已知{an}是等差数列,Sn 是其前 n 项和.若 a1+a22= - 3,S5=10,则 a9 的
值是
.
30、(2017·全国Ⅲ理)设等比数列{an}满足 a1+a2=-1,a1-a3=-3,则 a4=________.
31、(2017·北京理)若等差数列{an}和等比数列{bn}满足 a1=b1=-1,a4=b4=8,则ab22=________.
32.(2014 新标 1 文) 已知an 是递增的等差数列, a2 , a4 是方程 x2 5x 6 0 的根。
22.(2017·江苏)等比数列{an}的各项均为实数,其前 n 项和为 Sn,已知 S3=74,S6=643,则 a8=________.
23.(2014 江苏)在各项均为正数的等比数列 {an} 中,若 a2 1 , a8 a6 2a4 ,则 a6 的值


24.(2012 新标文) 等比数列{ an }的前 n 项和为 Sn,若 S3+3S2=0,则公比 q =_______
A. 31
B. 32
C. 63
9.(2013 江西理)等比数列 x,3x+3,6x+6,…的第四项等于( )
D. 64
A.-24 B.0
C.12
D.24
10. (2013 新标 1 文)
设首项为1,公比为 2 3
的等比数列{an}的前 n 项和为 Sn ,则(

第 1 页(共 8 页)
(A) Sn 2an 1
20.(2013 上海文) 在等差数列an 中,若 a1 a2 a3 a4 30 ,则 a2 a3

21.(2014 天津) 设 {an}是首项为 a1 ,公差为-1 的等差数列,Sn 为其前 n 项和.若 S1, S2, S4 成等比
数列,则 a1 的值为__________.
第 2 页(共 8 页)
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h

2018 年 月 日 : — :
数学 次课
历年高考试题集锦——数列
1.(2013 安徽文)设 Sn 为等差数列an 的前 n 项和, S8 4a3, a7 2 ,则 a9 =( )
(A) 6
(B) 4
(C) 2
(D)2
2.(2012 福建理)等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为( )
相关文档
最新文档