遗传算法ppt课件
合集下载
遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法应用的分析与研究PPT课件
详细描述
在大数据时代,数据量呈爆炸式增长,传统的优化算法难以应对。遗传算法通过模拟生物进化过程中 的自然选择、交叉和变异等机制,能够在大规模数据集中快速找到最优解,广泛应用于机器学习、数 据挖掘和模式识别等领域。
遗传算法在人工智能领域的应用
总结词
遗传算法在人工智能领域的应用日益广泛,尤其在神经网络训练、路径规划、机器人控制等方面表现出色。
协同进化算法
元启发式算法
将遗传算法与其他元启发式算法(如 蚁群算法、粒子群算法等)结合,利 用元启发式算法的特点,提高遗传算 法的搜索效率。
将多个子群体分别进化,并利用各子 群体的进化结果指导其他子群体的进 化,提高算法的全局搜索能力。
遗传算法的并行化实现
并行选择操作
将种群分成若干个部分,分别在不同的处理器上执行选择操作, 然后合并结果。
• 遗传算法的改进与发展:随着研究的深入,遗传算法在理论和应用方面都得到 了不断的改进和发展。例如,多种遗传算法的融合、引入启发式信息、改进选 择和交叉算子等方法,都为提高遗传算法的性能和适用性提供了新的思路。
对未来研究的建议与展望
• 进一步探索遗传算法的理论基础:目前,遗传算法的理论基础尚不完备,对于 其工作原理和性能分析等方面仍需深入研究。未来研究可以进一步探索遗传算 法的数学基础、收敛性和鲁棒性等方面,以提高算法的可靠性和效率。
遗传算法的应用领域
组合优化
处理离散的优化问题,如旅行 商问题、背包问题等。
调度与分配
在生产、物流等领域用于优化 资源分配和任务调度。
函数优化
用于求解多变量函数的最优解, 如最大/最小化问题。
机器学习
用于分类、聚类、特征选择等 任务,如支持向量机、神经网 络等。
在大数据时代,数据量呈爆炸式增长,传统的优化算法难以应对。遗传算法通过模拟生物进化过程中 的自然选择、交叉和变异等机制,能够在大规模数据集中快速找到最优解,广泛应用于机器学习、数 据挖掘和模式识别等领域。
遗传算法在人工智能领域的应用
总结词
遗传算法在人工智能领域的应用日益广泛,尤其在神经网络训练、路径规划、机器人控制等方面表现出色。
协同进化算法
元启发式算法
将遗传算法与其他元启发式算法(如 蚁群算法、粒子群算法等)结合,利 用元启发式算法的特点,提高遗传算 法的搜索效率。
将多个子群体分别进化,并利用各子 群体的进化结果指导其他子群体的进 化,提高算法的全局搜索能力。
遗传算法的并行化实现
并行选择操作
将种群分成若干个部分,分别在不同的处理器上执行选择操作, 然后合并结果。
• 遗传算法的改进与发展:随着研究的深入,遗传算法在理论和应用方面都得到 了不断的改进和发展。例如,多种遗传算法的融合、引入启发式信息、改进选 择和交叉算子等方法,都为提高遗传算法的性能和适用性提供了新的思路。
对未来研究的建议与展望
• 进一步探索遗传算法的理论基础:目前,遗传算法的理论基础尚不完备,对于 其工作原理和性能分析等方面仍需深入研究。未来研究可以进一步探索遗传算 法的数学基础、收敛性和鲁棒性等方面,以提高算法的可靠性和效率。
遗传算法的应用领域
组合优化
处理离散的优化问题,如旅行 商问题、背包问题等。
调度与分配
在生产、物流等领域用于优化 资源分配和任务调度。
函数优化
用于求解多变量函数的最优解, 如最大/最小化问题。
机器学习
用于分类、聚类、特征选择等 任务,如支持向量机、神经网 络等。
遗传算法ppt
现代优化算法-遗传算法
于是,得到第二代种群 S 2 :
s1 11001 25 , s2 01100 12 , s3 11011 27 , s4 10000 16
第二代种群 S2 中各染色体的情况如表 10-1 所示。 表 10-1 第二代种群 S2 中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 积累概率 估计的选中次数 0.36 0.08 0.41 0.15 0.36 0.44 0.85 1.00 1 0 2 1
0, 1 二进制串。串的长度取决于求解的精度,例如假设解空间为[-1,
因为 221<3106<222,所以编码所用的二进制串至少需要 22 位。
2],求解精度
为保留六位小数,由于解空间[-1, 2]的长度为 3,则必须将该区间分为 3106 等分。
现代优化算法-遗传算法
(1) 采用 5 位二进制数编码染色体,将种群规模设定为 4,取下列个体组成初始 种群 S1 : s1 13(01101), s2 24(11000), s3 8(01000), s4 19(10011) (2) 定义适应度函数为目标函数 f x x 2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应 度最高的个体,即 31(11111)出现为止。迭代的过程为: 首先计算种群 S1 中各个体 si 的适应度 f si 如下。
f ( s1 ) f (13) 132 169; f ( s2 ) f (24) 24 2 576; f ( s3 ) f (8) 82 64; f ( s4 ) f (19) 19 2 61
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
经典遗传算法教程 PPT
j 1
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
s(d) 是共享度函数
2)算法的改进
微种群遗传算法(GA)
双种群遗传算法(DPGA)
GA算法
终止条件:1)达到预定指标;2)达到预定代数。
双种群算法( DPGA)
基本思想:利用人类社会分工合作的机理。 分成:全局种群——粗搜索,寻找估计存在的最优区域;
局部种群 ——精搜索在全局划定的区域内,寻找最优点。
欺骗性函数
图式划分:指引相互之间竞争的定义位为同一集合的一组图式。 如#表示定义位,则H1=*1*0*,H2=*0*1* ,H3=*1*1*, H4=*0*0* 同属于划分*#*#*。
总平均习惯度(OAF):对一个给定图式,OAF即为其成员 的平均习惯度。
欺骗性函数——包含全局最优的图式其OAF不如包含局部 最优的OAF,这种划分称为欺骗划分,它会使GA陷入局部最优。 如最高阶欺骗函数有k个定义位,则此函数称k阶欺骗。
有重叠 0 < G <1 ③选择方法: 转轮法,精英选择法,竞争法、 ④交换率: Pc 一般为60~100%、 ⑤变异率: Pm 一般为0、1~10%
举例:
变异概率取0、001
初始种群和它的习惯度值 染色体的交换操纵
举例:
14
步骤1)编码:确定二进制的位数;组成个体(染色体)
二进制位数取决于运算
经典遗传算法教程
遗传算法基本原理
模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传 空间,把估计的解编码成一个向量——染色体,向量的每个 元素称为基因。
通过不断计算各染色体的习惯值,选择最好的染色体,获 得最优解。
遗传算法的基本运算
⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择习惯度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。
《遗传算法》课件
个体选择策略
轮盘赌选择
按照适应度大小进行选择, 适应度越大的个体被选中的 概率越高。
锦标赛选择
随机选择一组个体进行比较, 选择适应度最好的个体。
随机选择
随机选择一部分个体作为下 一代。
杂交操作的实现方法
单点杂交 多点杂交 均匀杂交
从两个个体的某个交叉点将两个个体分割,并交 换剩下的部分。
从两个个体的多个交叉点将两个个体分割,并交 换剩下的部分。
遗传算法的基本流程
1
评估适应度
2
计算每个个体的适应度。
3
交叉操作
4
通过交叉操作产生新的个体。
5
替换操作
6
将新的个体替换种群中的一部分个体。
7
输出结果
8
输出最优解作为最终结果。
初始化种群
生成初始的候选解。
选择操作
根据适应度选择优秀的个体。
变异操作
对个体进行变异以增加多样性。
迭代
重复执行选择、交叉和变异操作直至满足 终止条件。
智能控制
如机器人路径规划和智能决策。
数挖掘
例如聚类、分类和回归分析。
遗传算法的优缺点
1 优点
能够全局搜索、适应复杂问题和扩展性强。
2 缺点
计算量大、收敛速度慢和参数选择的难度。
遗传算法的基本概念
个体
候选解的表示,通常采用二进 制编码。
适应度函数
评价候选解的质量,指导选择 和进化过程。
种群
多个个体组成的集合,通过遗 传操作进行进化。
遗传算法实例分析
旅行商问题
遗传算法可以用于求解旅行商问 题,找到最短路径。
背包问题
调度问题
遗传算法可以用于求解背包问题, 找到最优的物品组合。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
《遗传算法实例参考》课件
定义
遗传算法是一种模拟自然选择和遗传 机制的优化算法,通过模拟生物进化 过程中的基因遗传和变异过程来寻找 最优解。
特点
遗传算法具有全局搜索能力、隐含并 行性、自适应性、对初始条件要求不 高、鲁棒性强等优点。
遗传算法的基本原理
适应度函数
根据问题的目标函数来定义适 应度函数,用于评估每个个体 的适应度。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
用于求解如旅行商问题、背包问题 等组合优化问题。
调度与控制
用于生产调度、机器人路径规划等 控制系统的优化。
04
PART 02
遗传算法的实现步骤
初始化种群
初始解的产生
在遗传算法的开始阶段,需要随机生成一组初始解,这组解被称为种群。每个解 都是问题的一个潜在解决方案。
交叉操作
单点交叉(One-Point Crossover)
随机选择一个交叉点,将两个父代解在该点后的部分进行交换,形成两个子代解。
优点
能够引入新的解,增加解的多样性。
变异操作
要点一
位反转变异(Bit-Flip Mutation )
随机选择解中的一个位进行取反操作,以增加解的随机性 。
要点二
优点
能够防止算法陷入局部最优解,提高全局搜索能力。
PART 05
遗传算法实例:求解约束 优化问题
问题描述
求解约束优化问题
遗传算法可以用于求解具有约束条件的优 化问题,例如在物流、生产计划、金融等
领域中常见的优化问题。
约束条件
限制决策变量取值的条件,可以是等式或 不等式约束。
目标函数
需要最小化或最大化的目标函数,通常是 一个数学表达式,代表了问题的优化目标 。
遗传算法是一种模拟自然选择和遗传 机制的优化算法,通过模拟生物进化 过程中的基因遗传和变异过程来寻找 最优解。
特点
遗传算法具有全局搜索能力、隐含并 行性、自适应性、对初始条件要求不 高、鲁棒性强等优点。
遗传算法的基本原理
适应度函数
根据问题的目标函数来定义适 应度函数,用于评估每个个体 的适应度。
机器学习
用于支持向量机、神经网络等机器 学习模型的参数优化。
03
02
组合优化
用于求解如旅行商问题、背包问题 等组合优化问题。
调度与控制
用于生产调度、机器人路径规划等 控制系统的优化。
04
PART 02
遗传算法的实现步骤
初始化种群
初始解的产生
在遗传算法的开始阶段,需要随机生成一组初始解,这组解被称为种群。每个解 都是问题的一个潜在解决方案。
交叉操作
单点交叉(One-Point Crossover)
随机选择一个交叉点,将两个父代解在该点后的部分进行交换,形成两个子代解。
优点
能够引入新的解,增加解的多样性。
变异操作
要点一
位反转变异(Bit-Flip Mutation )
随机选择解中的一个位进行取反操作,以增加解的随机性 。
要点二
优点
能够防止算法陷入局部最优解,提高全局搜索能力。
PART 05
遗传算法实例:求解约束 优化问题
问题描述
求解约束优化问题
遗传算法可以用于求解具有约束条件的优 化问题,例如在物流、生产计划、金融等
领域中常见的优化问题。
约束条件
限制决策变量取值的条件,可以是等式或 不等式约束。
目标函数
需要最小化或最大化的目标函数,通常是 一个数学表达式,代表了问题的优化目标 。
人工智能入门课件第5章遗传算法
5.4.2 交叉操作(crossover)
交叉的具体步骤为:
1. 从交配池中随机取出要交配的一对个体;
2. 根据位串长度L,对要交配的一对个体,随 机选取[1,L-1]中一个或多个的整数k作为 交叉点;
3. 根据交叉概率pc(0<pc≤1)实施交叉操作,配 对个体在交叉点处,相互交换各自的部分内 容,从而形成新的一对个体。
N
pi 1
i 1
2.基于排名的选择
(1)线性排名选择
首先假设群体成员按适应值大小从好到坏依次排列
为x1,x2,…,xN,然后根据一个线性函数分配选 择概率pi。
设线性函数pi=(a-b·i/(N +1))/N,i=1,
2,…,N,其中a,b为常数。由于
N
pi
1
,易得,
b=2(a-1)。又要求对任意i=1,2,…i1,N,有pi>0,
5.2.3 实数编码
为了克服二进制编码的缺点,对于问题的变量 是实向量的情形,直接可以采用十进制进行编码, 这样可以直接在解的表现形式上进行遗传操作,从 而便于引入与问题领域相关的启发式信息以增加系 统的搜索能力
例3 作业调度问题(JSP)的种群个体编码常用 m×n的矩阵Y=[yij],i=1,2,…,m,j=1, 2,…,n(n为从加工开始的天数,m为工件的 优先顺序)。 yij表示工件i在第j日的加工时间。 下表是一个随机生成的个体所示。
一种方法是为参与交换的数增加一个映射如下:
将此映射应用于未交换的等位基因得到:
T~1 234 | 751| 68 T~2 136 | 275 | 84 则为合法的。
5.2.2 Gray编码
Gray编码即是将二进制码通过如下变换进行转
遗传算法课件PPT
例: 4 3 1 2 5 6 7 5 4 3 1 2 6 7
*
五.GA的各种变形(15)
切点
实数编码的合法性修复 交叉 单切点交叉
*
五.GA的各种变形(16)
双切点交叉(与单切点交叉类似) 该方法最大的问题:如何在实际优化中保持可行性。
切点
切点
*
五.GA的各种变形(17)
X
Y
*
五.GA的各种变形(7)
顺序交叉( OX )Order Crossover:可看做是带有不同修复程序的部分映射交叉的变形。
OX步骤:
选切点X,Y;
交换中间部分;
从切点Y后第一个基因起列出原顺序,去掉已有基因;
从切点Y后第一个位置起,按顺序填入。
*
五.GA的各种变形(8)
OX例题:
列出基因:6 7 2 1 3 4 5 7 6 4 3 1 2 5
*
五.GA的各种变形(26)
加入的意义(同线性标定中ξ 的意义)
加入使最坏个体仍有繁殖的可能, 随 的增大而减小
的取值:
, , , 调节 和 ,从而来调节
*
五.GA的各种变形(27)
引入 的目的: 调节选择压力,即好坏个体选择概率的 差,使广域搜索范围宽保持种群的多样性,而 局域搜索细保持收敛性。如下图表示: 开始:希望选择压力小 后来:希望选择压力大
*
五.GA的各种变形(33)
顺序选择:
01
步骤:
02
从好到坏排序所有个体
03
定义最好个体的选择概率为 ,则第 个个体的选择概率为:
04
*
由于
五.GA的各种变形(34)
有限时要归一化,则有下面的公式:
*
五.GA的各种变形(15)
切点
实数编码的合法性修复 交叉 单切点交叉
*
五.GA的各种变形(16)
双切点交叉(与单切点交叉类似) 该方法最大的问题:如何在实际优化中保持可行性。
切点
切点
*
五.GA的各种变形(17)
X
Y
*
五.GA的各种变形(7)
顺序交叉( OX )Order Crossover:可看做是带有不同修复程序的部分映射交叉的变形。
OX步骤:
选切点X,Y;
交换中间部分;
从切点Y后第一个基因起列出原顺序,去掉已有基因;
从切点Y后第一个位置起,按顺序填入。
*
五.GA的各种变形(8)
OX例题:
列出基因:6 7 2 1 3 4 5 7 6 4 3 1 2 5
*
五.GA的各种变形(26)
加入的意义(同线性标定中ξ 的意义)
加入使最坏个体仍有繁殖的可能, 随 的增大而减小
的取值:
, , , 调节 和 ,从而来调节
*
五.GA的各种变形(27)
引入 的目的: 调节选择压力,即好坏个体选择概率的 差,使广域搜索范围宽保持种群的多样性,而 局域搜索细保持收敛性。如下图表示: 开始:希望选择压力小 后来:希望选择压力大
*
五.GA的各种变形(33)
顺序选择:
01
步骤:
02
从好到坏排序所有个体
03
定义最好个体的选择概率为 ,则第 个个体的选择概率为:
04
*
由于
五.GA的各种变形(34)
有限时要归一化,则有下面的公式:
遗传算法详解ppt课件
遗传算法的特点
同常规优化算法相比,遗传算法有以下特点: ① 遗传算法是对参数的编码进行操作,而非对参 数本身。 ② 遗传算法是从许多点开始并行操作,并非局限 于一点,从而可有效防止搜索过程收敛于局部最 优解。 ③ 遗传算法通过目标函数计算适值,并不需要其 它推导和附加信息,因而对问题的依赖性较小。
图5–3
遗传算法的工作原理示意图
标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法(genetic algorithms,简称GA)是人工智能 的重要分支,是基于达尔文进化论,在微型计算机上模拟 生命进化机制而发展起来的一门新学科。它根据适者生存、 优胜劣汰等自然进化规则来进行搜索计算和问题求解。对 许多用传统数学难以解决或明显失效的非常复杂问题,特 别是最优化问题,GA提供了一个行之有效的新途径。近 年来,由于遗传算法求解复杂优化问题的巨大潜力及其在 工业控制工程领域的成功应用,这种算法受到了广泛的关 注。
1. 复制
复制(又称繁殖),是从一个旧种群(old population) 中选择生命力强的字符串(individual string)产生新种群 的过程。或者说,复制是个体位串根据其目标函数f(即适 值函数)拷贝自己的过程。直观地讲,可以把目标函数f看 作是期望的最大效益的某种量度。根据位串的适值所进行 的拷贝,意味着具有较高适值的位串更有可能在下一代中 产生一个或多个子孙。显然,在复制操作过程中,目标函 数(适值)是该位串被复制或被淘汰的决定因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
基本算法原理
初始化人工种群:
• 确定个体:对问题进行编码
浮点数编码:真值编码
二进制编码:解空间映射到二进制序列
• 确定种群:
确定种群数量上限(20~100)
加入随机的个体
交叉/变异概率
6
基本算法原理
计算适应度: • 适应度函数的选择
– 有目标:以结果函数为评估函数为原型 – 无明确目标:种群的变化率
17
算法原理
交叉算子:
• 均匀交叉/离散交叉:基于固定概率
10101100
10101000
00110010
00110110
18
算法原理
变异算子: • 基本位变异:基因反转/等位值替换 • 均匀变异:均匀随机分布值替换 • 高斯近似变异:正态分布值替换
19
算法原理
变异算子: • 基本位变异:基因反转/等位值替换
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
个体ID
1
6
3
2
7
4
5
8
适应度 90
3.0
1.5
1.0
被选概 率
0.22
0.2
0.17
0.14
0.1
0.08
0.06
0.03
11
算法原理
选择算子:
• 最优个体/截断选择法
n=4
个体ID
1
2
3
4
5
6
7
8
适应度
9.5
7
7.5
3
1.5
8
5
11
范围[0,8],根据高斯分布取 可能的变异值,取值概率符 合正态分布
22
遗传算法的优势
• 适用于灰箱/黑箱问题 • 潜在并行性 • 适应度函数评价,计算复杂度小 • 收敛性强 • 具有可扩展性,易与其他算法结合
23
遗传算法的不足
• 早熟/过早收敛 • 不适用于局部搜索 • 计算量大,搜索时间长 • 并行性开发不够充分
10101100 10100100
20
算法原理
变异算子:
• 均匀变异:均匀随机分布值替换
1 1.5 3 4.7 1.6 4
5
11
范围[0,8],步长取2,可能的变异值:0,2,4,6,8,取 到每个变异值的概率相同
21
算法原理
变异算子:
• 高斯近似变异:正态分布值替换
1 1.5 3 4.7 1.6 4
24
研究改进方向
• 收敛性/早熟的预防 • 遗传算子的设计 • 遗传算子的自适应设计 • 并行化研究
25
感谢倾听
26
遗传算法简介
主讲人:
1
目录
1. 背景简介……………遗传算法的生物学背景 2. 算法原理……………算法流程及算子的介绍 3. 算法评价……………优缺点及适用性评估
2
背景简介
遗传算法的生物学原理:
• 适者生存原则 • 自然选择 • 遗传和变异 • 种群演化
3
遗传算法适用场景
• NP问题:一个问题的单个解可以在有限时 间内被验证。
交叉算子: • 单点交叉/两点交叉/多点交叉 • 均匀交叉/离散交叉
15
算法原理
交叉算子:
• 单点交叉/两点交叉/多点交叉:
10101100
10110010
00110010
00101100
16
算法原理
交叉算子:
• 单点交叉/两点交叉/多点交叉:
10101100
10111100
00110010
00100010
7
基本算法原理
种群世代更替: • 选择
– 根据适应度进行排序 – 概率选择函数/精英机制
• 交叉
– 对选择的结果进行交叉操作 – 概率交换部分序列生成新序列
• 变异
– 概率变异 8
算法原理
选择算子:
• 轮盘赌选择法 • 排序选择法 • 最优个体/截断选择法 • 锦标赛选择法
9
算法原理
选择算子:
• 轮盘赌选择法 • 选择保留的父代数量为n
个体ID
1
2
3
4
5
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
被选概率 0.23
0.17
0.18
0.07
0.04
0.19
0.1
0.02
累积概率 0.23
0.77
0.6
0.94
0.98
0.42
0.87
1 10
算法原理
选择算子:
• 排序选择法
个体ID
1
2
3
4
5
• 具体适用于诸多领域如函数优化、组合优 化、生产调度、自动控制、机器学习、图 像处理、人工生命、遗传编程、机器学习、 数据挖掘等。均有很好的表现。
4
基本算法原理
一般流程:
1.初始化人工种群 种群>个体>染色体>基因
2.计算个体的适应度 3.进行选择,交叉,变异等操作 4.迭代2,3步,直到满足停止规则
4
1
12
算法原理
选择算子:
• 锦标赛选择法
个体ID
1
2
3
4
5
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
7>1.5 => 选择2作为父代
13
算法原理
选择算子:
• 轮盘赌选择法 • 排序选择法 • 最优个体/截断选择法 • 锦标赛选择法 影响:适应度函数转换,选择强度,收敛速
度,解的多样性
14
算法原理
基本算法原理
初始化人工种群:
• 确定个体:对问题进行编码
浮点数编码:真值编码
二进制编码:解空间映射到二进制序列
• 确定种群:
确定种群数量上限(20~100)
加入随机的个体
交叉/变异概率
6
基本算法原理
计算适应度: • 适应度函数的选择
– 有目标:以结果函数为评估函数为原型 – 无明确目标:种群的变化率
17
算法原理
交叉算子:
• 均匀交叉/离散交叉:基于固定概率
10101100
10101000
00110010
00110110
18
算法原理
变异算子: • 基本位变异:基因反转/等位值替换 • 均匀变异:均匀随机分布值替换 • 高斯近似变异:正态分布值替换
19
算法原理
变异算子: • 基本位变异:基因反转/等位值替换
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
个体ID
1
6
3
2
7
4
5
8
适应度 90
3.0
1.5
1.0
被选概 率
0.22
0.2
0.17
0.14
0.1
0.08
0.06
0.03
11
算法原理
选择算子:
• 最优个体/截断选择法
n=4
个体ID
1
2
3
4
5
6
7
8
适应度
9.5
7
7.5
3
1.5
8
5
11
范围[0,8],根据高斯分布取 可能的变异值,取值概率符 合正态分布
22
遗传算法的优势
• 适用于灰箱/黑箱问题 • 潜在并行性 • 适应度函数评价,计算复杂度小 • 收敛性强 • 具有可扩展性,易与其他算法结合
23
遗传算法的不足
• 早熟/过早收敛 • 不适用于局部搜索 • 计算量大,搜索时间长 • 并行性开发不够充分
10101100 10100100
20
算法原理
变异算子:
• 均匀变异:均匀随机分布值替换
1 1.5 3 4.7 1.6 4
5
11
范围[0,8],步长取2,可能的变异值:0,2,4,6,8,取 到每个变异值的概率相同
21
算法原理
变异算子:
• 高斯近似变异:正态分布值替换
1 1.5 3 4.7 1.6 4
24
研究改进方向
• 收敛性/早熟的预防 • 遗传算子的设计 • 遗传算子的自适应设计 • 并行化研究
25
感谢倾听
26
遗传算法简介
主讲人:
1
目录
1. 背景简介……………遗传算法的生物学背景 2. 算法原理……………算法流程及算子的介绍 3. 算法评价……………优缺点及适用性评估
2
背景简介
遗传算法的生物学原理:
• 适者生存原则 • 自然选择 • 遗传和变异 • 种群演化
3
遗传算法适用场景
• NP问题:一个问题的单个解可以在有限时 间内被验证。
交叉算子: • 单点交叉/两点交叉/多点交叉 • 均匀交叉/离散交叉
15
算法原理
交叉算子:
• 单点交叉/两点交叉/多点交叉:
10101100
10110010
00110010
00101100
16
算法原理
交叉算子:
• 单点交叉/两点交叉/多点交叉:
10101100
10111100
00110010
00100010
7
基本算法原理
种群世代更替: • 选择
– 根据适应度进行排序 – 概率选择函数/精英机制
• 交叉
– 对选择的结果进行交叉操作 – 概率交换部分序列生成新序列
• 变异
– 概率变异 8
算法原理
选择算子:
• 轮盘赌选择法 • 排序选择法 • 最优个体/截断选择法 • 锦标赛选择法
9
算法原理
选择算子:
• 轮盘赌选择法 • 选择保留的父代数量为n
个体ID
1
2
3
4
5
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
被选概率 0.23
0.17
0.18
0.07
0.04
0.19
0.1
0.02
累积概率 0.23
0.77
0.6
0.94
0.98
0.42
0.87
1 10
算法原理
选择算子:
• 排序选择法
个体ID
1
2
3
4
5
• 具体适用于诸多领域如函数优化、组合优 化、生产调度、自动控制、机器学习、图 像处理、人工生命、遗传编程、机器学习、 数据挖掘等。均有很好的表现。
4
基本算法原理
一般流程:
1.初始化人工种群 种群>个体>染色体>基因
2.计算个体的适应度 3.进行选择,交叉,变异等操作 4.迭代2,3步,直到满足停止规则
4
1
12
算法原理
选择算子:
• 锦标赛选择法
个体ID
1
2
3
4
5
6
7
8
适应度 9.5
7
7.5
3
1.5
8
4
1
7>1.5 => 选择2作为父代
13
算法原理
选择算子:
• 轮盘赌选择法 • 排序选择法 • 最优个体/截断选择法 • 锦标赛选择法 影响:适应度函数转换,选择强度,收敛速
度,解的多样性
14
算法原理