(精心整理)2007年高考数学试题(广东·理)含答案

合集下载

2007年高考试题——数学理(广东卷)

2007年高考试题——数学理(广东卷)

绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时l20分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点 涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色宁迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 、B 相互独立,那么()()()P A B P A P B =. 用最小二乘法求线性回归方程系数公式 1221ˆni ii nii x y nx ybxnx ==-⋅=-∑∑,ˆay bx =-. 一、选择题(本题8小题,每题5分,满分40分)1.已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅【解析】考查函数的定义域和集合的基本运算。

由解不等式1-x>0求得M=(-∞,1),由解不等式1+x>0求得N=(-1,+∞),因而M ⋂N=(-1,1),故选C 。

2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年高考数学卷(全国卷Ⅰ.理)含详解

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B.C.D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:AB1B1A1D1C CD1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题:(13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 232A π⎛⎫+<⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S AB SA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得h =A设SD 与平面SAB 所成角为α,则sin h SD α===所以,直线SD 与平面SBC所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫ ⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D ,(DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为arcsin 11. (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2221222121)(1)()432k BD x x k x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =11)(n n a a+=.所以,数列{n a 是首项为21的等比数列,1)n n a =,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤, 也即430k k b a -<. 当1n k =+时,13423k k k b b b ++-=+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A .(4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2ca=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}b a b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a+=,,,,知0a b +=或0a =.若0a =则ba无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C .(6)下面给出的四个点中,到直线10x y -+=,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45111||||5AD A B =1A 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A 1D 1 C 1B 1AD CBA (综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 1A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n rr r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-,()0x >,则第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比AC1A A 0(16)题。

2007年高考理科数学试题及参考答案(湖北卷)

2007年高考理科数学试题及参考答案(湖北卷)

2007 年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案选择题:本题考查基础知识和基本运算。

每小题5分,满分50分。

1.B2.A3.B4.D5.C6.B7.A8.D9.C 10.A二、填空题:本题考查基础知识和基本运算。

每小题5分,满分25分。

11.6;12.(2,1)(或满足a=2b的任一组非零实数对(a,b))13.- 14. 15. ;0.6三、解答题:本大题共6小题,共75分。

16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。

解:(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,则由.(Ⅱ) =即当.17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力.分组频数频率4 0.04 25 0.25 30 0.30 29 0.29 10 0.10 2 0.02 合计100 1.00 (Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+ ×0.30=0.44. (Ⅲ)总体数据的期望约为1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)是等腰三角形,又D是AB的中点,又(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面V AB.连接BH,于是∠CBH就是直线BC与平面V AB所成的角在Rt△CHD 中,设,即直线BC与平面V AB所成角的取值范围为(0,).解法2:(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D( ),从而同理=即又(Ⅱ)设直线BC与平面V AB所成的角为φ,平面V AB的一个法向量为n=(x,y,z)则由n·19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py 联立得消去y得x2-2pkx-2p2=0.由韦达定理得x1+x2=2pk,x1x2=-2p2.于是=(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则= 令,得为定值,故满足条件的直线l存在,其方程为,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得=又由点到直线的距离公式得.从而,得可取于是.即直线BC与平面V AB所成角的取值范围为(0,).解法:(Ⅰ)以点D为原点,以DC、DB所在的直线分别为x轴、y轴,建立如衅所示的空间直角坐标系,则D(0,0,0),A(0,- ),于是∴平面V AB⊥平面VCD.(Ⅱ)设直线BC与平面V AB 所成的角为,平面V AB的一个法向量为则由得可取厂是又0 即直线BC与平面V AB所成角的取值范围为(0,)解法4:以CA、CB、CV所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D( ),设V(0,0,t)(t>0).(Ⅰ) 即又(Ⅱ)设直线BC与平面V AB所成的角为设n(x,y,z)是平面VAB的一个非零法向量,则取z=a,得x=y=t,可取于是即直线BC与平面V AB所成角的取值范围为(0,).综合(i)(ii)知,对一切正整数m,不等式都成立.(Ⅱ)证:当n≥6,m ≤n 时,由(Ⅰ)得于是( Ⅲ) 解:由(Ⅱ)知,当n≥6时,故只需要讨论n=1,2,3,4,5的情形;当n=1时,3≠ 4 ,等式不成立;当n=2时,32+42=52,等式成立;当n=3时,33+43+53=63,等式成立;当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;当n=5时,同n=4的情形可分析出,等式不成立.综上,所求的n只有n=2,3.解法2:(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:当x>-1,且x≠0时,m≥2,(1+x)m>1+mx.(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x ≠0,所以x2>0,即左边>右边,不等式①成立;(ii)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当而由(Ⅰ),(Ⅲ)解:假设存在正整数成立,即有()+ =1.②又由(Ⅱ)可得()+ + 与②式矛盾,故当n≥6时,不存在满足该等式的正整数n.下同解法1,(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为将直线方程y=a代入得设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有令为定值,故满足条件的直线l 存在,其方程为.即抛物线的通径所在的直线.20. 本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学。

07-13年广东高考数学理科三角函数真题(含答案)

07-13年广东高考数学理科三角函数真题(含答案)

3.若函数21()sin (),()2f x x x R f x =-∈则是( )A.最小正周期为2π的奇函数 B.最小正周期为π的奇函数C.最小正周期为π2的偶函数D.最小正周期为π的偶函数16.(本小题满分12分)已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、. (1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.2008年广东高考理科卷12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是.16. 已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,. (1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.16.(本小题满分12分)已知向量(sin ,2)(1,cos )a b θθ=-=与互相垂直,其中(0,)2πθ∈.(1)求sin cos θθ和的值;(2)若sin()2πθϕϕ-=<<,求cos ϕ的值.2010年广东高考理科卷11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若a=1,b=, A+C=2B,则sinC= .16、(本小题满分14分)已知函数()sin(3)(0,(,),0f x A x A x ϕϕπ=+>∈-∞+∞<<在12x π=时取得最大值4.(1) 求()f x 的最小正周期; (2) 求()f x 的解析式; (3) 若f (23α +12π)=125,求sin α.16.(本小题满分12分)已知函数1()2sin(),.36f x x x R π=-∈(1)求5()4f π的值;(2)设106,0,,(3),(32),22135f a f ππαββπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值.2012年广东高考理科卷16.(本小题满分12分)已知函数()2cos 6f x x πω⎛⎫=+ ⎪⎝⎭,(其中ω>0,x ∈R )的最小正周期为10π。

2007年高考数学广东卷(理科)-带答案

2007年高考数学广东卷(理科)-带答案

2007 年高考数学广东卷(理科)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y xC .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2007年高考数学试题(北京.理)含答案

2007年高考数学试题(北京.理)含答案

年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ< ,那么角θ是( )A.第一或第二象限角 B.第二或第三象限角C.第三或第四象限角 D.第一或第四象限角2.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞, B.(19], C.(01), D.[9)+∞, 3.平面α∥平面β的一个充分条件是( )A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D.存在两条异面直线a b a a b αβα⊂,,,∥,∥ 4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0 ,那么( )A.AO OD =B.2AO OD =C.3AO OD = D.2AO OD = 5.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种6.若不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( ) A.43a ≥B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥ 7.如果正数abcd ,,,满足4a b cd +==,那么( )A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一ab c d +≥,且等号成立时a b c d ,,,的取值不唯一8.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.22(1)i =+ .10.若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.11.在ABC △中,若1tan 3A =,150C = ,1BC =,则AB = . 12.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是 .13.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为 ;满足[()][()]f g x g f x >的x 的值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.16.(本小题共14分) 如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C--是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值.17.(本小题共14分) 矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=,点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程;(II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程.18.(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )求合唱团学生参加活动的人均次数; (II )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. x1 2 3 ()f x 13 1 x 1 2 3 ()g x 3 2 1 O C AD B1 2 3 102030 40 50 参加人数 活动次数III )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.19.(本小题共13分)如图,有一块半椭圆形钢板,其半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(I )求面积S 以x 为自变量的函数式,并写出其定义域;(II )求面积S 的最大值.20.已知集合{}12(2)k A a a a k = ,,,≥,其中(12)i a i k ∈=Z ,,,,由A 中的元素构成两个相应的集合:{}()S a b a A b A a b A =∈∈+∈,,,,{}()T a b a A b A a b A =∈∈-∈,,,. 其中()a b ,是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(I )检验集合{}0123,,,与{}123-,,是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T ;(II )对任何具有性质P 的集合A ,证明:(1)2k k n -≤; (III )判断m 和n 的大小关系,并证明你的结论.2007年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.D 4.A5.B 6.D7.A 8.D 4r C D A B2r6小题,每小题5分,共30分)9.i -10.211n - 3 11.102 12.(23), 13.725 14.1 2三、解答题(本大题共6小题,共80分)15.(共13分)解:(I )12a =,22a c =+,323a c =+,因为1a ,2a ,3a 成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =.(II )当2n ≥时,由于 21a a c -=,322a a c -=,1(1)n n a a n c --=-, 所以1(1)[12(1)]2n n n a a n c c --=+++-= . 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立,所以22(12)n a n n n =-+= ,,. 16.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角,又 二面角B AO C --是直二面角,CO BO ∴⊥,又AO BO O = , CO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥,CDE ∴∠是异面直线AO 与CD 所成的角. ADRt COE △中,2CO BO ==,112OE BO ==, 225CE CO OE ∴=+=. 又132DE AO ==. ∴在Rt CDE △中,515tan 33CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为15arctan3. (III )由(I )知,CO ⊥平面AOB , CDO ∴∠是CD 与平面AOB 所成的角,且2tan OC CDO OD OD ==. 当OD 最小时,CDO ∠最大,这时,OD AB ⊥,垂足为D ,3OA OB OD AB== ,23tan 3CDO =, CD ∴与平面AOB 所成角的最大值为23arctan3. 解法二:(I )同解法一. (II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴= ,,,(213)CD =- ,,,cos OA CD OACD OA CD ∴<>= , 6642322== . ∴异面直线AO 与CD 所成角的大小为6arccos4. (III )同解法一17.(共14分) 解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-. O CA DB x y z(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,, 因为矩形ABCD 两条对角线的交点为(20)M ,.所以M 为矩形ABCD 外接圆的圆心. 又22(20)(02)22AM =-++=.从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切, 所以22PM PN =+, 即22PM PN -=.故点P 的轨迹是以M N ,为焦点,实轴长为22的双曲线的左支. 因为实半轴长2a =,半焦距2c =. 所以虚半轴长222b c a =-=.从而动圆P 的圆心的轨迹方程为221(2)22x y x -=-≤. 18.(共13分)解:由图可知,参加活动1次、2次和3次的学生人数分别为10、50和40.(I )该合唱团学生参加活动的人均次数为110250340230 2.3100100⨯+⨯+⨯==. (II )从合唱团中任选两名学生,他们参加活动次数恰好相等的概率为222105040021004199C C C P C ++==. (III )从合唱团中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A ,“这两人中一人参加2次活动,另一人参加3次活动”为事件B ,“这两人中一人参加1次活动,另一人参加3次活动”为事件C .易知(1)()()P P A P B ξ==+111110505040241001005099C C C C C C =+=; (2)()P P C ξ==1110402100899C C C ==; ξ的分布列: ξ 0 1 2P 41995099 899 ξ的数学期望:4150820129999993E ξ=⨯+⨯+⨯=. 19.(共13分)解:(I )依题意,以AB 的中点O 为原点建立直角坐标系O xy -(如图),则点C 的横坐标为x .点C 的纵坐标y 满足方程22221(0)4x y y r r+=≥, 解得222(0)y r x x r =-<< 221(22)22S x r r x =+- 222()x r r x =+- ,其定义域为{}0x x r <<. (II )记222()4()()0f x x r r x x r =+-<<,, 则2()8()(2)f x x r r x '=+-.令()0f x '=,得12x r =. 因为当02r x <<时,()0f x '>;当2r x r <<时,()0f x '<,所以12f r ⎛⎫ ⎪⎝⎭是()f x 的最大值. CD A B O x y12x r =时,S 也取得最大值,最大值为213322f r r ⎛⎫= ⎪⎝⎭. 即梯形面积S 的最大值为2332r . 20.(共13分) (I )解:集合{}0123,,,不具有性质P . 集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,, {}(21)23T =-(),,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个. 因为0A ∉,所以()(12)i i a a T i k ∉= ,,,,; 又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12j i a a T i j k ∉= ,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=, 即(1)2k k n -≤. (III )解:m n =,证明如下: (1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,. 如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤,由(1)(2)可知,m n =.。

2007年高考数学卷(湖北.理)含答案

2007年高考数学卷(湖北.理)含答案

2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合.其中不正确的命题个数是( ) A.1 B.2 C.3D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围; (II )求函数2()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;VAx(II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)nnn m n n ++++=+的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.样本数据18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 22a aVD θ⎛⎫= ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理2211(0)tan 0022222a aABVD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,nn ··. ADBCHV得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是sin sin 2BC BCa ϕθ===n n ···, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)ABDC =,,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x yz =,,n,则由00AB DV ==,··n n ,得0tan 022ax az θ=⎨-+=⎪⎩,.可取(tan 01)θ=,,n,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan 2sin sin 2BC a BC θϕθ===n n ···,π02θ<<∵,0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,, (0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CBa =,,, A于是sin CB CBa ϕ====···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,. 12O P AC '===∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,. 解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。

2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年全国各地高考数学试卷及答案(37套)word--完整版
2007年普通高等学校招生全国统一考试数学卷(四川.理)含答案
2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏

2008年广东高考(理科)数学试题(附答案)

2008年广东高考(理科)数学试题(附答案)

2008年普通高等学校招生全国统一考试 (广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+.已知n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )A .(15),B .(13), C. D.2.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16B .24C .36D .483.某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )A .24B .18C .16D .12 表14.若变量x y ,满足24025000x y x y x y ⎧+⎪+⎪⎨⎪⎪⎩,,,,≤≤≥≥则32z x y =+的最大值是( )A .90B .80C .70D .405.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )E F DIA H GBC EF D AB C侧视 图1 图2 BEA .BEB . BEC .BED .6.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝7.设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >-B .3a <-C .13a >-D .13a <-8.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) A .1142+a b B .2133+a bC .1124+a b D .1233+a b 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~12题) 9.阅读图3的程序框图,若输入4m =,6n =,则输出 a = ,i = .(注:框图中的赋值符号“=”也可以写成“←”或“:=”) 10.已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120,则k = .11.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .12.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .二、选做题(13—15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .14.(不等式选讲选做题)已知a ∈R ,若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 . 15.(几何证明选讲选做题)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R = .图3图4三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,. (1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ. (1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?18.(本小题满分14分)设0b >,椭圆方程为222212x y b b +=,抛物线方程为28()x y b =-.如图4所示,过点(02)F b +,作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过椭圆的右焦点1F .(1)求满足条件的椭圆方程和抛物线方程;(2)设A B ,分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得ABP △为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)19.(本小题满分14分)设k ∈R ,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.20.(本小题满分14分)如图5所示,四棱锥P ABCD -的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,60ABD ∠=,45BDC ∠=,PD 垂直底面E F ,分别是PB CD ,上的点,且PE DFEB FC =,过点E 作BC (1)求BD 与平面ABP 所成角θ的正弦值;(2)证明:EFG △是直角三角形;(3)当12PE EB =时,求EFG △的面积.21.(本小题满分12分)设p q ,为实数,αβ,是方程20x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,12n n n x px qx --=-(34n =,,…). (1)证明:p αβ+=,q αβ=; (2)求数列{}n x 的通项公式; (3)若1p =,14q =,求{}n x 的前n 项和n S .图52008年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:C D C C A D B B 1.C 【解析】12+=a z ,而20<<a ,即5112<+<a ,51<<∴z2.D 【解析】20624=+=d S ,3=∴d ,故481536=+=d S3.C 【解析】依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是5003703803773732000=----,即总体中各个年级的人数比例为2:3:3,故在分层抽样中应在三年级抽取的学生人数为168264=⨯ 4.C 5.A6.D 【解析】不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有()()p q ⌝∨⌝为真命题7.B 【解析】'()3ax f x ae =+,若函数在x R ∈上有大于零的极值点,即'()30ax f x ae =+=有正根。

07-13年广东高考数学理科概率统计真题(含答案)

07-13年广东高考数学理科概率统计真题(含答案)

17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对照数据;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y bx a=+(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤;试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(3×2.5+4×3+5×4+6×4.5=66.5)2008年广东高考文科卷17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图5 (1)求直方图中x 的值;(2)计算一年屮空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯)2010年广东高考文科卷17.(12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495】,(495,500】,……,(510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列; (3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。

(完整版)历年高考数学真题(全国卷整理版)

(完整版)历年高考数学真题(全国卷整理版)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013大纲全国,理1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( ).A .3B .4C .5D .62.(2013大纲全国,理2)3=( ).A .-8B .8C .-8iD .8i3.(2013大纲全国,理3)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ).A .-4B .-3C .-2D .-14.(2013大纲全国,理4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ).A .(-1,1)B .11,2⎛⎫-- ⎪⎝⎭ C .(-1,0) D .1,12⎛⎫ ⎪⎝⎭ 5.(2013大纲全国,理5)函数f (x )=21log 1x ⎛⎫+⎪⎝⎭(x >0)的反函数f -1(x )=( ). A .121x -(x >0) B .121x-(x≠0) C .2x -1(x ∈R) D .2x -1(x >0)6.(2013大纲全国,理6)已知数列{a n }满足3a n +1+a n =0,a 2=43-,则{a n }的前10项和等于( ). A .-6(1-3-10) B .19(1-310) C .3(1-3-10) D .3(1+3-10)7.(2013大纲全国,理7)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ).A .56B .84C .112D .1688.(2013大纲全国,理8)椭圆C :22=143x y +的左、右顶点分别为A 1,A 2,点P 在C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( ).A .13,24⎡⎤⎢⎥⎣⎦ B .33,84⎡⎤⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦ 9.(2013大纲全国,理9)若函数f (x )=x 2+ax +1x 在1,2⎛⎫+∞ ⎪⎝⎭是增函数,则a 的取值范围是( ). A .[-1,0] B .[-1,+∞) C .[0,3] D .[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ).A .23 B.3 C.3 D .1311.(2013大纲全国,理11)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若0MA MB ⋅=,则k =( ).A .12 B.2 CD .212.(2013大纲全国,理12)已知函数f (x )=cos x sin 2x ,下列结论中错误的是( ).A .y =f(x)的图像关于点(π,0)中心对称B .y =f(x)的图像关于直线π=2x 对称C .f(x)的最大值为2 D .f(x)既是奇函数,又是周期函数二、填空题:本大题共4小题,每小题5分.13.(2013大纲全国,理13)已知α是第三象限角,sin α=13-,则cot α=__________. 14.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.(用数字作答)15.(2013大纲全国,理15)记不等式组0,34,34x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D .若直线y =a (x +1)与D 有公共点,则a 的取值范围是__________.16.(2013大纲全国,理16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n }的前n 项和为S n .已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c )(a -b +c )=ac . (1)求B ; (2)若sin A sin C=14,求C .19.(2013大纲全国,理19)(本小题满分12分)如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB和△PAD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A-PD-C的大小.20.(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望.21.(2013大纲全国,理21)(本小题满分12分)已知双曲线C:2222=1x ya b(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln 2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素.故选B. 2. 答案:A解析:323=13=8-.故选A.3. 答案:B解析:由(m +n )⊥(m -n )⇒|m |2-|n |2=0⇒(λ+1)2+1-[(λ+2)2+4]=0⇒λ=-3.故选B. 4. 答案:B解析:由题意知-1<2x +1<0,则-1<x <12-.故选B. 5. 答案:A解析:由题意知11+x=2y⇒x =121y -(y >0),因此f -1(x )=121x -(x >0).故选A. 6. 答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4. ∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C.7.答案:D解析:因为(1+x )8的展开式中x 2的系数为28C ,(1+y )4的展开式中y 2的系数为24C ,所以x 2y 2的系数为2284C C 168=.故选D. 8. 答案:B解析:设P 点坐标为(x 0,y 0),则2200=143x y +, 2002PA y k x =-,1002PA y k x =+,于是12220222003334244PA PA x y k k x x -⋅===---.故12314PA PA k k =-. ∵2PA k ∈[-2,-1], ∴133,84PA k ⎡⎤∈⎢⎥⎣⎦.故选B.9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D. 10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面11=CH BDCH C O BD C O O ⊥⎫⎪⊥⎬⎪⎭CH ⊥平面C 1BD ,∴∠HDC 为CD 与平面BDC 1所成的角.设AA 1=2AB =2,则=2AC OC,1C O =由等面积法,得C 1O ·CH =OC ·CC 12CH , ∴2=3CH . ∴sin ∠HDC =223==13HC DC .故选A.11. 答案:D解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k (+),x 1x 2=4.①由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12. 答案:C解析:由题意知f (x )=2cos 2x ·sin x =2(1-sin 2x )sin x . 令t =sin x ,t ∈[-1,1], 则g (t )=2(1-t 2)t =2t -2t 3. 令g ′(t )=2-6t 2=0,得=t ±. 当t =±1时,函数值为0;当t =;当t =.∴g (t )max ,即f (x )的最大值为9.故选C. 二、填空题:本大题共4小题,每小题5分.13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示. ∵直线y =a (x +1)过定点C (-1,0),由图并结合题意可知12BC k =,k AC =4,∴要使直线y =a (x +1)与平面区域D 有公共点, 则12≤a ≤4. 16.答案:16π解析:如下图,设MN 为两圆的公共弦,E 为MN 的中点, 则OE ⊥MN ,KE ⊥MN ,结合题意可知∠OEK =60°.又MN =R ,∴△OMN 为正三角形.∴OE =2R .又OK ⊥EK ,∴32=OE ·sin 60°=22R ⋅∴R =2.∴S =4πR 2=16π.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不合题意; 若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1. 18.解:(1)因为(a +b +c )(a -b +c )=ac ,所以a 2+c 2-b 2=-ac .由余弦定理得cos B =222122a cb ac +-=-, 因此B =120°.(2)由(1)知A +C =60°,所以cos(A -C )=cos A cos C +sin A sin C =cos A cos C -sin A sin C +2sin A sin C =cos(A +C )+2sin A sin C=11+2242⨯=, 故A -C =30°或A -C =-30°, 因此C =15°或C =45°. 19.(1)证明:取BC 的中点E ,连结DE ,则ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OE .由△PAB 和△PAD 都是等边三角形知PA =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P ,故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连结FG ,则FG ∥CD ,FG ⊥PD .连结AF ,由△APD 为等边三角形可得AF ⊥PD .所以∠AFG 为二面角A -PD -C 的平面角.连结AG ,EG ,则EG ∥PB .又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =,EG =12PB =1,故AG 3.在△AFG 中,FG =12CD =,AF =AG =3,所以cos ∠AFG =22223FG AF AG FG AF +-=-⨯⨯因此二面角A -PD -C 的大小为π-解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB |=2,则A (,0,0),D (0,,0),C (,0),P (0,0).PC =(,),PD =(0,,).AP =,0),AD =,,0).设平面PCD 的法向量为n 1=(x ,y ,z ),则n 1·PC =(x ,y ,z )·(,)=0,n 1·PD =(x ,y ,z )·(0,,)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故n 1=(0,-1,1).设平面PAD 的法向量为n 2=(m ,p ,q ),则n 2·AP =(m ,p ,q ,0)=0,n 2·AD =(m ,p ,q ,,0)=0,可得m+q=0,m-p=0.取m=1,得p=1,q=-1,故n2=(1,1,-1).于是cos〈n1,n2〉=1212||||3=-·n nn n.由于〈n1,n2〉等于二面角A-PD-C的平面角,所以二面角A-PD-C的大小为π-20.解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1·A2.P(A)=P(A1·A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B1·B2·A3)=P(B1)P(B2)·P(A3)=18,P(X=2)=P(1B·B3)=P(1B)P(B3)=14,P(X=1)=1-P(X=0)-P(X=2)=1151848--=,EX=0·P(X=0)+1·P(X=1)+2·P(X=2)=98.21.(1)解:由题设知ca=3,即222a ba+=9,故b2=8a2.所以C的方程为8x2-y2=8a2.将y=2代入上式,求得x=由题设知,=a2=1.所以a=1,b=(2)证明:由(1)知,F1(-3,0),F2(3,0),C的方程为8x2-y2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|=-(3x1+1),|BF1|3x2+1.由|AF1|=|BF1|得-(3x1+1)=3x2+1,即x1+x2=23 -.故226283kk=--,解得k2=45,从而x1·x2=199-.由于|AF2|=1-3x1,|BF2|3x2-1,故|AB|=|AF2|-|BF2|=2-3(x1+x2)=4,|AF2|·|BF2|=3(x1+x2)-9x1x2-1=16. 因而|AF2|·|BF2|=|AB|2,所以|AF2|,|AB|,|BF2|成等比数列.22.(1)解:由已知f(0)=0,f′(x)=22121x xxλλ(-)-(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x>0时,f(x)<0,即2ln(1) 22x xxx(+)>++.取1xk=,则211>ln21k kk k k++(+).于是212111 422(1)n n n k n a a n k k -=⎡⎤-+=+⎢⎥+⎣⎦∑ =2121211ln 21n n k n k n k k k k k --==++>(+)∑∑ =ln 2n -ln n =ln 2.所以21ln 24n n a a n-+>. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ).A .-4B .45-C .4 D .45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x± D .y =±x 5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm3B .866π3cm3C .1372π3cm3D .2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C .{S2n -1}为递增数列,{S2n}为递减数列D .{S2n -1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n项和2133n nS a=+,则{an}的通项公式是an=_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=12,求PA;(2)若∠APB=150°,求tan∠PBA.18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC CE交AB于点F,求△BCF外接圆的半径.23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲:已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:B解析:∵x (x -2)>0,∴x <0或x >2.∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.2.答案:D解析:∵(3-4i)z =|4+3i|, ∴55(34i)34i 34i (34i)(34i)55z +===+--+. 故z 的虚部为45,选D. 3.答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.答案:C解析:∵c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±. 5.答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3).若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4].综上可知,输出的s ∈[-3,4].故选A.6.答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3.∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上, ∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b(+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2, 而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9. ∴椭圆E 的方程为22=1189x y +.故选D. 11.答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.答案:(-2)n -1 解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-, 即1n n a a -=-2. ∵a 1=S 1=12133a +, ∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1. 15.答案:5- 解析:f (x )=sin x -2cos xx x ⎫⎪⎭, 令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x ) 即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-. 16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15.由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-2,-2)上为减函数,在(-2,-2)上为增函数,在(-2∴f (-2=[1-(-22][(-2)2+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15]=-3(4-16+15)=-9.f (-2=[1-(-22][(-22+8(-2)+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=. 故PA=2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得sin sin150sin(30)αα=︒︒-,cos α=4sin α.所以tan α=4,即tan ∠PBA=4. 18. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1).故cos 〈n ,1AC 〉=11A CA C⋅n n =. 所以A 1C 与平面BB 1C 1C 19.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14. 所以X 的分布列为EX =1111400+500+80016164⨯⨯⨯=506.25. 20. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M,解得k=4±. 当k=4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 21. 解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4.从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1).设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2,则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x-1).由题设可得F (0)≥0,即k ≥1.令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2,则F(-2)=-2k e-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于2.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的普通方程为x 2+y 2-2y =0. 由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩ 解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭. 24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦. 2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ). 8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.1122⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

2007年高考数学试题(全国卷Ⅰ·理)含答案

2007年高考数学试题(全国卷Ⅰ·理)含答案

2007年普通高等学校招生全国统一考试理科数学第Ⅰ卷一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=(D ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( B ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( A ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( A )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( C ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( C ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( D ) AB .2C.D .4AB1B1A1D1C CD(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( B ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( D )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C )A .4B .C .D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( A ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x =3()x x ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为31 一般我们根据题目列出的方程是可以解出,如果方程太复杂,则换种思路列方程。

2007年高考理科数学试题及参考答案(广东卷)

2007年高考理科数学试题及参考答案(广东卷)
solo - this year
soulja - 青山テルマ - ここにいるよ
Soulja Boy&Mario-Soulja Girl
space cowboy 舞动人生
superhero
tatu - show me love - 艾薇儿 t.a.t.u
tell me who you are
bwo - conquering america
bye bye bye - lovestoned
california
can t get you out of my head
candy - toy - 非主流音乐 潮爆 dj 慢嗨
clown - 潜意识失忆
clown - 我们呢
coco.fei - 我不认识你
sarah connor - love is color blind - jrp
selena gomez - who says - the scene
sex 节奏 爵士慢摇舞曲 straight to number one
shakira、劲舞团 - hips don't lie - 2.0背景音乐
baek ji young - 像中枪一样 - 白智英
basshunter - all i ever wanted - all i /v/junli/index.shtml?_from_v_rec3#47188fa6-062d-4bcf-acd7-cddc1d9e224e
黄小琥 - 没那么简单 - 简单 不简单
很赞的男女对唱
金雅中 - maria - 玛丽亚
劲舞团 - get this party started pink - 背景

2007年(全国卷II)(含答案)高考理科数学

2007年(全国卷II)(含答案)高考理科数学

2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.sin 210= ( ) A .32B .32-C .12D .12-2.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2)B .ln(ln 2)C .ln 2D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-, B .(2)+∞, C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A .64B .104C .22D .328.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e 2x -+B .3e 2x +-C .2e 3x -+D .2e 3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种B .60种C .100种D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为( ) A .52B .102C .152D .512.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++= ( )A .9B .6C .4D .3二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2. 16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD-中,底面A B C D为正方形,侧棱SD⊥底面A B C D E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线34x y -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数.22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题答案解析: 一、选择题 1.答案:D解析:sin2100 =1sin 302-︒=-,选D 。

2007年高考数学试题及答案(共37份)

2007年高考数学试题及答案(共37份)

2007年普通高等学校招生全国统一考试文科数学试题湖南卷一、选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的1 不等式2x x >的解集是( )A (0)-∞,B (01),C (1)+∞,D (0)(1)-∞+∞ ,,2 若O E F ,,是不共线的任意三点,则以下各式中成立的是( )A EF OF OE =+B EF OF OE =-C EF OF OE =-+D EF OF OE =--3 设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p是q 的( ) A 充分不必要条件 B 必要不充分条件C 充分必要条件D 既不充分又不必要条件4 在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A 4122-B 2122-C 10122-D 11122-5 在(1)n x +(n ∈N *)的二次展开式中,若只有3x 的系数最大,则n =( )A 8B 9C 10D 116 如图1,在正四棱柱1111ABC D A B C D -中,E F ,分别是1A B ,1BC 的中点,则以下结论中不成立...的是( ) A E F 与1B B 垂直B E F 与B D 垂直C E F 与CD 异面D E F 与11A C 异面7 根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2) 从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A 48米 B 49米 C 50米 D 51米CA 18 函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( ) A 1B 2C 3D 49 设12F F ,分别是椭圆22221x y ab+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标为(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )A2B12C2D210 设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j =,{123}i j k ∈ 、,,,,),都有m in m inj j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( ) A 10B 11C 12D 13二、填空题:本大题共5小题,每小题5分,共25分 把答案填在横线上11 圆心为(11),且与直线4x y -=12 在A B C △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =,π3C =,则A =13 若0a >,2349a =,则14loga =14 设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ ,频率0 水位(米)图2(1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b15 棱长为1的正方体1111ABC D A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1A A ,1DD 的中点,则直线E F 被球O 截得的线段长为三、解答题:本大题共6小题,共75分 解答应写出文字说明、证明过程或演算步骤16 (本小题满分12分)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间17 (本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率18 (本小题满分12分)如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,C A C B =,45BAP ∠=,直线C A 和平面α所成的角为30(I )证明BC PQ ⊥;(II )求二面角B A C P --的大小19 (本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),(I )证明C A ,C B为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程20 (本小题满分13分)设n S 是数列{}n a (n ∈N *)的前n 项和,1a a =,且22213n n n S n a S -=+,0n a ≠,234n = ,,,(I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N *)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项21 (本小题满分13分)已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式2007年普通高等学校招生全国统一考试文科数学试题(必修+选修Ⅰ)湖南卷 参考答案一、选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的1 D2 B3 A4 B5 C6 D7 C8 C9 D 10 B 二、填空题:本大题共5小题,每小题5分,共25分 把答案填在横线上11 22(1)(1)2x y -+-=12π613 314 (1)[2)+∞,(2)9215 3π三、解答题:本大题共6小题,共75分 解答应写出文字说明、证明过程或演算步骤16 解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=(I )函数()f x 的最小正周期是2ππ2T ==;(II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z )时,函数()2f x x=是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z )17 解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =(I )解法一:任选1名下岗人员,该人没有参加过培训的概率是 1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=解法二:任选1名下岗人员,该人只参加过一项培训的概率是 2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯=所以该人参加过培训的概率是230.450.450.9P P +=+=(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=3人都参加过培训的概率是330.90.729P ==所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=3人都没有参加过培训的概率是30.10.001=所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=18 解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结O B因为αβ⊥,PQ αβ= ,所以C O α⊥, 又因为C A C B =,所以O A O B =而45BAO ∠= ,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面O BC 因为B C ⊂平面O BC ,故PQ BC ⊥(II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ= ,B O α⊂,所以BO β⊥过点O 作O H A C ⊥于点H ,连结B H ,由三垂线定理知,B H A C ⊥故B H O ∠是二面角B A C P --的平面角由(I )知,C O α⊥,所以C A O ∠是C A 和平面α所成的角,则30CAO ∠=,不妨设2A C =,则AO =sin 302O H AO ==在R t O AB △中,45ABO BAO ∠=∠=,所以BO AO ==,于是在R t B O H △中,tan 22BO BH O O H∠===故二面角B A C P --的大小为arctan 2解法二:由(I )知,O C O A ⊥,O C O B ⊥,O A O B ⊥,故可以O 为原点,分别以直线O B O A O C ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图)因为C O a ⊥,所以C A O ∠是C A 和平面α所成的角,则30CAO ∠=不妨设2A C =,则AO =1C O =在R t O AB △中,45ABO BAO ∠=∠=,所以BO AO ==则相关各点的坐标分别是(000)O ,,,0)B ,,(00)A ,(001)C ,,所以A B =-,(0A C =-,设1n {}x y z =,,是平面ABC 的一个法向量,由1100n A B n A C ⎧=⎪⎨=⎪⎩,得00z -=+=⎪⎩,取1x =,得1(11n =易知2(100)n =,,是平面β的一个法向量设二面角B A C P --的平面角为θ,由图可知,12n n θ=<>,所以1212cos ||||n nn n θ===故二面角B A C P --的大小为arccos19 解:由条件知(20)F ,,设11()A x y ,,22()B x y ,(I )当A B 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2-,,此时(1(11C A C B =-=-,当A B 不与x 轴垂直时,设直线A B 的方程是(2)(1)y k x k =-≠±代入222x y -=,有2222(1)4(42)0k x k x k -+-+=则12x x ,是上述方程的两个实根,所以212241kx x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++--22(42)411k k =--++=-综上所述,C A C B为常数1-(II )解法一:设()M x y ,,则(1)C M x y =-,,11(1)CA x y =- ,, 22(1)CB x y =- ,,(10)C O =-,,由CM CA CB CO =++ 得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y +=+⎧⎨+=⎩,于是A B 的中点坐标为222x y +⎛⎫⎪⎝⎭, 当A B 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-将1212()2y y y x x x -=--代入上式,化简得224x y -=当A B 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程所以点M 的轨迹方程是224x y -=解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当A B 不与x 轴垂直时,由(I ) 有2122x x +=…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭ ………………………③由①②③得222x +=…………………………………………………④2y =……………………………………………………………………⑤当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有222224(2)1x yy x y+⨯==+- 整理得224x y -=当0k =时,点M 的坐标为(20)-,,满足上述方程当A B 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程故点M 的轨迹方程是224x y -=20 解:(I )当2n ≥时,由已知得22213n n n S S n a --=因为10n n n a S S -=-≠,所以213n n S S n -+= …………………………①于是213(1)n n S S n ++=+ …………………………………………………②由②-①得:163n n a a n ++=+ ……………………………………………③于是2169n n a a n +++=+ ……………………………………………………④由④-③得:26n n a a +-= …………………………………………………⑤即数列2{}n n a a +-(2n ≥)是常数数列(II )由①有2112S S +=,所以2122a a =-由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N *由题设知,1187n n b -=⨯ 当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N *,从而n b 是数列{}n a 中的第167n -⨯项(注:考生取满足36n a k =-,n k ∈N *的任一奇数,说明n b 是数列{}n a 中的第126723n a -⨯+-项即可)21 解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根,设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤ 于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立 故24a b -的最大值是16(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则1x =不是()g x 的极值点而()g x 321121(1)3232x ax bx a b x a =++-++++,且22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++若11a ≠--,则1x =和1x a =--都是()g x 的极值点所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--解法二:同解法一得21()()[(1)]32g x f x a b x a =-++--2133(1)[(1)(2)]322a x x x a =-++-+因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<)当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x < 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x < 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--。

2007年高考试题数学理科真题及答案(海南卷)

2007年高考试题数学理科真题及答案(海南卷)

绝密 ★ 启用前2007年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

参考公式: 样本数据12,,,n x x x 的标准差锥体体积公式 222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式球的表面积、体积公式V Sh =2344,3S R V R =π=π其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知命题 :p x ∀∈R ,sin 1x,则(A ):p x ⌝∃∈R , sin 1x(B ):p x ⌝∀∈R , sin 1x(C ):p x ⌝∃∈R , sin 1x > (D ):p x ⌝∀∈R , sin 1x >(2)已知平面向量(1,1),(1,1),==-a b 则向量1322-a b =(A )(2,1)-- (B )(2,1)- (C )(1,0)- (D )(1,2)-(3)函数sin(2)3y x π=-在区间[,]2π-π的简图是(A )(B )(C )(D )(4)已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =(A )23- (B )13- (C )13 (D )23(5)如果执行右面的程序框图,那么输出的S = (A )2 450 (B )2 500 (C )2 550 (D )2 652(6)已知抛物线22(0)y px p =>的焦点为F ,点111(,)P x y 、222(,)P x y 、333(,)P x y 在抛物线上,且2132x x x =+,则有 (A )123FP FP FP += (B )222123FP FP FP += (C )2132FP FP FP =+(D )2213FP FP FP =⋅(7)已知0,0x y >>,,,,x a b y 成等差数列,,,,x c d y 成等比数列,则2()a b cd+的最小值是(A )0 (B )1 (C )2 (D )4 (8)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是(A )34000cm 3 (B )38000cm 3开始 k ≤50? k =1 S=S +2k 输出S否是 S =0k=k +1结束202020(C )32000 cm (D )34000 cm (9)若cos 22sin()αα=-π-,则cos sin αα+的值为 (A ) (B)12- (C )12(D (10)曲线12e x y =在点2(4,e )处的切线与坐标轴所围三角形的面积为(A )29e 2(B )24e (C )22e (D )2e(111s 、2s 、3s 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(A )312s s s >> (B )213s s s >> (C )123s s s >>(D )231s s s >>(12)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等. 设四棱锥、三棱锥、三棱柱的高分别为h 1、h 2、h ,则 h 1﹕h 2﹕h = (A 1﹕1 (B 2﹕2 (C 2(D 2第Ⅱ卷本卷包括必考题和选考题两部分。

2007年高考理科数学试题及参考答案(广东卷)

2007年高考理科数学试题及参考答案(广东卷)

2007年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(2007•广东)已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=()A.{x|x>﹣1} B.{x|x<1} C.{x|﹣1<x<1} D.2.(2007•广东)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B. C. D.﹣23.(2007•广东)若函数,则f(x)是()A.最小正周期为的奇函数 B.最小正周期为y=x的奇函数 C.最小正周期为2π的偶函数 D.最小正周期为π的偶函数4.(2007•广东)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达内地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A. B. C. D.5.(2007•广东)已知数列{an}的前n项和Sn=n2﹣9n,第k项满足5<ak<8,则k等于()A.9 B.8 C.7 D.66.(2007•广东)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<97.(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.188.(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(2007•广东)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为_________.(答案用分数表示)10.(2007•广东)若向量a,b满足| |=| |=1,的夹角为60°,则 =_________.11.(2007•广东)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px (p>0)的焦点,则该抛物线的准线方程是_________.12.(2007•广东)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_________条,这些直线中共有f(n)对异面直线,则f(4)=_________;f(n)=_________.(答案用数字或n的解析式表示)13.(2007•广东)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为_________,圆心到直线l的距离为_________.14.(2007•广东)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=_________;若f(x)≤5,则x的取值范围是_________.15.(2007•广东)已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为_________.三、解答题(共6小题,满分80分)16.(2007•广东)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(C,0)(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.17.(2007•广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)18.(2007•广东)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2 的圆C与直线y=x相切于坐标原点O.椭圆 =1与圆C的一个交点到椭圆两点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.19.(2007•广东)如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.20.(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.21.(2007•广东)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有an>α;(3)记(n=1,2,…),求数列{bn}的前n项和Sn.2007年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(2007•广东)已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=()A.{x|x>﹣1} B.{x|x<1} C.{x|﹣1<x<1} D.∅考点:交集及其运算;函数的定义域及其求法。

2007年广东省高考数学试卷(理科)及解析

2007年广东省高考数学试卷(理科)及解析

2007年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅2.(5分)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣23.(5分)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数4.(5分)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.5.(5分)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k<8,则k等于()A.9 B.8 C.7 D.66.(5分)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<97.(5分)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.188.(5分)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)10.(5分)若向量a,b满足||=||=1,的夹角为60°,则=.11.(5分)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是.12.(5分)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=;f(n)=.(答案用数字或n的解析式表示)13.(5分)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为,圆心到直线l的距离为.14.(5分)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=;若f(x)≤5,则x 的取值范围是.15.已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC 为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为.三、解答题(共6小题,满分80分)16.(12分)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.17.(12分).x3456y2 . 5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)18.(14分)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O .椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.19.(14分)如图所示,等腰△ABC 的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.20.(14分)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.21.(14分)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.2007年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2007•广东)已知函数f(x)=定义域为M,g(x)=ln(1+x)定义域N,则M∩N等于()A.{x|x>﹣1}B.{x|x<1}C.{x|﹣1<x<1}D.∅【分析】根据题目中使函数有意义的x的值求得函数的定义域M和N,再求它们的交集即可.【解答】解:∵函数的定义域是指使函数式有意义的自变量x的取值范围,∴由1﹣x>0求得函数的定义域M={x|x<1},和由1+x>0 得,N=[x|x>﹣1},∴它们的交集M∩N={x|﹣1<x<1}.故选C.2.(5分)(2007•广东)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.2 B.C.D.﹣2【分析】本题主要考查复数的乘法运算以及纯虚数的概念等基础知识,属容易档次.【解答】解:(1+bi)(2+i)=(2﹣b)+(1+2b)i,则,∴b=2选A.3.(5分)(2007•广东)若函数,则f(x)是()A.最小正周期为的奇函数B.最小正周期为y=x的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数【分析】本题主要考查三角函数的最小正周期和奇偶性,也涉及到对简单三角变换能力的考查.见到三角函数平方形式,要用二倍角公式降幂,变为可以研究三角函数性质的形式y=Asin(ωx+φ)的形式.【解答】解:∵f(x)=,∴y=f(x)最小周期为π的偶函数,故选D4.(5分)(2007•广东)客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s与时间C之间关系的图象中,正确的是()A.B.C.D.【分析】本题的常规方法建立实际问题中的分段函数模型,然后研究分段函数的图象.其实,客观题往往有打破常规的捷径,如此题抓住三个点,即(1,60),(1.5,60),(2.5,140),则很容易地得到答案B,体现了描点法的精细思考.【解答】解:由题意得;,抓住三个点,即(1,60),(1.5,60),(2.5,140),对照选项选B.故选:B.5.(5分)(2007•广东)已知数列{a n}的前n项和S n=n2﹣9n,第k项满足5<a k <8,则k等于()A.9 B.8 C.7 D.6【分析】先利用公式a n=求出a n,再由第k项满足5<a k<8,求出k.【解答】解:a n==∵n=1时适合a n=2n﹣10,∴a n=2n﹣10.∵5<a k<8,∴5<2k﹣10<8,,∴k=8,∴<k<9,又∵k∈N+故选B.6.(5分)(2007•广东)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数)图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6 B.i<7 C.i<8 D.i<9【分析】由题目要求可知:该程序的作用是统计身高在160~180cm(含160cm,不含180cm))的学生人数,由图1可知应该从第四组数据累加到第七组数据,故i值应小于8.【解答】解:现要统计的是身高在160﹣180cm之间的学生的人数,即是要计算A4、A5、A6、A7的和,当i<8时就会返回进行叠加运算,当i≥8将数据直接输出,不再进行任何的返回叠加运算,故i<8.故答案为:i<8.7.(5分)(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15 B.16 C.17 D.18【分析】本题主要考查解决实际问题的能力,研究生活中的最优化模型,体现了对创新思维能力的考查.根据已知,现在要将A,B两个维修点的零件调往C、D 两个维修点,由于A、D两个维修点相邻,且D维修点的零件缺口最大,故要首先考虑从A点调零件到D点.【解答】解:D处的零件要从A、C或B处移来调整,且次数最少.方案一:从A处调10个零件到D处,从B处调5个零件到C处,从C外调1个零件到D处,共调动16件次;方案二:从B处调1个零件到A处,从A处调11个零件到D处,从B外调4个零件到C处,共调动16件次.故选B.8.(5分)(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b【分析】本题主要考查应用新定义解决数学问题的能力,体现了对创新思维能力的考查力度.根据已知中a*(b*a)=b,对四个答案的结论逐一进行论证,不难得到正确的结论.【解答】解:根据条件“对任意的a,b∈S,有a*(b*a)=b”,则:选项B中,[a*(b*a)]*(a*b)]=b*(a*b)=a,一定成立.选项C中,b*(b*b)=b,一定成立.选项D中,(a*b)*[b*(a*b)]=b,一定成立.故选A.二、填空题(共7小题,每小题5分,13-15题为选做题,选做其中2道题,满分30分)9.(5分)(2007•广东)甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机取出一个球,则取出的两球是红球的概率为.(答案用分数表示)【分析】本题是一个古典概型,从甲、乙两袋中各随机取出一个球取出的两球是红球表示从甲袋中取得一个红球且从乙袋中取得一个红球,试验发生的总事件数是C61C61,满足条件的事件数是C41C51+C21C11,由古典概型公式得到结果.【解答】解:由题意知本题是一个古典概型,记“从甲、乙两袋中各随机取出一个球取出的两球是红球”,为事件A试验发生的总事件数是C61C61=36,满足条件的事件数是C41C11=4,由古典概型公式得到P(A)==,故答案为:.10.(5分)(2007•广东)若向量a,b满足||=||=1,的夹角为60°,则=.【分析】利用向量的数量积公式求出两个向量的数量积,利用向量的模的平方等于向量的平方,将求出的值代入代数式即得.【解答】解:∵,∴=1+=.故答案为11.(5分)(2007•广东)在平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是x=﹣.【分析】先求出线段OA的垂直平分线方程,然后表示出抛物线的焦点坐标并代入到所求方程中,进而可求得p的值,即可得到准线方程.【解答】解:依题意我们容易求得直线的方程为4x+2y﹣5=0,把焦点坐标(,0)代入可求得焦参数p=,从而得到准线方程x=﹣.故答案为:x=﹣.12.(5分)(2007•广东)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有条,这些直线中共有f(n)对异面直线,则f(4)=12;f(n)=.(答案用数字或n的解析式表示)【分析】本题主要考查合情推理,以及经历试值、猜想、验证的推理能力.凸多面体是n棱锥,共有n+1个顶点,过顶点与底边上每个顶点都可确定一条侧棱所在的直线,过底面上任一点与底面上其它点均可确定一条直线(边或对角线),综合起来不难得到第一空的答案,因为底面上所有的直线均共面,故每条侧棱与不过该顶点的其它直线都是异面直线.【解答】解:凸多面体是n棱锥,共有n+1个顶点,所以可以分为两类:侧棱共有n条,底面上的直线(包括底面的边和对角线)条两类合起来共有条.在这些直线中,每条侧棱与底面上不过此侧棱的端点直线异面,底面上共有直线(包括底面的边和对角线)条,其中不过某个顶点的有=条所以,f(n)=,f(4)=12.故答案为:,12,.13.(5分)(2007•广东)在平面直角坐标系xOy中,直线l的参数方程为(参数t∈R),圆C的参数方程为,(参数θ∈[0,2π]),则圆C的圆心坐标为(0,2),圆心到直线l的距离为.【分析】先利用两式相加消去t将直线的参数方程化成普通方程,然后利用sin2θ+cos2θ=1将圆的参数方程化成圆的普通方程,求出圆心和半径,最后利用点到直线的距离公式求出圆心到直线的距离即可.【解答】解:直线l的参数方程为(参数t∈R),∴直线的普通方程为x+y﹣6=0圆C的参数方程为(参数θ∈[0,2π]),∴圆C的普通方程为x2+(y﹣2)2=4∴圆C的圆心为(0,2),d=故答案为:(0,2),14.(5分)(2007•广东)设函数f(x)=|2x﹣1|+x+3,则f(﹣2)=6;若f (x)≤5,则x的取值范围是[﹣1,1] .【分析】直接代入﹣2求出函数值f(﹣2),f(x)≤5,去掉绝对值符号,对x 分类讨论,即x≥,和x分别解不等式组即可.【解答】解:f(﹣2)=|2•(﹣2)﹣1|+(﹣2)+3=6,将f(x)=|2x﹣1|+x+3≤5变形为或,解得或,即﹣1≤x≤1.所以,x的取值范围是[﹣1,1].故答案为:6;[﹣1,1].15.(2007•广东)已知:如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,垂足为A,以腰BC为直径的半圆O切AD于点E,连接BE,若BC=6,∠EBC=30°,则梯形ABCD的面积为9 .【分析】连接EC,EO.根据梯形的面积等于梯形的中位线长乘以高,显然中位线即是半圆的半径,即为3.故只需求得该梯形的高.根据梯形的中位线,只需求得DE的长,首先根据30度的直角三角形BCE求得CE的长,再根据弦切角定理求得∠CED=30°,进一步根据锐角三角函数求得DE的长,再根据梯形的面积公式进行计算.【解答】解:如图连接EC,∵BC为半圆O的直径,∴BE⊥EC(1分)∵∠EBC=30°,∴EC=BC=×6=3连接OE,∴OE=OB=3,∠BEO=30°∵AD与⊙O相切于点E,∴OE⊥AD∴∠OEC=60°,∴∠DEC=30°∴DC=EC=∴DE=(3分)∵OE∥DC∥AB,OC=OB,∴OE是梯形的中位线∴AE=DE=(5分)∴AD=2DE=3∵AD⊥AB,∴DA为梯形ABCD的高∴S=OE•AD=3×3 .(7分)梯形ABCD故答案为:9.三、解答题(共6小题,满分80分)16.(12分)(2007•广东)已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0 )(1)若c=5,求sin∠A的值;(2)若∠A是钝角,求c的取值范围.【分析】(1)通过向量的数量积求出角A的余弦,利用平方关系求出A角的正弦.(2)据向量数量积的公式知向量的夹角为钝角等价于数量积小于0,列出不等式解.【解答】解:(1)根据题意,,,若c=5,则,∴,∴sin∠A=;(2)若∠A为钝角,则解得,∴c的取值范围是;17.(12分)(2007•广东).x3456y2344. 5. 5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x 的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【分析】(1)依据描点一一描点画图即可;(2)先算出x和y的平均值,有关结果代入公式即可求a和b的值,从而求出线性回归方程;(3)将x=100时代入线性方程得到y的值,就能预测生产100吨甲产品的生产能耗情况.【解答】解:(1)根据题意,作图可得,(2)由系数公式可知,,,,所以线性回归方程为y=0.7x+0.35;(3)x=100时,y=0.7x+0.35=70.35,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.18.(14分)(2007•广东)在平面直角坐标系xOy中,已知圆心在第二象限,半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)设出圆的标准方程,由相切和过原点的条件,建立方程求解.(2)要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于|OF|的长度4,我们可以转化为探求以右焦点F为圆心,半径为2的圆(x─4)2+y2=8与(1)所求的圆的交点数.【解答】解:(1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x﹣m)2+(y﹣n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则=2即|m﹣n|=4①又圆与直线切于原点,将点(0,0)代入得m2+n2=8②联立方程①和②组成方程组解得故圆的方程为(x+2)2+(y﹣2)2=8;(2)|a|=5,∴a2=25,则椭圆的方程为=1其焦距c==4,右焦点为(4,0),那么|OF|=4.通过联立两圆的方程,解得x=,y=.即存在异于原点的点Q(,),使得该点到右焦点F的距离等于|OF|的长.19.(14分)(2007•广东)如图所示,等腰△ABC的底边,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P﹣ACFE的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大值?(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.【分析】(1)先求底面面积,再求出高,即可求V(x)的表达式;(2)利用导数,来求V(x)的最大值,(3)过F作MF∥AC交AD于M,得到异面直线所成的角,然后求异面直线AC 与PF所成角的余弦值.【解答】解:(1)由折起的过程可知,PE⊥平面ABC,V(x)=()(2),所以x∈(0,6)时,v'(x)>0,V(x)单调递增;时v'(x)<0,V(x)单调递减;因此x=6时,V(x)取得最大值;(3)过F作MF∥AC交AD与M,则,PM=,,在△PFM中,,∴异面直线AC与PF所成角的余弦值为.20.(14分)(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.【分析】y=f(x)在区间[﹣1,1]上有零点转化为(2x2﹣1)a=3﹣2x在[﹣1,1]上有解,把a用x表示出来,转化为求函数在[﹣1,1]上的值域,再用分离常数法求函数在[﹣1,1]的值域即可.【解答】解:a=0时,不符合题意,所以a≠0,又∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解,⇔(2x2﹣1)a=3﹣2x在[﹣1,1]上有解在[﹣1,1]上有解,问题转化为求函数[﹣1,1]上的值域;设t=3﹣2x,x∈[﹣1,1],则2x=3﹣t,t∈[1,5],,设,时,g'(t)<0,此函数g(t)单调递减,时,g'(t)>0,此函数g(t)单调递增,∴y的取值范围是,∴f(x)=2ax2+2x﹣3﹣a=0在[﹣1,1]上有解⇔∈⇔a≥1或.故a≥1或a≤﹣.21.(14分)(2007•广东)已知函数f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,(n=1,2,…).(1)求α,β的值;(2)证明:对任意的正整数n,都有a n>α;(3)记(n=1,2,…),求数列{b n}的前n项和S n.【分析】(1)由f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β)可求得;(2)由f'(x)=2x+1,=,由基本不等式可知,依此有(3),,数列{b n}是等比数列,由其前n项和公式求解.【解答】解:(1)∵f(x)=x2+x﹣1,α,β是方程f(x)=0的两个根(α>β),∴;(2)f'(x)=2x+1,=,∵a1=1,∴有基本不等式可知(当且仅当时取等号),∴,同样,(n=1,2),(3)而α+β=﹣1,即α+1=﹣β,,同理,又。

07-13年广东高考数学理科函数应用真题(含答案)

07-13年广东高考数学理科函数应用真题(含答案)

20.(本题满分14分)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求实数a 的取值范围。

2008年广东高考文科卷19.(本小题满分14分)设k ∈R,函数111()1x x f x x ⎧<⎪-=⎨⎪⎩,≥,()()F x f x kx =-,x ∈R ,试讨论函数()F x 的单调性.20.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x =.(1)若曲线()y f x =上的点P 到点(0,2)Q,求m 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点 .2010年广东高考文科卷21.(本小题满分14分)设12(,)A x y ,22(,)B x y 是平面直角坐标系xOy 上的两点,现定义由点A 到点B 的一种折线距离(,)p A B 为2121(,)||||.p A B x x y y =-+-对于平面xOy 上给定的不同的两点12(,)A x y ,22(,)B x y ,(1)若点(,)C x y 是平面xOy 上的点,试证明(,)(,)(,);p A C p C B p A B +≥ (2)在平面xOy 上是否存在点(,)C x y ,同时满足 ①(,)(,)(,)p A C p C B p A B +=②(,)(,)p A C p C B = 若存在,请求出所有符合条件的点,请予以证明.2011年广东高考文科卷21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线实数p ,q 满足,x 1,x 2是方程 (1L 的切线教y 轴于点B. 证明:对线段AB 上任一点Q(p ,q) (2)设M(a ,b)是定点,其中a ,b 满足a 2-4b>0,a≠0. 过M(a ,b)作L 的两条切线,,与y 轴分别交与F,F'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:B2007年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必用黑色字迹的铅笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上、将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么)()()(B P A P B A P +=+. 如果事件A 、B 相互独立,那么)()()(B P A P B A P •=•.用最小二乘法求线性同归方程系数公式1221ˆˆˆ,ni ii ni i x y nx ybay bx x nx==-==--∑∑. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合要求的. 1.已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N =A .{}1x x >-B .{}1x x <C .{}11x x -<<D .∅2.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数)则b =A .2B .21C .21-D .-23.若函数21()sin (),()2f x x x f x =-∈R 则是A .最小正周期为2π的奇函数 B .最小正周期为π的奇函数C .最小正周期为π2的偶函数D .最小正周期为π的偶函数4.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是A .B .C .D .5.已知数{}n a 的前n 项和29n S n n =-,第k 项满足58k a <<,则k=A .9B .8C .7D .6 6.图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1、A 2、…、A 10(如A 2表示身高(单位:cm )(150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A .i<6B . i<7C . i<8D . i<97.图3是某汽车维修公司的维修点环形分布图,公司在年初分配给A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为A .15B .16C .17D .18 8.设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a,b ∈S ,对于有序元素对(a,b ),在S 中有唯一确定的元素a*b 与之对应),若对任意的a,b ∈S,有a*(b*a)=b,则对任意的a,b ∈S,下列等式中不恒成立的是 A .(a*b )*a=a B .[a*(b*a)]*(a*b)=a C .b*(b*b)=b D .(a*b)* [b*(a*b)]=b二、填空题:本大题共7小题,每小题5分,满分30分,其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.9.甲、乙两个袋中均装有红、白两种颜色的小球,这些小球除颜色外完全相同.其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球. 现分别从甲、乙两袋中各随机取出一个球,则取出的两球都是红球的概率为 .(答案用分数表示) 10. 若向量a 、b 满足|a |=|b |=1,a 与b 的夹角为120,则a a +=a b . 11.在平面直角坐标系xOy 中,有一定点A (2,1),若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 .12.如果一个凸多面体n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有 条.这些直线中共有)(n f 对异面直线,则)4(f = 图4 ; )(n f = .(答案用数字或n 的解析式表示)13.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线l 的参数方程为3()3x t t y t =+⎧∈⎨=-⎩R 参数,圆C 的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 ,圆心到直线l 的距离为 .14.(不等式选讲选做题)设函数)2(,312)(-++-=f x x x f 则= ;若2)(≤x f ,则x 的取值范围是 . 15.(几何证明选讲选做题)如图5所法,圆O 的直径6=AB ,C为圆周上一点,3=BC ,过C 作圆的切线l ,过A 作l 的垂线AD ,AD 分别与直线l 、圆交于点D 、E ,则∠DAC = ,线段AE 的长为 .图5三、解答题:本大题共有6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知△ABC 顶点的直角坐标分别为)0,()0,0()4,3(c C B A 、、.(1)若5=c ,求sin ∠A 的值;(2)若∠A 是钝角,求c 的取值范围.17.(本题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据x3 4 56y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bx a =+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 18.(本小题满分14分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y=x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两点的距离之和为10.(1)求圆C 的方程.(2)试探求C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点P 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 19.(本小题满分14分)如图6所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值 20.(本小题满分14分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围. 21.(本小题满分14分)已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是()f x 的导数,设11a =,1()()n n n n f a a a f a +=-',(1,2,)n =.(1)求α、β的值;(2)证明:任意的正整数n ,都有n a α>; (3)记ln n n n a b a βα-=-,(1,2,)n =,求数列{n b }的前n 项和n S .2007年普通高等学校全国招生统一考试 (广东卷)数学(理科)参考答案一、选择题二、填空题9.19 10.12 11.54x =- 12.()12n n +,()()122n n n --13.(0,2), 14.6,[]1,1- 15.30,3三、解答题16.解:(1)∵()3,4A ,()0,0B , ∴5AB =,4sin 5B =. 当5c =时,5BC =,AC ==根据正弦定理,得sin sin BC ACA B=, ∴sin 5A =. (2)∵()3,4A ,()0,0B ,(),0C c , ∴5AB =,AC =,BC c =.根据余弦定理,得222cos 2AB AC BCA AB AC+-=.若A ∠为钝角,则cos 0A <,即2220AB AC BC +-<,即()22225340c c ⎡⎤+-+-<⎣⎦,解得253c >.17.解:(1)如下图(2)y x i ni i ∑=1=3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5,x =46543+++=4.5,y =2.534 4.54+++=3.5,222221345686ni ix ==+++=∑,b =266.54 4.5 3.50.7864 4.5-⨯⨯=-⨯, a =3.5-0.7⨯4.5=0.35.故线性回归方程为y =0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为 0.7⨯100+0.35=70.35,故耗能减少了90-70.35=19.65(吨)18.解:(1)设圆心坐标为(m ,n )(m <0,n >0),则该圆的方程为()()228x m y n -+-=,已知该圆与直线y =x 相切,那么圆心到该直线的距离等于圆的半径,则2n m -=22.即n m -=4 ① 又圆与直线切于原点,将点(0,0)代入,得m 2+n 2=8. ② 联立方程①和②组成方程组解得⎩⎨⎧=-=22n m ,故圆的方程为()()22228x y ++-=. (2)a =5,∴a 2=25,则椭圆的方程为221259x y +=. 其焦距c =925-=4,右焦点为(4,0),那么OF =4.要探求是否存在异于原点的点Q ,使得该点到右焦点F 的距离等于OF 的长度4,我们可以转化为探求以右焦点F 为顶点,半径为4的圆()2248x y -+=与(1)所求的圆的交点数.通过联立两圆的方程解得x =54,y =512. 即存在异于原点的点Q (54,512),使得该点到右焦点F 的距离等于OF 的长.19.解:(1)∵EF AB ⊥,∴EF PE ⊥.又∵PE AE ⊥,EF AE E =,且PE 在平面ACFE 外, ∴PE ⊥平面ACFE .∵EF AB ⊥,CD AB ⊥,∴EFCD .∴EF x CD EF x CD BD BD =⇒==. 所以四边形ACFE 的面积2211322ACFE ABC BEF S S S x x ∆∆=-=⨯-=.∴四棱锥P ACFE -的体积31363P ACFE ACFE V S PE x -==.即()3V x =-(0x <<.(2)由(1)知()212V x x '=. 令()0V x '=,解得6x =.∵当06x <<时,()0V x '>,当6x <<()0V x '<,∴当6BE x ==时,()V x 有最大值,最大值为()6V = (3)(解法1)过点F 作FG AC 交AE 于点G ,连接PG ,则PFG ∠为异面直线AC 与PF 所成的角.∵ABC ∆是等腰三角形, ∴GBF ∆也是等腰三角形.于是FG BF PF ====从而PG =在GPF ∆中,根据余弦定理,得2221cos 27PF FG PG PFG PF FG +-∠==⋅. 故异面直线AC 与PF 所成的角的余弦值为17. (解法2)以点E 为坐标原点,向量EA ,EF ,EP 分别为x ,y ,z 轴的正向建立空间直角坐标系,则()0,0,0E ,()0,0,6P ,()F ,()6,0,0A ,()6,3,0C .于是()AC =-,()6PF =-.异面直线AC 与PF 所成角θ的余弦为1cos 733AC PF AC PFθ===,故异面直线AC 与PF 所成的角的余弦值为17. 20.解:当a =0时,函数为()23f x x =-,其零点x =32不在区间[-1,1]上. 当a ≠0时,函数()f x 在区间[-1,1]分为两种情况: ①方程()0f x =在区间[]1,1-上有重根.此时()4830a a ∆=++=,解得a =.当32a -=时,()0f x =的重根[]31,12x -=∈-. ②函数在区间[─1,1]上只有一个零点,但不是()0f x =的重根. 此时()()110f f -≤,即()()510a a --≤,解得15a ≤≤. ③函数在区间[─1,1]上有两个零点,此时()()0,111,2110.a f f ⎧∆>⎪⎪-<-<⎨⎪⎪-≥⎩解得a <或5a ≥. 综上所述,如果函数在区间[─1,1]上有零点,那么实数a 的取值范围为[)3,1,2⎛--∞+∞ ⎝⎦.21.解:(1)解方程x 2+x -1=0得x =251±-, 由αβ>,知12α-+=,12β--=. (2)∵()21f x x '=+,∴1()()n n n n f a a a f a +=-'2121n n a a +=+. ()()2222212121212121n n n n n n n n n a a a a a a a a a αααααααα+-+-+---+--===+++. 下面用数学归纳法证明,当1n ≥时,0n a α->成立. ①当1n =时,110a αα-=-=>,命题成立. ②假设n k =(1k ≥)时命题成立,即0k a α->,此时0k a α>>. 则当1n k =+时,()21021kk k a a a αα+--=>+,命题成立.根据数学归纳法可知,对任意的正整数n ,有0n a α->. (3)根据(2),同理可得()2121nn n a a a ββ+--=+.∵n a αβ>>(1,2,3,n =),且11a =,∴11b =ln n n n a b a βα-=-()()2111211ln 2ln 2n n n n n a a b a a ββαα-------===--, 即数列{}n b 为首项为1b ,公比为2的等比数列. 故数列{}n b 前n 项和()()()121211214ln24ln1222n n n n b S +-==-⋅=--.。

相关文档
最新文档