高三数学教案 充分条件与必要条件
数学教案-充分条件与必要条件
数学教案-充分条件与必要条件一、教学目标1.理解充分条件与必要条件的概念,能够判断两个条件之间的逻辑关系。
2.掌握充分条件与必要条件的判断方法,能够运用这些方法解决实际问题。
3.培养学生的逻辑思维能力和分析问题的能力。
二、教学内容1.充分条件与必要条件的概念2.充分条件与必要条件的判断方法3.充分条件与必要条件在实际问题中的应用三、教学过程1.导入向学生简要介绍充分条件与必要条件的概念,激发学生的学习兴趣。
2.讲解概念通过实例解释充分条件与必要条件的含义,让学生理解两者之间的区别与联系。
例如:假设A表示“今天下雨”,B表示“地面湿”。
充分条件:如果A成立,那么B一定成立,即A是B的充分条件。
必要条件:如果B成立,那么A不一定成立,但A是B的必要条件。
3.判断方法介绍判断充分条件与必要条件的方法,让学生掌握判断技巧。
方法一:通过定义判断。
根据充分条件与必要条件的定义,判断两个条件之间的关系。
方法二:通过集合关系判断。
利用集合的包含关系,判断两个条件之间的充分性与必要性。
4.实例讲解选取一些典型实例,引导学生运用所学知识进行判断。
实例1:如果小明成绩优秀,那么他一定会考上重点大学。
判断“小明成绩优秀”与“考上重点大学”之间的充分条件与必要条件。
实例2:如果地球是圆的,那么地球上的物体总是往地上掉。
判断“地球是圆的”与“物体总是往地上掉”之间的充分条件与必要条件。
5.练习给学生发放练习题,要求学生在规定时间内完成,巩固所学知识。
练习题包括填空题、选择题、判断题和应用题。
7.作业布置布置课后作业,要求学生独立完成,培养学生的自主学习能力。
四、教学反思1.教学效果评估本节课的教学效果,了解学生对充分条件与必要条件的掌握程度。
2.教学改进根据学生的反馈,调整教学方法,提高教学效果。
3.学生反馈收集学生对本节课的意见和建议,了解学生的学习需求,为下一节课的教学做好准备。
通过本节课的教学,希望学生能够掌握充分条件与必要条件的概念和判断方法,提高逻辑思维能力,为解决实际问题奠定基础。
充分条件与必要条件教案
充分条件与必要条件教案第一篇:充分条件与必要条件教案充分条件与必要条件教学目标:(1)正确理解充分条件、必要条件和充要条件的概念;(2)能正确判断是充分条件、必要条件还是充要条件;教学重点:理解充分条件和必要条件的概念.教学难点:理解充分条件和必要条件的概念教学类型:新授课教学用具:粉笔黑板教学过程: 1.复习引入我们已经学过怎么判断一个命题真假,那我们下面就判断一下下列命题的真假(板书例子.)练习:判断下列命题是真命题还是假命题(1)若a是无理数,则a+3是无理数;(2)全等三角形的面积相等;(3)若四边形对角互补,则四边形内接于圆;(4)若x>2,则x>4;(5)若x+y≠-2则x、y不都为-1;(6)若ac=bc则a=b;(学生口答,教师板书.)(1)、(2)、(3)是真命题,(4)、(5)、(6)是假命题.(置疑):对于命题“若,则”,有时是真命题,有时是假命题.如何判断其真假的?答:(是不是)看能不能推出,如果能推出,则原命题是真命题,否则就是假命题.对于命题“若条件,则结论”,如果由条件经过推理能推出结论,也就是说,如果条件成立,那么结论一定成立.换句话说,只要有条件就能充分地保证结论的成立,这时我们称条件是使结论成立的充分条件,记作 =>2.讲授新课下面我们给出充分条件的定义(板书充分条件的定义.)一般地有命题p与q,如果已知p,则能推出q那么我们就说p 是q 成立的充分条件.提问:请用充分条件来叙述上述(1)、(2)、(3)的条件与结论之间的关系.(学生口答)(1)“a是无理数”是“a+3是无理数”成立的充分条件;(2)“三角形全等”是“三角形面积相等”成立的充分条件;(3)“四边形对角互补”是“四边形内接于圆”成立的充分条件.从另一个角度看,如果原命题成立,那么其逆否命题也成立,我们就那第一个命题来说即如果“a+3不是无理数”,那么“a不是无理数”,亦即“a+3是无理数”是“a是无理数” 成立的必须要有的条件,也就是必要条件.记作<= 下面我们给出必要条件的定义(板书必要条件的定义.)一般地有命题p与q,如果已知p,则能推出q那么我们就说q 是p 成立的必要条件.提出问题:用“充分条件”和“必要条件”来叙述上述第(1)(2)(3)个命题.(学生口答).(1)因为“a是无理数”,“a+3是无理数”,所以“a是无理数”是“a+3是无理数”的充分条件,“a+3是无理数”是“a是无理数”的必要条件;(2)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;(3)因为“四边形对角互补”,“四边形内接于圆”;,所以“四边形对角互补” 是“四边形内接于圆” 的充分条件;四边形内接于圆是“四边形对角互补” 的必要条件;总结:如果p 是q 的充分条件,又p是q 的必要条件,则称p 是q 的充分必要条件,简称充要条件,记作.p q 下面我们给出充分必要条件的定义(板书充要条件的定义.)一般地有命题p、q,如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件。
高中数学重点《充分条件与必要条件》教案
高中数学重点《充分条件与必要条件》教案学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。
对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。
方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
下面就和一起看看有关高中数学重点《充分条件与必要条件》教案。
高中数学选修1-1《充分条件与必要条件》教案1教学准备教学目标运用充分条件、必要条件和充要条件教学重难点运用充分条件、必要条件和充要条件教学过程一、基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。
3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A 是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断1若成立则A是B成立的充分条件,B是A成立的必要条件。
2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。
3.若成立则A、B互为充要条件。
(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
二、范例选讲例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?(1)在△ABC中,p:A>B q:BC>AC;(2)对于实数x、y,p:x y≠8 q:x≠2或y≠6;(3)在△ABC中,p:SinA>SinB q:tanA>tanB;(4)已知x、y∈R,p:(x-1)2 (y-2)2=0 q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.答案:(1)充分条件(2)充要、必要不充分(3)A=> B <=> C=> D故填充分。
充分条件与必要条件教案
充分条件与必要条件教案一、教学目标1. 让学生理解充分条件和必要条件的概念。
2. 让学生学会判断充分条件和必要条件。
3. 培养学生运用充分条件和必要条件解决实际问题的能力。
二、教学内容1. 充分条件和必要条件的定义。
2. 充分条件和必要条件的判断方法。
3. 充分条件和必要条件在实际问题中的应用。
三、教学重点与难点1. 教学重点:充分条件和必要条件的定义及判断方法。
2. 教学难点:充分条件和必要条件在实际问题中的应用。
四、教学方法1. 采用实例讲解法,让学生通过具体例子理解充分条件和必要条件的概念。
2. 采用小组讨论法,让学生学会判断充分条件和必要条件。
3. 采用练习法,让学生巩固所学知识,提高解决问题的能力。
五、教学过程1. 引入新课:通过一个故事引入充分条件和必要条件的概念。
2. 讲解充分条件和必要条件的定义:讲解什么是充分条件,什么是必要条件。
3. 讲解充分条件和必要条件的判断方法:如何判断一个条件是充分条件,如何判断一个条件是必要条件。
4. 实例分析:分析一些具体的例子,让学生理解充分条件和必要条件的应用。
5. 小组讨论:让学生分组讨论,判断一些例子中的条件是充分条件还是必要条件。
6. 练习巩固:布置一些练习题,让学生巩固所学知识。
7. 总结:对本节课的内容进行总结,强调充分条件和必要条件的重要性。
8. 作业布置:布置一些有关充分条件和必要条件的练习题,让学生课后巩固。
六、教学评估1. 课堂提问:通过提问了解学生对充分条件和必要条件的理解程度。
2. 练习题:布置课后练习题,评估学生对知识的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。
七、教学反思1. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
2. 反思教学内容:根据学生的掌握情况,调整教学内容,确保学生能够理解和运用充分条件和必要条件。
3. 反思教学过程:总结本节课的优点和不足,为下一节课的教学做好准备。
充分条件和必要条件教案(教师)
一、教案简介本教案旨在帮助学生理解充分条件和必要条件的概念,掌握其判断方法,并能够运用到实际问题中。
通过本节课的学习,学生应能理解充分条件和必要条件的定义,判断一个条件是充分还是必要,以及两者之间的关系。
二、教学目标1. 知识与技能:理解充分条件和必要条件的定义;判断一个条件是充分还是必要;掌握充分条件和必要条件的关系。
2. 过程与方法:通过实例分析,让学生体验充分条件和必要条件的判断过程;运用逻辑推理,引导学生发现充分条件和必要条件之间的关系。
3. 情感态度价值观:培养学生严谨的逻辑思维能力;让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
三、教学重点与难点重点:充分条件和必要条件的定义及其判断方法。
难点:充分条件和必要条件之间的关系。
四、教学准备1. 教学材料:教材、PPT、实例分析题。
2. 教学工具:投影仪、计算机。
五、教学过程1. 导入新课:通过一个生活实例,如“天气预报中说‘明天下雨’,请问‘带伞’是‘明天下雨’的充分条件还是必要条件?”引导学生思考充分条件和必要条件的概念。
2. 讲解充分条件和必要条件的定义:根据教材,给出充分条件和必要条件的定义,并通过PPT展示,让学生清晰地理解这两个概念。
3. 判断练习:给出一些判断题,让学生判断所给条件是充分还是必要,如“大学生必须年满18岁,年满18岁是成为大学生的必要条件吗?”让学生在实践中掌握判断方法。
4. 实例分析:分析一些实际问题,如“一个房子的条件是有一个卧室,‘有卧室’是‘这是一个房子’的充分条件还是必要条件?”让学生体验充分条件和必要条件的判断过程。
5. 讲解充分条件和必要条件的关系:通过PPT展示,引导学生发现充分条件和必要条件之间的关系,如“充分条件不一定必要,必要条件不一定充分”。
6. 课堂小结:对本节课的内容进行总结,强调充分条件和必要条件的判断方法及其关系。
7. 布置作业:设计一些练习题,让学生巩固所学知识,如“判断下列条件中,哪些是充分条件,哪些是必要条件?”六、教学拓展1. 通过举例让学生理解充分条件和必要条件在现实生活中的应用,如合同签订、法规制定等。
高中数学《充分条件与必要条件》说课稿教案模板
高中数学《充分条件与必要条件》说课稿教案模板一、课程背景在高中数学中,充分条件与必要条件是一个重要的概念。
通过学习这个概念,可以帮助学生理解命题的真假关系,并运用到解题中。
本节课将通过引入实际例子和思考问题,帮助学生理解充分条件与必要条件的概念以及它们之间的关系。
二、教学目标1.了解充分条件与必要条件的定义;2.掌握判断充分条件和必要条件的方法;3.能够应用充分条件与必要条件解决实际问题。
三、教学重点1.掌握充分条件和必要条件的概念;2.能够判断给定命题的充分条件和必要条件。
四、教学内容1. 充分条件与必要条件的定义•定义1:命题P是命题Q的必要条件,是指当Q成立时,P一定成立。
•定义2:命题P是命题Q的充分条件,是指当P成立时,Q一定成立。
2. 判断充分条件和必要条件的方法•当命题间存在蕴含关系时,可以通过推理判断其中的充分条件和必要条件。
•充分条件可以通过反证法来判断:假设充分条件不成立,推导出命题不成立,即可得出充分条件的正确性。
•必要条件可以通过反证法来判断:假设必要条件不成立,推导出命题不成立,即可得出必要条件的正确性。
3. 应用充分条件与必要条件解决实际问题通过实际例子,帮助学生理解如何应用充分条件和必要条件解决实际问题。
例如,假设有一个命题:“如果一个数的平方是16的倍数,那么这个数一定是4的倍数。
”学生可以通过判断这个命题的充分条件和必要条件来解决问题。
五、教学过程1. 导入新知识通过真实的例子引入充分条件与必要条件的概念,引发学生对该概念的思考。
例如,通过举例说明“如果一个人是男性,那么他一定是人类。
”这里,男性是人类的充分条件,人类是男性的必要条件。
2. 学习充分条件和必要条件的定义让学生阅读并理解充分条件和必要条件的定义,帮助他们建立起相关概念的概念框架。
3. 判断充分条件和必要条件的方法通过讲解反证法和推理法来判断充分条件和必要条件的正确性。
让学生通过具体例子,自己进行判断和推理。
充分条件和必要条件教案(精编新修订)
充分条件和必要条件【教学目标】知识与技能:通过这节课的教学,要求学生正确理解充分条件、必要条件和充要条件三个概念,并能在论证中正确地运用.过程与方法:充要条件是重要的数学概念.它主要讨论命题的条件和结论的关系.通过对充分条件、必要条件和充要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.情感态度与价值观:通过问题情境的引入渗透爱国主义教育。
通过主动探究、合作学习、相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神。
【教学重点】充分条件、必要条件和充要条件的概念.【教学难点】充分条件、必要条件和充要条件三个概念在论证中的正确运用.【教学方法】自主、合作、探究【教学过程】创设情境激发求知(多媒体展示)情境一当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”. 你想一想这个时候你的妈妈还会补充说你是她的孩子吗?情境二播放音乐《没有共产党就没有新中国》,让学生说出其歌名.学生活动 探究新知判断下列命题是真命题还是假命题(1)若,则;(2)若,则;(3)两个全等三角形的面积相等;(4)对角线互相垂直的四边形是菱形.(上述三个问题的设计意图为:①复习巩固上节课知识;②顺其自然,引入本节课的内容。
)生:(1)、(3)是真命题,(2)、(4)是假命题.(对于命题“若 则 ”,有时是真命题,有时是假命题.如何判断其真假呢?看能不能推出 ,如果能推出 ,则原命题是真命题,否则就是假命题. 对于命题“若 则 ”,如果由经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件就能充分地保证结论 的成立,这时我们称条件是成立的充分条件,记作.)模型构建 数学理论1.充分条件与必要条件定义(板书)一般地,如果已知,那么就说,p 是q 的充分条件(sufficientq p condition),q 是p 的必要条件(necessary condition).师:请用充分条件与必要来叙述上述(1)的条件与结论之间的关系.(学生口答)生:“ ”是“ ”成立的充分不必要条件,“”是“”成立的必要不充分条件.运用理论 解决问题例1 .指出下列各组命题中,p 是q 的什么条件,q 是p 的什么条件:(1) p :x=y ;q :x 2=y 2.(2)p :三角形ABC 的三条边相等;q :三角形ABC 的三个角相等.解: (1) x=y 是x 2=y 2的充分不必要条件, x 2=y 2是x=y 的必要不充分条件.(2) p 是q 的充分条件且是必要条件,q 是p 的充分条件且是必要条件.(设计意图:①对所学理论直接应用;②引入充要条件的概念.) 模型构建 数学理论2.充要条件定义(板书)一般地,如果是 的充分条件,又是 的必要条件,则称是 的充分必要条件,简称充要条件( sufficient and necessary condition)记作.师:请大家总结出判断充分、必要条件的一个算法.模型构建 数学理论3.用算法表示判断充分、必要条件的基本步骤(板书)Step1:认清条件和结论;Step2:考察和的真假;q p ⇒p q ⇒Step3:下结论.运用理论 解决问题例2.用“必要不充分”,“充分不必要”,“充要”,“既不充分也不必要”填写下表B是是有理数是实数、是奇数是偶数是4的倍数是6的倍数 (学生活动,教师引导学生作出下面回答.) ①因为有理数一定是实数,但实数不一定是有理数,所以是的充分非必要条件,是的必要非充分条件; ②一定能推出,而不一定推出,所以是的充分非必要条件,是的必要非充分条件; ③、是奇数,那么一定是偶数;是偶数,、不一定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件; ④表示或,所以是成立的必要非充分条件; ⑤由交集的定义可知且是成立的充要条件; ⑥由知且,所以是的充分非必要条件; ⑦由知或,所以是,成立的必要非充分条件;⑧易知“是4的倍数”是“是6的倍数”的既非充分又非必要条件;(设计意图:通过对上述几个简单问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.) 例3.请用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填空:(1) “|x-2|<3”是“0<x<5”的______条件;(2)“x2≤0”是“x≥0”的条件;(3)“m是4的倍数”是“m是6倍数” 的条件.分析:(1)应首先对|x-2|<3进行化简,然后再进行判断,还可以从集合的角度加以理解;(必要不充分条件)(2)可以直接判断,更好的方法是考察它的逆否命题;(充分不必要条件)(3)很容易直接判断.(既不充分也不必要条件)(设计意图:①对所学理论进一步应用;②通过解决本题让学生总结出判断充分、必要条件的一般方法和策略.)模型构建数学理论4. 判别充分、必要条件方法和策略(板书)(1)先简化命题;(2)集合法;(3)可将命题转化为等价的逆否命题后再判断;(4) 否定一个命题只要举出一个反例即可.运用理论 巩固练习基础训练(感受、理解)课本(苏教版选修1-1)第8页练习l 、2.(基础训练是所学知识的直接、简单应用,意在使学生理解充分条件、必要条件和充要条件的概念,由学生口答完成.)能力训练(思考、运用)1.用今天所学的知识解决刚开始提出的三个情境问题;解析:①“这是我妈妈”和“我是妈妈的孩子”互为充要条件,所以不需要补充说了;②共产党是新中国成立必须具备的条件;2.直线和平面,的一个充分条件是( ),a b ,αβ//a b A. B.//,//a b αα//,//,//a b αβαβC.D. ,,//a b αβαβ⊥⊥,,a b αβαβ⊥⊥⊥3.在中,,,,ABC ∆:p A B >:sin sin q A B >B A m cos cos :<BA n tan tan :>问:p 是q 的什么条件?p 是m 的什么条件?p 是n 的什么条件?分析:第2题是立体几何中常见的题目的变形问法,是对立体几何中有关定理和性质的变相考查,稍加分析可知,本题应选C.第3题是对正弦定理、三角函数的单调性的考查.当然本题的第3个问也可以用举反例的方法加以判别.这两道题与前面所学的知识有效地进行了联系和沟通.)(师生互动,共同完成)解:1、C ;2、p 是q 的充要条件,p 是m 的充要条件,p 是n 的既不充分也不必要条件.(能力训练是知识的变形应用和逆向思维训练,深化概念,发展思维,使学生能比较深刻地理解充分条件、必要条件和充要条件的本质.)创新提高(探究、拓展)1.是否存在实数,使得是的充分条件?m 20x m +<2230x x -->2.是否存在实数,使得是的必要条件?m 20x m +<2230x x -->(1)是否存在实数,使得是的充分条件?m 20x m +<2230x x -->(2)是否存在实数,使得是的必要条件?m 20x m +<2230x x -->解:欲使得是的充分条件,则只要20x m +<2230x x -->或,则只要即,故存{|}{|12m x x x x <-⊆<-3}x >12m-≤-2m ≥在实数时,使是的充分条件.2m ≥20x m +<2230x x -->(2)欲使是的必要条件,则只要20x m +<2230x x -->或,则这是不可能的,故不存在实数{|}{|12mx x x x <-⊇<-3}x >m时,使是的必要条件.20x m +<2230x x -->(创新提高题有一定的难度,供部分有余力的学生做,作为选做题)提炼小结 反思提高(教师启发学生完成,必要时给予补充)(1)充分条件、必要条件、充要条件的概念.(2)判断充分、必要条件的一个算法: ①认清条件和结论; ②考察和的真假;q p ⇒p q ⇒③下结论.(3)判别方法和策略: ① 先简化命题; ② 集合法;③ 将命题转化为等价的逆否命题后再判断;④否定一个命题只要举出一个反例即可.布置作业合情推理【教学目标】掌握归纳推理的技巧,并能运用解决实际问题。
充分条件与必要条件教案设计
充分条件与必要条件教案设计一、教学内容本节课的教学内容选自人教版高中数学必修1第四章“充分条件与必要条件”。
具体包括:1. 充分条件和必要条件的定义;2. 充分条件和必要条件与充分不必要条件、必要不充分条件的区分;3. 运用充分条件和必要条件解决实际问题。
二、教学目标1. 理解充分条件和必要条件的定义,掌握其判断方法;2. 能够运用充分条件和必要条件解决实际问题;3. 培养学生的逻辑思维能力和数学应用能力。
三、教学难点与重点1. 教学难点:充分条件和必要条件的判断方法,以及如何运用到实际问题中;2. 教学重点:充分条件和必要条件的定义,以及如何运用。
四、教具与学具准备1. 教具:黑板、粉笔、PPT;2. 学具:笔记本、笔。
五、教学过程1. 情景引入:通过一个实际问题,引导学生思考充分条件和必要条件的关系;2. 讲解充分条件和必要条件的定义,以及判断方法;3. 举例说明充分条件和必要条件在实际问题中的应用;4. 随堂练习:让学生运用充分条件和必要条件解决实际问题;六、板书设计1. 充分条件和必要条件的定义;2. 充分条件和必要条件的判断方法;3. 充分条件和必要条件在实际问题中的应用。
七、作业设计1. 请用充分条件和必要条件描述下列问题:(1)一个三角形的两边分别是3cm和4cm,第三边的长度是多少?(2)一辆汽车要经过两个城市A和B,从A城市出发,到达B城市,沿途可以选择经过的城市有C、D、E,问这辆汽车可能经过哪些城市?2. 答案:(1)第三边的长度是5cm;(2)这辆汽车可能经过C、D、E三个城市。
八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生理解充分条件和必要条件的概念,并通过举例让学生掌握判断方法,课堂效果良好;2. 拓展延伸:让学生思考充分条件和必要条件在生活中的应用,例如:判断一个人是否成年,判断一个学生是否及格等。
重点和难点解析一、教学难点与重点在教学过程中,学生对于充分条件和必要条件的判断方法以及如何运用到实际问题中往往存在困惑。
高中数学《命题及其关系充分条件与必要条件》教案苏教版选修
一、教材分析本节课选自苏教版高中数学选修2-3《命题及其关系-充分条件与必要条件》。
这部分内容是学生在学习了简单逻辑用语和复合命题之后,对命题及其关系的进一步拓展。
充分条件和必要条件是描述命题之间关系的重要概念,对于学生理解命题的内在联系,提高逻辑思维能力具有重要意义。
二、教学目标1. 理解充分条件和必要条件的概念,掌握判断充分条件和必要条件的方法。
2. 能够运用充分条件和必要条件分析实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和口头表达能力。
三、教学重点与难点1. 教学重点:充分条件和必要条件的概念及其判断方法。
2. 教学难点:充分条件和必要条件的区分和应用。
四、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生通过自主学习、合作交流,掌握充分条件和必要条件的概念及判断方法。
五、教学过程1. 导入新课:通过一个生活实例,引导学生思考充分条件和必要条件的关系。
2. 自主学习:学生自主阅读教材,理解充分条件和必要条件的概念。
3. 案例分析:分析具体案例,让学生判断其中的充分条件和必要条件。
4. 小组讨论:学生分组讨论,交流判断充分条件和必要条件的心得。
5. 总结提升:教师引导学生总结充分条件和必要条件的判断方法。
6. 课后作业:布置相关练习题,巩固所学知识。
教案连载,请期待后续章节。
六、教学反思在课后,教师应认真反思本节课的教学效果,包括学生的学习兴趣、参与度、理解程度等,以便对教学方法和策略进行调整,提高教学质量。
七、课后作业1. 请用充分条件和必要条件判断下列命题:(1)如果一个人是学生,他一定有身份证。
(2)一个三角形是等边三角形当且仅当它的三条边相等。
2. 结合生活中的实例,运用充分条件和必要条件分析问题。
八、课后辅导针对学生在课后作业中出现的问题,教师应及时给予辅导,帮助学生巩固知识点,提高解题能力。
九、拓展与延伸为了激发学生的学习兴趣,提高学生的综合素质,可以布置一些拓展与延伸的课题,如:1. 研究充分条件和必要条件在实际问题中的应用,举例说明。
高中数学重点《充分条件与必要条件》教案
必要条件》教案•课程介绍与目标•充分条件与必要条件概念解析•逻辑关系判断方法论述•典型例题解析与讨论目•学生自主练习与互动环节•课堂小结与作业布置录01课程介绍与目标使学生理解充分条件、必要条件的定义,掌握判断充分条件、必要条件的方法。
知识与技能过程与方法情感态度与价值观通过实例分析、讨论探究等方式,培养学生的逻辑思维能力和分析问题的能力。
引导学生认识数学在解决实际问题中的重要作用,培养学生的数学应用意识。
030201充分条件、必要条件的定义及判断方法充分条件、必要条件的性质及关系充分条件、必要条件在实际问题中的应用教学方法与手段教学方法采用讲解、讨论、探究等教学方法,引导学生积极参与课堂活动,激发学生的学习兴趣和主动性。
教学手段利用多媒体课件、实物展示等教学手段,帮助学生更好地理解充分条件、必要条件的概念和性质。
同时,结合实际问题进行分析和讨论,提高学生的数学应用能力和解决问题的能力。
02充分条件与必要条件概念解析定义如果命题A的成立导致命题B的成立,那么称A是B的充分条件。
示例若一个数是偶数(命题A),则这个数能被2整除(命题B)。
在这个例子中,“一个数是偶数”是“这个数能被2整除”的充分条件。
定义如果命题B的成立必须依赖于命题A的成立,那么称A是B的必要条件。
示例若一个三角形是等边三角形(命题B),则这个三角形的三个内角都是60度(命题A)。
在这个例子中,“这个三角形的三个内角都是60度”是“这个三角形是等边三角形”的必要条件。
充分必要条件和充分非必要条件区分充分必要条件如果命题A既是命题B的充分条件,又是命题B的必要条件,那么称A是B的充分必要条件。
这意味着A和B是等价的,即A⇔B。
充分非必要条件如果命题A是命题B的充分条件,但不是命题B的必要条件,那么称A是B的充分非必要条件。
这意味着A能推出B,但B不能推出A,即A⇒B但B⇏A。
03逻辑关系判断方法论述03判断方法通过判断两命题间的因果关系,确定谁是充分条件,谁是必要条件。
充分条件与必要条件教案
一、教案基本信息教案名称:充分条件与必要条件教案学科领域:数学课时安排:2课时教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 培养学生判断充分条件和必要条件的能力。
3. 使学生能够运用充分条件和必要条件解决实际问题。
教学重点:1. 充分条件和必要条件的定义。
2. 判断充分条件和必要条件的方法。
教学难点:1. 充分条件和必要条件的区别和联系。
2. 运用充分条件和必要条件解决实际问题。
教学准备:1. 教材或教学资源。
2. 教学PPT或其他多媒体教学工具。
二、教学过程第一课时:1. 导入新课:通过复习相关概念,引导学生回顾已学过的逻辑连接词,如“如果…………”等,为新课的学习做好铺垫。
2. 学习新课:(1)讲解充分条件和必要条件的定义。
(2)通过举例让学生判断充分条件和必要条件。
(3)引导学生总结判断充分条件和必要条件的方法。
3. 巩固练习:(1)让学生独立完成教材上的练习题。
(2)教师选取部分题目进行讲解和分析。
第二课时:4. 复习导入:通过复习上节课的内容,引导学生回顾充分条件和必要条件的概念及判断方法。
5. 深入学习:(1)讲解充分条件和必要条件的运用。
(2)让学生通过实际例子体会充分条件和必要条件在解决问题中的作用。
6. 课堂练习:(1)让学生独立完成教材上的练习题。
(2)教师选取部分题目进行讲解和分析。
7. 总结课堂:对本节课的内容进行总结,强调充分条件和必要条件在实际问题中的应用。
三、课后作业1. 完成教材上的课后练习题。
2. 结合生活实际,找出一道运用充分条件和必要条件解决问题的题目,并与同学交流分享。
四、教学评价1. 课后收集学生的课堂练习作业,评估学生对充分条件和必要条件的理解和运用能力。
2. 在下一节课开始时,让学生分享他们找出的实际问题题目,评估学生在实际问题中运用充分条件和必要条件的能力。
3. 结合学生的课堂表现,评价学生在学习过程中的参与度和进步情况。
六、教学策略1. 案例教学:通过具体的案例,让学生更好地理解充分条件和必要条件的概念及其应用。
充分条件与必要条件教案
充分条件与必要条件教案一、教学目标1、知识与技能目标理解充分条件、必要条件的概念。
能够判断给定条件是结论的充分条件还是必要条件。
学会运用充分条件和必要条件解决相关的数学问题。
2、过程与方法目标通过实例引入,培养学生观察、分析和归纳的能力。
经历概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标感受数学逻辑的严谨性,激发学生对数学的兴趣。
培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点充分条件和必要条件的概念。
充分条件和必要条件的判断方法。
2、教学难点理解充分条件和必要条件的关系。
在复杂情境中准确判断充分条件和必要条件。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入教师通过讲述一个生活中的例子来引入课题,比如:“如果今天下雨,那么地面会湿。
”引导学生思考下雨和地面湿之间的关系。
2、概念讲解给出充分条件的定义:如果有条件 A 成立,就一定能得出结论 B 成立,那么条件 A 就是结论 B 的充分条件。
举例说明:“如果一个数能被 2 整除,那么这个数一定是偶数。
”其中“一个数能被 2 整除”就是“这个数是偶数”的充分条件。
给出必要条件的定义:如果由结论 B 成立能够推出条件 A 成立,那么条件 A 就是结论 B 的必要条件。
举例说明:“只有当一个数是偶数,这个数才能被 2 整除。
”其中“一个数是偶数”就是“这个数能被 2 整除”的必要条件。
3、区分充分条件和必要条件通过实例让学生讨论并区分充分条件和必要条件。
例如:“如果一个三角形是等边三角形,那么它一定是等腰三角形。
”分析这里等边三角形是等腰三角形的什么条件。
4、判断充分条件和必要条件的方法教师介绍两种常见的判断方法:定义法:根据充分条件和必要条件的定义进行判断。
集合法:将条件和结论对应的集合表示出来,通过集合的包含关系来判断。
5、例题讲解出示一些具体的数学命题,让学生判断条件是结论的充分条件还是必要条件。
充分条件与必要条件教案
充分条件与必要条件教案章节一:引言教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 培养学生运用逻辑推理的能力。
教学内容:1. 引入充分条件和必要条件的概念。
2. 举例说明充分条件和必要条件的区别。
教学步骤:1. 引入概念:引导学生回顾之前学过的相关概念,如因果关系、逻辑推理等。
2. 讲解充分条件和必要条件的定义。
3. 举例说明:通过具体的例子让学生理解充分条件和必要条件的区别。
作业:1. 让学生举出一些生活中的充分条件和必要条件的例子,并加以解释。
章节二:充分条件教学目标:1. 让学生理解充分条件的概念。
2. 培养学生判断充分条件的能力。
教学内容:1. 讲解充分条件的定义。
2. 举例说明充分条件的应用。
教学步骤:1. 回顾上节课的内容,引导学生理解充分条件的定义。
2. 通过具体的例子让学生判断充分条件。
作业:1. 让学生找出一篇文章或故事中的充分条件,并加以解释。
章节三:必要条件教学目标:1. 让学生理解必要条件的概念。
2. 培养学生判断必要条件的能力。
教学内容:1. 讲解必要条件的定义。
2. 举例说明必要条件的应用。
教学步骤:1. 回顾前两节课的内容,引导学生理解必要条件的定义。
2. 通过具体的例子让学生判断必要条件。
作业:1. 让学生找出一篇文章或故事中的必要条件,并加以解释。
章节四:充分条件和必要条件的区别教学目标:1. 让学生理解充分条件和必要条件的区别。
2. 培养学生运用逻辑推理的能力。
教学内容:1. 讲解充分条件和必要条件的区别。
2. 举例说明充分条件和必要条件的区别的应用。
教学步骤:1. 回顾前几节课的内容,引导学生理解充分条件和必要条件的区别。
2. 通过具体的例子让学生判断充分条件和必要条件的区别。
作业:1. 让学生找出一篇文章或故事中的充分条件和必要条件的区别,并加以解释。
章节五:综合练习教学目标:1. 让学生巩固充分条件和必要条件的概念。
2. 培养学生运用逻辑推理的能力。
高中数学《充分条件与必要条件》公开课优秀教案(表格式、经典、值得收藏)
高中数学《充分条件与必要条件》公开课教案课题充分条件与必要条件教学类型新授课时间授课老师授课班级教学目标1.理解充分条件、必要条件、充要条件的意义2.会判断所给条件是否是充分条件、必要条件和充要条件教学重点理解充分条件、必要条件的意义教学难点充分条件、必要条件与充要条件的判定教学方法问题启发式教学仪器多媒体教学过程一.新课讲授1.充分条件与必要条件2.充要条件的概念二、应用举例:题型1:充分条件、必要条件、充要条件的判断例1:指出下列各组命题中,p是q的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件).(1)p:数a能被6整除,q:数a能被3整除;(2)p:x>1,q:x2>1;(3)p:x,y不全为0,q:x+y≠0.解:(1)∵p⇒q,而q⇒/p,∴p是q的充分不必要条件.(2)p对应的集合为A={x|x>1},q对应的集合为B={x|x<-1或x>1},∵A B,∴p是q的充分不必要条件.(3)¬p:x=0且y=0;¬q:x+y=0.∵¬p⇒¬q,而¬q⇒/¬p,∴p⇐q且p⇒/q.∴p是q的必要不充分条件.总结:充分条件与必要条件的应用技巧.(1)应用:可利用充分性与必要性进行相关问题的求解,特别是求参数的值或取值范围问题.(2)求解步骤:先把p,q等价转化,利用充分条件、必要条件与集合间的包含关系,建立关于参数的不等式(组)进行求解.变式练习2.已知p:|5x-2|>3,q:1x2+4x-5>0,则p是q的什么条件?三、课堂总结:1.四种方法判定充分、必要条件,在不易判断p是q的充分条件(即p⇒q)时,可以转向判断¬q⇒¬p;证明p是q的必要条件(即q⇒p),可以证明¬p⇒¬q.2.求问题的充要条件(等价转化).3.证明p是q的充要条件,要证明充分性、必要性两个方面.四、课堂练习1.(2020年湖北八校联考)若a,b,c,d∈R,则“a+d=b+c”是“a,b,c,d依次成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件。
充分条件和必要条件教案(教师
充分条件和必要条件教案(教师)一、教学目标知识与技能:1. 学生能够理解充分条件和必要条件的概念。
2. 学生能够判断一个条件是充分条件还是必要条件。
3. 学生能够运用充分条件和必要条件解决实际问题。
过程与方法:1. 学生通过实例分析和讨论,培养观察、思考和判断能力。
2. 学生通过练习题,提高解题能力和应用能力。
情感态度与价值观:1. 学生培养对数学的兴趣和自信心。
2. 学生培养合作和交流的能力。
二、教学内容1. 充分条件和必要条件的定义充分条件:如果一个条件能够保证结论的发生,这个条件称为结论的充分条件。
必要条件:如果一个条件是结论发生的必要条件,这个条件称为结论的必要条件。
2. 判断充分条件和必要条件的方法(1) 通过对实例的分析,判断条件与结论之间的关系。
(2) 用逻辑推理的方法,判断条件与结论之间的关系。
3. 运用充分条件和必要条件解决实际问题通过具体例题,让学生运用充分条件和必要条件分析问题,解决问题。
三、教学重点与难点重点:1. 充分条件和必要条件的概念。
2. 判断充分条件和必要条件的方法。
难点:1. 对充分条件和必要条件的理解和判断。
2. 运用充分条件和必要条件解决实际问题。
四、教学过程1. 导入:通过一个生活中的实例,引导学生思考条件与结论之间的关系。
2. 新课导入:介绍充分条件和必要条件的定义,让学生通过实例分析和讨论,理解这两个概念。
3. 课堂讲解:讲解判断充分条件和必要条件的方法,并通过例题让学生加深理解。
4. 练习与讨论:让学生通过练习题,巩固所学知识,并在讨论中培养合作和交流的能力。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、课后作业1. 完成练习题,巩固所学知识。
2. 结合生活实际,找一些充分条件和必要条件的例子,进行思考和分析。
六、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度,包括发言、提问和讨论。
2. 练习题的正确率:统计学生完成练习题的正确率,评估学生对充分条件和必要条件的理解和掌握程度。
数学教案:充分条件与必要条件教案及反思
数学教案:充分条件与必要条件教案及反思数学教案-充分条件与必要条件教学目标(1)准确理解充分条件、必要条件和充要条件的概念;(2)能准确推断是充分条件、必要条件还是充要条件;(3)培育同学的规律思维力量及归纳总结力量;(4)在充要条件的教学中,培育等价转化思想.教学建议(一)教材分析1.学问结构首先给出推断符号“ ”,并引出充分条件与必要条件的意义,在此基础上叙述了充要条件的初步学问.2.重点难点分析本节的重点与难点是关于充要条件的推断.(1)充分但不必要条件、必要但不充分条件、充要条件、既不充分也不必要条件是重要的数学概念,主要用来区分命题的条件和结论之间的因果关系.(2)在推断条件和结论之间的因果关系中应当:①首先分清条件是什么,结论是什么;②然后尝试用条件推结论,再尝试用结论推条件.推理方法可以是直接证法、间接证法(即反证法),也可以举反例说明其不设立;③最终再指出条件是结论的什么条件.(3)在争论条件和条件的关系时,要留意:①若,但,则是的充分但不必要条件;②若,但,则是的必要但不充分条件;③若,且,则是的充要条件;④若,且,则是的充要条件;⑤若,且,则是的既不充分也不必要条件.(4)若条件以集合的形式消逝,结论以集合的形式消逝,则借助集合学问,有助于充要条件的理解和推断.①若,则是的充分条件;明显,要使元素,只需就够了.类似地还有:②若,则是的必要条件;③若,则是的充要条件;④若,且,则是的既不必要也不充分条件.(5)要证明命题的条件是充要条件,就既要证明原命题设立,又要证明它的逆命题设立.证明原命题即证明条件的充分性,证明逆命题即证明条件的必要性.由于原命题逆否命题,逆命题否命题,当我们证明某一命题有困难时,可以证明该命题的逆否命题设立,从而得出原命题设立.(二)教法建议1.学习充分条件、必要条件和充要条件学问,要留意与前面关于规律初步学问内容相联系.充要条件中的,与四种命题中的,要求是一样的.它们可以是简洁命题,也可以是未能推断真假的语句,也可以是含有规律联结词或“若则”形式的复合命题.2.由于这节课概念性、理论性较强,一般的教学使同学感到枯燥乏味,为此,激发同学的学习爱好是关键.教学中始终要留意以同学为主,让同学在自我思索、相互沟通中去结概念“下定义”,去体会概念的本质属性.3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从推断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.4.教材中对“充分条件”、“必要条件”的定义没有作过多的说明说明,为了让同学能理解定义的合理性,在教学过程()中,老师可以从一些熟识的命题的条件与结论之间的关系来熟悉“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.教学设计示例充要条件教学目标:(1)准确理解充分条件、必要条件和充要条件的概念;(2)能准确推断是充分条件、必要条件还是充要条件;(3)培育同学的规律思维力量及归纳总结力量;(4)在充要条件的教学中,培育等价转化思想.教学重点难点:关于充要条件的推断教学用具:幻灯机或实物投影仪教学过程()设计1.复习引入练习:推断下列命题是真命题还是假命题(用幻灯投影):(1)若,则;(2)若,则;(3)全等三角形的面积相等;(4)对角线相互垂直的四边形是菱形;(5)若,则;(6)若方程有两个不等的实数解,则.(同学口答,老师板书.)(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.置疑:对于命题“若,则”,有时是真命题,有时是假命题.如何推断其真假的?答:看能未能推出,假如能推出,则原命题是真命题,否则就是假命题.对于命题“若,则”,假如由经过推理能推出,也就是说,假如设立,那么肯定设立.换句话说,只要有条件就能充分地保证结论的设立,这时我们称条件是设立的充分条件,记作. 2.讲授新课(板书充分条件的定义.)一般地,假如已知,那么我们就说是设立的充分条件.提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.(同学口答)(1)“ ,”是“”设立的充分条件;(2)“三角形全等”是“三角形面积相等”设立的充分条件;(3)“方程的有两个不等的实数解”是“ ”设立的充分条件.从另一个角度看,假如设立,那么其逆否命题也设立,即假如没有,也就没有,亦即是设立的必需要有的条件,也就是必要条件.(板书必要条件的定义.)提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.(同学口答).(1)因为,所以是的充分条件,是的必要条件;(2)因为,所以是的必要条件,是的充分条件;(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;(4)因为“四边形的对角线相互垂直” “四边形是菱形”,所以“四边形的对角线相互垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线相互垂直”的充分条件;(5)因为,所以是的必要条件,是的充分条件;(6)因为“方程的有两个不等的实根” “ ”,而且“方程的有两个不等的实根” “ ”,所以“方程的有两个不等的实根”是“ ”充分条件,而且是必要条件.总结:假如是的充分条件,又是的必要条件,则称是的充分必要条件,简称充要条件,记作.(板书充要条件的定义.)3.巩固新课例1 (用投影仪投影.)BA是B的什么条件B是的什么条件是有理数是实数、是奇数是偶数是4的倍数是6的倍数(同学活动,老师引导同学作出下面回答.)①因为有理数肯定是实数,但实数不愿定是有理数,所以是的充分非必要条件,是的必要非充分条件;② 肯定能推出,而不愿定推出,所以是的充分非必要条件,是的必要非充分条件;③ 、是奇数,那么肯定是偶数;是偶数,、不愿定都是奇数(可能都为偶数),所以是的充分非必要条件,是的必要非充分条件;④ 表示或,所以是设立的必要非充分条件;⑤由交集的定义可知且是设立的充要条件;⑥由知且,所以是设立的充分非必要条件;⑦由知或,所以是,设立的必要非充分条件;⑧易知“ 是4的倍数”是“ 是6的倍数”设立的既非充分又非必要条件;(通过对上述问题的沟通、思辩,在争辩中得到了准确答案,并加深了对充分条件、必要条件的熟悉.)例2 已知是的充要条件,是的必要条件同时又是的充分条件,试与的关系.(投影)解:由已知得,所以是的充分条件,或是的必要条件.4.小结回授今日我们学习了充分条件、必要条件和充要条件的概念,并学会了推断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.课内练习:课本(人教版,试验修订本,第一册(上))第 35页练习l、2;第36页练习l、2.(通过练习,检查同学把握状况,有针对性的进行讲评.)5.课外作业:教材第36页习题1.8 1、2、3.。
高中数学充分与必要教案
高中数学充分与必要教案
主题:充分与必要条件
教学目标:
1. 了解充分与必要条件的概念;
2. 能够应用充分与必要条件解决实际问题;
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:
1. 充分条件的定义和应用;
2. 必要条件的定义和应用;
3. 充分与必要条件的关系。
教学难点:
1. 理解充分与必要条件的概念;
2. 能够灵活运用充分与必要条件解决问题。
教学过程:
一、导入(5分钟)
教师引入充分与必要条件的概念,让学生了解这两个概念在数学中的重要性,并给出生活中的例子进行解释。
二、讲解(15分钟)
1. 讲解充分条件的定义和应用,指导学生如何找到充分条件;
2. 讲解必要条件的定义和应用,指导学生如何找到必要条件;
3. 讲解充分与必要条件的关系,指导学生如何应用这两个概念解决问题。
三、练习(20分钟)
1. 完成课本上的练习题,巩固充分与必要条件的应用;
2. 让学生分组进行练习,提高他们解决问题的能力。
四、总结(10分钟)
让学生总结本节课所学内容,强调充分与必要条件在解决问题中的重要性,并展示典型的应用例子。
五、作业(5分钟)
作业:完成课后练习题,巩固所学内容。
教学后记:
通过本节课的教学,学生应该能够了解充分与必要条件的概念,掌握灵活运用这两个概念解决问题的能力。
希望学生能够在日常生活和学习中应用这些知识,提高他们的逻辑思维能力和解决问题的能力。
充分条件与必要条件教案
充分条件与必要条件教案章节一:引言教学目标:1. 让学生了解充分条件和必要条件的概念。
2. 培养学生判断充分条件和必要条件的能力。
教学内容:1. 介绍充分条件和必要条件的定义。
2. 举例说明充分条件和必要条件的区别。
教学步骤:1. 引入新课,讲解充分条件和必要条件的概念。
2. 举例说明充分条件和必要条件的区别。
3. 让学生练习判断一些实例中的充分条件和必要条件。
教学评估:1. 观察学生在判断实例中的表现。
2. 收集学生的答案,进行点评。
章节二:充分条件教学目标:1. 让学生掌握充分条件的判断方法。
2. 培养学生运用充分条件解决实际问题的能力。
教学内容:1. 讲解充分条件的判断方法。
2. 举例说明如何运用充分条件解决实际问题。
1. 讲解充分条件的判断方法。
2. 举例说明如何运用充分条件解决实际问题。
3. 让学生练习运用充分条件解决一些实例问题。
教学评估:1. 观察学生在解决实例问题中的表现。
2. 收集学生的答案,进行点评。
章节三:必要条件教学目标:1. 让学生掌握必要条件的判断方法。
2. 培养学生运用必要条件解决实际问题的能力。
教学内容:1. 讲解必要条件的判断方法。
2. 举例说明如何运用必要条件解决实际问题。
教学步骤:1. 讲解必要条件的判断方法。
2. 举例说明如何运用必要条件解决实际问题。
3. 让学生练习运用必要条件解决一些实例问题。
教学评估:1. 观察学生在解决实例问题中的表现。
2. 收集学生的答案,进行点评。
章节四:充分条件与必要条件的区别与联系1. 让学生理解充分条件与必要条件的区别与联系。
2. 培养学生判断充分条件与必要条件的能力。
教学内容:1. 讲解充分条件与必要条件的区别与联系。
2. 举例说明如何判断充分条件与必要条件。
教学步骤:1. 讲解充分条件与必要条件的区别与联系。
2. 举例说明如何判断充分条件与必要条件。
3. 让学生练习判断一些实例中的充分条件与必要条件。
教学评估:1. 观察学生在判断实例中的表现。
高中数学《充分条件与必要条件》说课稿教案模板
精心整理高中数学《充分条件与必要条件》说课稿教案模板一、背景分析1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2义”) 理解,称a 是b (一) 1 2 (二) 1 2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
(三)情感目标:1、 通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、 通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。
我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题引导学生分析实例,给出定义例题分析(采用开放式教学)知识小结扩展例题练习反馈(1)(2)(3)”这样,就产生了第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。
”就产生了“氧气”与“活命与否”的关系。
用这个事件的目的是为了第二部分引导学生得出必要条件的定义。
这里要强调该事件包括:a:接氧气;b:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《充分条件与必要条件》说课教案一、背景分析1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
在旧教材中,这节内容安排在《解析几何》第二章“圆锥曲线”的第三节讲授,而在新教材中,这节内容被安排在数学第一册(上)第一章中“简易逻辑”的第三节。
除了教学位置的前移之外,新教材中与充要条件相关联的知识体系也作了相应的扩充。
在“充要条件”这节内容前,还安排了“逻辑联结词”和“四种命题”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。
教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=>A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。
教学关键:找出A、B,根据定义判断A=>B与B=>A是否成立。
教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。
二、教学目标设计:(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。
3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。
(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。
(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。
我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题→引导学生分析实例,给出定义→例题分析(采用开放式教学)→知识小结→扩展例题→练习反馈整个教学设计的主要特色:(1)由生活事例引出课题;(2)例1采用开放式教学模式;(3)扩展例题2是分析生活中的名言名句,又将数学融入生活中。
努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。
四、教学媒体设计:本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。
这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。
五、教学过程设计:第一,创设情境,激发兴趣,引出课题:考虑到高一学生学习这一章的知识储备不足,为了让学生更易接受这一节内容,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。
我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。
”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。
用这个事件目的是为了第二部分引导学生得出充分条件的定义。
这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。
第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。
”就产生了“氧气”与“活命与否”的关系。
用这个事件的目的是为了第二部分引导学生得出必要条件的定义。
这里要强调该事件包括:A:接氧气;B:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
第二,引导学生分析实例,给出定义。
在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。
在引导过程中尽量放慢语速,结合事例帮助学生分析。
得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。
(用前面的例子来说即:“活了,则说明在输氧”)可记作:AB⇒。
还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。
这里,只要一下子“定义”清楚了,下边再解释“AB⇒,A是B的必要条件”是怎么回事。
这样处理,学生更容易接受“必要”二字。
(因无A则无B,故欲有B,A是必要的)。
当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作:BA⇔。
(不多不少,恰到好处)。
使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。
第三,例题分析:例1采用开放式教学,课前请学生在预习的基础上,以学习小组为单位,在尽可能广泛的知识范畴中,课外编制关于充分条件、必要条件的命题。
教师借助实物投影仪,在课上有目标地选择三组通过组合的学生自编题原文出示,通过学生口答,引导讨论,质疑解惑,在“开放”的情景中推进教学过程,在点评“聚焦”中形成知识要义,从而发展学生思维。
由于时间关系,对没有选到课堂上讲评的其他学生自编题,另汇编成课后作业,继续学习讨论,这样一来,能最大限度的发挥学生的积极性和保持他们参与教学研究的热情。
在分析各组题时都注意,让学生先养成找出A、B的习惯,以使学生突破学习难点:“A=>B”,称B是A的必要条件,这里最好能让学生避免将A、B理解成条件和结论,否则学生就可能会有这样的想法:“B本是A推出的结论,怎么又变成条件了呢?”。
选的第一组题,旨在对“充分条件”、“必要条件”、概念的复习巩固,选题的难度控制在极大部分学生能接受的范围程度,除第4小题对不等式符号的处理需要教师略加点拨外,其余学生均能自行解答。
命题内容涉及几何、代数较广泛领域,也包括初学的“集合”知识,达到预期目标。
[第一组题:(1)"0"",">⋅∈+b a R b a 是的(充分不必要)条件。
(2)“四边形为平行四边形”是“这个四边形为菱形”的(必要不充分)条件。
(3)“设集合A={}3|>x x ,B={}4|<x x ”,则“A x ∈”或“B x ∈”是""B A x ⋂∈的(必要不充分)条件。
(4)"0""0"≤≤⋅ba b a 是的(必要不充分)条件。
] 选的第二组题,旨在加强学生思维的灵活性、辩析深刻性。
编题者与答题者答案不尽相同,可以形成开放性求解研究的趣味,在选择比较答案的过程中,加深对数学实质内涵的认识。
如第(2)小题,学生提出三个不同答案:(1)00>>b a 且;(2)b a b a ><>且0,0;(3)13-==b a 且。
紧扣概念,教师引导分析结论的正确性(说明还有其他答案),比较答案(1)、(2),则是同类答案的优化问题;比较答案(1)、(3),则是一般性和特殊性的问题,可引申作点评。
学生在问题的讨论过程中感悟到探索的价值,认识到与传统的演绎推理方法的差异,体现了群体中个体的优势。
鼓励和倡导了创造性思维。
至此,“开放”的目的基本到位。
学生思维被“激活”,充分体现出“开放性”的活力。
[第二组题:(1)写出2=x 的一个必要不充分条件(22=x 可答)。
(2)写出b a +>0的一个充分不必要条件)00(>>b a 且可答。
(3)二次函数c a c bx ax y ,2当字母++=满足)00(<>c a 且可答条件,是函数图象与x 轴有交点的充分不必要条件。
]选的第三组题,旨在纠偏纠错,让学生先发现或是数学问题,或是语言表述问题的错误,从而先改正后分析。
这样,既可以让学生发现问题,及时改正错误,对语言表述引起重视,又可以培养团结协作的精神。
[第三组题:(1)“Q是R的充分不必要条件”改正为:"Q∈是的条件;xx∈"""R(2)“等腰三角形底角相等是什么条件”改正为:“一个三角形为等腰三角形”是“一个三角形有两个角相等”的条件。
] 分析完以上三组题,新课的目标已在顺理成章中基本完成。
学生在认知变化过程中,不机械模仿,不自我封闭,即使在“开放”过程中暴露知识缺陷,经过学生讨论辩析,教师答题解惑,在顺应作用下发展,实现了“质”的变化。
这种教学思想来源于著名的瑞士教育心理学家、发生认识论创始人让·皮亚(JeanPiage1896—1980),提出的发生认识论原理。
例1讲评结束时我注意给学生提供了适度的学习指导,加深对数学本质的理解,让学生反思例1,引导学生归纳、总结并概括本堂课的学习内容。
特别是让学生从集合的角度来理解充分条件和必要条件。