机械手的设计
机械手的整体设计
机械手的整体设计机械手是一种能够模拟人手动作的机器装置,主要由结构、传动、控制和感知系统组成。
其整体设计需要考虑几个关键方面。
首先,机械手的结构设计要符合其应用场景和功能需求。
结构设计包括关节布置、臂长、工作空间以及末端执行器等。
关节布置决定了机械手的灵活性和工作能力,可以根据不同的任务需求选择串联或并联的关节布置。
臂长和工作空间决定了机械手的工作范围和工件的大小。
末端执行器根据实际需要可以设计成夹爪、吸盘、工具等各种形式,以满足不同的抓取和操作需求。
其次,机械手的传动系统设计要考虑到工作精度和负载能力。
传动系统一般采用电机和减速器、齿轮系统、链条或带传动等来实现。
电机和减速器的选型要根据所需的转速和扭矩来确定。
齿轮系统要考虑到传动效率和减震能力。
链条或带传动可以实现远距离传输力矩,适合大范围操作。
第三,机械手的控制系统设计必须保证其精确度和稳定性。
控制系统要能够实时获得机械手的位置、速度和力矩等信息,并能够根据需求进行实时调节和反馈。
控制系统一般包括传感器、运动控制器和执行器等。
传感器用于检测机械手各关节的位置和力量信息。
运动控制器负责解析传感器数据,计算运动轨迹和控制机械手的运动。
执行器对机械手进行动力输出,实现各关节的运动。
最后,机械手的感知系统设计要能够实时感知并识别环境中的物体和障碍物,以实现精确的操作。
感知系统一般包括视觉、力觉和力矩传感器等。
视觉传感器可以采集环境中物体的形状、颜色等信息,并通过图像处理算法进行识别和测量。
力觉传感器可以测量机械手与工件或环境之间的力量信息,实现更加精确的操作。
力矩传感器可以测量机械手各关节的力矩和负载情况,对控制系统提供实时反馈。
总而言之,机械手的整体设计需要考虑结构、传动、控制和感知等方面,以实现各种复杂的抓取和操作任务。
从结构设计到传动系统,再到控制和感知系统的设计,都要保证各个部分之间的协调和稳定性,以满足机械手在工业自动化、物流仓储、医疗卫生等领域的应用需求。
自动上下料机械手的设计
自动上下料机械手的设计自动上下料机械手是一种能够自动完成工件的上下料任务的设备。
它主要由机械臂、夹爪、传感器、控制系统等组成,能够自动识别、抓取和放置工件。
机械手的设计需要考虑到工件的类型、重量、形状等因素,并且还需要具备高精度、高速度以及稳定可靠的特点。
在设计自动上下料机械手时,首先需要确定其工作环境和要处理的工件类型。
不同的工作环境和工件类型会影响机械手的尺寸、负载能力以及其他技术指标。
机械手的尺寸要根据工作空间的大小来设计,同时还要考虑到其机械臂的可移动范围,以便能够灵活地适应不同的工作环境。
机械手的负载能力是指其能够承载的最大重量,需要根据工件的重量来确定。
同时,还需要考虑到工件的形状和尺寸,以便夹爪能够牢固地抓取工件。
夹爪的设计需要具备可调节的功能,以便能够适应不同形状和尺寸的工件。
对于一些比较脆弱或复杂的工件,还可以设计专用的夹具来增加抓取和放置的稳定性。
机械手还需要具备高精度和高速度的特点。
高精度是指机械手能够准确地识别、抓取和放置工件,需要采用高精度的传感器和控制系统来实现。
高速度是指机械手能够在短时间内完成上下料任务,需要采用高速度的执行器和控制算法来实现。
控制系统是机械手的核心部分,可以根据工件的形状、尺寸和重量来控制机械臂和夹爪的动作。
控制系统需要能够实时地接收和处理传感器的信号,并且能够根据这些信号来控制机械手的动作。
对于一些复杂的工件,还可以采用计算机视觉技术来实现自动识别和抓取。
在设计自动上下料机械手时,还需要考虑到安全性和可靠性。
安全性是指机械手在工作过程中能够避免伤人和损坏设备的危险。
为了确保安全性,可以在机械手周围设置安全围栏和急停开关,并且在控制系统中设置相应的安全控制算法。
可靠性是指机械手能够长时间稳定地工作,需要采用可靠的执行器和传感器,并且进行适当的维护和保养。
总之,设计自动上下料机械手需要考虑到工作环境、工件类型、尺寸、重量、形状以及精度、速度、安全性和可靠性等因素。
数控机床上下料机械手设计
数控机床上下料机械手设计前言随着工业的不断发展和升级,机械制造产业已经成为了各国经济发展不可或缺的重要组成部分。
数控机床则是机械制造产业中的重要设备之一。
而数控机床上下料机械手,作为数控机床的附属设备,它的功能是在机床的输入、输出端之间自动输送加工件,减少了人力,提高了加工效率,为制造行业带来了极大的便利和效益。
本文将介绍数控机床上下料机械手的设计过程。
设计思路首先,在设计机械手之前,我们需要了解机械手的结构和工作原理。
1.机械手结构数控机床上下料机械手的结构一般分为机械手臂、机械手控制系统、夹手器、传感器和运动轴等主要部分。
其中,机械手臂是机械手的核心部件,它的结构一般采用铝合金或者碳纤维材料制作,具有较高的强度和刚度,能够承受较大的载荷;机械手控制系统则是机械手的智能核心,能够根据预设的程序进行自动化控制;夹手器则是机械手的末端执行器,用于夹持加工件;传感器则可以对加工件的位置、形状等进行检测和反馈;而运动轴则是机械手的实际运动部分,能够实现机械手的动作。
2.机械手工作原理数控机床上下料机械手的工作原理是通过控制机械手臂的运动轴和夹手器的打开、关闭,来实现机械手夹取、放置加工件的过程。
在机械手的控制系统中,我们可以预设机械手的运动轨迹和夹手器的运动规律,当接收到工艺指令后,机械手会按照预设的程序自动地执行加工件的夹取和放置操作。
在了解了机械手的结构和工作原理之后,我们可以开始设计机械手的具体实现方案。
设计方案1.机械手臂结构设计机械手臂的结构设计是机械手整体设计中的核心环节之一。
在设计机械手臂时,我们需要考虑以下几个方面:•材料的选择。
由于机械手臂需要具备较强的承载能力和刚度,因此在材料的选择上,我们可以考虑采用铝合金或者碳纤维等高强度材料,来满足机械手的结构要求。
•结构的设计。
机械手臂的结构设计需要采用工程力学理论,考虑机械手的承重和刚度等因素。
在结构设计中,需要确定机械手臂的长度、形状和悬挂方式等关键参数,保证机械手的稳定运行和准确夹取加工件的能力。
夹持式机械手方案设计
夹持式机械手方案设计一、需求背景夹持式机械手在工业自动化领域中发挥着重要的作用。
为满足客户对于夹持式机械手的需求,本文将设计一种夹持式机械手的方案,旨在提高生产效率、降低劳动成本,并同时满足安全可靠的要求。
二、方案设计1. 机械结构设计夹持式机械手的机械结构设计是关键的一环。
我们将采用三段式结构设计,分别为底座、臂和夹具。
底座用于提供机械手的稳定性和支撑力,臂用于实现机械手的柔性运动,夹具用于夹持工件。
机械结构的设计应充分考虑负载能力、运动轨迹和工作范围等因素,以提高机械手的工作效率和稳定性。
2. 控制系统设计控制系统设计是实现夹持式机械手自动化的关键。
我们将采用PLC (可编程逻辑控制器)作为控制核心,通过输入输出模块和传感器实现对机械手的控制与监测。
控制系统设计需要考虑机械手的运动控制、夹持力控制和安全保护等功能,以确保机械手的正常操作和工作安全。
3. 电气系统设计电气系统设计是机械手运行的动力保障。
我们将采用三相交流电作为机械手的供电方式,通过电气控制柜实现对电气元件的控制和保护。
电气系统设计应考虑机械手的供电要求、电源稳定性和电气安全等因素,以确保机械手的稳定运行和安全使用。
4. 软件系统设计软件系统设计是实现机械手智能化的核心。
我们将采用基于编程的方法,编写适应夹持式机械手功能的软件程序,实现机械手的自动化控制和操作。
软件系统设计应充分考虑机械手的运动规划、路径控制和异常处理等功能,以提高机械手的灵活性和智能化水平。
三、方案实施在方案实施过程中,我们将按照以下步骤进行:1. 机械结构的制造和组装:根据设计方案,制造并组装机械手的底座、臂和夹具等组成部分,在此过程中,要确保机械结构的质量和精度,以确保机械手的正常运行。
2. 控制系统的搭建和调试:根据设计方案,搭建PLC控制系统,并通过输入输出模块和传感器与机械手进行连接。
在此过程中,需要进行各个功能模块的调试与联调,确保控制系统的正常工作。
机械手设计方案
机械手设计方案机械手设计方案引言:机械手是一种能模拟人手动作、完成复杂而重复的工作的机械装置。
本方案旨在设计一种功能全面、结构合理、操作简便的机械手。
一、功能设计:该机械手主要用于工业生产中的自动化操作。
设计中考虑到以下几个方面的功能需求:1.抓取能力:机械手需要具备稳定的抓取能力,能够根据需要抓取各种形状的物体。
2.运动自由度:机械手需要具备足够多的运动自由度,能够在空间中灵活操作。
3.力度控制:机械手需要根据不同任务的要求,能够对抓取力度进行精确控制。
4.操作平稳性:机械手的运动应平稳、精确,以实现高效的生产操作。
5.可编程性:机械手应具备可编程功能,可以根据不同任务需求进行多样化的操作。
二、结构设计:机械手主要分为下列几个部分:1.机械臂:机械臂是机械手的核心部分,应具备足够多的关节,以实现多自由度的运动。
同时,机械臂需要采用轻量化设计,以减小自身质量,提高运动效率。
2.末端执行器:末端执行器是机械手抓取物体的部分,应设计可自由伸缩的抓取夹具,以适应不同尺寸的物体。
3.传动系统:传动系统是机械手的动力系统,应选择高效可靠的传动装置,如电机和减速器组合,以保证机械手运动的精确性和稳定性。
4.控制系统:控制系统是机械手的智能核心,应具备高速、高精度、可编程的控制器,以实现机械手的自动化操作。
同时,控制系统应提供友好的人机界面,方便操作者使用。
三、操作流程:机械手的操作流程可分为如下几个步骤:1.输入任务指令:操作者通过控制系统输入任务指令,包括抓取位置、力度等参数。
2.开机准备:机械手启动后,进行预热和校准动作,以确保机械手处于正常工作状态。
3.感应物体:机械手的传感器感应物体位置和大小,确定抓取位置和姿态。
4.抓取物体:机械手根据输入的指令和感应到的物体信息,进行相应的运动和力度控制,将物体抓取起来。
5.完成任务:机械手将抓取的物体移动到指定位置,完成任务,并将完成情况通过控制系统反馈给操作者。
3个自由度机械手设计
3个自由度机械手设计在机械工程领域,自由度是指机械系统能够相对于给定的参考坐标系进行自由移动的能力。
一个自由度可以定义为系统中独立运动的最小数量。
在机械手设计中,自由度是一个重要的参数,决定了机械手的灵活性和能够执行的运动任务。
以下是三个具有不同自由度的机械手设计:1.二自由度机械手二自由度机械手通常由两个旋转关节组成,分别控制机械手在水平和垂直方向上的运动。
这种机械手设计常用于需要在平面上移动和旋转物体的应用,如装配线上的零件搬运和放置。
机械手的两个关节可以通过电机和传动装置控制,使得机械手能够沿不同方向进行精确的运动。
2.三自由度机械手三自由度机械手通常由两个旋转关节和一个直线关节组成,分别控制机械手在水平、垂直和前后方向上的运动。
这种机械手设计常用于需要进行更复杂操作的应用,如工业机器人中的装配和焊接。
机械手的旋转关节可以使机械手在水平和垂直方向上进行精确的定位,直线关节可以使机械手在前后方向上进行伸缩,从而实现更加灵活的操作。
3.六自由度机械手六自由度机械手是最常见的机械手设计,通常由三个旋转关节和三个直线关节组成。
旋转关节控制机械手在水平、垂直和绕轴方向上的运动,直线关节控制机械手在前后、左右和上下方向上的运动。
这种机械手设计在许多领域中得到广泛应用,如汽车制造、医疗设备和航空航天等。
六自由度机械手的设计使得机械手能够进行复杂的运动和操作,具有较高的灵活性和精确性。
总的来说,机械手的自由度是机械手设计中的一个重要参数,决定了机械手的灵活性和能够执行的运动任务。
不同自由度的机械手适用于不同应用场景,可以根据具体需求选择合适的机械手设计。
机械手的设计
机械手的设计机械手是一种具有高度灵活性和准确性的自动化设备,广泛应用于工业生产线、医疗手术、装配和包装等领域。
机械手的设计需要考虑多方面因素,包括机械结构、电气控制和运动学算法等,下面我将从这几个方面详细介绍机械手的设计。
一、机械结构机械结构是机械手设计的核心,主要包括机械臂、关节和执行器三部分。
机械臂是机械手的主体,负责完成各种运动和动作。
关节是连接机械臂的组件,能够使机械臂在多个方向进行运动。
执行器负责将机械臂传输的运动信号转化为物理动作,例如抓取、旋转等。
机械结构的设计需要考虑以下因素:1. 功能需求:根据机械手的应用需求,确定机械手需要具备哪些功能和动作,例如抓取、旋转、移动等。
2. 机械臂的结构:机械臂的结构决定了机械手的可达性、波动和抗外力等性能。
通常有三种设计方式:串联式、并联式和混合式。
3. 关节和执行器选型:需要考虑负载、精度、速度、控制方式等因素,选择合适的关节和执行器。
4. 材料选择和加工:需要根据机械手的负载、速度和精度要求,选择合适的铝合金、碳纤维等材料,并采用先进的加工技术进行制造。
二、电气控制电气控制是机械手的另一个重要组成部分。
它负责将机械手进行的任何运动和动作转换为电信号,从而实现自动化控制和精确调节。
电气控制主要包括传感器、执行器和控制系统三个方面。
电气控制的设计需要考虑以下因素:1. 传感器:传感器能够感知机械手周围的环境信息,例如位置、速度、力矩等。
需要选择合适的传感器,避免传感器数据的误差,提高机械手的运动精度和稳定性。
2. 执行器:执行器是将电信号转换为物理动作的组件。
采用先进的执行器能够提高机械手的运动速度和精度。
3. 控制系统:控制系统是机械手的大脑,负责控制机械手的运动和动作。
需要采用先进的控制系统来保证机械手的运动稳定性和精度。
三、运动学算法运动学算法是机械手设计的重要组成部分。
它的作用是根据机械手的运动学模型,计算机械手各关节的运动轨迹和角度,从而实现机械手的各种动作和运动。
机械手的机械结构设计与精度分析
机械手的机械结构设计与精度分析一、引言机械手作为一个复杂的机电一体化系统,在现代工业中扮演着重要的角色。
它能够完成复杂的操作,如抓取、搬运、组装等,广泛应用于生产线自动化以及其他领域。
机械手的机械结构设计以及精度分析对其工作性能有着直接的影响。
本文将深入探讨机械手的机械结构设计与精度分析。
二、机械手的机械结构设计1. 关节结构设计机械手的关节结构设计是机械手设计中最关键的部分之一。
关节的设计需要兼顾结构的刚性和运动的灵活性。
常见的关节结构包括球面关节、回转关节和滑动关节等。
在设计中,需考虑关节的承载能力、运动范围和摩擦等因素,以保证关节的可靠性和稳定性。
2. 运动链设计运动链是机械手的运动组织结构,决定了机械手的工作空间和自由度。
运动链的设计需要满足机械手工作的要求,如抓取物体的大小和形状、工作速度等。
常见的运动链结构有串联结构、并联结构和混合结构等。
在设计中,需平衡机械结构的复杂性和运动灵活性,以提高机械手的工作效率和稳定性。
3. 结构材料选择机械手的结构材料选择直接关系到机械手的刚性和重量。
常见的结构材料有钢、铝合金和碳纤维等。
在选择材料时,需根据机械手的工作环境和负载要求进行综合考虑。
高刚性和低重量的材料能够提高机械手的工作精度和速度,同时也增加了机械手的成本。
三、机械手的精度分析1. 误差来源分析机械手的精度主要受到结构误差、运动误差和传感器误差等因素的影响。
结构误差包括制造和装配误差,运动误差包括机械间隙和传动误差等。
传感器误差包括测量误差和漂移误差等。
2. 精度评估方法机械手的精度评估方法通常包括静态精度和动态精度。
静态精度是指机械手在静止状态下达到的精度,可以通过点位误差和重复定位误差等指标进行评估。
动态精度是指机械手在运动状态下达到的精度,可以通过轨迹精度和速度误差等指标进行评估。
3. 精度优化方法为提高机械手的精度,可以采取一系列的优化方法。
例如,通过加强关节的刚性和减小结构误差来提高静态精度;通过控制机械间隙和传动系统的精度来提高动态精度;通过使用高精度传感器和改进控制算法来减小传感器误差等。
四自由度机械手设计
四自由度机械手设计四自由度机械手是指具有四个独立运动自由度的机械手。
它可以在三维空间内进行灵活的运动和操作,广泛应用于工业制造、医疗护理、服务机器人等领域。
本文将从机械结构设计、运动控制系统、应用领域等方面进行论述,介绍四自由度机械手的设计。
首先,机械结构设计是四自由度机械手设计的关键。
通常,机械手由机械臂、末端执行器、关节驱动装置等组成。
在设计机械臂时,需要考虑结构的刚度、轻量化和尺寸设计等因素。
关节驱动装置可以采用电机驱动、气动驱动或液压驱动等方式,根据具体应用场景选择不同的驱动方式。
末端执行器是机械手最重要的部件之一,其设计要充分考虑操控对象的形状、尺寸和质量等要素。
其次,运动控制系统是确保机械手运动精度和灵活性的关键。
四自由度机械手通常采用闭环控制系统,通过传感器实时反馈机械手的位置、速度和力等信息,通过控制器计算控制命令,控制机械手的运动。
在控制系统设计中,需要考虑传感器的精度、控制器的计算能力和控制算法的设计等因素。
常见的控制算法有PID控制、模糊控制和自适应控制等。
最后,四自由度机械手应用领域广泛。
在工业制造中,机械手可以替代人工完成重复性、危险性和高精度的任务,如焊接、装配和搬运等。
在医疗护理领域,机械手可以用于手术助力、康复训练和辅助生活等。
在服务机器人领域,机械手可以用于家庭服务、餐厅服务和残疾人辅助等。
随着无人驾驶技术的普及,机械手还可以用于车辆维修保养和物流配送等场景。
总之,四自由度机械手的设计涉及机械结构、运动控制系统和应用领域等多个方面。
通过合理设计机械结构,构建高刚性、轻量化的机械手。
运动控制系统的设计保证机械手的运动精度和灵活性。
各个应用领域广泛使用四自由度机械手,提高生产效率和人类生活质量。
随着科技的不断进步,四自由度机械手在未来的应用前景将会更为广阔。
机械手的结构设计及控制
机械手的结构设计及控制机械手是一种能像人手一样完成各种工作任务的装置。
它具有高精度、高速度和可编程性等特点,广泛应用于工业自动化领域。
机械手的结构设计和控制是实现其功能的关键。
一、机械手的结构设计1. 关节型机械手关节型机械手是由一系列的关节连接而成,每个关节都有自己的自由度。
它的结构类似于人的手臂,能够模拟人的运动,灵活度较高。
关节型机械手的结构设计注重关节的精确度和稳定性,同时需要考虑到机械手的负载能力和工作范围。
2. 直线型机械手直线型机械手由一组平行移动的臂组成,可以在一个平面内进行线性运动。
它的结构设计简单,适合进行一些简单的工作任务。
直线型机械手的关键是确保臂的平移精确度和平稳度,以及确保工作范围的有效覆盖。
3. 平行四边形机械手平行四边形机械手是一种特殊的机械手结构,它由四个平行运动的臂组成。
平行四边形机械手的结构设计需要确保四个臂的平移精确度和平稳度,以及实现机械手的高速度和高精度。
二、机械手的控制机械手的控制是指通过编程控制机械手完成各种工作任务。
机械手的控制系统一般包括硬件控制模块和软件控制模块。
1. 硬件控制模块硬件控制模块包括电机驱动器、传感器、编码器等设备。
电机驱动器用于控制机械手的运动,传感器用于获取机械手与物体的位置和姿态信息,编码器用于测量电机的位置和速度。
2. 软件控制模块软件控制模块是机械手控制系统的核心部分,负责编写控制程序并实时更新机械手的运动状态。
软件控制模块可以使用编程语言如C++、Python等来实现。
控制程序需要根据任务需求编写,包括运动规划、轨迹控制、碰撞检测等功能。
机械手控制的关键是实现精确的运动控制和优化的路径规划。
在控制程序中,需要考虑到机械手的动力学模型、碰撞检测算法以及运动规划算法等。
同时还需要考虑到外部环境的变化以及机械手与物体之间的互动。
三、机械手的应用机械手广泛应用于工业自动化领域,可以完成包括搬运、装配、焊接、喷涂、夹持等多种工作任务。
机械手设计概述
机械手设计概述机械手是一种通过电子控制的机器人手臂,其特点是具有多关节,并且可以完成各种复杂的工作。
机械手广泛应用于工业生产中,能够帮助人类完成重复性高、难度大的精细工作,大大提高了工作效率和生产质量。
机械手的设计是机械工程领域中的一项重要技术,本文将对机械手的设计概述进行介绍。
一、机械手的组成机械手通常由机械结构、控制系统、传感器和执行器四部分组成。
机械结构是机械手的物理载体,其设计包括机械臂的材料、形状、长度、关节数量等等。
控制系统是机械手的智能引擎,它可以管理和控制机械手的动作、位置、速度等参数。
传感器可以检测机械手周围的环境,控制机械手避免与其他物体进行碰撞。
执行器是机械手真正完成任务的部分,比如通过手夹进行零件抓取、松开等。
二、机械手的设计原理机械手的设计原理基于三个关键点:1)力学;2)电气学;3)控制理论。
力学主要应用于机械手的材料强度、承重能力、动态特性等方面。
电气学主要应用于控制系统的设计,包括电路、电机、传感器等。
控制理论涉及系统控制理论和数学建模技术,它能够帮助设计师对机械手的运动进行更清晰地规划和优化。
三、机械手的设计步骤1)任务分析:分析所需执行的任务,明确设计的目的和要求。
2)机械结构设计:根据任务分析的结果,确定机械手的材料、形状、长度、关节数量等参数,设计机械臂的机构、运动形式、驱动方式、末端执行器等。
3)控制系统设计:根据机械手的结构和要求,选型控制器、编码器和传感器等,完成控制系统的设计与开发。
4)机械手测试:对机械手进行测试和评估,确保其能够完成预定任务并且性能优良稳定。
5)机械手上线:在实际工作中对机械手进行应用。
四、机械手的应用领域机械手在目前的工业生产中广泛应用,特别是在汽车制造、电子设备、医疗器械、食品加工等领域。
机械手不仅可以取代人力完成精细的任务,而且由于机械手反应快、准确性高,生产效率比人类工作效率更高。
五、机械手的不足与未来发展机械手在应用中也存在一些不足之处,最突出的是柔性差,难以适应不同形状或材料的物体。
3个自由度机械手设计
3个自由度机械手设计在工业自动化领域,机械手是一种高度灵活、可编程的装置,用于执行各种重复性任务。
机械手的自由度决定了其在空间中能够完成的运动和操作。
在本文中,我们将讨论三种常见的3个自由度机械手设计。
1.旋转-伸缩-平移机械手旋转-伸缩-平移机械手通常由三个关节组成,每个关节负责一个自由度。
这种机械手的第一个关节可以使机械手绕固定基座旋转,提供良好的基本操作空间。
第二个关节负责伸缩功能,可以改变机械手的工作距离和抓取能力。
第三个关节负责平移功能,使机械手能够在水平方向上移动物体。
这种设计的机械手适用于需要在一个平面上操作的应用,例如装配、包装和搬运。
2.平移-伸缩-旋转机械手平移-伸缩-旋转机械手与旋转-伸缩-平移机械手相似,只是关节的顺序有所不同。
第一个关节负责平移功能,使机械手能够在垂直方向上移动物体。
第二个关节负责伸缩功能,可以改变机械手的工作距离和抓取能力。
第三个关节负责旋转功能,可以绕固定基座旋转。
这种设计的机械手适用于需要在垂直方向上操作的应用,例如装卸货物、搬运瓶子或管道。
3.旋转-平移-伸缩机械手旋转-平移-伸缩机械手也由三个关节组成,但关节的顺序与旋转-伸缩-平移机械手截然不同。
第一个关节负责绕固定基座旋转,第二个关节负责在垂直方向上平移,第三个关节负责伸缩功能。
这种设计的机械手适用于需要在三维空间中灵活操作的应用,例如装配零件、拆卸设备或进行复杂的精密操作。
这三种3个自由度机械手设计都在不同程度上提供了空间灵活性和操作能力。
根据具体的应用需求和可用空间,可以选择适合的设计。
此外,机械手的自由度还可以根据需要进行扩展,以适应更复杂的任务和环境。
机械手的设计和应用一直在不断发展和创新,为工业生产和自动化提供更大的便利和效率。
机器人机械手的设计要求
机械手的设计要求机械手总体结构的类型工业机器人的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。
各结构形式及其相应的特点,分别介绍如下。
1.直角坐标机器人结构直角坐标机器人的空间运动是用三个相互垂直的直线运动来实现的.由于直线运动易于实现全闭环的位置控制,所以,直角坐标机器人有可能达到很高的位置精度(μm级)。
但是,这种直角坐标机器人的运动空间相对机器人的结构尺寸来讲,是比较小的。
因此,为了实现一定的运动空间,直角坐标机器人的结构尺寸要比其他类型的机器人的结构尺寸大得多。
直角坐标机器人的工作空间为一空间长方体。
直角坐标机器人主要用于装配作业及搬运作业,直角坐标机器人有悬臂式,龙门式,天车式三种结构。
2.圆柱坐标机器人结构圆柱坐标机器人的空间运动是用一个回转运动及两个直线运动来实现的。
这种机器人构造比较简单,精度还可以,常用于搬运作业。
其工作空间是一个圆柱状的空间。
3. 球坐标机器人结构球坐标机器人的空间运动是由两个回转运动和一个直线运动来实现的。
这种机器人结构简单、成本较低,但精度不很高。
主要应用于搬运作业。
其工作空间是一个类球形的空间。
4. 关节型机器人结构关节型机器人的空间运动是由三个回转运动实现的。
关节型机器人动作灵活,结构紧凑,占地面积小。
相对机器人本体尺寸,其工作空间比较大。
此种机器人在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机器人。
手臂的设计要求机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。
在进行机器人手臂设计时,要遵循下述原则;1.应尽可能使机器人手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。
2.机器人手臂的结构尺寸应满足机器人工作空间的要求。
工作空间的形状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。
但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。
机械手的结构设计
机械手的结构设计引言机械手是一种通过伺服驱动和控制系统来模拟人手的机械装置。
它在工业生产和其他领域中有着广泛的应用,能够完成繁重、危险或需要高精度操作的任务。
机械手的结构设计是其性能和功能的关键因素之一。
本文将介绍机械手的结构设计要点,并详细讨论机械手的关节和末端执行器设计。
机械手的结构设计要点机械手的结构设计要点包括机械结构的刚性和稳定性、关节的运动范围和精度、末端执行器的定位精度和负载能力等。
以下是具体的设计要点:1.机械结构的刚性和稳定性机械手的机械结构必须具有足够的刚性和稳定性,以确保在运动过程中不会出现过大的变形和振动。
为了提高机械结构的刚性,可以采用优质材料和适当的结构设计,例如增加加强筋和加强支撑结构。
2.关节的运动范围和精度关节是机械手中用于连接各个部件的关键部分,其运动范围和精度对机械手的性能影响很大。
关节的运动范围应能够覆盖所需操作的工作空间,并且需要具备足够的精度,以保证准确的定位和操作。
为了提高关节的精度,可以采用高精度的传感器和控制系统。
3.末端执行器的定位精度和负载能力末端执行器是机械手的工具部分,用于实际操作和执行任务。
末端执行器的定位精度和负载能力直接影响机械手的功能和应用范围。
为了提高末端执行器的定位精度,可以采用精密的传动机构和驱动系统,并进行合理的校准和校验。
为了提高末端执行器的负载能力,可以采用足够强度和刚度的材料,适当加强结构设计。
4.安全和可靠性机械手在工业生产中常常承担重要和危险的任务,因此安全和可靠性是非常重要的设计要点。
机械手的结构设计应考虑到不同应用场景的安全需求,例如设置安全保护装置、优化布局和减少潜在风险。
关节的设计关节是机械手中的关键组成部分,直接影响机械手的运动范围和精度。
以下是关节设计的要点:1.关节类型和结构关节可以分为旋转关节和平移关节两种类型。
旋转关节允许机械手在某个轴向上进行旋转运动,而平移关节允许机械手在某个轴向上进行线性运动。
三轴机械手设计方案
三轴机械手设计方案随着工业自动化技术的快速发展,机械手在现代工业生产中发挥着重要的作用。
三轴机械手是一种常见的机械手型号,其通过三个轴向的运动实现对物体的抓取、传送和放置等操作。
下面是一个三轴机械手的设计方案。
首先,需要确定机械手的尺寸和载荷要求。
根据生产线上的工作环境和物体的尺寸、重量等特性,确定机械手的尺寸和载荷要求。
一般来说,三轴机械手的尺寸较小,适合用于细小物体的操作,而载荷要求一般在1-10kg之间。
接下来,选择合适的执行器和传感器。
执行器负责机械手的运动,可以选择气动、液压或电动执行器。
根据工作环境和精度要求,选择合适的执行器。
同时,为了实现对物体姿态的感知和控制,需要安装传感器,如位置传感器、力传感器和视觉传感器等。
然后,设计机械手的机构。
三轴机械手一般采用串联机构或并联机构。
串联机构由各关节依次连接构成,适用于较大的承载能力要求;而并联机构由几个关节同时作用于执行器,具有较高的刚度和精度,适用于高精度要求的场合。
根据实际需求,选择合适的机构。
此外,需要考虑机械手的控制系统。
控制系统由控制器、控制算法和接口等组成,负责对机械手的运动和姿态进行控制。
控制系统可以使用PLC、单片机或计算机等设备,通过编程实现对机械手的控制。
根据控制要求和预算限制,选择合适的控制系统。
最后,进行机械手的装配和调试。
按照设计图纸,进行机械手的零部件加工、装配和调试工作。
确保机械手各部件的质量和安装精度,保证机械手的正常运行。
综上所述,三轴机械手设计方案包括确定尺寸和载荷要求、选择执行器和传感器、设计机构、设计控制系统以及机械手的装配和调试。
通过科学合理的设计和精心制造,三轴机械手可以实现对物体的灵活准确的操作,提高生产效率和质量。
机械手手部的设计计算
机械手手部的设计计算1.1 手部设计基本要求(1)应具有适当的夹紧力和驱动力。
应当考虑到在一定的夹紧力下,不同的传动机构所需的驱动力大小是不同的。
(2)手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭合绕支点所转过的角度)γ∆,以便于抓取工件。
(3)要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。
(4)应保证手抓的夹持精度。
1.2 典型的手部结构(1)回转型包括滑槽杠杆式和连杆杠杆式两种。
(2)移动型移动型即两手指相对支座作往复运动。
(3)平面平移型。
1.3 机械手手抓的设计计算1.1.1 选择手抓的类型及夹紧装置本设计是设计平动搬运机械手的设计,考虑到所要达到的原始参数:手抓张合角γ∆=060,夹取重量为60Kg。
常用的工业机械手手部,按握持工件的原理,分为夹持和吸附两大类。
吸附式常用于抓取工件表面平整、面积较大的板状物体,不适合用于本方案。
本设计机械手采用夹持式手指,夹持式机械手按运动形式可分为回转型和平移型。
平移型手指的张开闭合靠手指的平行移动,这种手指结构简单, 适于夹持平板方料, 且工件径向尺寸的变化不影响其轴心的位置, 其理论夹持误差零。
若采用典型的平移型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。
显然是不合适的,因此不选择这种类型。
通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。
夹紧装置选择常开式夹紧装置,它在弹簧的作用下机械手手抓闭和,在压力油作用下,弹簧被压缩,从而机械手手指张开。
1.1.2 手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆 图1.1(a )为常见的滑槽杠杆式手部结构。
(a)(b)图1.1 滑槽杠杆式手部结构、受力分析1——手指 2——销轴 3——杠杆在杠杆3的作用下,销轴2向上的拉力为F ,并通过销轴中心O 点,两手指1的滑槽对销轴的反作用力为F 1和F 2,其力的方向垂直于滑槽的中心线1oo 和2oo 并指向o 点,交1F 和2F 的延长线于A 及B 。
四个自由度气动机械手结构设计
四个自由度气动机械手结构设计四个自由度气动机械手是一种具有四个独立运动自由度的机械手,常用于工业生产线上的自动化操作。
它采用了气动驱动技术,能够在高速下快速、准确地完成各种复杂任务。
在这篇文章中,将介绍四个自由度气动机械手的结构设计。
四个自由度气动机械手一般由基座、转台、前臂、前臂臂杆以及末端执行器等主要部件组成。
其中,基座是机械手的支撑部分,承载机械手的整体结构;转台是机械手的第一旋转关节,使机械手能够在水平面上进行转动;前臂是机械手的第二旋转关节,使机械手能够在竖直方向上进行旋转;前臂臂杆是机械手的伸缩部分,通过伸缩前臂臂杆,可以使机械手的工作范围更加灵活;末端执行器是机械手的最后一个关节,通过末端执行器可以实现机械手的精确定位和抓取动作。
在四个自由度气动机械手的设计中,需要考虑以下几个方面:结构刚度、重量、精度和可靠性。
首先,结构刚度是机械手设计的重要指标之一、为了保证机械手在高速运动中不产生振动和形变,需要采用合适的结构材料和设计参数,提高机械手的整体刚度。
其次,重量是机械手设计的另一个重要指标。
较轻的机械手可以提高其加速度和速度,使其能够更快地完成任务。
因此,在设计中需要尽量减小机械手的自重,采用轻量化的材料。
第三,精度是机械手设计的关键要素之一、在一些需要高精度定位和抓取的任务中,机械手需要具备较高的精度。
在设计中,需要合理选择驱动器、传感器和控制系统,以确保机械手的精确定位和抓取动作。
最后,可靠性是机械手设计的关键要素之一、机械手在工作过程中需要承受较大的负载和惯性力,因此需要采用可靠的结构和驱动系统,以保证机械手在长时间工作中不发生故障。
总结而言,四个自由度气动机械手的结构设计涉及结构刚度、重量、精度和可靠性等多个方面。
在设计过程中,需要综合考虑这些因素,选择合适的驱动器、传感器和控制系统,以实现机械手的高速、准确和可靠的运动。
这样的机械手在工业生产线上能够提高生产效率,实现自动化操作。
搬运机械手的设计
搬运机械手的设计引言搬运机械手作为一种自动化设备,在工业生产中起着重要的作用。
它能减少人力投入,提高生产效率,降低劳动强度,增强生产线的稳定性等。
本文将介绍搬运机械手的设计原理及其相关技术要点。
设计原理搬运机械手的设计基于以下几个原理:1. 动力系统搬运机械手通常使用电动传动系统,其中包括电机、减速器和传动链条。
电机提供动力,减速器将电机的转速降低并提高扭矩,传动链条将转动动力传递到机械手的关节上。
2. 传感器系统搬运机械手需要通过传感器感知目标位置和状态,以便准确地进行搬运操作。
常用的传感器包括光电传感器、压力传感器、力传感器等。
3. 控制系统搬运机械手的控制系统负责接收传感器反响的信息,并根据预设的程序进行运动控制。
控制系统通常采用微处理器或PLC控制器,并通过编程实现机械手的自动化操作。
4. 结构设计搬运机械手的结构设计包括机械臂、夹爪和基座等局部。
机械臂由多个关节组成,可以实现各种自由度的运动。
夹爪用于抓取和放置物体,可以根据具体需求选择不同类型的夹爪。
基座用于支撑机械臂,并提供稳定的运动平台。
技术要点在设计搬运机械手时,需要注意以下技术要点:1. 选用适宜的动力系统根据需要进行搬运的物体的质量和大小,选择适当的电机功率和减速比。
要确保动力系统能够提供足够的扭矩和速度,以满足搬运操作的需求。
2. 使用适宜的传感器系统根据需要感知的信息类型选择适宜的传感器。
例如,使用光电传感器可以实现对物体位置和形状的检测,使用压力传感器可以实现对物体重量的检测。
3. 优化控制算法设计控制系统时,应根据具体情况优化控制算法,以提高机械手的运动速度和精度。
例如,可以采用反响控制算法实现位置闭环控制,以消除因外界干扰而引起的误差。
4. 结构设计的灵巧性为适应不同的搬运需求,机械臂的设计应具备一定的灵巧性。
例如,可以设计多关节机械臂,以实现更多自由度的运动,从而适应不同的工作环境和操作需求。
结论搬运机械手的设计是一个复杂而重要的过程。
搬运机械手设计说明
搬运机械手设计说明一、引言搬运机械手是一种用来替代人工进行搬运工作的机器装置。
它能够自动化地完成搬运、装卸、堆码等工作,提高生产效益、减少劳动强度,并且能适应各种环境和工作场合。
本设计说明旨在介绍一款搬运机械手的设计原理、结构及工作流程。
二、设计原理1.机械传动原理:采用电机驱动系统,通过齿轮、链条、皮带等传动装置将电机的旋转运动转换为机械手运动,实现搬运、举升等功能。
2.传感器原理:通过激光、红外线、压力传感器等传感器,实时感知物体的位置、形状、质量等参数,并将这些信息传输给控制系统。
3.控制系统原理:采用单片机或PLC控制系统,根据传感器反馈的信息,对机械手的动作进行控制和调整,实现精确的搬运操作。
三、结构设计1.底座:底座是机械手的支撑和固定部分,通常采用铸造或焊接工艺制作,保证机械手的稳定性和刚性。
2.臂架:臂架由多个可调节的关节构成,用于支撑和控制机械手的运动,臂架材料可以选用铝合金等轻质材料,以提高机械手的灵活性和运动速度。
3.夹具:夹具是机械手与被搬运物体直接接触的部分,通常采用夹爪或磁力吸盘等形式,以实现对物体的抓取和释放。
4.末端执行器:末端执行器是机械手的最后一段,可以根据具体需求选用吸盘、夹爪、工件接触面等不同形式,以适应不同尺寸、重量和形状的物体。
四、工作流程1.运动控制:通过操纵系统控制机械手的关节运动,将机械手移动到目标位置。
2.物体感应:通过传感器感知被搬运物体的位置、形状、质量等信息。
3.夹持物体:根据物体的尺寸和形状,选择合适的夹具进行夹持。
4.搬运操作:机械手将物体从起始位置移动到目标位置,并根据需要进行旋转、举升等动作。
5.放置物体:机械手将物体安放到目标位置,并释放夹具。
五、安全考虑在设计搬运机械手时,需要考虑以下安全因素:1.机械手运动范围的限定,避免碰撞或损坏设备。
2.夹具的设计要保证夹持力度适中,既要夹持住物体,又不能造成物体损坏。
3.传感器的准确性和可靠性,确保机械手能够准确感知物体的位置、形状等信息。
机械手毕业设计
引言:机械手是一种可以代替人工完成各种动作的设备,广泛应用于工业生产、医疗服务、物流配送等领域。
机械手的设计和研发是机械工程专业学生毕业设计的重要内容之一。
本文将详细介绍机械手毕业设计的相关内容,包括设计目标、设计流程、设计方法和设计考虑因素等方面的内容。
概述:机械手毕业设计的主要目标是设计出一种能够完成特定任务的机械手,并考虑到其性能、精度、稳定性、安全性等因素。
设计流程一般包括问题分析、需求制定、方案设计、模型制作、系统调试和性能评估等阶段。
在设计过程中,需要综合考虑机械结构、传动系统、控制系统等多个方面的因素,并充分利用现代技术手段进行辅助设计和分析。
下面将分别详细介绍机械手毕业设计的五个大点。
正文:1.机械手的结构设计1.1机械结构的选择1.2关节设计原则1.3机械手的材料选择1.4结构设计的优化方法1.5结构设计的特殊考虑因素2.机械手的传动系统设计2.1传动方式的选择2.2传动比的确定2.3传动装置的选择2.4传动精度和稳定性的考虑2.5传动系统的优化设计3.机械手的控制系统设计3.1控制系统的结构选择3.2控制方式的选择3.3传感器的选取与布局3.4控制算法的设计3.5控制系统的调试与优化4.机械手的安全性设计4.1安全设备的选配4.2急停保护措施4.3碰撞检测与避免4.4负载限制和过载保护4.5安全操作规程的建立5.机械手的性能评估和实验验证5.1性能指标的制定5.2实验方案和数据采集5.3数据分析和性能评估5.4实验结果的验证与比对5.5优化改进和进一步研发的建议总结:机械手毕业设计是机械工程专业学生的重要任务,设计的好坏直接影响到机械手的性能和实际应用效果。
在设计过程中,需要综合考虑机械结构、传动系统、控制系统和安全性等多个因素,采用合适的设计方法和工具进行辅助分析和优化。
还需要通过性能评估和实验验证来验证设计的可行性和有效性,并提出进一步改进的建议。
通过机械手毕业设计的实践,学生不仅可以加深对机械原理和设计方法的理解,还能培养团队合作、问题解决和创新思维等能力,为未来的工作和学习奠定坚实基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 前言1.1 国内外发展概况]1[机械手首先是美国开始研制的。
1958年美国联合控制公司研制出第一台机械手。
它的结构是:机体上安装一个回转长臂,顶部装有电磁块的工件抓放机构,控制系统是示教型的。
1962年,美国联合控制公司在上述方案的基础上又试制成一台数控示教再现型机械手。
商名为Unimate(即万能自动)。
运动系统仿照坦克炮塔,臂可以回转、俯仰、伸缩、用液压驱动;控制系统用磁鼓作为存储装置。
不少球坐标通用机械手就是在这个基础上发展起来的。
同年该公司和普鲁曼公司合并成立万能自动公司,专门生产工业机械手。
1962年美国机械制造公司也实验成功一种叫Vewrsatran机械手。
该机械手的中央立柱可以回转、升降采用液压驱动控制系统也是示教再现型。
虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。
1978年美国Unimate公司和斯坦福大学,麻省理工学院研究Unimate-Vicarm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差小于±1毫米。
联邦德国机械制造业是从1970年开始应用机械手,主要用于喷涂、起重运输、焊接和设备的上下料等作业。
联邦德国KnKa公司还生产一种喷涂机械手,采用关节式结构和程序控制。
日本是机械手发展最快、应用最多的国家。
自1969年从美国引进两种机械手后大力从事机械手的研究。
前苏联自六十年代开始发展和应用机械手,至1977年底,其中一半是国产,一半是进口。
目前,工业机械手大部分还属于第一代,主要依靠工人进行控制;改进的方向主要是降低成本和提高精度。
第二代机械手正在加紧研制。
它设有微型电子计算控制系统,具有视觉、触觉能力,甚至听、想的能力。
研究安装各种传感器,把感觉到的信息反馈,是机械手具有感觉机能。
第三代机械手则能独立完成工作中过程中的任务。
它与电子计算机和电视设备保持联系,并逐步发展成为柔性制造系统FMS和柔性制造单元FMC中的重要一环。
1.1.1 研究现状自上世纪90年代以来,随着计算机技术、微电子技术和网络技术的迅猛发展,机器人技术也得到了飞速发展。
原本用于生产制造的工业机器人水平不断提高,各种用于非制造业的先进机器人系统也有了长足的进展。
机器人的各种功能被相继开发并得到不断增强,机器人的种类不断增多,机器人的应用领域也从最初的工业控制拓展到各行各业,从军事到民用,从天上到地下,从工业到农业、林、牧、渔,从科研探索到医疗卫生行业,从生产领域到娱乐服务行业,甚至还进入寻常百姓家。
工业机器人的结构形式很多,常用的有直角坐标式、柱面坐标式、球面坐标式、多关节坐标式、伸缩式、爬行式等等,根据不同的用途还在不断发展之中。
喷涂机器人根据不同的应用场合可采取不同的结构形式,但目前用得最多的是模仿人的手臂功能的多关节式的机器人,这是因为多关节式机器人的手臂灵活性最大,可以使喷枪的空间位置和姿态调至任意状态,以满足喷涂需要。
理论上讲,机器人的关节愈多,自由度也愈多,关节冗余度愈大,灵活性愈好;但同时也给机器人逆运动学的坐标变换和各关节位置的控制带来复杂性。
因为喷涂过程中往往需要把以空间直角坐标表示的工件上的喷涂位置转换为喷枪端部的空间位置和姿态,再通过机器人逆运动学计算转换为对机器人每个关节角度位置的控制,而这一变换过程的解往往不是唯一的,冗余度愈大,解愈多。
如何选取最合适的解对机器人喷涂过程中运动的平稳性很重要。
不同的机器人控制系统对这一问题的处理方式不尽相同。
1.1.2 发展趋势]2[工业机器人技术发展与应用水乳交融。
在第一代工业机器人普及的基础上,第二代已经推广,成为主流安装机型,第三代智能机器人已占有一定比重。
以应用为龙头拉动工业机器人技术的发展,其重点发展领域与技术特点体现在下述方面:(1)机械结构(a)以关节型为主流,80年代发明的适用于装配作业的平面关节型机器人约占总量的l/3(目前世界工业机器人总数约为750000台),90年代初开发的适用于窄小空间、快节奏、360度全工作空间范围的垂直关节型机器人大量用于喷涂、焊接和上下料。
(b)应3K(炼钢、炼铁、铸锻)行业和汽车、建筑、桥梁等行业需求,喷涂机器人应运而生。
(c)己普遍采用CAD、CAM等技术用于设计、仿真与制造中。
(2)控制技术(a)大多数采用32位CPU,控制轴多达27轴,NC技术和离线编程技术大量采用。
(b)协调控制技术日趋成熟,实现了多手与变位机、多机器人的协调控制,正逐步实现多智能体的协调控制。
(c)基于PC的开放式结构控制系统由于成本低并具有标准现场网络功能,己成为一股潮流。
(3)驱动技术上世纪80年代发展起来的AC伺服驱动已成为主流驱动技术用于工业机器人中。
日本23家机器人公司于1998年生产的168种型号机器人产品,其中采用AC伺服驱动的有156种,占93.4%。
直接驱动技术则广泛用于装配机器人中。
新一代的伺服电机与基于微处理器的智能伺服控制器相结合,已由日本FANUC 公司开发并用于工业机器人中;在远程控制中已采用了分布式智能驱动新技术。
(4)智能化的传感器多有应用在上述167种机型中,装有视觉传感器的有94种,占56.3%,不少机器人装有两种传感器,有些机器人留下了多种传感器接口。
(5)高速、高精度、多功能化目前所知最快的装配机器人最大合成速度为16.5m/s;高精度机器人的位置重复性为正负0.01mm.有一种大直角坐标喷涂机器人,其最大合成速度达80m/s;而另一种并联机构的NC机器人,其位置重复性达l um。
90年代末的机器人一般都具有两、三种功能。
最近瑞典Neos公司开发出一种高精度、高可靠性的可喷涂、切割、钻孔、铣削、磨削、装配、搬运的多功能机器人,用于多家著名汽车厂和飞机公司。
(6)集成化与系统化1998年ABB公司推出IRbl400系列小机器人,其循环时间只有0.4s,控制器包括软件、高压电、驱动器、用户接口等皆集成于一柜,只有洗衣机变换器那样大小。
FANUC公司2000年9月宣称它的控制器为世界最小。
工业机器人的应用从单机、单元向系统发展。
多达百台以上的机器人群与微机及周边智能设备和操作人员形成一个大群体(多智能体)。
跨国大集团的垄断和全球化的生产将世界众多厂家的产品联接在一起,实现了标准化、开放化、网络化的“虚拟制造”,为工业机器人系统化的发展推波助澜。
在国内主要是逐步扩大应用范围,重点发展喷涂、铸造、热处理方面的机械手,以减轻劳动强度,改善工人作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。
将机械手各运动构件,如伸缩、摆动、升降、横移、俯仰等机构以及根据不同类型的加紧机构,设计成典型的通用机构,所以便根据不同的作业要求选择不同类型的基加紧机构,即可组成不同用途的机械手。
既便于设计制造,有便于更换工件,扩大应用范围。
同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。
此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。
在国外机械制造业中工业机械手应用较多,发展较快。
目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。
此外,国外机械手的发展趋势是大力研制具有某种智能的机械手。
使它具有一定的传感能力,能反馈外界条件的变化,并作相应的变更。
如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能。
目前已经取得一定成绩。
视觉功能即在机械手上安装有电视照相机和光学测距仪(即距离传感器)以及微型计算机。
工作是电视照相机将物体形象变成视频信号,然后送给计算机,以便分析物体的种类、大小、颜色和位置,并发出指令控制机械手进行工作。
更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。
1.2 课题来源本设计的课题是喷涂机器人臂部与手部的设计,主要是臂部和腕部的结构设计及其零件设计。
此课题来源于生产实际,是针对目前手工喷涂效率低,操作环境差,而且对操作员技术熟练程度要求高,因此采用机器人技术,可以实现喷涂工作的柔性自动化,提高产品质量与劳动生产率,实现生产过程的自动化,改善劳动条件。
1.3 技术要求及预期效果根据设计要达到以下要求:对喷涂机器人机械臂结构及小臂自重平衡系统进行设计。
喷涂工件外形尺寸800mm x500mm x500mm(长x宽x髙);机械臂的结构尺寸为:大臂长约700mm左右,小臂长约800mm左右,臂杆横截面尺寸≤ 100mm x100mm;手部尺寸约150mm左右;小臂摆角80°(上摆30°,下摆50°)。
对影响自重平衡的主要结构参数进行优化设计与计算,示教时的不平衡力≤2kg。
此次设计的垂直多关节机器人可以实现大臂小臂的旋转,手腕的旋转与摆动。
此装置应用在喷涂生产线上将大大提高生产效率和质量,降低了工人的劳动强度,能够带来可观的经济效益。
1.4 本课题要解决的主要问题及设计总体思路本课题要解决的问题有以下二个:(1)手腕处于手臂末端,需减轻手臂的载荷,力求手腕部的结构紧凑,减少重量和体积。
(2)设计小臂的平衡系统,使小臂在撤除驱动力的情况不会发生突发性转动。
针对上述问题有了以下设计思路:(1)手腕部机构的驱动装置采用分离传动,采用传动轴,将驱动器安置在小臂的后端。
(2)驱动电机经联轴器与传动轴驱动一对圆柱齿轮和一对圆锥齿轮传动来带动手腕作偏摆运动。
(3)手部的驱动电机安装在小臂内部,以此来减轻手部的重量,让手部能够作灵活的运动。
(4)对于小臂平衡是采用重力平衡的方式,及在小臂末端放置铁块。
2 总体方案设计2.1 机械结构类型的确定为实现总体机构在空间位置提供的4个自由度,可以有不同的运动组合,根据本课题的要求现可以将其设计成关节型机器人。
关节型又称回转坐标型,这种机器人的手臂与人体上肢类似,其前三个关节都是回转关节,这种机器人一般由立柱和大小臂组成,立柱与大臂间形成肩关节,大臂和小臂间形成肘关节,可使大臂作回转运动和使大臂作俯仰摆动,小臂作俯仰摆动。
其特点是工作空间范围大,动作灵活,通用性强,工艺操作精度高。
图2.1 整体原理图2.2 传动方案的确定图2.1是机器人小臂与腕部机械传动系统的简图。
机械传动系统共有4个齿轮,为了实现在同一平面改变传递方向90°,有2个齿轮为圆锥齿轮,有利于简化系统运动方程式的结构形式。
如果采用蜗轮蜗杆结构,则必然以空间交叉方式变向,就不利于简化系统运动方程式的结构形式。
其中有2个齿轮为直齿圆柱齿轮,用于减速。
小臂的结构形式是由内部铝制的整体铸件骨架与外表面很薄的铝板壳相互胶接而成。