勾股定理地证明方法67327

合集下载

证明勾股定理的4种方法

证明勾股定理的4种方法

证明勾股定理的4种方法证明勾股定理的4种方法勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

以下是小编整理的证明勾股定理的4种方法,仅供参考,大家一起来看看吧。

证明勾股定理的4种方法勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。

当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。

在中国数学史中同样源远流长,是中算的重中之重。

《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。

开方除之,即弦。

”勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

下面我们一起来欣赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。

2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。

方法二:刘徽“青朱出入图”约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。

方法三:欧几里得“公理化证明”希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。

利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。

2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。

3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。

4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。

5. 通过三角形内部的相似三角形进行推导得出勾股定理。

将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。

6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。

7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。

8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。

9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。

这可以通过暴力算法或递推算法来实现。

10. 利用反证法证明勾股定理。

假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。

通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。

11. 利用勾股定理证明三角形的周长和面积公式。

将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。

12. 利用勾股定理证明三角形的内心与垂心之间的关系。

将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。

13. 利用勾股定理证明三角形的外心与垂心之间的关系。

通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。

14. 利用圆的性质证明勾股定理。

将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。

15. 通过三角形的相似性质,证明勾股定理。

将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。

勾股定理的证明方法5种

勾股定理的证明方法5种

勾股定理的证明方法5种勾股定理是几何学中最为经典的定理之一,它揭示了直角三角形中直角边与斜边的关系。

勾股定理有多种不同的证明方法,下面我们将依次介绍其中五种不同的证明方法。

方法一:几何法证明这种证明方法是最为直观的,它通过几何形状的变换来证明勾股定理。

首先,我们先画出一个直角三角形ABC,然后作出辅助线AD ⊥BC,将三角形ABC分成两个小三角形ΔABD和ΔADC。

根据相似三角形的性质,我们可以得到BD/AB=AB/AC,即BD*AC=AB^2。

同理,我们可以得到CD*AB=AC^2。

将这两个式子相加起来,我们就可以得到BD*AC+CD*AB=AB^2+AC^2,根据平行四边形的性质,我们可以得到BC*AD=AB^2+AC^2,而BC*AD就是直角三角形ABC的斜边的平方AC^2。

因此,通过几何法证明,我们可以得到勾股定理成立。

方法二:代数法证明这种证明方法是使用代数运算来证明勾股定理。

我们可以用直角三角形的三条边的长度来表示三角形的面积。

假设直角三角形的三条边分别为a、b、c,其中c 为斜边,利用面积公式S=1/2*底*高,我们可以得到三角形面积的两种表达式:S=1/2* a*bS=1/2* c*h通过这两个表达式,我们可以得到c*h=a*b,即c^2=a^2+b^2。

方法三:相似三角形法证明这种证明方法利用相似三角形的性质来证明勾股定理。

我们可以在直角三角形ABC中找到一个与之全等的直角三角形DEF。

然后我们可以发现直角三角形ABC和DEF分别是直角三角形ACB和EDF的相似三角形。

由于相似三角形的对应边成比例,我们可以得到AB/DE=BC/EF=AC/DF。

利用这个性质,我们可以得到AB^2=DE^2+DF^2和AC^2=DE^2+EF^2。

将这两个式子相加起来,我们可以得到AB^2+AC^2=DE^2+DF^2+DE^2+EF^2,根据平行四边形的性质,我们可以得到AB^2+AC^2=2*DE^2+2*DF^2。

勾股定理的证明方法

勾股定理的证明方法

勾股定理的证明方法勾股定理是数学中一个经典的定理,最早由中国古代数学家所发现并提出。

它描述了直角三角形的边长关系,具体表达为:直角三角形的斜边的平方等于两直角边的平方和。

本文将介绍勾股定理的三种常见证明方法。

方法一:几何证明法首先,我们假设有一个直角三角形,其两个直角边分别为a和b,斜边为c。

我们可以通过绘制图形来证明勾股定理。

(图1:绘制直角三角形ABC,角C为直角)在图中,我们可以看到三个三角形:△ABC、△ACD和△BCD。

根据正弦定理,我们可以得到以下等式:sinA = b/csinB = a/c由于直角三角形的两个锐角相加等于90°,即有A + B = 90°,我们可以得到sinA = cosBsinB = cosA综上所述,我们有以下等式:sinA/c = cosBsinB/c = cosA因此,我们可以得到以下关系:b =c × sinAa = c × sinB下面我们计算c², a²和b²之和:c² = (c × sinA)² + (c × sinB)²= c²(sinA)² + c²(sinB)²= c²(sin²A + sin²B)= c²(sin²A + cos²A) (由于sin²B = cos²A)= c²根据以上推导,我们可以得到c² = a² + b²,进而证明了勾股定理。

方法二:代数证明法我们可以通过代数运算来证明勾股定理。

假设有一个直角三角形,其斜边为c,两个直角边分别为a和b。

根据勾股定理,有c²= a²+ b²。

首先,我们可以根据直角三角形的定义得出一个重要关系:直角三角形中一个锐角的正弦值等于另一个锐角的余弦值,即sinA = cosBsinB = cosA我们可以利用三角恒等式来推导出上述关系:sin²A + cos²A = 1cos²B + sin²B = 1接下来,我们计算c²和a²+b²:c² = (a sinB + b cosB)²= a² sin²B + 2ab sinB cosB + b² cos²B= a² (1 - cos²B) + 2ab sinB cosB + b² cos²B= a² + b² - a² cos²B + 2ab sinB cosB + b² cos²B= a² + b² + 2ab sinB cosB (由于a² cos²B + b² cos²B = a² + b²)= a² + b² + 2ab sinA (由于sinA = cosB,sinB = cosA)根据上述推导,我们可以得到c² = a² + b²,证明了勾股定理。

勾股定理的九种证明方法(附图)

勾股定理的九种证明方法(附图)

勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。

右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。

因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。

因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。

作CD⊥AB,垂足为D。

则△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ×BA,①由△CAD∽△BAC可得AC2=AD ×AB。

②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。

它利用了相似三角形的知识。

四、古人的证法:CABD如图,将图中的四个直角三角形涂上深红色,把中间小正方形涂上白色,,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。

即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

五、项明达证法:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90°,QP∥BC,∴∠MPC = 90°,∵ BM⊥PQ,∴∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。

勾股定理的证明方法带图

勾股定理的证明方法带图

勾股定理的证明方法带图勾股定理是数学中一个非常重要的定理,它在几何学、物理学和工程学等领域都有广泛的应用。

勾股定理主要用于解决直角三角形的边长关系问题,它的常见表述是:直角三角形斜边的平方等于直角边的平方和。

在这篇文档中,我们将通过多个证明方法来证明勾股定理,并且将每个步骤都用图示来说明。

1. 证明方法一:几何学证明首先,我们来介绍一种几何学证明勾股定理的方法。

我们假设有一个直角三角形ABC,其中∠C为直角。

通过在边AC上作高CD,我们可以将三角形ABC分成两个矩形ACDE和BCFD。

接下来,我们将使用几何学的原理来证明∆ABC的边长关系。

我们知道,由于三角形ACD和BFC是矩形ACDE和BCFD的对角线,所以ACD和BFC是相似三角形。

因此,我们可以建立以下比例方程:AC/AD = BC/BF由于AD和BF都是三角形ABC的直角边,我们将其记为a和b,因此可以得到以下等式:AC/a = BC/b将上述等式两边都乘以a和b,得到:AC^2 = BC^2 + a^2 - - - (1)所以,通过几何学证明,我们可以得到勾股定理的一个解释:直角三角形的斜边的平方等于直角边的平方和。

为了更加清晰地理解这个几何学证明过程,让我们来看一个图示。

图示如下:```C|\\| \\a | \\ b| \\|____\\A c B```在上面的图示中,我们可以看到三角形ABC以及直角边a和b以及斜边c之间的关系。

通过几何学证明的过程,我们可以看到三角形ACD和BFC的构造,以及通过相似三角形的比例关系建立的方程式。

最终,我们得到了勾股定理的证明:直角三角形斜边的平方等于直角边的平方和。

2. 证明方法二:代数学证明除了几何学证明之外,我们还可以通过代数学方法来证明勾股定理。

在这种方法中,我们将使用代数方程和平方的运算来证明。

我们假设一个直角三角形ABC,其中∠C为直角。

假设直角边a的长度为x,直角边b的长度为y,斜边c的长度为z。

勾股定理的证明方法

勾股定理的证明方法

勾股定理的证明方法勾股定理是初中数学中的重要定理,它是数学中的基础知识之一,也是几何学中的重要定理。

勾股定理的证明方法有很多种,下面我们将介绍几种常见的证明方法。

一、几何证明法。

几何证明法是最直观的证明方法之一。

我们可以通过画出直角三角形的三条边,利用几何图形的性质来证明勾股定理。

具体步骤如下:1. 画出一个直角三角形ABC,其中∠C为直角,AB为斜边,AC为一条直角边,BC为另一条直角边。

2. 以AC为直径作圆,交BC于点D。

3. 以BC为直径作圆,交AC于点E。

4. 连接DE。

5. 证明△ADE与△ABC全等。

6. 证明AD⊥BC。

7. 证明AD=BC。

通过以上步骤,我们可以得出结论,在直角三角形ABC中,AB²=AC²+BC²,即勾股定理成立。

二、代数证明法。

代数证明法是利用代数运算来证明勾股定理。

具体步骤如下:1. 假设直角三角形的三条边分别为a、b、c,其中c为斜边。

2. 根据勾股定理的定义,我们有a²+b²=c²。

3. 将a²和b²分别展开,得到a²=x²+y²,b²=z²+w²。

4. 将a²和b²代入a²+b²=c²中得到x²+y²+z²+w²=c²。

5. 证明x²+y²、z²+w²、c²构成直角三角形。

通过以上步骤,我们可以得出结论,在直角三角形中,a²+b²=c²成立,即勾股定理成立。

三、数学归纳法。

数学归纳法是一种数学证明方法,它适用于证明一般情况下的结论。

具体步骤如下:1. 假设在直角三角形中,a²+b²=c²成立。

2. 证明在下一个直角三角形中,a'²+b'²=c'²也成立。

勾股定理的多种证明方法

勾股定理的多种证明方法

勾股定理的多种证明方法勾股定理的多种证明方法勾股定理是数学史上一个伟大的定理,同时也是一个历史悠久的定理,如何证明勾股定理呢?勾股定理证明方法有哪些呢?下面是的勾股定理证明方法资料,欢迎阅读。

勾股定理的种证明方法(部分)【证法1】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴ .【证法2】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP‖BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90º,QP‖BC,∴ ∠MPC = 90º,∵ BM⊥PQ,∴ ∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.【证法3】(赵浩杰证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的`多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90º,∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE∴∠ABG =∠BCJ,∵∠BCJ +∠CBJ= 90º,∴∠ABG +∠CBJ= 90º,∵∠ABC= 90º,∴G,B,I,J在同一直线上,【证法4】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ ,即 .勾股定理的多种证明方法毕达哥拉斯证法:一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的。

10种勾股定理的证明方法

10种勾股定理的证明方法

10种勾股定理的证明方法1什么是勾股定理勾股定理,又称勾股论,是基督教神学家和物理学家第乌里希(Pythagoras)在公元前6世纪提出的一个名言:在给定一个直角三角形中,直角两边的平法相加,等于直角边的平方。

也就是说,在一个直角三角形中,腰边的平方等于两个斜边的平方和。

2勾股定理的表示形式勾股定理可以用一下式子表示:a²+b²=c²,其中a和b是直角三角形的两个斜边,c是这个直角三角形的直角腰边。

3关于勾股定理的10种证明方法1.构造法:构造带有两个相等斜边a和b的两个直角三角形,以证明a²+b²=c²。

2.投影定理:利用投影定理将这些斜边投影,使两个三角形等同,从而证明勾股定理。

3.物理四边形法:采用正方形,梯形和菱形将这三角形组合成一个完整的四边形,证明了勾股定理。

4.三角不等式:根据直角三角形的三角不等式来证明a²+b²>c²。

5.毕达哥拉斯定理:该定理指出,在给定一个直角三角形时,斜边的平方和等于两个斜边相乘再乘以直角边的任何一个数字。

6.幂法:将a²+b²和c²都改写成几次幂的形式,然后将两个完整的当作可以对等的数字比较,从而证明勾股定理。

7.等差数列法:分别建立一个等差数列和一个等比数列,将它们相加,可以得到勾股定理的完整证明。

8.泰勒公式:根据勾股定理,a²+b²=c²,用泰勒公式解析勾股定理,就能得出正确的结论。

9.三角函数法:将勾股定理表示为正弦、余弦和正切的函数关系,根据不同的三角函数的关系证明勾股定理。

10.几何图表法:将斜边a、b、c绘制成一个两个直角三角形的示意图,并且两个三角形的直角边的和是刚好相等的,可以读出完整的证明。

4结论勾股定理是一个经典的定理,已被证明是绝对正确的,而证明它的方法也分多种。

从上面这10种证明方法中,我们可以看出,勾股定理可以通过计算、构造、投影和其它几何变换理论来证明。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法1. 几何证明法勾股定理是数学中的基本定理之一,用于描述直角三角形的边长关系。

根据勾股定理,直角三角形的斜边的平方等于两个直角边的平方和。

几何证明法是最直观的证明方法之一。

我们可以通过绘制一个正方形来证明勾股定理。

假设直角三角形的两个直角边分别为a和b,斜边为c。

我们可以将这个三角形绘制在一个边长为a+b的正方形内。

将正方形分成四个小正方形,其中三个小正方形的边长分别为a,b和c。

通过计算小正方形的面积,我们可以得出结论:c^2 = a^2 + b^2。

2. 代数证明法代数证明法是另一种常用的证明勾股定理的方法。

这种方法使用代数运算和方程的性质来证明定理。

假设直角三角形的两个直角边分别为a和b,斜边为c。

我们可以通过使用平方的性质来证明勾股定理。

根据勾股定理,我们有:c^2 = a^2 + b^2。

我们可以将c^2展开为(a + b)2,即:c2 = (a + b)^2 = a^2 + 2ab + b^2。

通过对比等式两边的表达式,我们可以得出结论:2ab = 0。

由于直角三角形的边长必须为正数,因此我们可以得出结论:ab = 0。

这意味着a或b至少有一个为0。

如果a为0,那么直角三角形就变成了一个直角边长为b的直角三角形,此时勾股定理显然成立。

同样地,如果b为0,那么直角三角形就变成了一个直角边长为a的直角三角形,此时勾股定理也成立。

综上所述,勾股定理成立。

3. 数学归纳法证明数学归纳法是一种常用的证明数学命题的方法,它通常用于证明自然数的性质。

虽然勾股定理是针对直角三角形的,但我们可以通过数学归纳法证明勾股定理对于所有正整数的直角三角形都成立。

首先,我们证明当直角三角形的直角边长度为1时,勾股定理成立。

这是显而易见的,因为直角三角形的斜边长度必然大于1,所以直角边长度为1的直角三角形一定满足勾股定理。

然后,我们假设当直角三角形的直角边长度为k时,勾股定理成立。

即假设a^2 + b^2 = c^2,其中a和b分别为直角三角形的直角边,c为斜边。

勾股定理所有的证明方法

勾股定理所有的证明方法

勾股定理的证明方法有很多种,以下是一些常见的证明方法:
1. 直角三角形法:在直角三角形中,将直角边上的点与斜边上的点连接,形成两个小的直角三角形,利用直角三角形的性质进行证明。

2. 相似三角形法:利用直角三角形的相似性质,将直角三角形进行缩放,使得三个边长满足勾股定理。

3. 面积法:通过计算直角三角形的面积,利用面积公式进行证明。

4. 指数法:利用指数的运算性质,将勾股定理表示为指数形式,从而进行证明。

5. 旋转法:将直角三角形进行旋转,使得直角边与斜边平行,然后利用平行线的性质进行证明。

6. 平行线法:利用平行线的性质,将勾股定理转化为平行线之间的距离关系进行证明。

7. 向量法:利用向量的运算性质,将勾股定理表示为向量形式,从而进行证明。

8. 极坐标法:利用极坐标的运算性质,将勾股定理表示为极坐标形式,从而进行证明。

9. 逆命题法:通过证明勾股定理的逆命题,即满足勾股定理的三个正数必然是直角三角形的边长,从而证明勾股定理。

以上只是一些常见的勾股定理证明方法,实际上还有很多其他的方法。

这些方法各有特点,有的方法适用于教学,有的方法适用于研究,可以根据需要选择不同的证明方法。

勾股定理的三种不同证明方法

勾股定理的三种不同证明方法

勾股定理的三种不同证明方法勾股定理是数学中的一个基本定理,它揭示了直角三角形三边之间的关系。

勾股定理的三种不同证明方法分别如下:方法一:几何证明法几何证明法是通过构造直角三角形,利用几何性质证明勾股定理的方法。

具体步骤如下:1.构造一个直角三角形ABC,其中角C为直角,AC和BC为直角边,AB为斜边。

2.在直角三角形ABC外部构造一个正方形ABDE,使得AB为正方形的一边,E为正方形的顶点,D为正方形上一点,且DC与AB平行。

3.连接CE,将正方形ABDE分成两个等腰直角三角形ACE和BCE。

4.根据等腰直角三角形的性质,可知AE=CE=BC,DE=BE=AC。

5.根据正方形的性质,可知AB=AE+BE。

6.根据勾股定理的定义,可知AB^2=AC^2+BC^2。

7.将上述等式代入步骤5中得到的等式,可得(AE+BE)^2=AE^2+BE^2。

8.展开并化简上述等式,可得2AE*BE=0。

9.由于AE和BE均为正数,因此上述等式只有在AE=BE时才成立,即只有在AC=BC时才成立。

因此,我们证明了在直角三角形中,斜边的平方等于两直角边的平方和。

方法二:代数证明法代数证明法是通过代数运算证明勾股定理的方法。

具体步骤如下:1.设直角三角形的直角边为a和b,斜边为c。

2.根据勾股定理的定义,可得c^2=a^2+b^2。

3.将上述等式移项,可得c^2-a^2=b^2。

4.分解因式,可得(c-a)(c+a)=b^2。

5.由于c>a,因此c-a>0。

同时,由于b>0,因此b^2>0。

因此,上述等式只有在c+a>0时才成立。

6.由于c>a和c>b,因此c+a>a+b。

同时,由于a>0和b>0,因此a+b>0。

因此,上述等式只有在c+a>a+b时才成立。

7.将上述不等式移项并化简,可得c>b。

8.由于我们已经知道c>a和c>b,因此c是直角三角形的最长边,即斜边。

勾股定理的证明方法

勾股定理的证明方法

勾股定理的证明方法勾股定理是数学中非常重要的一个定理,它是指直角三角形中,直角边的平方和等于斜边的平方。

在数学中,勾股定理有多种证明方法,下面我将介绍几种常见的证明方法。

1. 几何法证明。

几何法证明是最直观的一种证明方法。

我们可以通过构造几何图形,利用几何关系来证明勾股定理。

例如,我们可以构造一个正方形,然后在正方形的对角线上分别构造两个相似三角形,通过相似三角形的性质,可以得出直角三角形的两条直角边的平方和等于斜边的平方。

2. 代数法证明。

代数法证明是利用代数运算来证明勾股定理。

我们可以假设直角三角形的两条直角边分别为a和b,斜边为c,然后利用勾股定理的公式a² + b² = c²进行代数运算,最终得出结论。

3. 数学归纳法证明。

数学归纳法是一种数学证明方法,通过证明当n=k时结论成立,然后再证明n=k+1时结论也成立,从而得出结论对所有自然数都成立。

我们可以利用数学归纳法来证明勾股定理。

首先证明直角三角形边长为3, 4, 5的情况,然后假设直角三角形边长为k, k+1,k+2的情况也成立,再证明直角三角形边长为k+1, k+2, k+3的情况也成立,从而得出结论。

4. 数学分析法证明。

数学分析法是利用数学分析的方法来证明勾股定理。

我们可以利用导数、积分等数学工具来证明勾股定理。

例如,我们可以利用导数的定义和勾股定理的公式进行推导,最终得出结论。

综上所述,勾股定理有多种证明方法,每种方法都有其独特的优势和适用范围。

在实际问题中,我们可以根据具体情况选择合适的证明方法来证明勾股定理,从而更好地理解和运用这一重要定理。

勾股定理的证明方法十种过程

勾股定理的证明方法十种过程

勾股定理的证明方法十种过程全文共四篇示例,供读者参考第一篇示例:勾股定理,又称毕达哥拉斯定理,是几何学中最基础的定理之一。

它表明在直角三角形中,直角的两边的平方和等于斜边的平方。

勾股定理的证明方法有很多种,下面我将介绍十种常用的证明过程。

一、几何证明法1. 利用相似三角形的性质,构造辅助线,将直角三角形分割成两个直角三角形,再利用勾股定理的定义证明斜边的平方等于直角两边的平方和。

2. 利用平行线的性质,构造辅助线,形成四边形,再利用四边形的性质推导出勾股定理。

二、代数证明法1. 利用代数方法将直角三角形的三边长度表示成a,b,c,利用勾股定理的定义列出等式a^2 + b^2 = c^2,再进行变形推导得到结论。

2. 利用向量法,将三角形的三个顶点表示成二维向量,用向量的性质证明直角三角形满足勾股定理。

三、三角函数证明法1. 利用正弦、余弦、正切等三角函数的关系,将直角三角形的三条边长和角度联系起来,通过三角函数的计算推导出勾股定理。

2. 利用三角函数的定义,将角度和边长关系转换成三角函数的等式,再通过化简和运算得到勾股定理。

五、解析几何证明法1. 利用直角三角形在坐标平面上的表示,用坐标的差和平方和表达斜边和直角两边之间的关系,进行运算保证两边相等。

2. 利用解析几何的方法,利用两直线间的距离公式和直线的斜率关系,推导出勾股定理成立的条件。

七、数学归纳法证明法1. 从一个特殊的直角三角形出发,比如3-4-5直角三角形,验证勾股定理成立。

然后假设勾股定理对于n=1的情况成立,推导出n=k+1的情况也成立,利用数学归纳法证明定理的普遍性。

2. 从勾股数列的性质入手,证明勾股定理的普遍性。

十、几何变换证明法1. 利用几何变换,比如平移、旋转等,将直角三角形变换成其他几何形状,再通过形状不变性证明勾股定理。

2. 利用相似性和对称性的变换,将直角三角形转化成其他几何形状,结合几何形状的性质证明勾股定理的成立。

勾股定理的十六种证明方法

勾股定理的十六种证明方法

勾股定理的十六种证明方法
1.几何法:构造一个直角三角形,利用勾股定理求出斜边长。

2. 代数法:将直角三角形三边的长度带入勾股定理的公式中,证明等式成立。

3. 数学归纳法:证明当斜边长为n时,勾股定理成立,再证明当斜边长为n+1时,勾股定理仍然成立。

4. 三角函数法:利用正弦、余弦、正切等三角函数的定义,证明勾股定理。

5. 相似三角形法:利用相似三角形的性质,证明勾股定理。

6. 矩形法:将一个直角三角形内切于一矩形中,从而证明勾股定理。

7. 差积公式法:利用差积公式(a+b)(a-b)=a-b,证明勾股定理。

8. 面积法:利用直角三角形的两条直角边构成一个矩形,证明勾股定理。

9. 旋转法:将一个直角三角形绕其斜边旋转,证明勾股定理。

10. 图像法:将勾股定理表示为x+y=z的图像,证明勾股定理。

11. 平行四边形法:将直角三角形内切于一个平行四边形中,从而证明勾股定理。

12. 三角形面积法:利用直角三角形的面积公式1/2ab,证明勾股定理。

13. 坐标法:将直角三角形的三个顶点的坐标表示出来,利用距离公式证明勾股定理。

14. 行列式法:利用行列式公式证明勾股定理。

15. 夹角法:通过两向量的夹角关系推导出勾股定理。

16. 对数法:利用对数函数的性质,证明勾股定理。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法勾股定理是中国古代数学中的一个重要定理,也被称为勾股三角形定理,它是指直角三角形中,直角边的平方等于两直角边的平方和。

勾股定理的发现和证明有很多方法,下面我们来看看20种不同的证明方法。

1. 几何方法:这是最常见的证明方法,可以通过绘制直角三角形,然后运用几何知识来证明。

2. 代数方法:可以通过代数运算来证明,将直角三角形的三边长度表示为变量,然后通过代数运算得出结论。

3. 物理方法:可以利用物理学知识,比如平面几何法,来证明勾股定理。

4. 数学归纳法:可以运用数学归纳法来证明勾股定理,将直角三角形的边长依次递增,然后证明其中一个等式成立,推导出其他情况。

5. 解析几何法:可以通过解析几何的方法,利用坐标系和直线方程来证明勾股定理。

6. 函数法:可以通过函数图像和函数性质来证明勾股定理。

7. 同余定理方法:可以通过同余定理来证明勾股定理。

8. 三角函数方法:可以运用三角函数的性质和公式来证明勾股定理。

9. 相似三角形方法:可以通过相似三角形的性质来证明勾股定理。

10. 斜率方法:可以运用直线的斜率来证明勾股定理。

11. 反证法:可以通过反证法来证明勾股定理,假设直角三角形的三边不符合勾股定理,然后推导出矛盾。

12. 三角形面积法:可以通过计算直角三角形的面积来证明勾股定理。

13. 欧拉定理法:可以通过欧拉定理来证明勾股定理。

14. 空间几何法:可以将直角三角形的顶点放置在空间中,运用空间几何知识来证明勾股定理。

15. 弦与切线相交定理:可以利用弦与切线相交的性质来证明勾股定理。

16. 数列方法:可以通过构造数列,运用数列的性质来证明勾股定理。

17. 微积分方法:可以通过微积分的知识来证明勾股定理。

18. 统计方法:可以通过统计实验来证明勾股定理,比如通过大量的直角三角形数据验证勾股定理成立。

19. 推广方法:可以通过勾股定理的推广形式来证明勾股定理,比如勾股定理的逆定理。

20. 全等三角形法:可以通过全等三角形的性质来证明勾股定理。

勾股定理16种证明途径

勾股定理16种证明途径

勾股定理16种证明途径勾股定理是数学中一条重要的几何定理,它指出在直角三角形中,直角边的平方和等于斜边的平方。

本文将介绍勾股定理的16种证明途径。

1. 几何证明通过构造几何图形,利用平行线、相似三角形等几何性质来证明勾股定理。

2. 代数证明通过代数运算和方程的求解,将勾股定理转化为数学问题并证明。

3. 向量证明利用向量运算和向量的性质来证明勾股定理成立。

4. 科学计算证明利用计算机科学的方法,通过数值计算和模拟实验来论证勾股定理的正确性。

5. 几何相似证明通过几何相似的定义及相关性质,推导出勾股定理。

6. 枚举证明通过穷举直角三角形的边长组合,证明勾股定理在所有情况下都成立。

7. 数学归纳法证明通过归纳论证,证明勾股定理在特定情况下成立后,再扩展到所有情况。

8. 黎曼积分证明通过计算勾股定理中的三角函数的积分,证明定理的正确性。

9. 复数证明利用复数的性质和运算,推导出勾股定理成立。

10. 微积分证明通过对直角三角形某一边长的导数和其他边长的关系进行求导证明。

11. 数学逻辑证明通过数学逻辑推理,推导出勾股定理的正确性。

12. 平行四边形证明通过利用平行四边形的性质,将勾股定理转化为平行四边形的关系来证明。

13. 矩阵证明利用矩阵的乘法和特性,将勾股定理转化为矩阵运算的问题来证明。

14. 动态几何证明通过动态几何软件进行几何运算和构造,反复演示直角三角形的变化来证明定理。

15. 平面拓扑证明通过平面拓扑的理论,引入拓扑性质讨论直角三角形构造和斜边的关系。

16. 微分几何证明通过微分几何的定理和公式,推导出勾股定理的正确性。

以上是勾股定理的16种证明途径,每种途径都有其独特的证明思路和方法。

通过了解不同的证明方式,可以更好地理解和应用勾股定理。

勾股定理的证明方法简介

勾股定理的证明方法简介

勾股定理的证明方法简介勾股定理可神奇啦,那啥是勾股定理呢?简单说就是直角三角形两条直角边的平方和等于斜边的平方。

咱现在就来唠唠它的证明方法哈。

一、毕达哥拉斯证法毕达哥拉斯这人可牛了。

他的证明方法是这样的,假设有一个直角三角形,两条直角边为a和b,斜边为c。

他构造了好多个正方形。

先以直角三角形的三边分别向外作正方形。

然后他通过一些巧妙的面积计算和拼凑。

他发现两个小正方形的面积之和正好等于大正方形的面积。

这就证明了a² + b² = c²。

你看,就这么简单又巧妙,就像搭积木一样,把面积这个东西摆弄摆弄就得出结论了。

二、赵爽弦图证法咱们中国的赵爽也超厉害的。

他画了一个大正方形,这个大正方形是由四个全等的直角三角形和中间一个小正方形组成的。

设直角三角形的两条直角边为a和b(a>b),斜边为c。

那这个大正方形的面积可以用两种方法表示。

一种是直接边长的平方,也就是c²。

另一种呢,是四个直角三角形的面积加上中间小正方形的面积。

四个直角三角形面积就是4×(1/2)ab,小正方形边长是(a - b),那小正方形面积就是(a - b)²。

这样算出来也是a² + b² = c²。

感觉咱们老祖宗的智慧真是无穷啊,用这么个图形就把这定理证得明明白白的。

三、加菲尔德证法这个加菲尔德呢,他构造了一个梯形。

这个梯形的上底是a,下底是b,高是(a + b)。

梯形的面积公式大家都知道吧,就是(上底+下底)×高÷2。

那这个梯形面积就是(a + b)(a + b)/2。

然后这个梯形又是由三个直角三角形组成的,这三个直角三角形的面积之和是(1/2)ab+(1/2)ab+(1/2)c²。

把这两个式子相等起来,化简之后也能得到a² + b² = c²。

勾股定理的证明方法还有好多好多呢,这些不同的证明方法就像不同风格的艺术品一样,各有各的美妙之处,每一种都展现了人类智慧的光辉,是不是超级有趣呢?。

勾股定理的证明方法及公式

勾股定理的证明方法及公式

勾股定理的证明方法及公式勾股定理的证明方法及常用公式勾股定理的证明方法及常用公式11、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180"18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的.一个外角大于任何一个和它不相邻的内角勾股定理的证明方法及常用公式2在欧几里得的《几何原本》一书中给出勾股定理的以下证明。

设△ABC为一直角三角形,其中A为直角。

从A点划一直线至对边,使其垂直于对边。

延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在这个定理的证明中,我们需要如下四个辅助定理:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。

(SAS)三角形面积是任一同底同高之平行四边形面积的'一半。

任意一个正方形的面积等于其二边长的乘积。

任意一个矩形的面积等于其二边长的乘积。

证明的思路为:从A点划一直线至对边,使其垂直于对边。

延长此线把对边上的正方形一分为二,把上方的两个正方形,通过等高同底的三角形,以其面积关系,转换成下方两个同等面积的长方形。

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB .又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a ba 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。

相关文档
最新文档