《正方形的性质及判定》教学设计2

合集下载

《第2课时 正方形的判定》教案 (公开课)2022年人教版数学

《第2课时 正方形的判定》教案 (公开课)2022年人教版数学

第2课时正方形的判定1.掌握正方形的判定条件;(重点)2.能熟练运用正方形的性质和判定进行有关的证明和计算.(难点)一、情境导入老师给学生一个任务:从一张彩色纸中剪出一个正方形.小明剪完后,这样检验它:比拟了边的长度,发现4条边是相等的,小明就判定他完成了这个任务.这种检验可信吗?小兵用另一种方法检验:量对角线,发现对角线是相等的,小兵就认为他正确地剪出了正方形.这种检验对吗?小英剪完后,比拟了由对角线相互分成的4条线段,发现它们是相等的.按照小英的意见,这说明剪出的四边形是正方形.你的意见怎样?你认为应该如何检验,才能又快又准确呢?二、合作探究探究点一:正方形的判定【类型一】利用“一组邻边相等的矩形是正方形〞证明四边形是正方形如图,在Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.解析:要证四边形CEDF是正方形,那么要先证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF,∠DFC=90°,∠DEC =90°.又∵∠ACB=90°,∴四边形CEDF是矩形.∵DE=DF,∴矩形CEDF是正方形.方法总结:要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.【类型二】利用“有一个角是直角的菱形是正方形〞证明四边形是正方形如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试判断四边形BECF是什么四边形?并说明理由;(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请答复并证明你的结论.解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC.又∵CF=AE,∴可证BE=EC =BF=FC.根据“四边相等的四边形是菱形〞,∴四边形BECF是菱形;(2)菱形对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形.根据“直角三角形中两个角锐角互余〞得∠A=45°.解:(1)四边形BECF是菱形.理由如下:∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1.∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE.∵CF=AE,∴BE=EC=CF =BF,∴四边形BECF是菱形;(2)当∠A=45°时,菱形BECF是正方形.证明如下:∵∠A=45°,∠ACB=90°,∴∠3=45°,∴∠EBF=2∠3=90°,∴菱形BECF是正方形.方法总结:正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用判定定理1或判定定理2进行判定.探究点二:正方形的判定的应用【类型一】 正方形的性质和判定的综合应用如图,点E ,F ,P ,Q 分别是正方形ABCD 的四条边上的点,并且AF =BP =CQ =DE .求证:(1)EF =FP =PQ =QE ; (2)四边形EFPQ 是正方形. 解析:(1)证明△APF ≌△DFE ≌△CEQ ≌△BQP ,即可证得EF =FP =PQ =QE ;(2)由EF =FP =PQ =QE ,可判定四边形EFPQ 是菱形,又由△APF ≌△BQP ,易得∠FPQ =90°,即可证得四边形EFPQ 是正方形.证明:(1)∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =AD .∵AF =BP =CQ =DE ,∴DF =CE =BQ =AP .在△APF 和△DFE 和△CEQ 和△BQP 中,⎩⎪⎨⎪⎧AF =DE =CQ =BP ,∠A =∠D =∠C =∠B ,AP =DF =CE =BQ ,∴△APF ≌△DFE ≌△CEQ ≌△BQP (SAS),∴EF =FP =PQ =QE ;(2)∵EF =FP =PQ =QE ,∴四边形EFPQ 是菱形.∵△APF ≌△BQP ,∴∠AFP =∠BPQ .∵∠AFP +∠APF =90°,∴∠APF +∠BPQ =90°,∴∠FPQ =90°,∴四边形EFPQ 是正方形.方法总结:此题考查了正方形的判定与性质以及全等三角形的判定与性质.注意解题的关键是证得△APF ≌△DFE ≌△CEQ ≌△BQP .【类型二】 与正方形的判定有关的综合应用题如图,△ABC 中,点O 是AC 上的一动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角∠ACG 的平分线于点F ,连接AE 、AF .(1)求证:∠ECF =90°; (2)当点O 运动到何处时,四边形AECF 是矩形?请说明理由;(3)在(2)的条件下,要使四边形AECF 为正方形,△ABC 应该满足条件:______________________(直接添加条件,无需证明).解析:(1)由CE 、CF 分别平分∠BCO 和∠GCO ,可推出∠BCE =∠OCE ,∠GCF =∠OCF ,那么∠ECF =12×180°=90°;(2)由MN ∥BC ,可得∠BCE =∠OEC ,∠GCF =∠OFC ,可推出∠OEC =∠OCE ,∠OFC =∠OCF ,得出EO =CO =FO ,点O 运动到AC 的中点时,那么EO =CO =FO =AO ,这时四边形AECF 是矩形;(3)由和(2)得到的结论,点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角时,那么推出四边形AECF 是矩形且对角线垂直,因而四边形AECF 是正方形.(1)证明:∵CE 平分∠BCO ,CF 平分∠GCO ,∴∠OCE =∠BCE ,∠OCF =∠GCF ,∴∠ECF =12×180°=90°;(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形.理由如下:∵MN ∥BC ,∴∠OEC =∠BCE ,∠OFC =∠GCF .又∵∠OCE =∠BCE ,∠OCF =∠GCF ,∴∠OCE =∠OEC ,∠OCF =∠OFC ,∴EO =CO ,FO =CO ,∴OE =OF .又∵当点O 运动到AC 的中点时,AO =CO ,∴四边形AECF 是平行四边形.∵∠ECF =90°,∴四边形AECF 是矩形.(3)∠ACB =90°.方法总结:在解决正方形的判定问题时,可从与其判定有关的其他知识点入手,例如等腰三角形,平行线和角平分线.从中发现与正方形有关联的条件求解.三、板书设计1.正方形的判定方法一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.2.正方形性质和判定的应用本节课采用探究式教学,让学生产生学习兴趣,通过实践活动调动学生的积极性,给学生动手操作的时机,变被动为主动学习,引导通过感官的思维去观察、探究、分析知识形成的过程,以此深化知识、更深刻理解知识、主动获取知识,养成良好的学习习惯.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点) 3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式;(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t以内(包括10t)的用户,每吨收水费a元;月用水超过10t的用户,10t水仍按每吨a元收费,超过10t的局部,按每吨b元(b>a)收费.设某户居民月用水x t,应收水费y元,y与x之间的函数关系如以下图.(1)求a的值,并求出该户居民上月用水8t应收的水费;(2)求b的值,并写出当x>10时,y与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t时,设其函数表达式为y=ax,由上图可知图象经过点(10,15),从而求得a的值;再将x=8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t多还是比10t少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x≤10时,图象过原点,所以设y=ax.把(10,15)代入,解得ayx(0≤x≤10).当x=8时,y×8=12,即该户居民的水费为12元;(2)当x>10时,设y=bx+m(b≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x 越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm 2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h (cm)与注水时间t (s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm 3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm 2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s ;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm 3/s ,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm ,根据圆柱的体积公式得a ·(30-15)=18×5,解得a =6,于是得到“几何体〞上方圆柱的高为5cm ,设“几何体〞上方圆柱的底面积为S cm 2,根据圆柱的体积公式得5×(30-S )=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm ,两个实心圆柱组成的“几何体〞的高度为11cm ,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

正方形的性质与判定(教案)

正方形的性质与判定(教案)

正方形的性质与判定教学目标:1. 理解正方形的定义及其性质。

2. 学会使用正方形的性质进行判定。

3. 培养学生的观察能力、逻辑思维能力和实践能力。

教学重点:正方形的性质与判定。

教学难点:正方形性质的灵活运用和判定方法的掌握。

教学准备:正方形模型、直尺、剪刀、黑板、多媒体设备。

教学过程:一、导入(5分钟)1. 向学生展示各种形状的正方形实物,如正方形纸片、正方形模型等,引导学生关注正方形的特点。

2. 提问:“你们认为正方形有哪些特点?”鼓励学生积极回答,总结正方形的定义及其性质。

二、新课讲解(15分钟)1. 在黑板上画出一个正方形,并用直尺测量其边长,记录下来。

2. 引导学生观察正方形的边长、对角线、内角等特征,并用语言描述出来。

3. 讲解正方形的性质,如四条边相等、四个角都是直角、对角线互相垂直平分等。

4. 通过示例,讲解如何利用正方形的性质进行判定,如给定四条边相等的四边形是否为正方形。

三、课堂练习(10分钟)2. 让学生用剪刀剪出一个正方形,并用直尺测量其边长,判断是否相等。

3. 给出一个四边形,让学生判断是否为正方形,并说明理由。

四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生复述正方形的性质与判定方法。

2. 强调正方形性质在实际问题中的应用价值。

五、作业布置(5分钟)1. 请学生总结正方形的性质,并写一篇关于正方形的小短文。

2. 找出生活中的正方形物体,拍照并到学习平台,与大家分享。

教学反思:本节课通过实物展示、黑板画图、课堂练习等多种教学手段,引导学生了解正方形的性质与判定。

在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。

通过作业布置,让学生将所学知识运用到实际生活中,培养学生的实践能力。

六、正方形性质的深入探究(15分钟)1. 引导学生思考:正方形的对角线除了互相垂直平分外,还有其他特点吗?2. 通过实际操作,让学生用剪刀将正方形的对角线剪开,观察对角线剪开后的形状。

《正方形的性质与判定》word教案 (公开课获奖)2022北师版 (5)

《正方形的性质与判定》word教案 (公开课获奖)2022北师版 (5)

1.3 正方形的性质与判定教学目标:1、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.教学重点:掌握正方形的判定条件.教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.教学过程:一、创设问题情景,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1、怎样判断一个四边形是矩形?2、怎样判断一个四边形是菱形?3、怎样判断一个四边形是平行四边形?4、怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、讲授新课1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断2.正方形判定条件的应用【例1】判断下列命题是真命题还是假命题?并说明理由. (1) 四条边相等且四个角也相等的四边形是正方形; (2) 四个角相等且对角线互相垂直的四边形是正方形; (3) 对角线互相垂直平分的四边形是正方形; (4) 对角线互相垂直且相等的四边形是正方形; (5) 对角线互相垂直平分且相等的四边形是正方形. 师生共析:(1) 是真命题,.因为四条边相等的四边形是菱形,又四个角相等,根据四边形内角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定此命题是真命题.(2) 真命题,由.四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可判定这个矩形是菱形,所以根据是矩形又是菱形的四边形是正方形,可判定其为真.(3) 假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,所以它不一定是正方形.如下图,满足A O=CO ,BO=D O 且AC ⊥BD 但四边形ABCD 不是正方形.(4) 假命题,它可能是任意四边形.如上图,AC ⊥BD 且AC=BD ,但四边形ABCD 不是正方形.(5) 真命题。

正方形的性质及判定-人教版八年级数学下册教案

正方形的性质及判定-人教版八年级数学下册教案

正方形的性质及判定-人教版八年级数学下册教案
一、教学目标
1.了解正方形的定义及性质;
2.判定一个四边形是否为正方形;
3.运用正方形的性质解决实际问题。

二、教学重难点
1.判断四边形是否为正方形的方法;
2.运用正方形的性质解决实际问题。

三、教学内容及步骤
(一)导入(5分钟)
1.通过观察物体,引出正方形的含义;
2.介绍本节课的学习目标。

(二)正片(30分钟)
1. 正方形的定义
1.学生回顾并回答正方形的定义;
2.老师引导学生深入理解正方形的定义,并与长方形、菱形等进行比较。

2. 正方形的性质
1.学生回顾并回答正方形的性质;
2.老师引导学生深入理解正方形的性质,包括等边、等角、对角线互相垂直、对角线相等等。

3. 判定正方形的方法
1.老师通过例题引导学生掌握判定正方形的方法;
2.学生进行练习,巩固判定正方形的方法。

4. 运用正方形的性质解决实际问题
1.通过例题引导学生运用正方形的性质解决实际问题;
2.学生进行练习,巩固运用正方形的性质解决实际问题。

(三)小结(5分钟)
1.回顾本节课所学内容;
2.强调正方形的定义及性质在实际生活中的应用。

(四)作业布置(5分钟)
1.完成课堂练习;
2.完成课后作业。

四、教学反思
本节课通过例题引导学生掌握了正方形的定义及性质,并且通过练习巩固了判定正方形的方法和运用正方形的性质解决实际问题的能力。

同时,课堂中老师与学生的互动也让学生参与性更强,思维更加开放。

《正方形的性质与判定》第2课时示范课教学设计【数学九年级上册北师大】

《正方形的性质与判定》第2课时示范课教学设计【数学九年级上册北师大】

《正方形的性质与判定》教学设计第2课时一、教学目标1.理解并掌握正方形的判定定理,并会用正方形的判定定理进行证明和计算;2.经历正方形判定定理及中点四边形的探索过程,进一步发展合情推理能力.3.能够用综合法证明正方形的判定定理,进一步发展演绎推理能力.4.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重难点重点:理解并掌握正方形的判定定理,会用正方形的判定定理进行证明和计算.难点:探究证明正方形的判定定理,探究并证明中点四边形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生观察,然后再动画演示.问题:观察下列实物中的正方形,说一说什么是正方形?预设答案:一组邻边相等且有一个角是直角的平行四边形叫做正方形.追问:正方形具有哪些性质呢?预设答案:正方形的四个角都是直角,四条边相等.正方形的对角线相等并且互相垂直平分.【想一想】你是如何判断一个四边形是矩形、菱形?预设答案:追问:怎样判定一个四边形是正方形呢?【操作】如图,将一张长方形纸片对折两次,然后剪下一个角打开,只要剪口线与折痕成45°角,展开后的图形就是正方形.你知道这样做的道理吗?【合作探究】教师活动:研究正方形的判定方法,准备了两个探究活动,活动1是从矩形的基础上探究,活动2是从菱形的基础上探究,最后得出正方形的4种判定方法.活动1准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证.满足怎样条件的矩形是正方形?预设答案:【猜想1】当矩形的一组邻边相等时,会变成一个正方形.【猜想2】当矩形的对角线互相垂直时,会变成一个正方形. 【证明】猜想1:有一组邻边相等的矩形是正方形. 已知:四边形ABCD 是矩形,AB =BC . 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵∵A =90°,四边形ABCD 是平行四边形 又∵ AB =BC ,∵四边形ABCD 是正方形.猜想2:对角线互相垂直的矩形是正方形.已知:四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,AC ∵BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵OA =OC =OB =OD ,∵BAD =90°. 又∵ AC ∵BD ,∵∵AOB ∵ ∵AOD (SAS ). ∵AB = AD .∵四边形ABCD 是正方形.(正方形的定义).DAB C【归纳】正方形的判定定理1:有一组邻边相等的矩形是正方形.符号语言:∵四边形ABCD是矩形,AB=BC,∵四边形ABCD是正方形.正方形的判定定理2:对角线互相垂直的矩形是正方形.符号语言:∵四边形ABCD是矩形,AC∵BD,∵四边形ABCD是正方形.活动 2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状,量量看是不是正方形.满足怎样条件的菱形是正方形?预设答案:【猜想3】当菱形的有一个角是直角时,会变成一个正方形.【猜想4】当菱形的对角线相等时,会变成一个正方形. 【证明】猜想3:有一个角是直角的菱形是正方形. 已知:四边形ABCD 是菱形,∵A =90°. 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形∵AB =BC ,四边形ABCD 是平行四边形 又∵ ∵A =90°,∵四边形ABCD 是正方形.猜想4:对角线相等的菱形是正方形. 已知:四边形ABCD 是菱形,对角线AC 与BD 相交于点O ,AC =BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形 ∵OA =OC ,OB =OD ,AC ∵BD . 又∵ AC =BD ,∵OA =OC =OB =OD ,∵AOB =∵BOC = ∵COD =∵AOD =90°.∵∵AOB 、∵AOD 、∵BOC 、∵COD 都DAB C是等腰直角三角形.∵∵BAD=90°∵四边形ABCD是正方形(正方形的定义).【归纳】正方形的判定定理3:有一个角是直角的菱形是正方形.符号语言:∵四边形ABCD是菱形,∵A=90°,∵四边形ABCD是正方形.定理4:对角线相等的菱形是正方形.符号语言:∵四边形ABCD是矩形,AC=BD,∵四边形ABCD是正方形.【典型例题】思考:任意画一个正方形,以四边的中点为顶点可以组成一个怎样的图形呢?预设答案:猜想:正方形你能尝试证明吗?【证明】已知:如图,点A1,B1,C1,D1 分别是正方形ABCD各边的中点.求证:四边形A1B1C1D1 为正方形.证明:连接AC,BD,∵A1,B1分别是AB和BC边中点,∴A1B1∥AC且A1B1=12 AC,同理可证C1D1∥AC且C1D1 =12 AC,A1D1∥BD且A1D1 =12 BD,B1C1∥BD且B1C1 =12 BD.∴四边形A1B1C1D1 为平行四边形.又∵四边形ABCD是正方形,∴AC = BD(正方形的对角线相等)AC⊥BD(正方形的对角线互相垂直),∴A1B1= A1D1 =B1C1= C1D1,∠1 = 90°.∴四边形A1B1C1D1 是菱形,∠2 = 90°.∴四边形A1B1C1D1 为正方形.归纳:以正方形的四边中点为顶点可以组成一个正方形.【议一议】教师活动:做一做环节从任意的四边形和正方形角度探究了中点四边形,议一议主要从矩形和菱形的角度探究,得出猜想并证明,最后得出决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.问题1:菱形的中点四边形会是什么形状?预设答案:猜想:菱形的中点四边形是矩形.问题2:矩形的中点四边形会是什么形状?预设答案:猜想:矩形的中点四边形是菱形.请尝试证明这两个猜想?【证明】已知:如图,点E,F,G,H分别是菱形ABCD各边的中点.求证:四边形EFGH为矩形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC,同理可证HG∥AC,EH∥BD,FG∥BD.∴EF∥HG,EH∥FG,∴四边形EFGH,PFQO为平行四边形.又∵四边形ABCD是菱形∴AC⊥BD(菱形的对角线互相垂直),∴∠1 = 90°. ∴四边形PFQO 为矩形.∴∠2=90°.∴四边形EFGH是矩形(矩形的定义)归纳:以菱形的四边中点为顶点可以组成一个矩形.已知:如图,点E,F,G,H分别是矩形ABCD各边的中点.求证:四边形EFGH为菱形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC且EF = 12AC,同理可证HG∥AC且HG =12 AC,EH∥BD且EH=12BD,FG∥BD且FG=12BD.∴四边形EFGH为平行四边形.又∵四边形ABCD是矩形∴AC=BD(矩形的对角线相等),∴EF =EH∴四边形EFGH是菱形(菱形的定义)归纳:以矩形的四边中点为顶点可以组成一个菱形.追问:决定中点四边形形状的关键因素是什么?预设答案:决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.教师给出练习,随时观察学生完成情况并相应H分别在它的四条边上,且AE= BF = CG = DH. 四边形EFGH是什么特殊四边形?你是如何判断的?答案:1.证明: 在正方形ABCD中,BE=DF,易证∵CEB∵∵AEB∵∵AFD∵∵CFD,即CE=AE=AF=FC,∵四边形AECF是菱形.2. 解:四边形EFGH是正方形.∵在正方形ABCD中,AE=BF=CG=DH,易证∵AEH∵∵DHG∵∵CGF∵∵BFE,即EH=HG=GF=FE,且∵AHE=∵DGH.∵∵DGH+∵DHG=90°,∵∵EHG=180°-(∵AHE+∵DHG)=90°,∵四边形EFGH是正方形.思维导图的形式呈现本节课的主要内容:教科书第25页。

八年级数学下册《正方形的性质及判定》教案、教学设计

八年级数学下册《正方形的性质及判定》教案、教学设计
1.关注学生的认知差异:学生在前期的学习中,对四边形的相关知识掌握程度不一,教师应充分了解学生的认知水平,因材施教,使每个学生都能在原有基础上得到提高。
2.注重启发式教学:针对正方形性质和判定的学习,教师应采用问ห้องสมุดไป่ตู้驱动、实例分析等方法,引导学生主动思考、探索,提高学生的逻辑思维能力和解决问题的能力。
3.小组合作,共同解决以下问题:
a.证明正方形的对角线互相垂直平分。
b.证明正方形的四条边都相等。
c.探讨正方形的内角和与外角和的关系。
4.完成以下拓展练习:
a.画出一个正方形,并标出其周长和面积。
b.画出一个正方形,并将其分割成四个大小相等的小正方形。
c.画出一个正方形,并找出其内切圆和外接圆,计算它们的半径。
五、作业布置
为了巩固本节课所学知识,提高学生的应用能力,特布置以下作业:
1.请同学们完成课本第35页的练习题,包括以下内容:
a.判断下列四边形是否为正方形,并说明理由。
b.计算给定正方形的周长和面积。
c.探索正方形与矩形、菱形之间的联系与区别。
2.结合生活实际,找一找身边的正方形物体,并描述它们的特点。例如,正方形瓷砖、桌面、窗户等。
3.教师引导学生观察正方形的特点,如四条边相等、四个角相等等,为新课的学习做好铺垫。
(二)讲授新知
1.教师引导学生探究正方形的性质,通过观察、猜想、验证等方法,发现正方形的性质,如四条边相等、四个角相等、对角线互相垂直平分等。
2.教师结合实例,讲解正方形性质的应用,如计算正方形的周长、面积等。
3.教师讲授正方形的判定方法,如邻边相等、对角线互相垂直平分、四条边都相等等,并通过实例进行解释和说明。
(三)学生小组讨论

正方形的性质与判定 (2)

正方形的性质与判定 (2)

正方形性质与判定一.教学目标1、理解正方形的概念,了解它与菱形、矩形、平行四边形之间的关系。

2、探索并证明正方形的性质定理,进一步发展推理能力。

3、体会探索与证明过程中所蕴含的抽象、推理等数学思想。

二.重难点正方形性质的探索及灵活应用二、教学过程活动1.导入新课正方形的自我介绍活动2.探索新知学习内容:正方形的定义学生观察图片,并填空:_____________ + __________ + ____________ =正方形。

思考:正方形是平行四边行吗?是菱形吗?是矩形吗?请结合定义说明理由。

小结:正方形______(是或不是)特殊的平行四边形,______(是或不是)特殊的菱形,______(是或不是)特殊的矩形。

学习内容:正方形的性质环节间的过渡:类比平行四边形、菱形、矩形,找到正方形的边、角、线的特殊之处。

正方形的四条边_______,四个角________,对角线______、_______、______.提示:先画出一个正方形,再写出已知和求证,最后梳理过程环节间的过渡:类比平行四边形、菱形、矩形,通过折叠旋转得到正方形的对称性。

学生活动:每组学生动手折纸,并观察活动3.例题解析1、例题如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF。

BE与DF之间有怎样的关系?说明理由。

活动4.达标检测1、下列说法中错误的是()A、一组对边平行且一组对角相等的四边形是平行四边形B、四条边都相等的四边形是菱形C、四个角相等的四边形是矩形D、对角线互相垂直的平行四边形是正方形2、下列结论:(1)正方形具有平行四边形的一切性质;(2)正方形具有矩形的一切性质;(3)正方形具有菱形的一切性质;(4)正方形具有四边形的一切性质。

其中正确的结论有()A、1个B、2个C、3个D、4个3、如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?为什么(选一组证明)4、如图所示,正方形ABCD中,E、F分别是AB、AD上点,且AE=AF,试说明:CE=CF.活动五.课堂小结1.这节课你收获了哪些知识?2、这节课与同伴的合作交流中,你向同伴学到了什么?3、你还有哪些困惑?活动六.布置作业1.教材22页1.2.32.学案补充题。

正方形的性质与判定(教案)

正方形的性质与判定(教案)

正方形的性质与判定教学目标:1. 理解正方形的定义及其性质。

2. 学会使用正方形的性质进行判定。

3. 培养学生的观察能力、推理能力和解决问题的能力。

教学重点:1. 正方形的性质。

2. 正方形的判定方法。

教学难点:1. 正方形性质的灵活运用。

2. 正方形判定方法的掌握。

教学准备:1. 教学课件或黑板。

2. 正方形模型或图片。

3. 练习题。

教学过程:第一章:正方形的定义1.1 引入:展示正方形模型或图片,引导学生观察并猜测正方形的定义。

1.2 讲解:正方形是四条边相等且四个角都是直角的四边形。

1.3 互动:让学生举例说明生活中常见的正方形,如棋盘、正方形纸等。

第二章:正方形的性质2.1 引入:展示正方形模型或图片,引导学生观察正方形的性质。

2.2 讲解:正方形的性质包括:四条边相等,四个角都是直角,对角线互相垂直平分且相等。

2.3 互动:让学生运用正方形的性质解决问题,如计算正方形对角线的长度。

第三章:正方形的判定3.1 引入:展示非正方形的模型或图片,引导学生思考如何判断一个四边形是否为正方形。

3.2 讲解:正方形的判定方法包括:四条边相等,四个角都是直角,对角线互相垂直平分且相等。

3.3 互动:让学生举例说明如何判断一个四边形是否为正方形。

第四章:正方形的应用4.1 引入:展示正方形应用的例子,如正方形图案设计、正方形桌面等。

4.2 讲解:正方形在实际生活中的应用,如建筑设计、电路板设计等。

4.3 互动:让学生举例说明正方形在实际生活中的应用。

第五章:总结与练习5.1 总结:回顾本节课所学的内容,强调正方形的定义、性质和判定。

5.2 练习:布置练习题,让学生巩固所学内容。

教学反思:本节课通过展示正方形模型或图片,引导学生观察和思考正方形的性质和判定。

通过互动和举例,让学生更好地理解和应用正方形的性质。

在教学过程中,要注意引导学生主动参与,培养他们的观察能力、推理能力和解决问题的能力。

第六章:正方形边的性质6.1 引入:通过正方形模型或图片,引导学生关注正方形边的性质。

正方形的性质及判定 (2)

正方形的性质及判定 (2)

18.2.3正方形教学目标:1.知识与技能:掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.过程与方法:通过类比矩形和菱形的学习过程探索正方形的概念、性质和判定,并引导学生归纳出平行四边形、矩形、菱形、正方形之间的关系。

3.情感态度与价值观:通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.教学重点、难点:1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的关系.2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.教学方法:分组探究、启发式教学过程:一、 联系旧知,情景引入1、结合图示,回顾平行四边形、矩形、菱形的性质与判定方法。

2、同学们知道,将平行四边形的一个内角特殊化——变为90°,我们就得到一种特殊的平行四边形——矩形;将平行四边形的一组边特殊化——邻边相等,我们就得到另一种特殊的平行四边形——菱形。

现在大家思考一下,能不能将矩形和菱形进一步特殊化,那么我们会得到一个什么新图形呢?仔细观察老师下面的演示:(1)用一张长方形的纸片(如图所示)折出一个正方形.(1) (2) (一个角是直角)矩形师问:由矩形到正方形我们需要添加一个什么条件? 生答:一组邻边相等。

(2)教师动态演示将一个菱形框变形成正方形。

师问:由菱形到正方形我们需要添加一个什么条件? 生答:一个角是直角。

同时教师补充图示:今天,我们的任务就是来研究这种既是特殊矩形又是特殊菱形的图形——正方形。

板书课题:18.2.3正方形二、类比旧知,探索新知师问:大家类比平行四边形、矩形、菱形的研究过程,思考我们应该从哪些方面研究正方形? 生答:定义、性质、判定。

1.定义:有一组邻边相等,并且有一个角是直角的平行四边形是正方形。

(引导学生结合图示自己总结定义)指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2.【问题】正方形有什么性质?正方形不仅是特殊的平行四边形,也是特殊的矩形,又是特殊的菱形,因此它的性质是它们的综合。

1.3正方形的性质与判定第2课时正方形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)

1.3正方形的性质与判定第2课时正方形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)
三、教学难点与重点
1.教学重点
-正方形定义及其性质的理解与应用。
-正方形判定方法的掌握与运用。
-运用判定方法解决实际问题时,对正方形性质的应用能力。
举例:
a.通过正方形的定义,引导学生理解正方形与其他四边形(如矩形、菱形)的区别与联系。
b.强调正方形判定方法的条件,如直角、对角线垂直平分等,并让学生通过实际操作加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“正方形的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个图形是否为正方形的情况?”(如设计海报时需要确定正方形尺寸)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正方形判定的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调“有一个角是直角的菱形是正方形”和“对角线互相垂直平分且相等的四边形是正方形”这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正方形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量对角线长度和角度来判断一个四边形是否为正方形。
c.通过典型例题,让学生学会在解决问题时,如何将正方形的性质与判定方法有机结合,提高解题效率。
2.教学难点
-对正方形判定方法的理解与运用,特别是对角线垂直平分且相等的判定。
-在解决实际问题时,如何从复杂图形中识别出正方形,并运用其性质简化问题。
-对正方形性质与判定方法的综合运用,尤其是在几何证明题中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

正方形的性质与判定教案

正方形的性质与判定教案

正方形的性质与判定教案教案:正方形的性质与判定一、教学目标1.理解正方形的定义和性质。

2.能够判断一个图形是否为正方形。

3.能够运用正方形的性质解决相关问题。

二、教学内容1.正方形的定义和性质。

2.正方形的判定方法。

3.正方形的应用。

三、教学过程Step 1:引入话题(5分钟)教师向学生介绍正方形这一图形,并引出正方形的定义和一些常见的性质。

Step 2:正方形的定义(15分钟)1.教师通过投影或者板书向学生展示正方形的定义:四条边相等且四个角都是直角的四边形。

2.引导学生观察正方形,并与定义进行比较,确保学生理解正方形的定义。

3.教师提供一些真实生活中的正方形图像,让学生找出图中的正方形,并对其进行命名。

再让学生用自己的话解释正方形的定义。

Step 3:正方形的性质(15分钟)1.教师通过投影或者板书讲解正方形的一些常见性质,如:四条边相等,四个角都是直角,对角线相等且垂直等。

2.学生根据教师的讲解,进行思考和讨论,总结正方形的性质,并记录在笔记中。

3.教师给出一些练习题,让学生运用正方形的性质进行解答。

Step 4:正方形的判定(20分钟)1.教师给出一些图形,让学生判断是否为正方形,并解释判断的依据。

2.学生进行小组合作活动,互相检查答案,并找出判断正方形的关键点。

3.学生将判定的依据总结出来,向全班汇报。

Step 5:正方形的应用(20分钟)1.教师讲解正方形在实际生活中的应用,如:建筑设计、画框制作等。

2.学生通过小组合作,思考并总结其它正方形的应用,并向全班汇报。

3.教师提供一些问题,让学生运用正方形的性质和应用解决问题。

Step 6:课堂小结(5分钟)教师对本节课的重点内容进行小结,并对学生的学习情况进行评价。

四、教学评价方法与学习活动设计1.教学评价方法:-师生互动的提问评价:教师通过提问学生,检查学生对正方形定义和性质的理解程度。

-小组合作评价:学生通过小组合作,互相检查问题、判断正方形、总结正方形性质等活动,从而培养学生的团队协作能力和思维的综合能力。

正方形的性质与判定教案

正方形的性质与判定教案

《正方形的性质与判定》(第三次集体备课)通过第二次集体备课的修改及课堂实施,发现存在以下问题:1.对书本例题,增加一个变式训练,检验同学们的掌握情况2.增加板书设计现第三次备课修改如下:学习目标:1.理解正方形的概念,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系,并形成文本信息与图形信息相互转化的能力。

2.在观察、操作、推理、归纳等探索明正方形的性质定理过程中,发展合情推理能力,进一步培养自己的说理习惯与能力。

学习过程:一、回忆旧知,情境引入边角对角线对称性面积公式矩形菱形是矩形是菱形二、实践探究,交流新知(1)观察下面这些特殊的平行四边形,你能发现它们有什么样的共同特征?归纳:叫正方形。

思考:(1)正方形是平行四边形吗?(2)正方形是矩形吗?是菱形吗?(3)你认为正方形具有哪些性质?与同伴交流总结正方形的性质:角:对角线:请完成这两个定理的证明。

三、典例学习,巩固新知如图,在正方形ABCD 中,E 为CD 边上一点,F为BC 延长线上一点,且CE = CF.BE 与DF 之间有怎样的关系?变式.已知:如图,ABCD和AKLM都是正方形,求证:MD=KB四、巩固练习1:如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?2:如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.五、课堂小结,内敛提升通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?请用一幅图来表示平行四边形、菱形、矩形、正方形之间的关系。

六、作业布置,落实目标智慧学堂P13-14七、板书设计正方形的性质1、正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形2、正方形的性质:正方形的四个角都是直角,四条边都相等正方形的对角线相等且互相垂直平分3、平行四边形、菱形、矩形正方形之间的关系:。

6.3正方形的性质与判定(2)

6.3正方形的性质与判定(2)

6.3正方形的性质与判定(2)主备人:贾爱琴 审核人:李卫国 班级:________ 姓名:________ 【学习目标】1.理解正方形的概念以及它与平行四边形、矩形和菱形之间的关系.2.探索并证明正方形的性质定理和判定定理.3.会用正方形的性质定理和判定定理解决问题.自学书本24页内容,回答:1.__________________________________________________叫做正方形.2.正方形是轴对称图形吗?如果是,它有几条对称轴?并在右图中画出来.3.正方形即是特殊的平行四边形也是特殊的矩形和菱形,总结一下正方形的性质和判定在学习中还存在哪些疑问?【共同释疑】DCBA课本第24页例2【当堂测试】1、如图,四边形ABCD是正方形,两条对角线相交于点O.(1)一条对角线把它分成_______个全等的________ 三角形;(2)两条对角线把它分成_______个全等的________三角形;图中一共有________个等腰直角三角形;(3)∠AOB=_____度,∠OAB=_____度.2、正方形具有而矩形不一定具有的性质是( )A、四个角相等B、对角线互相垂直平分.C、对角互补D、对角线相等.3、正方形具有而菱形不一定具有的性质()A、四条边相等.B、对角线互相垂直平分.C、对角线平分一组对角.D、对角线相等.4、正方形对角线长6,则它的面积为_________ ,周长为________.5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EFGH都是正方形.求证:△ABF≌△DAE.。

八年级数学下册《正方形的判定》教案、教学设计

八年级数学下册《正方形的判定》教案、教学设计
-运用正方形的性质和判定方法,解决以下实际问题:一个正方形地板的边长为2m,求其对角线的长度。
3.实践应用题:
-观察生活中有哪些物体或图形是正方形,选择两个进行描述,并说明它们体现了正方形的哪些性质。
-结合实际情境,设计一个包含正方形的几何图形,并给出至少两个问题,要求包含正方形的性质和判定方法。
4.思考总结题:
2.基本性质教学:
-利用动态几何软件或实物模型,直观展示正方形的性质,如四边相等、四个角都是直角等,帮助学生形象地理解。
-设计探究活动,让学生在小组内讨论正方形的性质,并尝试用自己的语言总结出来,增强学生的主体参与感。
3.判定方法教学:
-对于判定方法的教学,采用逐步引导的方式,从已知的矩形和菱形的判定方法出发,引导学生发现正方形的特殊之处。
3.教师将根据作业完成情况,了解学生的学习进度和掌握程度,为下一节课的教学做好充分准备。
期望通过本次作业的布置,学生能够更好地巩固正方形的性质与判定知识,提高解决问题的能力,并为后续课程的学习奠定基础。
-总结正方形的性质和判定方法,用自己的话术进行表述,并举例说明。
-思考正方形与Байду номын сангаас他特殊四边形(如矩形、菱形)之间的关系,撰写一篇不少于200字的小短文。
作业要求:
1.学生需独立完成作业,注重解题过程的书写和表述,保持卷面整洁。
2.家长需关注学生的学习情况,协助学生按时完成作业,并给予适当的指导和鼓励。
-在应用题中,加入实际情境,如房屋设计、园林规划等,让学生体会数学知识在实际生活中的应用,增强学习的实用性。
5.情感态度培养:
-在教学过程中,注重学生情感态度的培养,鼓励学生面对困难时保持积极乐观的心态,勇于挑战自我。

《正方形的性质与判定(2)》教学设计

《正方形的性质与判定(2)》教学设计

第六章特殊平行四边形3.正方形的性质与判定(二)一、学生知识状况分析学生的知识基础:学生之前已经借助折纸、画图、测量、证明等活动探索过平行四边形、菱形、矩形的性质和判定,还在第一课时学习了正方形的性质,本节课主要是对正方形的判定进行推理证明,而前面的探索过程和方法为本节课的推理证明提供了铺垫,为学生提供了相应的定理证明思路。

八年级时学生还学习了“三角形中位线定理”,这些都为本节课探究“中点四边形”做了铺垫,学生已经具备了探究该命题的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生经历了“探索—发现—猜想—证明”的过程,并初步体会了获得猜想后还应予以证明的意义,感受到了合情推理与演绎推理的相互依赖和相互补充的辨证关系,并且学生具有了一定的推理证明的能力。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析教材基于学生对特殊平行四边形和三角形中位线定理的认识的基础之上,提出了本课的具体学习任务:掌握正方形判定定理、理解中点四边形形状取决于原四边形的对角线的位置和数量关系,但这仅仅是这堂课外显的近期目标。

本课内容从属于“图形与几何”中的“图形的性质”,因而务必服务于演绎推理教学的远期目标:“让学生经历‘探索—发现—猜想—证明’的过程,体会证明的必要性,掌握用综合法证明的格式,初步感受公理化思想,发展空间观念”,同时也应力图在学习中逐步达成学生的有关情感态度目标。

为此,本节课的教学目标是:知识与技能:1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题。

2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力。

3.使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用。

过程与方法:1.经历“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A D
C
B
F
E
M
图3
A N
M
F
E
D
C
B
备课教师备课年级八年级下册课型新授课
备课内容正方形学生
学习目标
1.知道正方形的概念、性质和判定,并会用它们进行有关的论证和计算
2.理解正方形与平行四边形、矩形、菱形的联系和区别
教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系
教学难点正方形与矩形、菱形的关系及正方形性质与判定的灵活运用
教学准备多媒体课件、矩形纸片、菱形学具
教学过程:
题组训练一
1.请同学们口述平行四边形、矩形、菱形的定义和它们的特殊性质。

平行四边形矩形菱形定义


对角线
图3
1、探究正方形的性质:(用符号语言填写)
正方形是特殊的平行四边形,既是矩形,又是___________ 边:______________________________________________ 角:________________________________________________
对角线:_______________________________对称性:_________________________ 2、例:在正方形ABCD 中,点E ,F 分别在AB ,AD 上,且BE =AF ,连接CE ,BF 相交于点G 。

求证:BF ⊥CE
设计意图:课前学习微视频认识正方形,让学生用类比的方法从边、角、对角线三个角度总结正方形的性质,用文字语言叙述并用几何语言表示。

在此基础上观察正方形是不是轴对称图形,并思考对称轴的条数。

小组讨论的过程中教师要给与指导,并且重点关注学生能否用几何语言准确表示正方形的性质。

教学中渗透转化思想,让学生理解几何语言、文字语言、图形语言三者之间的关系。

合作探究 精讲点拨 课堂升华
E 、
F 、M 、N 是正方形ABCD 四边上的点,AE=BF=CM=DN ,求证:四边形EFMN 是正方形。

设计意图: 练习题设置简单,基础,让学生进一步了解正方形的性质,并熟悉正方形常用的判定方法,教师重点关注学生的思维过程,对学生的答案及时评价,给学生充分的肯定和鼓励。

同时注意总结应用的知识点及帮助学生完善思维过程。

B
A
D
C
图1
O
A N
M F
E
D
C
B。

相关文档
最新文档