高考数学二轮复习轨迹方程的求解方法
高考数学知识点:轨迹方程的求解
2019年高考数学知识点:轨迹方程的求解2019年高考数学知识点:轨迹方程的求解是为您整理的最新考试资讯,请您详细阅读!符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点:轨迹方程的求解
高考数学知识点:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点就介绍到这里了,更多精彩内容请继续关注!。
高三高考数学中求轨迹方程的常见方法
52
,方程为
(x
1) 2
( y 1) 2
13 . 故 M 的
2
轨迹方程为 ( x 1) 2 ( y 1) 2 13 .
五、参数法 参数法是指先引入一个中间变量 (参数) ,使所求动点的横、纵坐标
所求式子中消去参数,得到 x, y 间的直接关系式,即得到所求轨迹方程
x, y 间建立起联系,然后再从
.
例 5 过抛物线 y 2 2 px ( p 0 )的顶点 O 作两条互相垂直的弦 OA 、 OB ,求弦 AB 的中点
3
.
3
故 k 的取值范围是 1 k 1且 k
3
.
3
5.已知平面上两定点 M (0, 2) 、 N (0,2) , P 为一动点,满足 MP MN PN MN .
(Ⅰ)求动点 P 的轨迹 C 的方程; (直接法) (Ⅱ)若 A 、 B 是轨迹 C 上的两动点,且 AN
NB .过 A 、 B 两点分别作轨迹 C 的切线,设其交点
9.过抛物线 y2 4 x 的焦点 F 作直线与抛物线交于 P、 Q 两点,当此直线绕焦点 F 旋转时,
弦 PQ 中点的轨迹方程为
.
解法分析: 解法 1 当直线 PQ 的斜率存在时,
设 PQ 所在直线方程为 y k( x 1) 与抛物线方程联立,
y k( x 1),
y2 4x
消去 y 得
k 2 x 2 (2 k 2
1, 即 x
y y1
x1
0 .②
联解①②得
x1
3x y 2
2
.又点 Q 在双曲线 C 上,
3x y 2 2 3y x 2 2
(
)(
)
1 ,化简整理
求轨迹方程的六种方法
中学数学解题方法讨论-------求轨迹方程的方法道县五中 周昌雪内容提要:求轨迹方程是每年高考的必考内容且分值较高、难度较大,所以能否正确求轨迹方程对高考的成败至关重要。
本篇论文归纳了六种常用的求轨迹方程的方法。
曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程;直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解;若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之;当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法;若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法;如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程,“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
曲线与方程包括求曲线的方程和由方程研究曲线的性质两个方面的内容,每年必考。
求曲线方程的一般思路是:在平面直角分会坐标系中找出动点P (x,y )的纵坐标y 和横坐标x 之间的关系式(),0f x y =,即为曲线方程,其核心步骤是建系、设点、列式、代入、化简、检验。
检验即为由曲线上的点所具备的条件确定x,y 的范围。
、交轨法等求之。
求曲线方程有两类基本题型:其一是曲线形状明确且便于使用标准形式,此时用待定系数法求方程;另一类是曲线形状不明确,或不便用标准形式表示,这时常用直译法、定义法、思恋法、参数法由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式求解,这时要加强等价转化思想的训练。
高考数学难点突破_难点22__轨迹方程的求法
高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。
在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。
一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。
这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。
这些已知条件将成为我们解题的基础。
二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。
对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。
下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。
例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。
2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。
例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。
3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。
例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。
三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。
我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。
总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。
高中数学求轨迹方程的六种常用技法
求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
高中数学解析几何|求轨迹方程方法最全总结
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
高考数学必备知识点:轨迹方程的求解
2019高考数学必备知识点:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
高考数学二轮复习 圆锥曲线 课时考点13 轨迹问题
课时考点13 轨迹问题考纲透析考试大纲:在理解曲线与方程意义的基础上,能较好地掌握求轨迹的几种基本方法. 高考热点:1.直接法、定义法、转移法求曲线的轨迹方程.2.数形结合的思想,等价转化的思想能起到事半功倍的作用.新题型分类例析热点题型1:直接法求轨迹方程 (05江苏•19)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P 的轨迹方程解:以1O 2O 的中点O 为原点,1O 2O 所在的直线为x 轴,建立平面直角坐标系,则1O (-2,0),2O (2,0), 由已知PN 2PM =,得22PN PM =因为两圆的半径均为1,所以1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(2222-+-=-++y x y x ,即33)6(22=+-y x , 所以所求轨迹方程为)6(22=+-y x (或031222=+-+x y x )[变式新题型1]:设双曲线13222=-x ay 的焦点分别为1F 、2F ,离心率为2.(1)求此双曲线的渐近线`1l 、2l 的方程;(2)若A 、B 分别为`1l 、2l 上的动点,且2|AB |=5|1F 2F |,求线段AB 的中 点M 的轨迹方程并说明轨迹是什么曲线.热点题型2:定义法和转移法求轨迹方程 (05辽宁•理21)已知椭圆)0(12222>>=+b a b y a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由。
高考数学二轮复习-专题30 极坐标与参数方程的应用(解析版)
又因为 O是圆 C 上的点,所以 POQ PCQ π 。
26
【三】最值、几何意义的综合问题
1.距离最值(点到点、曲线点到线、) 距离的最值: ---用“参数法” (1)曲线上的点到直线距离的最值问题 (2)点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 2.面积的最值问题 面积最值问题一般转化成弦长问题+点到线的最值问题 3.几何意义及其综合应用:
P(2,
)
在曲线
cos(
)
2
上.
3
3
所以,l的极坐标方程为
cos(
)
2
.
3
(2)设 P(, ) ,在 Rt△OAP 中, | OP || OA | cos 4 cos , 即 4 cos .
因为P在线段OM上,且
AP
OM
,故
的取值范围是 [
,
]
.
42
所以P点轨迹的极坐标方程为
4 cos ,
(1)分别写出 M1 , M 2 , M 3 的极坐标方程;
(2)曲线 M 由 M1 , M 2 , M 3 构成,若点 P 在 M 上,且 | OP | 3 ,求 P 的极坐标.
【解析】(1)由题设可得,弧 AB, BC,CD 所在圆的极坐标方程分别为
2 cos , 2sin , 2 cos .
[ ,
] .[来源:学*科*网]
42
【练习 2】在极坐标系中,已知圆 C 经过点 P (2 2, ) ,圆心为直线ρsin(θ-π)=- 3与极轴的交点,求
高考数学重要知识点轨迹方程的求解
高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。
轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。
在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。
下面我将详细介绍一下轨迹方程的求解方法。
轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。
当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。
通过解方程可以得到轨迹方程。
例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。
2.抛物线轨迹:另一个常见的轨迹形式是抛物线。
对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。
例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。
3.圆轨迹:圆是另一种常见的轨迹形式。
当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。
当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。
在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。
另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。
除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。
高考数学知识点:轨迹方程的求解
高考数学知识点:轨迹方程的求解
义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤
①建系建立适当的坐标系;
②设点设轨迹上的任一点P(x,y);
③列式列出动点p所满足的关系式;
④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明证明所求方程即为符合条件的动点轨迹方程。
只要大家用心学习,认真复习,就有可能在高考的战场上考取自己理想的成绩。
查字典数学网的编辑为大家带来的2019年高考数学知识点:轨迹方程的求解,希望能为大家提供帮助。
高中数学考前归纳总结求轨迹方程的常用方法
求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。
【高中数学】2021年高考数学冲刺指导:轨迹方程的求解
【高中数学】2021年高考数学冲刺指导:轨迹方程的求解摘要:为了帮助考生们了解高考信息,分享了2021年高考数学冲刺指导,供您参考![轨迹方程]是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤1.建立合适的坐标系,设置调度点m的坐标;⒉写出点m的集合;3.列出等式=0;⒋化简方程为最简形式;5.检查。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈ 直译法:直接将条件转化为方程,进行整理简化,得到运动点的轨迹方程。
这种求轨迹方程的方法通常被称为直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3.相关点法:用移动点Q的坐标x和y表示相关点P的坐标x0和Y0,然后用P点坐标(x0,Y0)所满足的曲线方程代入,进行排序,得到运动点Q的轨迹方程。
这种求轨迹方程的方法称为相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5.轨道交叉法:剔除两条运动曲线方程中的参数,得到无参数方程,即两条运动曲线相交的轨道方程。
这种计算轨道方程的方法称为轨道交叉法。
*直译法:求动点轨迹方程的一般步骤① 建立坐标系——建立适当的坐标系;②设点——设轨迹上的任一点p(x,y);③ 行列式-列出移动点p满足的关系;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;⑤ 证明——证明该方程为条件运动点轨迹方程。
总结:2021年高考数学冲刺指导就介绍到这里了,希望能帮助同学们更好的复习本门课程,更多精彩学习内容请继续关注!。
高考数学二轮复习轨迹方程的求解方法
高考数学二轮复习轨迹方程的求解方法符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.下面是编辑老师整理的轨迹方程的求解方法,期望对您提高学习效率有所关心.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也确实是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】确实是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的差不多步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直截了当将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直截了当关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一样步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
高考数学第二轮复习轨迹方程的求解知识点
2019年高考数学第二轮复习轨迹方程的求解知识点符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.查字典数学网高中频道收集和整理了轨迹方程的求解知识点,以便高三学生更好的梳理知识,轻松备战。
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;外语学习网②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学二轮复习轨迹方程的求解
方法
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤
①建系建立适当的坐标系;
②设点设轨迹上的任一点P(x,y);
③列式列出动点p所满足的关系式;
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,
一边幼儿反复倾听,在反复倾听中体验、品味。
④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
⑤证明证明所求方程即为符合条件的动点轨迹方程。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯
定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
2019年高考数学二轮复习轨迹方程的求解方法就介绍完了,更多信息请关注查字典数学网高考频道!。