2020年西藏中考数学试卷
2020年西藏中考数学试卷(含详细解析)
此题主要考查了有理数的加法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.
2.C
【解析】
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
23.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.
24.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.
C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2
5.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()
A.8B.9C.10D.11
6.下列运算正确的是( )
A.2a•5a=10aB.(-a3)2+(-a2)3=a5
C.(-2a)3=-6a3D.a6÷a2=a4(a≠0)
7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是( )
3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为( )
A.16×106B.1.6×107C.1.6×108D.0.16×108
4.下列分解因式正确的一项是( )
A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)
西藏2020年中考数学试题(Word版,含答案与解析)
西藏2020年中考数学试卷一、选择题(共12题;共24分)1.20+(﹣20)的结果是()A. ﹣40B. 0C. 20D. 40【答案】B【考点】有理数的加法【解析】【解答】解:20+(﹣20)=0.故答案为:B.【分析】根据互为相反数的两个数的和为0即可得出答案.2.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:从上面看,是一个矩形,矩形的中间是一个圆.故答案为:C.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A. 16×106B. 1.6×107C. 1.6×108D. 0.16×108【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:16000000=1.6×107.故答案为:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.4.下列分解因式正确的一项是()A. x2﹣9=(x+3)(x﹣3)B. 2xy+4x=2(xy+2x)C. x2﹣2x﹣1=(x﹣1)2D. x2+y2=(x+y)2【答案】A【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故答案为:A.【分析】将一个多项式化为几个整式的乘积形式的恒等变形就是因式分解,因式分解必须分解到每一个因式都不能再分解为止,从而即可一一判断得出答案.5.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A. 8B. 9C. 10D. 11【答案】C【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故答案为:C.【分析】利用多边形的内角和公式得该多边形的内角度数为(n-2)×180°,而任何多边形的外角和都为360°,从而利用“ 多边形的内角和是外角和的4倍”列方程即可解决问题.6.下列运算正确的是()A. 2a•5a=10aB. (-a3)2+(-a2)3=a5C. (-2a)3=-6a3D. a6÷a2=a4(a≠0)【答案】 D【考点】同底数幂的除法,单项式乘单项式,整式的混合运算,积的乘方【解析】【解答】解:A、2a•5a=10a2≠10a,本选项计算错误;B、(-a3)2+(-a2)3=a6-a6=0≠a5,本选项计算错误;C、(-2a)3=-8a3≠-6a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确.故答案为:D.【分析】根据单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法法则依次计算,判断即可.7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A. ∠ADB=90°B. OA=OBC. OA=OCD. AB=BC【答案】 D【考点】菱形的判定【解析】【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意.故答案为:D.【分析】根据菱形的判定定理和矩形的判定定理分别对各个选项进行推理判断即可.8.格桑同学一周的体温监测结果如下表:分析上表中的数据,众数、中位数、平均数分别是()A. 35.9,36.2,36.3B. 35.9,36.3,36.6C. 36.5,36.3,36.3D. 36.5,36.2,36.6【答案】C【考点】分析数据的集中趋势【解析】【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;×(36.3+35.9+36.5+36.3+36.1+36.5+36.3)=36.3.平均数是17故答案为:C.【分析】众数是指一组数据中出现次数最多的数;中位数是指一组数据按序排列后①偶数个数据时,中间两个数的平均数就是这组数据的中位数;②奇数个数据时,中间的数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.根据定义即可求解.9.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A. 3B. 4C. 5D. 6【答案】 A【考点】一次函数的实际应用【解析】【解答】解:设y 与x 的函数关系式为y =kx+b ,{b =69k +b =10.5, 解得, {k =0.5b=6 , 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故答案为:A.【分析】根据题目中的函数图象,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.10.如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E.若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A. 43π−√3B. 43π−2√3C. 83π−√3D. 83π−2√3【答案】 D【考点】垂径定理,扇形面积的计算【解析】【解答】解:∵OD ⊥AC ,∴∠ADO =90°, AE⌢ = CE ⌢ ,AD =CD , ∵∠CAB =30°,OA =4,∴OD = 12 OA =2,AD = √32 OA =2 √3 , ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅π×42360 ﹣ 12×2√3 ×2= 8π3 ﹣2 √3 ,故答案为:D. 【分析】根据垂径定理得到 AE ⌢ = CE ⌢ ,AD =CD ,解直角三角形得到OD = 12 OA =2,AD = √32OA =2 √3 ,根据扇形和三角形的面积公式即可得到结论.11.如图,在平面直角坐标系中,直线y =x 与反比例函数y = 4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C.若OA =2BC ,则b 的值为( )A. 1B. 2C. 3D. 4【答案】C【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题,相似三角形的判定与性质【解析】【解答】解:∵直线y=x与反比例函数y=4x(x>0)的图象交于点A,∴解x=4x求得x=±2,∴A的横坐标为2,如图,过C点、A点作y轴垂线,∵OA//BC,∴∠CBG=∠AOH,∴△OHA∼△BGC,∵OA=2BC,∴OABC =AHGC=2,∴2BCBC =2GC,解得GC=1,∴C的横坐标为1,把x=1代入y=4x得,y=4,∴C(1,4),∵将直线y=x沿y轴向上平移b个单位长度,得到直线y=x+b,∴把C的坐标代入得4=1+b,求得b=3,故答案为:C.【分析】解析式联立,解方程求得A的横坐标,根据定义求得C的横坐标,把横坐标代入反比例函数的解析式求得C的坐标,代入y=x+b即可求得b的值.12.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A. 18 B. 19 C. 20 D. 21【答案】A【考点】探索数与式的规律【解析】【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n−1)+1=6n−5,所以6n−5=103,解得n=18.答:第n个相同的数是103,则n等于18.故答案为:A.【分析】根据探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是6(n−1)+ 1=6n−5,进而可得n的值.二、填空题(共6题;共6分)13.若√x+3在实数范围内有意义,则实数x的取值范围是________.【答案】x≥-3【考点】二次根式有意义的条件【解析】【解答】解:∵√x+3在实数范围内有意义∴x+3≥0∴x≥−3故答案为:x≥−3.【分析】根据二次根式有意义的条件,二次根号下的数非负的性质,列出不等式,解不等式即可得出本题答案.14.分式方程2x−1=3x+1的解为________.【答案】x=5【考点】解分式方程【解析】【解答】解:方程两边同时乘以(x-1)(x+1),得:2x+2=3x﹣3,解得:x=5,检验:当x=5时(x-1)(x+1)≠0,所以x=5是分式方程的解,故答案为:x=5.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.15.计算:(π﹣1)0+|﹣2|+ √12=________.【答案】3+2 √3【考点】实数的运算【解析】【解答】解:(π﹣1)0+|﹣2|+ √12=1+2+2 √3=3+2 √3.故答案为:3+2 √3.【分析】首先根据0指数的意义、绝对值的意义、二次根式的性质分别化简,然后从左向右依次计算,求出算式的值是多少即可.16.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若点E,F为圆心,大于12∠B=140°,则∠DHA=________.【答案】20°【考点】平行线的性质,平行四边形的性质【解析】【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠BAD=180°﹣140°=40°,由作法得AH平分∠BAD,∴∠BAH=∠DAH,∴∠BAD=1∠BAD=20°,2∵AB∥CD,∴∠DHA=∠BAH=20°.故答案为:20°.【分析】先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.由作法得AH平分∠BAD,所以∠BAD=1217.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.【答案】10【考点】二次函数的最值,二次函数y=ax^2+bx+c的性质【解析】【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10.故答案为:10.【分析】首先将二次函数的解析式配成顶点式,根据该函数的开口向上,故图象上的点离对称轴的水平距离越大,函数值就越大,从而即可解决问题.18.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PBE,连接CF.若AB=10,BC=12,则CF的最小值为________.【答案】8【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=√BE2+BC2=√52+122=13,∴CF=CE﹣EF=13﹣5=8.故答案为:8.【分析】点F在以E为圆心、EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,再根据折叠的性质得到BE=EF=5即可.三、解答题(共7题;共50分)19.解不等式组:{x+1<22(1−x)⩽6并把解集在数轴上表示出来.【答案】解:解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后根据数轴上表示不等式组的解集的方法“大向右,小向左,实心等于,空心不等”在数轴上表示出来即可.20.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE =∠CAD.求证:DE=CB.【答案】证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,{AD=AC∠DAE=∠CABAE=AB,∴△ADE≌△ACB(SAS),∴DE=CB.【考点】三角形全等及其性质,三角形全等的判定(SAS)【解析】【分析】先由角的和差性质证得∠DAE=∠CAB,再根据SAS定理证明△ADE≌△ACB,最后根据全等三角形的对应边相等得出DE=CB.21.某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.【答案】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)=416=14【考点】列表法与树状图法【解析】【分析】先根据题意画出树状图,由图可知:共有16种等可能的结果,两名同学选到相同项目的为4种情况,从而根据概率公式即可算出答案.22.如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).【答案】解:在Rt△ACF中,∵∠ACF=60°,AC=7米,∴AF=AC•tan60°=7 √3米,∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15× √3=5 √3米,3∴EF=AF﹣AE=7 √3﹣5 √3=2 √3(米),答:信号塔EF的高度为2 √3米.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】在Rt△ACF中,根据正切函数的定义由AF=AC•tan60°算出AF的长,在Rt△ABE中,根据正切函数的定义由AE=AB•tan30° 得到AE的长,进而根据EF=AF﹣AE 得到结论.23.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【答案】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.【考点】一元二次方程的实际应用-几何问题【解析】【分析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1﹣2x)m,根据茶园的面积为600m2,列出方程并解答.24.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.【答案】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∵△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=8.【考点】圆周角定理,切线的判定与性质(1)连接OD,OE,根据切线的性质得到∠DAB=90°,从而利用SSS判断出△ADO≌△EDO,【解析】【分析】根据全等三角形的对应角相等得到∠OED=∠OAD=90°,于是得到CD是⊙O的切线;(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH=BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD﹣BC=AD﹣4,CD=AD+4,根据勾股定理即可得到结论.25.在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,PA,PC,若S△PAC=152,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.【答案】(1)解:∵二次函数y=12x2+bx+c的图象与x轴交于A(−2,0),B(4,0)两点,∴二次函数的解析式为y=12(x+2)(x−4),即y=12x2−x−4.(2)解:如图甲中,连接OP.设P(m,12m2−m−4).由题意,A(−2,0),C(0,−4),∵SΔPAC=SΔAOC+SΔOPC−SΔAOP,∴152=12×2×4+12×4×m−12×2×(−12m2+m+4),整理得,m2+2m−15=0,解得m=3或−5(舍弃),∴P(3,−52).(3)解:结论:点P在运动过程中线段DE的长是定值,DE=2.理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,12(m+2)(m−4)],E(m,n).由题意A(−2,0),AM=PM,∴32+t2=(m−1)2+[12(m+2)(m−4)−t]2,解得t=1+14(m+2)(m−4),∵ME=PM,PE⊥AB,∴t=n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m−4)=2[1+12(m+2)(m−4)]−12(m+2)(m−4)=2,∴DE=2,∴点P在运动过程中线段DE的长是定值,DE=2.【考点】二次函数-动态几何问题【解析】【分析】(1)由二次函数y=12x2+bx+c的图象与x轴交于A(−2,0),B(4,0)两点,可得二次函数的解析式为y=12(x+2)(x−4),由此即可解决问题;(2)根据SΔPAC=SΔAOC+SΔOPC−SΔAOP,构建方程即可解决问题;(3)结论:点P在运动过程中线段DE的长是定值,DE=2.根据AM=MP,根据方程求出t,再利用中点坐标公式,求出点E的纵坐标即可解决问题.。
西藏2020年中考数学试卷
2020年西藏中考数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.1.(3分)20+(﹣20)的结果是()A.﹣40B.0C.20D.402.(3分)如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.3.(3分)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×1084.(3分)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)25.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8B.9C.10D.116.(3分)下列运算正确的是()A.2a•5a=10a B.(﹣a3)2+(﹣a2)3=a5C.(﹣2a)3=﹣6a3D.a6÷a2=a4(a≠0)7.(3分)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC8.(3分)格桑同学一周的体温监测结果如下表:星期一 二 三 四 五 六 日 体温(单位:℃) 36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是( )A .35.9,36.2,36.3B .35.9,36.3,36.6C .36.5,36.3,36.3D .36.5,36.2,36.69.(3分)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .610.(3分)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43πB .43π-C .83πD .83π-11.(3分)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .412.(3分)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题:本题共6小题,每小题3分,共18分.13.(3在实数范围内有意义,则x的取值范围是.14.(3分)分式方程21x-=31x+的解为.15.(3分)计算:(π﹣1)0+|﹣=.16.(3分)如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=.17.(3分)当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=.18.(3分)如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为.三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤.19.(5分)解不等式组:122(1)6xx+<⎧⎨-⎩并把解集在数轴上表示出来.20.(5分)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A 点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.24.(8分)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.25.(10分)在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图(甲),连接AC,P A,PC,若S△P AC=152,求点P的坐标;(3)如图(乙),过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.2020年西藏中考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.1.【分析】根据有理数加法的运算方法,求出20+(﹣20)的结果是多少即可.【解答】解:20+(﹣20)=0.故选:B.2.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,是一个矩形,矩形的中间是一个圆.故选:C.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:16000000=1.6×107,故选:B.4.【分析】各式分解得到结果,即可作出判断.【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.5.【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:C.6.【分析】根据单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法法则计算,判断即可.【解答】解:A、2a•5a=10a2,本选项计算错误;B、(﹣a3)2+(﹣a2)3=a6﹣a6=0,本选项计算错误;C、(﹣2a)3=﹣8a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确;故选:D.7.【分析】根据菱形的判定定理和矩形的判定定理分别对各个选项进行推理判断即可.【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD 是矩形,不能判定四边形ABCD 为菱形,故选项B 不符合题意;C 、∵四边形ABCD 是平行四边形,∴OA =OC ,不能判定四边形ABCD 为菱形,故选项C 不符合题意;D 、∵四边形ABCD 是平行四边形,AB =BC ,∴平行四边形ABCD 是菱形;故选项D 符合题意;故选:D .8.【分析】根据众数、中位数、平均数的概念求解即可.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.3+35.9+36.5+36.3+36.1+36.5+36.3)=36.3. 故选:C .9.【分析】根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【解答】解:设y 与x 的函数关系式为y =kx +b , 6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩,即y 与x 的函数关系式是y =0.5x +6,当y =7.5时,7.5=0.5x +6,得x =3,即a 的值为3,故选:A .10.【分析】根据垂径定理得到AE =CE ,AD =CD ,解直角三角形得到OD =12OA =2,AD =3OA =2,根据扇形和三角形的面积公式即可得到结论. 【解答】解:∵OD ⊥AC ,∴∠ADO =90°,AE =CE ,AD =CD ,∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =2OA =, ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =2604360π⋅⨯﹣1232⨯×2=﹣23, 故选:D .11.【分析】解析式联立,解方程求得C 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y =x +b 即可求得b 的值.【解答】解:∵直线y =x 与反比例函数y =4x(x >0)的图象交于点A , ∴解x =4x求得x =±2, ∴A 的横坐标为2,∵OA =2BC ,∴C 的横坐标为1,把x =1代入y =4x得,y =4, ∴C (1,4),∵将直线y =x 沿y 轴向上平移b 个单位长度,得到直线y =x +b ,∴把C 的坐标代入得4=1+b ,求得b =3,故选:C .12.【分析】根据探究发现:第1个相同的数是1,第2个相同的数是7,…,第n 个相同的数是6(n ﹣1)+1=6n ﹣5,进而可得n 的值.【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n 个相同的数是6(n ﹣1)+1=6n ﹣5,所以6n ﹣5=103,解得n =18.答:第n 个相同的数是103,则n 等于18.二、填空题:本题共6小题,每小题3分,共18分.13.【分析】直接利用二次根式的定义求出x的取值范围.【解答】在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2=3x﹣3,解得:x=5,经检验x=5是分式方程的解,故答案为:x=515.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(π﹣1)0+|﹣==故答案为:16.【分析】先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再由作法得AH平分∠BAD,所以∠BAD=12∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠BAD=180°﹣140°=40°,由作法得AH平分∠BAD,∴∠BAH=∠DAH,∴∠BAD=12∠BAD=20°,∴∠DHA=∠BAH=20°.故答案为20°.17.【分析】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10,故答案为:10.18.【分析】如图所示点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,根据折叠的性质可知BE=EF=5,即可求出CF.【解答】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=13,∴CF=CE﹣EF=13﹣5=8.故答案为:8.三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤.19.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x <1,将不等式组的解集表示在数轴上如下:20.【分析】先由角的和差性质证得∠DAE =∠CAB ,再根据SAS 定理证明△ADE ≌△ACB ,最后根据全等三角形的性质得出DE =CB .【解答】证明:∵∠BAE =∠CAD ,∴∠BAE +∠BAD =∠CAD +∠BAD ,即∠DAE =∠CAB ,在△ADE 和△ACB 中,AD AC DAE CAB AE AB =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ACB (SAS ),∴DE =CB .21. 【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两名男生在体育测试中所选项目完全相同的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P (两名同学选到相同项目)=416=14. 22.【分析】在Rt △ACF 中,根据三角函数的定义得到AF =AC •tan60°=米,在Rt △ABE 中,根据三角函数的定义得到AE =AB •tan30°=15×3=【解答】解:在Rt △ACF 中,∵∠ACF =60°,AC =7米,∴AF =AC •tan60°=∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15=∴EF=AF﹣AE=﹣,答:信号塔EF的高度为米.23.【分析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1﹣2x)m,根据茶园的面积为600m2,列出方程并解答.【解答】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.24.【分析】(1)连接OD,OE,根据切线的性质得到∠DAB=90°,根据全等三角形的性质得到∠OED =∠OAD=90°,于是得到CD是⊙O的切线;(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH=BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD﹣BC=AD﹣4,CD=AD+4,根据勾股定理即可得到结论.【解答】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∵△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线;(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=8.25.【分析】(1)由二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,可得二次函数的解析式为y=12(x+2)(x﹣4),由此即可解决问题.(2)根据S△P AC=S△AOC+S△OPC﹣S△AOP,构建方程即可解决问题.(3)结论:点P在运动过程中线段DE的长是定值,DE=2.根据AM=MP,根据方程求出t,再利用中点坐标公式,求出点E的纵坐标即可解决问题.【解答】解:(1)∵二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴二次函数的解析式为y=12(x+2)(x﹣4),即y=12x2﹣x﹣4.(2)如图甲中,连接OP.设P(m,12m2﹣m﹣4).由题意,A(﹣2,0),C(0,﹣4),∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴152=12×2×4+12×4×m﹣12×2×(﹣12m2+m+4),整理得,m2+2m﹣15=0,解得m=3或﹣5(舍弃),∴P(3,﹣52).(3)结论:点P在运动过程中线段DE的长是定值,DE=2.理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,12(m+2)(m﹣4)],E(m,n).由题意A(﹣2,0),AM=PM,∴32+t2=(m﹣1)2+[12(m+2)(m﹣4)﹣t]2,解得t=1+14(m+2)(m﹣4),∵ME=PM,PE⊥AB,∴t=1(2)(4)22n m m++-,∴n=2t﹣12(m+2)(m﹣4)=2[1+12(m+2)(m﹣4)]﹣12(m+2)(m﹣4)=2,∴DE=2,∴点P在运动过程中线段DE的长是定值,DE=2.。
西藏拉萨市2020年(春秋版)中考数学试卷(II)卷
西藏拉萨市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)两数相乘,积为负,且两数和也为负,则这两数()A . 都是正数B . 都是负数C . 一正一负且正数的绝对值大D . 一正一负且负数的绝对值大2. (2分)(2017·城中模拟) 函数y= 中,自变量x的取值范围是()A . x≥1B . x>1C . x≥1且x≠2D . x≠23. (2分)分式方程的解为A . x=3B . x=2C . x=1D . x=﹣14. (2分)(2017·江都模拟) 若一组数据﹣1,0,2,4,x的极差为7,则x的值是()A . ﹣3B . 6C . 6或﹣3D . 75. (2分) (2019七下·遵义期中) 如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB 分别交直线m于点D和点E,且DB=DE,若∠1=65°,则∠BDE的度数为()A . 115°B . 120°C . 130°D . 145°6. (2分)制作一个底面直径为30 cm、高为40 cm的圆柱形无盖铁桶,所需铁皮至少为()A . 1425πcm2B . 1650πcm2C . 2100πcm2D . 2625πcm27. (2分)如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与∠BOC相等的角共有A . 2个B . 3个C . 4个D . 5个8. (2分)如图,在平行四边形ABCD中,AB=6,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且AB=3CF,DG⊥AE,垂足为G,若DG=2,则AE的边长为()A .B .C .D .10. (2分)平行四边形ABCD中,∠A:∠B:∠C:∠D可能是()A . 2:1:2:1B . 1:2:2:1C . 2:1:1:2D . 1:2:3:4二、填空题 (共8题;共8分)11. (1分) a (x-2a) +a(2a-x) =________.12. (1分)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为________.13. (1分)(2018·扬州模拟) 如图,△ABC三个顶点分别在反比例函数,的图像上,若∠C =90°,AC∥y 轴,BC∥x 轴,S△ABC=8,则k的值为________.14. (1分)(2017八下·钦南期末) 如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=________.15. (1分) (2019八下·天台期末) 如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE ,作AE的垂直平分线GF交CD于F点,垂足为点G,则线段GF 的最小值为________.16. (1分)(2017·武汉模拟) 如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B 的坐标为________.17. (1分)如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有________块.18. (1分)(2017·黑龙江模拟) 如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=________cm.三、计算题 (共10题;共86分)19. (5分)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.20. (10分) (2017七下·五莲期末) 综合题解方程组和不等式(1)解方程组(2)解不等式组,并在数轴上画出它的解集.21. (5分) (2016九上·淅川期中) 一副直角三角板如图放置,点A在ED上,∠F=∠ACB=90°,∠E=30°,∠B=45°,AC=12,试求BD的长.22. (5分)四张不透明的卡片A、B、C、D,正面分别画有等边三角形、矩形和等腰梯形、平行四边形,除正面画有不同的图形外,其它都相同,把这四张卡片洗匀后,正面向下放在桌上.(1)从这四张卡片中任意摸出一张,求卡片上的图形是中心对称图形但不是轴对称图形的概率;(2)从这四张卡片中任意摸出一张不放回,再从中任意摸出一张,请用列表法或画树状图的方法,求两次抽取的卡片证明图形都是中心对称图形的概率.23. (16分)(2018·灌南模拟) 学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了________名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B级)?24. (10分)写出下列两个定理的逆命题,并判断真假(1)在一个三角形中,等角对等边.(2)四边形的内角和等于360°.25. (5分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途经C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?26. (10分)如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.(1)求y关于x的函数表达式.(2)当△AEF为正三角形时,求△AEF的面积.27. (10分)已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.28. (10分) (2017八下·曲阜期末) 如图,在矩形纸片ABCD中,AD=5,AB=3,点E为BC上一点,沿着AE 剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D.(1)当点E与点B的距离是多少时,四边形AEE'D是菱形?并说明理由;(2)在(1)的条件下,求菱形AEE'D的两条对角线的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、计算题 (共10题;共86分)19-1、20-1、20-2、21-1、22-1、23-1、23-2、23-3、23-4、24-1、24-2、26-1、26-2、27-1、27-2、28-1、28-2、。
2020年西藏中考数学试卷
2020年西藏中考数学试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.20+(-20)的结果是()A. -40B. 0C. 20D. 402.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A. B. C. D.3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A. 16×106B. 1.6×107C. 1.6×108D. 0.16×1084.下列分解因式正确的一项是()A. x2-9=(x+3)(x-3)B. 2xy+4x=2(xy+2x)C. x2-2x-1=(x-1)2D. x2+y2=(x+y)25.若一个多边形的内角和是其外角和的4倍,则这个多边形的边数()A. 7B. 8C. 9D. 106.下列运算正确的是()A. 2a•5a=10aB. (-a3)2+(-a2)3=a5C. (-2a)3=-6a3D. a6÷a2=a4(a≠0)7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A. ∠ADB=90°B. OA=OBC. OA=OCD. AB=BC8.格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是()A. 35.9,36.2,36.3B. 35.9,36.3,36.6C. 36.5,36.3,36.3D. 36.5,36.2,36.69.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A. 3B. 4C. 5D. 610.如图,AB为半圆O的直径,C为半圆上的一点,OD⊥AC,垂足为D,延长OD与半圆O交于点E.若AB=8,∠CAB=30°,则图中阴影部分的面积为()A. π-B. π-2C. π-D. π-211.如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为()A. 1B. 2C. 3D. 412.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A. 18B. 19C. 20D. 21二、填空题(本大题共6小题,共18.0分)13.若式子在实数范围内有意义,则x的取值范围是______.14.分式方程=的解为______.15.计算:(π-1)0+|-2|+=______.16.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=______.17.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=______.18.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为______.三、计算题(本大题共1小题,共7.0分)19.列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.四、解答题(本大题共6小题,共39.0分)20.解不等式组:并把解集在数轴上表示出来.21.如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.22.某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.23.如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).24.如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.25.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(-2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图(甲),连接AC,PA,PC,若S△PAC=,求点P的坐标;(3)如图(乙),过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M 于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.答案和解析1.【答案】B【解析】解:20+(-20)=0.故选:B.根据有理数加法的运算方法,求出20+(-20)的结果是多少即可.此题主要考查了有理数的加法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.2.【答案】C【解析】解:从上面看,是一个矩形,矩形的中间是一个圆.故选:C.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【答案】B【解析】解:16000000=1.6×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、原式=(x+3)(x-3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.各式分解得到结果,即可作出判断.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.【答案】D【解析】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:D.设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.6.【答案】D【解析】解:A、2a•5a=10a2,本选项计算错误;B、(-a3)2+(-a2)3=a6-a6=0,本选项计算错误;C、(-2a)3=-8a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确;故选:D.根据单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法法则计算,判断即可.本题考查的是单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.7.【答案】D【解析】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.根据菱形的判定定理和矩形的判定定理分别对各个选项进行推理判断即可.本题考查菱形的判定定理、矩形的判定定理以及平行四边形的性质;熟练掌握菱形的判定定理、矩形的判定定理是解题的关键.8.【答案】C【解析】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;平均数是=×(36.3+35.9+36.5+36.3+36.1+36.5+36.3)=36.3.故选:C.根据众数、中位数、平均数的概念求解即可.本题主要考查众数,中位数和平均数,掌握众数,中位数的概念和平均数的求法是解题的关键.9.【答案】A【解析】解:设y与x的函数关系式为y=kx+b,,解得,,即y与x的函数关系式是y=0.5x+6,当y=7.5时,7.5=0.5x+6,得x=3,即a的值为3,故选:A.根据题目中的函数解析式,可以求得y与x的函数关系式,然后令y=7.5,求出x的值,即此时x的值就是a的值,本题得以解决.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.【答案】D【解析】解:∵OD⊥AC,∴∠ADO=90°,=,AD=CD,∵∠CAB=30°,OA=4,∴OD=OA=2,AD=OA=2,∴图中阴影部分的面积=S扇形AOE-S△ADO=-×2=-2,故选:D.根据垂径定理得到=,AD=CD,解直角三角形得到OD=OA=2,AD=OA=2,根据扇形和三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,垂径定理,解直角三角形,正确的识别图形是解题的关键.11.【答案】C【解析】解:∵直线y=x与反比例函数y=(x>0)的图象交于点A,∴解x=求得x=±2,∴A的横坐标为2,∵OA=2BC,∴C的横坐标为1,把x=1代入y=得,y=4,∴C(1,4),∵将直线y=x沿y轴向上平移b个单位长度,得到直线y=x+b,∴把C的坐标代入得4=1+b,求得b=3,故选:C.解析式联立,解方程求得C的横坐标,根据定义求得C的横坐标,把横坐标代入反比例函数的解析式求得C的坐标,代入y=x+b即可求得b的值.本题是反比例函数与一次函数的交点问题,求得交点坐标是解题的关键.12.【答案】A【解析】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.根据探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是6(n-1)+1=6n-5,进而可得n的值.此题主要考查了数字变化规律,确定出相同数的差值,从而得出相同数的通式是解题的关键.13.【答案】x≥-3【解析】解:若式子在实数范围内有意义,则x+3≥0,解得:x≥-3,则x的取值范围是:x≥-3.故答案为:x≥-3.直接利用二次根式的定义求出x的取值范围.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】x=5【解析】解:去分母得:2x+2=3x-3,解得:x=5,经检验x=5是分式方程的解,故答案为:x=5分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.【答案】3+2【解析】解:(π-1)0+|-2|+=1+2+2=3+2.故答案为:3+2.首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.【答案】20°【解析】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠BAD=180°-140°=40°,由作法得AH平分∠BAD,∴∠BAH=∠DAH,∴∠BAD=∠BAD=20°,∵AB∥CD,∴∠DHA=∠BAH=20°.故答案为20°.先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再由作法得AH平分∠BAD,所以∠BAD=∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.17.【答案】10【解析】解:∵二次函数y=x2-4x+5=(x-2)2+1,∴该函数开口向上,对称轴为x=2,∵当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,∴当x=-1时,该函数取得最大值,此时m=(-1-2)2+1=10,故答案为:10.根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【答案】8【解析】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE===13,∴CF=CE-EF=13-5=8.故答案为:8.如图所示点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,根据折叠的性质可知BE=EF=5,即可求出CF.本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,熟练掌握折叠的性质是解题的关键.19.【答案】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1-2x)m,根据题意,得x(69+1-2x)=600,整理,得x2-35x+300=0,解得x1=15,x2=20,当x=15时,70-2x=40>35,不符合题意舍去;当x=20时,70-2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.【解析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1-2x)m,根据茶园的面积为600m2,列出方程并解答.本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键.20.【答案】解;解不等式x+1<2,得:x<1,解不等式2(1-x)≤6,得:x≥-2,则不等式组的解集为-2≤x<1,将不等式组的解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.【解析】先由角的和差性质证得∠DAE=∠CAB,再根据SAS定理证明△ADE≌△ACB,最后根据全等三角形的性质得出DE=CB.本题主要考查了全等三角形的性质与判定,证明线段相等,通常转化证明三角形全等.22.【答案】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)==.【解析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两名男生在体育测试中所选项目完全相同的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:在Rt△ACF中,∵∠ACF=60°,AC=7米,∴AF=AC•tan60°=7米,∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15×=5米,∴EF=AF-AE=7-5=2(米),答:信号塔EF的高度为2米.【解析】在Rt△ACF中,根据三角函数的定义得到AF=AC•tan60°=7米,在Rt△ABE 中,根据三角函数的定义得到AE=AB•tan30°=15×=5米,于是得到结论.本题考查了解直角三角形-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形;难点是充分找到并运用题中相等的线段.24.【答案】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∵△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线;(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD-BC=AD-4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD-4)2=(AD+4)2,∴AD=8.【解析】(1)连接OD,OE,根据切线的性质得到∠DAB=90°,根据全等三角形的性质得到∠OED=∠OAD=90°,于是得到CD是⊙O的切线;(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH=BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD-BC=AD-4,CD=AD+4,根据勾股定理即可得到结论.本题考查了切线的判定和性质,全等三角形的判定和性质,勾股定理,矩形的判定和性质,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(-2,0),B(4,0)两点,∴二次函数的解析式为y=(x+2)(x-4),即y=x2-x-4.(2)如图甲中,连接OP.设P(m,m2-m-4).由题意,A(-2,0),C(0,-4),∵S△PAC=S△AOC+S△OPC-S△AOP,∴=×2×4+×4×m-×2×(-m2+m+4),整理得,m2+2m-15=0,解得m=3或-5(舍弃),∴P(3,-).(3)结论:点P在运动过程中线段DE的长是定值,DE=2.理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,(m+2)(m-4)],E(m,n).由题意A(-2,0),AM=PM,∴32+t2=(m-1)2+[(m+2)(m-4)-t]2,解得t=1+(m+2)(m-4),∵ME=PM,PE⊥AB,∴t=,∴n=2t-(m+2)(m-4)=2[1+(m+2)(m-4)]-(m+2)(m-4)=2,∴DE=2,∴点P在运动过程中线段DE的长是定值,DE=2.【解析】(1)由二次函数y=x2+bx+c的图象与x轴交于A(-2,0),B(4,0)两点,可得二次函数的解析式为y=(x+2)(x-4),由此即可解决问题.(2)根据S△PAC=S△AOC+S△OPC-S△AOP,构建方程即可解决问题.(3)结论:点P在运动过程中线段DE的长是定值,DE=2.根据AM=MP,根据方程求出t,再利用中点坐标公式,求出点E的纵坐标即可解决问题.本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
2020年西藏自治区中考数学试题及参考答案(word解析版)
2020年西藏自治区高中阶段学校招生全区统一考试数学(满分100分,考试时间90分)一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.)1.20+(﹣20)的结果是()A.﹣40 B.0 C.20 D.402.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×1084.下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)25.一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8 B.9 C.10 D.116.下列运算正确的是()A.2a•5a=10a B.(﹣a3)2+(﹣a2)3=a5C.(﹣2a)3=﹣6a3D.a6÷a2=a4(a≠0)7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC8.格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3 分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.69.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.610.如图,AB为半圆O的直径,C为半圆上的一点,OD⊥AC,垂足为D,延长OD与半圆O交于点E.若AB=8,∠CAB=30°,则图中阴影部分的面积为()A.π﹣B.π﹣2C.π﹣D.π﹣211.如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为()A.1 B.2 C.3 D.412.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.21二、填空题(本题共6小题,每小题3分,共18分)13.若在实数范围内有意义,则x的取值范围是.14.分式方程=的解为.15.计算:(π﹣1)0+|﹣2|+=.16.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=.17.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=.18.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为.三、解答题(共46分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)解不等式组:并把解集在数轴上表示出来.20.(5分)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD.求证:DE=CB.21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.24.(8分)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.25.(10分)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图(甲),连接AC,PA,PC,若S△PAC=,求点P的坐标;(3)如图(乙),过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P 在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.答案与解析一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.)1.20+(﹣20)的结果是()A.﹣40 B.0 C.20 D.40【知识考点】有理数的加法.【思路分析】根据有理数加法的运算方法,求出20+(﹣20)的结果是多少即可.【解题过程】解:20+(﹣20)=0.故选:B.【总结归纳】此题主要考查了有理数的加法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.2.如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,是一个矩形,矩形的中间是一个圆.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:16000000=1.6×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2【知识考点】提公因式法与公式法的综合运用.【思路分析】各式分解得到结果,即可作出判断.【解题过程】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8 B.9 C.10 D.11【知识考点】多边形内角与外角.【思路分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【解题过程】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:C.【总结归纳】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n ﹣2)×180°=360°×4.6.下列运算正确的是()A.2a•5a=10a B.(﹣a3)2+(﹣a2)3=a5C.(﹣2a)3=﹣6a3D.a6÷a2=a4(a≠0)【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.【思路分析】根据单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法法则计算,判断即可.【解题过程】解:A、2a•5a=10a2,本选项计算错误;B、(﹣a3)2+(﹣a2)3=a6﹣a6=0,本选项计算错误;C、(﹣2a)3=﹣8a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确;故选:D.【总结归纳】本题考查的是单项式乘单项式、积的乘方与幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.7.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC【知识考点】菱形的判定.【思路分析】根据菱形的判定定理和矩形的判定定理分别对各个选项进行推理判断即可.【解题过程】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OA=OC,不能判定四边形ABCD为菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.【总结归纳】本题考查菱形的判定定理、矩形的判定定理以及平行四边形的性质;熟练掌握菱形的判定定理、矩形的判定定理是解题的关键.8.格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3 分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6 C.36.5,36.3,36.3 D.36.5,36.2,36.6 【知识考点】算术平均数;中位数;众数.【思路分析】根据众数、中位数、平均数的概念求解即可.【解题过程】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;平均数是=×(36.3+35.9+36.5+36.3+36.1+36.5+36.3)=36.3.故选:C.【总结归纳】本题主要考查众数,中位数和平均数,掌握众数,中位数的概念和平均数的求法是解题的关键.9.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.6【知识考点】一次函数的应用.【思路分析】根据题意和函数图象中的数据,可以求得y与x的函数关系式,然后令y=7.5,求出x的值,即此时x的值就是a的值,本题得以解决.【解题过程】解:设y与x的函数关系式为y=kx+b,,解得,,即y与x的函数关系式是y=0.5x+6,当y=7.5时,7.5=0.5x+6,得x=3,即a的值为3,故选:A.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.如图,AB为半圆O的直径,C为半圆上的一点,OD⊥AC,垂足为D,延长OD与半圆O交于点E.若AB=8,∠CAB=30°,则图中阴影部分的面积为()A.π﹣B.π﹣2C.π﹣D.π﹣2【知识考点】勾股定理;垂径定理;扇形面积的计算.【思路分析】根据垂径定理得到=,AD=CD,解直角三角形得到OD=OA=2,AD=OA=2,根据扇形和三角形的面积公式即可得到结论.【解题过程】解:∵OD⊥AC,∴∠ADO=90°,=,AD=CD,∵∠CAB=30°,OA=4,∴OD=OA=2,AD=OA=2,∴图中阴影部分的面积=S扇形AOE﹣S△ADO=﹣×2=﹣2,故选:D.【总结归纳】本题考查了扇形的面积的计算,垂径定理,解直角三角形,正确的识别图形是解题的关键.11.如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为()A.1 B.2 C.3 D.4【知识考点】反比例函数与一次函数的交点问题.【思路分析】解析式联立,解方程求得A的横坐标,根据定义求得C的横坐标,把横坐标代入反比例函数的解析式求得C的坐标,代入y=x+b即可求得b的值.【解题过程】解:∵直线y=x与反比例函数y=(x>0)的图象交于点A,∴解x=求得x=±2,∴A的横坐标为2,∵OA=2BC,∴C的横坐标为1,把x=1代入y=得,y=4,∴C(1,4),∵将直线y=x沿y轴向上平移b个单位长度,得到直线y=x+b,∴把C的坐标代入得4=1+b,求得b=3,故选:C.【总结归纳】本题是反比例函数与一次函数的交点问题,求得交点坐标是解题的关键.12.观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.21【知识考点】规律型:数字的变化类.【思路分析】根据探究发现:第1个相同的数是1,第2个相同的数是7,…,第n个相同的数是6(n﹣1)+1=6n﹣5,进而可得n的值.【解题过程】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.【总结归纳】此题主要考查了数字变化规律,确定出相同数的差值,从而得出相同数的通式是解题的关键.二、填空题(本题共6小题,每小题3分,共18分)13.若在实数范围内有意义,则x的取值范围是.【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的定义求出x的取值范围.【解题过程】解:若式子在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.分式方程=的解为.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:去分母得:2x+2=3x﹣3,解得:x=5,经检验x=5是分式方程的解,故答案为:x=5.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.计算:(π﹣1)0+|﹣2|+=.【知识考点】实数的运算;零指数幂.【思路分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解题过程】解:(π﹣1)0+|﹣2|+=1+2+2=3+2.故答案为:3+2.【总结归纳】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=.【知识考点】平行四边形的性质;作图—基本作图.【思路分析】先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再由作法得AH平分∠BAD,所以∠BAD=∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.【解题过程】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠BAD=180°﹣140°=40°,由作法得AH平分∠BAD,∴∠BAH=∠DAH,∴∠BAD=∠BAD=20°,∵AB∥CD,∴∠DHA=∠BAH=20°.故答案为20°.【总结归纳】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.17.当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=.【知识考点】二次函数的性质;二次函数的最值.【思路分析】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解题过程】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴该函数开口向上,对称轴为x=2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10,故答案为:10.【总结归纳】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】如图所示点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,根据折叠的性质可知BE=EF=5,即可求出CF.【解题过程】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE===13,∴CF=CE﹣EF=13﹣5=8.故答案为:8.【总结归纳】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,熟练掌握折叠的性质是解题的关键.三、解答题(共46分.解答应写出文字说明、证明过程或演算步骤.)19.(5分)解不等式组:并把解集在数轴上表示出来.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(5分)如图,△ABC中,D为BC边上的一点,AD=AC,以线段AD为边作△ADE,使得AE =AB,∠BAE=∠CAD.求证:DE=CB.【知识考点】全等三角形的判定与性质.【思路分析】先由角的和差性质证得∠DAE=∠CAB,再根据SAS定理证明△ADE≌△ACB,最后根据全等三角形的性质得出DE=CB.【解题过程】证明:∵∠BAE=∠CAD,∴∠BAE+∠BAD=∠CAD+∠BAD,即∠DAE=∠CAB,在△ADE和△ACB中,,∴△ADE≌△ACB(SAS),∴DE=CB.【总结归纳】本题主要考查了全等三角形的性质与判定,证明线段相等,通常转化证明三角形全等.21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名同学在运动会中所选项目完全相同的情况.【解题过程】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P(两名同学选到相同项目)==.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】在Rt△ACF中,根据三角函数的定义得到AF=AC•tan60°=7米,在Rt△ABE 中,根据三角函数的定义得到AE=AB•tan30°=15×=5米,于是得到结论.【解题过程】解:在Rt△ACF中,∵∠ACF=60°,AC=7米,∴AF=AC•tan60°=7米,∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15×=5米,∴EF=AF﹣AE=7﹣5=2(米),答:信号塔EF的高度为2米.【总结归纳】本题考查了解直角三角形﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形;难点是充分找到并运用题中相等的线段.23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m 长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【知识考点】一元二次方程的应用.【思路分析】设当茶园垂直于墙的一边长为xm时,则另一边的长度为(69+1﹣2x)m,根据茶园的面积为600m2,列出方程并解答.【解题过程】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.【总结归纳】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键.24.(8分)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.【知识考点】垂径定理;直线与圆的位置关系;切线的判定与性质.【思路分析】(1)连接OD,OE,根据切线的性质得到∠DAB=90°,根据全等三角形的性质得到∠OED=∠OAD=90°,于是得到CD是⊙O的切线;(2)过C作CH⊥AD于H,根据已知条件推出四边形ABCH是矩形,求得CH=AB=12,AH =BC=4,根据切线的性质得到AD=DE,CE=BC,求得DH=AD﹣BC=AD﹣4,CD=AD+4,根据勾股定理即可得到结论.【解题过程】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∵△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线;(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=9.【总结归纳】本题考查了切线的判定和性质,全等三角形的判定和性质,勾股定理,矩形的判定和性质,正确的作出辅助线是解题的关键.25.(10分)在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图(甲),连接AC,PA,PC,若S△PAC=,求点P的坐标;(3)如图(乙),过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P 在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.【知识考点】二次函数综合题.【思路分析】(1)由二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,可得二次函数的解析式为y=(x+2)(x﹣4),由此即可解决问题.(2)根据S△PAC=S△AOC+S△OPC﹣S△AOP,构建方程即可解决问题.(3)结论:点P在运动过程中线段DE的长是定值,DE=2.根据AM=MP,根据方程求出t,再利用中点坐标公式,求出点E的纵坐标即可解决问题.【解题过程】解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图甲中,连接OP.设P(m,m2﹣m﹣4).由题意,A(﹣2,0),C(0,﹣4),∵S△PAC=S△AOC+S△OPC﹣S△AOP,∴=×2×4+×4×m﹣×2×(﹣m2+m+4),整理得,m2+2m﹣15=0,解得m=3或﹣5(舍弃),∴P(3,﹣).(3)结论:点P在运动过程中线段DE的长是定值,DE=2.理由:如图乙中,连接AM,PM,EM,设M(1,t),P[m,(m+2)(m﹣4)],E(m,n).由题意A(﹣2,0),AM=PM,∴32+t2=(m﹣1)2+[(m+2)(m﹣4)﹣t]2,解得t=1+(m+2)(m﹣4),∵ME=PM,PE⊥AB,∴t=,∴n=2t﹣(m+2)(m﹣4)=2[1+(m+2)(m﹣4)]﹣(m+2)(m﹣4)=2,∴DE=2,∴点P在运动过程中线段DE的长是定值,DE=2.【总结归纳】本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
2020年西藏中考数学试卷及答案
A. B. C. D.1.格桑同学一周的体温监测结果如下表:星期一二三四五六日体温单位:分析上表中的数据,众数、中位数、平均数分别是A. ,,B. ,,C. ,,D. ,,2.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长单位:关于所挂物体质量单位:的函数图象如图所示,则图中a的值是A. 3B. 4C. 5D. 63.如图,AB为半圆O的直径,C为半圆上的一点,,垂足为D,延长OD与半圆O交于点若,,则图中阴影部分的面积为A. B. C. D.4.如图,在平面直角坐标系中,直线与反比例函数的图象交于点A,将直线沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点若,则b的值为A. 1B. 2C. 3D. 45.观察下列两行数:1,3,5,7,9,11,13,15,17,1,4,7,10,13,16,19,22,25,探究发现:第1个相同的数是1,第2个相同的数是7,,若第n个相同的数是103,则n等于A. 18B. 19C. 20D. 21二、填空题(本大题共6小题,共18.0分)6.若式子在实数范围内有意义,则x的取值范围是______.7.分式方程的解为______.8.计算:______.9.如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于的长为半径画弧,两弧在的内部相交于点G,画射线AG交DC于若,则______.10.当时,二次函数有最大值m,则______.11.如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把沿PE折叠,得到,连接若,,则CF的最小值为______.三、计算题(本大题共1小题,共7.0分)12.列方程组解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门不包括篱笆求这个茶园的长和宽.四、解答题(本大题共6小题,共39.0分)13.解不等式组:并把解集在数轴上表示出来.14.如图,中,D为BC边上的一点,,以线段AD为边作,使得,求证:.15.某校组织开展运动会,小明和扎西两名同学准备从100米短跑记为项目,800米中长跑记为项目,跳远记为项目,跳高记为项目,即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.16.如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B 点,此时刚好能看到信号塔的最低点E,测得仰角不计卓玛同学的身高求信号塔EF的高度结果保留根号.17.如图所示,AB是的直径,AD和BC分别切于A,B两点,CD与有公共点E,且.求证:CD是的切线;若,,求AD的长.18.在平面直角坐标系中,二次函数的图象与x轴交于,两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.求二次函数的解析式;如图甲,连接AC,PA,PC,若,求点P的坐标;如图乙,过A,B,P三点作,过点P作轴,垂足为D,交于点点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE 的长.答案和解析1.B解:.2. C解:从上面看,是一个矩形,矩形的中间是一个圆.3. B解:,4. A解:A、原式,符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.5. D解:设这个多边形的边数为n,则该多边形的内角和为,依题意得:,解得:,这个多边形的边数是10.6. D解:A、,本选项计算错误;B、,本选项计算错误;C、,本选项计算错误;D、,本选项计算正确;7. D解:A、平行四边形ABCD中,,不能判定四边形ABCD为菱形,故选项A不符合题意;B、四边形ABCD是平行四边形,,,,,平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C、四边形ABCD是平行四边形,,不能判定四边形ABCD为菱形,故选项C不符合题意;D、四边形ABCD是平行四边形,,平行四边形ABCD是菱形;故选项D符合题意;8. C解:这组数据中出现了2次,次数最多,所以众数是;将数据按照从小到大或从大到小的顺序排列为,,,,,,,处于中间的数据是,所以中位数是;平均数是.9. A解:设y与x的函数关系式为,,解得,,即y与x的函数关系式是,当时,,得,即a的值为3,10. D解:,,,,,,,,图中阴影部分的面积,11. C解:直线与反比例函数的图象交于点A,解求得,的横坐标为2,,的横坐标为1,把代入得,,,将直线沿y轴向上平移b个单位长度,得到直线,把C的坐标代入得,求得,12. A解:第1个相同的数是,第2个相同的数是,第3个相同的数是,第4个相同的数是,,第n个相同的数是,所以,解得.答:第n个相同的数是103,则n等于18.13.解:若式子在实数范围内有意义,则,解得:,则x的取值范围是:.14.解:去分母得:,解得:,经检验是分式方程的解,15.解:.16.解:四边形ABCD为平行四边形,,,,由作法得AH平分,,,.17. 10解:二次函数,该函数开口向上,对称轴为,当时,二次函数有最大值m,当时,该函数取得最大值,此时,18. 8解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF 的值最小,根据折叠的性质,≌,,,是AB边的中点,,,,.19. 解:设茶园垂直于墙的一边长为xm,则另一边的长度为,根据题意,得,整理,得,解得,,当时,,不符合题意舍去;当时,,符合题意.答:这个茶园的长和宽分别为30m、20m.20. 解;解不等式,得:,解不等式,得:,则不等式组的解集为,将不等式组的解集表示在数轴上如下:21. 证明:,,即,在和中,,≌,.22. 解:画树状图得:共有16种等可能的结果,两名同学选到相同项目的为4种情况,两名同学选到相同项目.23. 解:在中,,米,米,米,米,在中,,米,米,答:信号塔EF的高度为米.24. 证明:连接OD,OE,切于A点,AB是的直径,,,,,≌,,是的切线;解:过C作于H,是的直径,AD和BC分别切于A,B两点,,四边形ABCH是矩形,,,是的切线,,,,,,,.25. 解:二次函数的图象与x轴交于,两点,二次函数的解析式为,即.如图甲中,连接设.由题意,,,,,整理得,,解得或舍弃,结论:点P在运动过程中线段DE的长是定值,.理由:如图乙中,连接AM,PM,EM,设,,.由题意,,,解得,,,,,,点P在运动过程中线段DE的长是定值,.。
2020年西藏中考数学试卷及答案解析
2020年西藏中考数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.1.(3分)20+(﹣20)的结果是()A.﹣40B.0C.20D.402.(3分)如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.3.(3分)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×108 4.(3分)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)25.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8B.9C.10D.116.(3分)下列运算正确的是()A.2a•5a=10a B.(﹣a3)2+(﹣a2)3=a5C.(﹣2a)3=﹣6a3D.a6÷a2=a4(a≠0)7.(3分)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A .∠ADB =90° B .OA =OBC .OA =OCD .AB =BC8.(3分)格桑同学一周的体温监测结果如下表: 星期一 二 三 四 五 六 日 体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是( ) A .35.9,36.2,36.3 B .35.9,36.3,36.6 C .36.5,36.3,36.3D .36.5,36.2,36.69.(3分)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .610.(3分)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√311.(3分)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .412.(3分)观察下列两行数:1,3,5,7,9,11,13,15,17,… 1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( ) A .18B .19C .20D .21二、填空题:本题共6小题,每小题3分,共18分.13.(3分)若√x +3在实数范围内有意义,则x 的取值范围是 . 14.(3分)分式方程2x−1=3x+1的解为 .15.(3分)计算:(π﹣1)0+|﹣2|+√12= .16.(3分)如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAB 的内部相交于点G ,画射线AG 交DC 于H .若∠B =140°,则∠DHA = .17.(3分)当﹣1≤x ≤3时,二次函数y =x 2﹣4x +5有最大值m ,则m = . 18.(3分)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把△PBE 沿PE 折叠,得到△PFE ,连接CF .若AB =10,BC =12,则CF 的最小值为 .三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤. 19.(5分)解不等式组:{x +1<2,2(1−x)≤6.并把解集在数轴上表示出来.20.(5分)如图,△ABC 中,D 为BC 边上的一点,AD =AC ,以线段AD 为边作△ADE ,使得AE =AB ,∠BAE =∠CAD .求证:DE =CB .21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A),800米中长跑(记为项目B),跳远(记为项目C),跳高(记为项目D),即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.24.(8分)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O 有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.25.(10分)在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若S△P AC=152,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.2020年西藏中考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分.1.(3分)20+(﹣20)的结果是()A.﹣40B.0C.20D.40【解答】解:20+(﹣20)=0.故选:B.2.(3分)如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A.B.C.D.【解答】解:从上面看,是一个矩形,矩形的中间是一个圆.故选:C.3.(3分)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×108【解答】解:16000000=1.6×107,故选:B.4.(3分)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.5.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是()A.8B.9C.10D.11【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得:(n﹣2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:C.6.(3分)下列运算正确的是()A.2a•5a=10a B.(﹣a3)2+(﹣a2)3=a5C.(﹣2a)3=﹣6a3D.a6÷a2=a4(a≠0)【解答】解:A、2a•5a=10a2,本选项计算错误;B、(﹣a3)2+(﹣a2)3=a6﹣a6=0,本选项计算错误;C、(﹣2a)3=﹣8a3,本选项计算错误;D、a6÷a2=a4(a≠0),本选项计算正确;故选:D.7.(3分)如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠ADB=90°B.OA=OB C.OA=OC D.AB=BC【解答】解:A、平行四边形ABCD中,∠ADB=90°,不能判定四边形ABCD为菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形,不能判定四边形ABCD为菱形,故选项B不符合题意;C 、∵四边形ABCD 是平行四边形,∴OA =OC ,不能判定四边形ABCD 为菱形,故选项C 不符合题意; D 、∵四边形ABCD 是平行四边形,AB =BC , ∴平行四边形ABCD 是菱形;故选项D 符合题意; 故选:D .8.(3分)格桑同学一周的体温监测结果如下表: 星期一 二 三 四 五 六 日 体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是( ) A .35.9,36.2,36.3 B .35.9,36.3,36.6 C .36.5,36.3,36.3D .36.5,36.2,36.6【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3. 故选:C .9.(3分)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【解答】解:设y 与x 的函数关系式为y =kx +b , 将点(0,6),(9,10.5)代入上式得, {b =69k +b =10.5, 解得,{k =0.5b =6,即y 与x 的函数关系式是y =0.5x +6, 当y =7.5时,7.5=0.5x +6,得x =3, 即a 的值为3, 故选:A .10.(3分)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√3【解答】解:∵OD ⊥AC ,∴∠ADO =90°,AE ̂=CE ̂,AD =CD , ∵∠CAB =30°,OA =4, ∴OD =12OA =2,AD =√32OA =2√3,∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅π×42360−12×2√3×2=8π3−2√3,故选:D .11.(3分)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4【解答】解:∵直线y =x 与反比例函数y =4x (x >0)的图象交于点A , ∴解x =4x 求得x =±2, ∴A 的横坐标为2,∵OA=2BC,∴C的横坐标为1,把x=1代入y=4x得,y=4,∴C(1,4),∵将直线y=x沿y轴向上平移b个单位长度,得到直线y=x+b,∴把C的坐标代入得4=1+b,求得b=3,故选:C.12.(3分)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18B.19C.20D.21【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.二、填空题:本题共6小题,每小题3分,共18分.13.(3分)若√x+3在实数范围内有意义,则x的取值范围是x≥﹣3.【解答】解:若式子√x+3在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x ≥﹣3.14.(3分)分式方程2x−1=3x+1的解为 x =5 .【解答】解:去分母得:2x +2=3x ﹣3,解得:x =5,经检验x =5是分式方程的解,故答案为:x =5.15.(3分)计算:(π﹣1)0+|﹣2|+√12= 3+2√3 .【解答】解:(π﹣1)0+|﹣2|+√12=1+2+2√3=3+2√3.故答案为:3+2√3.16.(3分)如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAB 的内部相交于点G ,画射线AG 交DC 于H .若∠B =140°,则∠DHA = 20° .【解答】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠BAD =180°﹣140°=40°,由作法得:AH 平分∠BAD ,∴∠BAH =∠DAH ,∴∠BAD =12∠BAD =20°,∵AB ∥CD ,∴∠DHA =∠BAH =20°.故答案为20°.17.(3分)当﹣1≤x ≤3时,二次函数y =x 2﹣4x +5有最大值m ,则m = 10 .【解答】解:∵二次函数y =x 2﹣4x +5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,∴当x=﹣1时,该函数取得最大值,此时m=(﹣1﹣2)2+1=10,故答案为:10.18.(3分)如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把△PBE 沿PE折叠,得到△PFE,连接CF.若AB=10,BC=12,则CF的最小值为8.【解答】解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,根据折叠的性质,△EBP≌△EFP,∴EF⊥PF,EB=EF,∵E是AB边的中点,AB=10,∴AE=EF=5,∵AD=BC=12,∴CE=√BE2+BC2=√52+122=13,∴CF=CE﹣EF=13﹣5=8.故答案为:8.三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤.19.(5分)解不等式组:{x+1<2,2(1−x)≤6.并把解集在数轴上表示出来.【解答】解;解不等式x+1<2,得:x<1,解不等式2(1﹣x)≤6,得:x≥﹣2,则不等式组的解集为﹣2≤x <1,将不等式组的解集表示在数轴上如下:20.(5分)如图,△ABC 中,D 为BC 边上的一点,AD =AC ,以线段AD 为边作△ADE ,使得AE =AB ,∠BAE =∠CAD .求证:DE =CB .【解答】证明:∵∠BAE =∠CAD ,∴∠BAE +∠BAD =∠CAD +∠BAD ,即∠DAE =∠CAB ,在△ADE 和△ACB 中,{AD =AC ∠DAE =∠CAB AE =AB,∴△ADE ≌△ACB (SAS ),∴DE =CB .21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目A ),800米中长跑(记为项目B ),跳远(记为项目C ),跳高(记为项目D ),即从A ,B ,C ,D 四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.【解答】解:画树状图得:∵共有16种等可能的结果,两名同学选到相同项目的为4种情况,∴P (两名同学选到相同项目)=416=14.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角∠ACF=60°,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角∠B=30°.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).【解答】解:在Rt△ACF中,∵∠ACF=60°,AC=7米,∴AF=AC•tan60°=7√3米,∵BC=8米,∴AB=15米,在Rt△ABE中,∵∠B=30°,∴AE=AB•tan30°=15×√33=5√3米,∴EF=AF﹣AE=7√3−5√3=2√3(米),答:信号塔EF的高度为2√3米.23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【解答】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.24.(8分)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O 有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.【解答】(1)证明:连接OD,OE,∵AD切⊙O于A点,AB是⊙O的直径,∴∠DAB=90°,∵AD=DE,OA=OE,OD=OD,∴△ADO≌△EDO(SSS),∴∠OED=∠OAD=90°,∴CD是⊙O的切线;(2)解:过C作CH⊥AD于H,∵AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,∴∠DAB=∠ABC=∠CHA=90°,∴四边形ABCH是矩形,∴CH=AB=12,AH=BC=4,∵CD是⊙O的切线,∴AD=DE,CE=BC,∴DH=AD﹣BC=AD﹣4,CD=AD+4,∵CH2+DH2=CD2,∴122+(AD﹣4)2=(AD+4)2,∴AD=9.25.(10分)在平面直角坐标系中,二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC,P A,PC,若S△P AC=152,求点P的坐标;(3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.【解答】解:(1)∵二次函数y=12x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴二次函数的解析式为y=12(x+2)(x﹣4),即y=12x2﹣x﹣4.(2)如图甲中,连接OP .设P (m ,12m 2﹣m ﹣4).由题意,A (﹣2,0),C (0,﹣4),∵S △P AC =S △AOC +S △OPC ﹣S △AOP ,∴152=12×2×4+12×4×m −12×2×(−12m 2+m +4), 整理得,m 2+2m ﹣15=0,解得m =3或﹣5(舍弃),∴P (3,−52).(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.理由:如图乙中,连接AM ,PM ,EM ,设M (1,t ),P [m ,12(m +2)(m ﹣4)],E (m ,n ).由题意A (﹣2,0),AM =PM ,∴32+t 2=(m ﹣1)2+[12(m +2)(m ﹣4)﹣t ]2,解得t=1+14(m+2)(m﹣4),∵ME=PM,PE⊥AB,∴t=n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m﹣4)=2[1+14(m+2)(m﹣4)]−12(m+2)(m﹣4)=2,∴DE=2,另解:∵PD•DE=AD•DB,∴DE=AD⋅DBPD=(m+2)(4−m)−12(m+2)(m−4)=2,为定值.∴点P在运动过程中线段DE的长是定值,DE=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年西藏中考数学试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分. 1.(3分)20(20)+-的结果是( ) A .40-B .0C .20D .402.(3分)如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是( )A .B .C .D .3.(3分)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为( ) A .61610⨯B .71.610⨯C .81.610⨯D .80.1610⨯4.(3分)下列分解因式正确的一项是( ) A .29(3)(3)x x x -=+- B .242(2)xy x xy x +=+ C .2221(1)x x x --=-D .222()x y x y +=+5.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是( ) A .8B .9C .10D .116.(3分)下列运算正确的是( ) A .2510a a a = B .32235()()a a a -+-= C .33(2)6a a -=-D .624(0)a a a a ÷=≠7.(3分)如图,下列四个条件中,能判定平行四边形ABCD 为菱形的是( )A .90ADB ∠=︒B .OA OB =C .OA OC =D .AB BC =8.(3分)格桑同学一周的体温监测结果如下表:星期 一 二 三 四 五 六 日 体温(单位:C)︒36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是( ) A .35.9,36.2,36.3 B .35.9,36.3,36.6 C .36.5,36.3,36.3D .36.5,36.2,36.69.(3分)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:)cm 关于所挂物体质量x (单位:)kg 的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .610.(3分)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD AC ⊥,垂足为D ,延长OD 与半圆O 交于点E .若8AB =,30CAB ∠=︒,则图中阴影部分的面积为( )A .433πB .4233π-C .833π-D .8233π-11.(3分)如图,在平面直角坐标系中,直线y x =与反比例函数4(0)y x x =>的图象交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若2OA BC =,则b 的值为( )A .1B .2C .3D .412.(3分)观察下列两行数: 1,3,5,7,9,11,13,15,17,⋯ 1,4,7,10,13,16,19,22,25,⋯探究发现:第1个相同的数是1,第2个相同的数是7,⋯,若第n 个相同的数是103,则n 等于( ) A .18B .19C .20D .21二、填空题:本题共6小题,每小题3分,共18分.13.(3分)若3x +在实数范围内有意义,则x 的取值范围是 . 14.(3分)分式方程2311x x =-+的解为 . 15.(3分)计算:0(1)|2|12π-+-+= .16.(3分)如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在DAB ∠的内部相交于点G ,画射线AG 交DC 于H .若140B ∠=︒,则DHA ∠= .17.(3分)当13x -时,二次函数245y x x =-+有最大值m ,则m = .18.(3分)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE ∆沿PE 折叠,得到PFE ∆,连接CF .若10AB =,12BC =,则CF 的最小值为 .三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤.19.(5分)解不等式组:12,2(1)6xx+<⎧⎨-⎩并把解集在数轴上表示出来.20.(5分)如图,ABC∆中,D为BC边上的一点,AD AC=,以线段AD为边作ADE∆,使得AE AB=,BAE CAD∠=∠.求证:DE CB=.21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目)A,800米中长跑(记为项目)B,跳远(记为项目)C,跳高(记为项目)D,即从A,B,C,D四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角60ACF∠=︒,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角30B∠=︒.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).23.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.24.(8分)如图所示,AB 是O 的直径,AD 和BC 分别切O 于A ,B 两点,CD 与O 有公共点E ,且AD DE =. (1)求证:CD 是O 的切线; (2)若12AB =,4BC =,求AD 的长.25.(10分)在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于(2,0)A -,(4,0)B 两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC ,PA ,PC ,若152PAC S ∆=,求点P 的坐标; (3)如图乙,过A ,B ,P 三点作M ,过点P 作PE x ⊥轴,垂足为D ,交M 于点E .点P 在运动过程中线段DE 的长是否变化,若有变化,求出DE 的取值范围;若不变,求DE 的长.2020年西藏中考数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,不选、错选或多选均不得分. 1.(3分)20(20)+-的结果是( ) A .40-B .0C .20D .40【解答】解:20(20)0+-=. 故选:B .2.(3分)如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是( )A .B .C .D .【解答】解:从上面看,是一个矩形,矩形的中间是一个圆. 故选:C .3.(3分)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为( ) A .61610⨯B .71.610⨯C .81.610⨯D .80.1610⨯【解答】解:716000000 1.610=⨯, 故选:B .4.(3分)下列分解因式正确的一项是( ) A .29(3)(3)x x x -=+- B .242(2)xy x xy x +=+ C .2221(1)x x x --=-D .222()x y x y +=+【解答】解:A 、原式(3)(3)x x =+-,符合题意;B 、原式2(2)x y =+,不符合题意;C 、原式不能分解,不符合题意;D 、原式不能分解,不符合题意.故选:A .5.(3分)一个多边形的内角和是外角和的4倍,这个多边形的边数是( ) A .8B .9C .10D .11【解答】解:设这个多边形的边数为n ,则该多边形的内角和为(2)180n -⨯︒, 依题意得:(2)1803604n -⨯︒=︒⨯, 解得:10n =,∴这个多边形的边数是10.故选:C .6.(3分)下列运算正确的是( ) A .2510a a a = B .32235()()a a a -+-= C .33(2)6a a -=-D .624(0)a a a a ÷=≠【解答】解:A 、22510a a a =,本选项计算错误;B 、322366()()0a a a a -+-=-=,本选项计算错误;C 、33(2)8a a -=-,本选项计算错误;D 、624(0)a a a a ÷=≠,本选项计算正确;故选:D .7.(3分)如图,下列四个条件中,能判定平行四边形ABCD 为菱形的是( )A .90ADB ∠=︒B .OA OB =C .OA OC =D .AB BC =【解答】解:A 、平行四边形ABCD 中,90ADB ∠=︒, 不能判定四边形ABCD 为菱形,故选项A 不符合题意;B 、四边形ABCD 是平行四边形,OA OC ∴=,OB OD =, OA OB =,AC BD ∴=,∴平行四边形ABCD 是矩形,不能判定四边形ABCD 为菱形,故选项B 不符合题意;C 、四边形ABCD 是平行四边形,OA OC ∴=,不能判定四边形ABCD 为菱形,故选项C 不符合题意;D 、四边形ABCD 是平行四边形,AB BC =,∴平行四边形ABCD 是菱形;故选项D 符合题意;故选:D .8.(3分)格桑同学一周的体温监测结果如下表:星期 一 二 三 四 五 六 日 体温(单位:C)︒36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是( ) A .35.9,36.2,36.3 B .35.9,36.3,36.6 C .36.5,36.3,36.3D .36.5,36.2,36.6【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3;平均数是1(36.335.936.536.336.136.536.3)36.37x =⨯++++++=.故选:C .9.(3分)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:)cm 关于所挂物体质量x (单位:)kg 的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【解答】解:设y 与x 的函数关系式为y kx b =+, 将点(0,6),(9,10.5)代入上式得,6910.5b k b =⎧⎨+=⎩, 解得,0.56k b =⎧⎨=⎩,即y 与x 的函数关系式是0.56y x =+, 当7.5y =时,7.50.56x =+,得3x =, 即a 的值为3, 故选:A .10.(3分)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD AC ⊥,垂足为D ,延长OD 与半圆O 交于点E .若8AB =,30CAB ∠=︒,则图中阴影部分的面积为( )A .433π-B .4233π-C .833π-D .8233π-【解答】解:OD AC ⊥,90ADO ∴∠=︒,AE CE =,AD CD =, 30CAB ∠=︒,4OA =,122OD OA ∴==,323AD OA ==, ∴图中阴影部分的面积2604182322336023ADOAOE S S ππ∆⋅⨯=-=-⨯⨯=-扇形,故选:D .11.(3分)如图,在平面直角坐标系中,直线y x =与反比例函数4(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若2OA BC =,则b 的值为( )A .1B .2C .3D .4【解答】解:直线y x =与反比例函数4(0)y x x =>的图象交于点A ,∴解4x x=求得2x =±, A ∴的横坐标为2,2OA BC =, C ∴的横坐标为1,把1x =代入4y x=得,4y =, (1,4)C ∴,将直线y x =沿y 轴向上平移b 个单位长度,得到直线y x b =+, ∴把C 的坐标代入得41b =+,求得3b =,故选:C .12.(3分)观察下列两行数: 1,3,5,7,9,11,13,15,17,⋯ 1,4,7,10,13,16,19,22,25,⋯探究发现:第1个相同的数是1,第2个相同的数是7,⋯,若第n 个相同的数是103,则n 等于( ) A .18B .19C .20D .21【解答】解:第1个相同的数是1061=⨯+, 第2个相同的数是7161=⨯+, 第3个相同的数是13261=⨯+, 第4个相同的数是19361=⨯+,⋯,第n 个相同的数是6(1)165n n -+=-, 所以65103n -=, 解得18n =.答:第n 个相同的数是103,则n 等于18. 故选:A .二、填空题:本题共6小题,每小题3分,共18分.13.(3x 的取值范围是 3x - .【解答】解:若式子3x +在实数范围内有意义, 则30x +, 解得:3x -,则x 的取值范围是:3x -.故答案为:3x -.14.(3分)分式方程2311x x =-+的解为 5x = . 【解答】解:去分母得:2233x x +=-,解得:5x =,经检验5x =是分式方程的解,故答案为:5x =.15.(3分)计算:0(1)|2|12π-+-+= 323+ .【解答】解:0(1)|2|12π-+-+1223=++323=+.故答案为:323+.16.(3分)如图,已知平行四边形ABCD ,以点A 为圆心,适当长为半径画弧分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在DAB ∠的内部相交于点G ,画射线AG 交DC 于H .若140B ∠=︒,则DHA ∠= 20︒ .【解答】解:四边形ABCD 为平行四边形,//AB CD ∴,//AD BC ,18014040BAD ∴∠=︒-︒=︒,由作法得:AH 平分BAD ∠,BAH DAH ∴∠=∠,1202BAD BAD ∴∠=∠=︒,//AB CD ,20DHA BAH ∴∠=∠=︒.故答案为20︒.17.(3分)当13x -时,二次函数245y x x =-+有最大值m ,则m = 10 .【解答】解:二次函数2245(2)1y x x x =-+=-+,∴该函数开口向上,对称轴为2x =,当13x -时,二次函数245y x x =-+有最大值m ,∴当1x =-时,该函数取得最大值,此时2(12)110m =--+=,故答案为:10.18.(3分)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把PBE ∆沿PE 折叠,得到PFE ∆,连接CF .若10AB =,12BC =,则CF 的最小值为 8 .【解答】解:如图所示,点F 在以E 为圆心EA 为半径的圆上运动,当E 、F 、C 共线时时,此时CF 的值最小,根据折叠的性质,EBP EFP ∆≅∆,EF PF ∴⊥,EB EF =,E 是AB 边的中点,10AB =,5AE EF ∴==,12AD BC ==,222251213CE BE BC ∴=++=,1358CF CE EF ∴=-=-=.故答案为:8.三、解答题:共46分.解答应写出文字说明、证明过程或演算步骤.19.(5分)解不等式组:12,2(1)6x x +<⎧⎨-⎩并把解集在数轴上表示出来.【解答】解;解不等式12x +<,得:1x <,解不等式2(1)6x -,得:2x -,则不等式组的解集为21x -<,将不等式组的解集表示在数轴上如下:20.(5分)如图,ABC ∆中,D 为BC 边上的一点,AD AC =,以线段AD 为边作ADE ∆,使得AE AB =,BAE CAD ∠=∠.求证:DE CB =.【解答】证明:BAE CAD ∠=∠,BAE BAD CAD BAD ∴∠+∠=∠+∠,即DAE CAB ∠=∠,在ADE ∆和ACB ∆中,AD AC DAE CAB AE AB =⎧⎪∠=∠⎨⎪=⎩,()ADE ACB SAS ∴∆≅∆,DE CB ∴=.21.(5分)某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目)A ,800米中长跑(记为项目)B ,跳远(记为项目)C ,跳高(记为项目)D ,即从A ,B ,C ,D 四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.【解答】解:画树状图得:共有16种等可能的结果,两名同学选到相同项目的为4种情况,P∴(两名同学选到相同项目)41 164==.22.(6分)如图所示,某建筑物楼顶有信号塔EF,卓玛同学为了探究信号塔EF的高度,从建筑物一层A点沿直线AD出发,到达C点时刚好能看到信号塔的最高点F,测得仰角60ACF∠=︒,AC长7米.接着卓玛再从C点出发,继续沿AD方向走了8米后到达B点,此时刚好能看到信号塔的最低点E,测得仰角30B∠=︒.(不计卓玛同学的身高)求信号塔EF的高度(结果保留根号).【解答】解:在Rt ACF∆中,60ACF∠=︒,7AC=米,tan6073AF AC∴=︒=米,8BC=米,15AB∴=米,在Rt ABE∆中,30B∠=︒,3tan301553AE AB∴=︒==735323EF AF AE∴=-==),答:信号塔EF的高度为323.(7分)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【解答】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(6912)x m+-,根据题意,得(6912)600x x+-=,整理,得2353000x x-+=,解得115x=,220x=,当15x=时,7024035x-=>,不符合题意舍去;当20x=时,70230x-=,符合题意.答:这个茶园的长和宽分别为30m、20m.24.(8分)如图所示,AB是O的直径,AD和BC分别切O于A,B两点,CD与O 有公共点E,且AD DE=.(1)求证:CD是O的切线;(2)若12AB=,4BC=,求AD的长.【解答】(1)证明:连接OD,OE,AD切O于A点,AB是O的直径,90DAB∴∠=︒,AD DE=,OA OE=,OD OD=,()ADO EDO SSS ∴∆≅∆,90OED OAD ∴∠=∠=︒,CD ∴是O 的切线;(2)解:过C 作CH AD ⊥于H , AB 是O 的直径,AD 和BC 分别切O 于A ,B 两点,90DAB ABC CHA ∴∠=∠=∠=︒,∴四边形ABCH 是矩形,12CH AB ∴==,4AH BC ==, CD 是O 的切线,AD DE ∴=,CE BC =,4DH AD BC AD ∴=-=-,4CD AD =+,222CH DH CD +=,22212(4)(4)AD AD ∴+-=+,9AD ∴=.25.(10分)在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于(2,0)A -,(4,0)B 两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC ,PA ,PC ,若152PAC S ∆=,求点P 的坐标; (3)如图乙,过A ,B ,P 三点作M ,过点P 作PE x ⊥轴,垂足为D ,交M 于点E .点P 在运动过程中线段DE 的长是否变化,若有变化,求出DE 的取值范围;若不变,求DE 的长.【解答】解:(1)二次函数212y x bx c =++的图象与x 轴交于(2,0)A -,(4,0)B 两点, ∴二次函数的解析式为1(2)(4)2y x x =+-, 即2142y x x =--. (2)如图甲中,连接OP .设21(,4)2P m m m --.由题意,(2,0)A -,(0,4)C -,PAC AOC OPC AOP S S S S ∆∆∆∆=+-,∴21511112442(4)22222m m m =⨯⨯+⨯⨯-⨯⨯-++, 整理得,22150m m +-=,解得3m =或5-(舍弃),5(3,)2P ∴-.(3)结论:点P 在运动过程中线段DE 的长是定值,2DE =.理由:如图乙中,连接AM ,PM ,EM ,设(1,)M t ,[P m,1(2)(4)]2m m +-,(,)E m n .由题意(2,0)A -,AM PM =,222213(1)[(2)(4)]2t m m m t ∴+=-++--, 解得11(2)(4)4t m m =++-, ME PM =,PE AB ⊥, 1(2)(4)22n m m t ++-∴=, 1112(2)(4)2[1(2)(4)](2)(4)2222n t m m m m m m ∴=-+-=++--+-=, 2DE ∴=,∴点P 在运动过程中线段DE 的长是定值,2DE =.。