组合法解工程问题
小升初奥数讲义习题 第12讲 工程问题
工程问题一、单位“1”例题1、一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工用了14天。
这件工作由甲先做了几天?举一反三、一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?二、“组合法”解工程问题例题2、一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的32;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的32。
如果由甲、丙合做,需几小时完成?举一反三、抄一份稿件,甲每天的工作效率等于乙、丙二人每天的工作效率的和,丙的工作效率相当于甲、乙每天工作效率的15 ,如果三人合抄只需8天就完成了。
那么乙单独抄需要多少天才能完成?例题3、甲、乙、丙三队合修一条水渠,甲、乙两队先合修6天,修好了这条水渠的31,乙、丙两队合修2天修好余下的41,剩下的水渠三队一起合修5天完成,三队共得工资54万元,根据各队实际完成的工作量来分配,甲队应得多少钱?举一反三、甲、乙、丙三人合作完成一项工程,共得报酬7200元,三人完成这项工程的情况是:甲、乙合作8天完成工程的31,接着乙、丙合作2天,完成余下的41,以后三人合作5天完成了这项工程,按劳付酬,各人应得多少元?三、两项工程例题4、甲、乙、丙三个工程队共同承包A 、B 两项工程。
工程B 的工作量是工程A 的工作量的54。
甲乙丙单独完成工程B 分别需要40、48、60天。
开始时,先由乙、丙两队共同负责工程A ,甲队单独负责工程B 。
工作若干天后,改由乙队单独负责工程A ,甲丙两队共同负责工程B 。
结果两项工程同时完成,那么,丙队到工程B 施工多少天?队单独完成A 工程所需时间分别是20天、24天、30天.先派甲队独做A 工程,乙、丙两队共同做B 工程;经过几天后,又调丙队与甲队共同做A 工程.这样两项工程同时完工.那么丙队与乙队合做了几天?四、周期问题例题5、一项工程,甲、乙合作2623 天完成。
小学奥数工程问题题型大全含答案
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法:1.分想:划分工作量。
2.假设法:假设不休息。
3.方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。
2..天数:①近似天数,②准确天数。
3.列表确定工作天数。
交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
五:工效变化。
六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
第2讲 组合法解工程问题
第2讲 用“组合法”解工程问题一、知识要点在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
二、精讲精练【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的307,乙队单独完成全部工程需要几天?【例题2】一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?【例题3】移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1611没有栽,已知哥哥每小时比弟弟每小时多栽7棵。
共要移栽西红柿苗多少棵?1.师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的203。
如果这批零件由师傅单独做,多少天可以完成?2.某项工程,甲、乙合做1天完成全部工程的245。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的2413。
甲、乙两队单独完成这项工程各需多少天?3.甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的158。
甲、乙两队独做各需几天完成?4.修一段公路,甲队独修要40天,乙队独修要用24天。
两队同时从两端开工,结果在距中点750米处相遇。
这段公路全长多少米?5.加工一批机器零件,师、徒合做12小时可以完成。
先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的53。
已知师傅每小时比徒弟多做10个零件。
这批零件共有多少个?6.一件工作,甲单独做12小时完成。
现在甲、乙合做4小时后,乙又用6小时才完成。
这件工作始终由甲、乙合做几小时可以完成?7.一项工程,甲、乙合做8天完成。
小升初数学培优讲义全46讲—第27讲 简易工程问题
第27讲简易工程问题考点解读1、考察范围:“组合法”解工程问题。
2、考察重点:主要考察比较复杂的工作效率、工作时间、工作总量之间的关系。
3、命题趋势:工程问题中的组合思维;工程问题与分数应用题的综合。
知识梳理知识要点和基本方法:①工程问题时将一般的工作问题分数化,换句话说:从分率的角度,研究工作总量、工作时间、工作效率三者之间的问题。
它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答。
②工程问题的三个基本数量关系式:工作效率×工作时间=工作总量工作总量×工作时间=工作效率工作效率×工作效率=工作时间③组合法:解答工程问题时,如果堆题目提供的条件孤立地看,则难以找到明确的解题途经,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途经。
典例剖析【例1】果园里一共有300棵桃树,如果甲队单独种需要8天,乙队单独种需要10天,现在两队合种,5天能完成吗?【变式练习】1、李师傅加工一批零件,计划每天加工10个,36天可以完成任务,由于采用新技术,实际比原计划可少用6天,实际每天加工了多少个零件?2、一条水渠长740米,甲、乙两个工程队同时从水渠的两端往中间加固,经过5天这条水渠全部加固完毕,甲工程队每天加固72米,乙工程队每天加固多少米?【例2】 一项工程甲单独做8天完成,乙单独做12天完成,那么甲乙合作多少天完成这项工程?【变式练习】1、一项工作,甲独做10天完成,乙独做5天只能完成全部任务的31,现在两人合作多少天可以完成?2、一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天才能完成?【例3】 某人做一项工作,原计划10小时完成,实际8小时就完成了,他的工作效率比原计划提高了百分之几?【变式练习】1、李师傅原来加工一个零件要5小时,后来改进工艺只需4小时,那么他的工作效率提高了百分之几?2、用一台机床加工一批零件,2.4小时可以加工零件的52,照这样计算,技工这批零件还需要几小时?【例4】 甲、乙两队合修一条公路,共同工作3天后完成全部任务的75%,已知甲、乙两队的工作效率之比是2:1,余下的任务由甲队单独去做,还要几天完成?【变式练习】1、一项工程,甲队单独完成要9天,乙队单独完成要18天,两队的工作效率之比是多少?2、甲、乙两队合修一条公路,甲的工作效率是乙的60%,两队合修6天正好完成这段公路的32,余下的由乙单独完成,还需要几天?【例5】一批零件,师傅单独做8天能完成,徒弟每天比师傅少做20个,如果徒弟单独做则需要10天才能完成。
工程经济学互斥方案组合法
工程经济学互斥方案组合法在实际的工程项目中,往往会遇到多种方案供选择,但是这些方案之间往往是互斥的,也就是说只能选择其中的一种。
这种情况下,如何选择最优的方案组合,成为一个非常重要的问题。
工程经济学互斥方案组合法就是针对这个问题而提出的一种解决方案。
本文将围绕工程经济学的互斥方案组合法展开讨论,从理论和实践两方面进行分析和论证。
一、互斥方案的概念和特点在工程项目决策中,常常会出现多个互相排斥的方案供选择。
这种互斥方案通常具有以下特点:1. 互斥性:即不同方案之间的取舍关系,一个方案的实施和利用将排斥其他方案的实施和利用。
2. 目标一致性:选择任何一种方案,都是从最终目标出发,只是从不同的角度去寻求实现目标的最佳途径。
3. 互为替代性:互斥方案之间往往是可以替代的,即一个方案实施后,将排斥其他方案的实施,但实现相同目标。
二、互斥方案组合法的基本原理工程经济学互斥方案组合法的基本原理是结合实际情况,根据各种方案的投资、收益、成本等因素,进行全面的比较和分析,选取最佳的组合方案。
其主要包括以下几个方面的原理:1. 确定目标:明确工程项目的总体目标,包括经济目标、技术目标、社会目标等。
为了达到这些目标,需要明确各个方案的优劣,以及它们的优劣势和组合效果。
2. 比较分析:根据各个方案的投资、收益、成本等因素,进行全面的比较和分析,确定各方案的优劣。
3. 组合方案:在明确各方案的优劣势后,将不同方案进行组合,形成最佳的方案组合,以达到最终的总体目标。
4.综合评价:对所确定的最佳方案组合进行综合评价,确定其可行性和实施方案。
三、互斥方案组合法的应用在实际的工程项目中,互斥方案组合法可以应用到以下几个方面:1. 工程项目决策: 对于多种互斥的方案供选择的工程项目,可以运用互斥方案组合法,确定最佳的方案组合,并决策实施。
2. 投资分析: 对于多种互斥的投资方案供选择的投资项目,也可以运用互斥方案组合法,确定最佳的投资方案组合,并进行投资决策。
小学奥数工程问题十大类
小学奥数工程问题十大类小学奥数工程问题十大类工程问题就是从分率的角度来解决工作方面的问题,其基本数量关系仍然是工作量,工作时间和工作效率三者之间的关系,只不过不再是具体的数量,而是把“一项工程”、“一段路”、“一批零件”、“一份稿件”、“一个水池”等这些没有告诉具体数量的工作量看作“1”;几天完成,也就是把这个“1”平均分成几份;每天完成几分之几,就是工作效率。
在解答工程问题时,要充分利用“工作效率×工作时间=工作总量”这个关系。
建立“数量间的对应关系”是解题的突破口;掌握工程问题的解题方法,抓住解答工程问题的特点,理清题目的解题思路,是提高解答工程问题能力的关键。
运用常用的数学思想及解题方法,如:假设法、转化法、代换法、列举法、方程等来解答工程问题。
一、单位“1”例题1 一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工用了14天。
这件工作由甲先做了几天?例题2 一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?练习一:1、一项工程,甲独做要40天完成,乙独做要30天完成。
现在先由甲做了若干天,然后由乙接着做,共用了35天完成任务。
乙队单独做了多少天?2、一条水渠,甲队独挖120天完成,乙队独挖40天完成。
现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。
这条水渠由丙队单独挖,多少天可以完成?3、一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
如果甲、丙合做3天后,由乙单独做,还要9天才能完成。
如果全部工作由3人合做,需几天可以完成?二、“组合法”解工程问题例题3 一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的32;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的32。
冀教小学奥数工程问题题型大全及答案1
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间,在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型及方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假: 1.分想:划分工作量。
2.假设法:假设不休息。
3.方程法四:周期工程休息及周期:已知条件的顺序:①先工效,再周期,②先周期,再天数。
1..天数:①近似天数,②准确天数。
2.列表确定工作天数。
交替及周期:估算周期,注意顺序!注水及周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
五:工效变化。
六:比例:1.分比及连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115 ,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
小学解工程问题的方法归纳总结
解工程问题的方法工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。
这三者之间的关系是:工作效率×工作时间=工作量工作量÷工作时间=工作效率工作量÷工作效率=工作时间根据上面的数量关系,只要知道三者中的任意两种量,就可求出第三种量。
由于工作量的已知情况不同,工程问题可分为整数工程问题和分数工程问题两类。
在整数工程问题中,工作量是已知的具体数量。
解答这类问题时,只要按照上面介绍的数量关系计算就可解题,计算过程中一般不涉及分率。
在分数工程问题中,工作量是未知数量。
解这类题时,也要根据上面介绍的数量关系计算,但在计算过程中要涉及到分率。
一、工作总量是具体数量的工程问题例1 建筑工地需要1200吨水泥,用甲车队运需要15天,用乙车队运需要10天。
两队合运需要多少天?(适于四年级程度)解:这是一道整数工程问题,题中给出了总工作量是具体的数量1200吨,还给出了甲、乙两队完成总工作量的具体时间。
先根据“工作量÷工作时间=工作效率”,分别求出甲、乙两队的工作效率。
再根据两队工作效率的和及总工作量,利用公式“工作量÷工作效率=工作时间”,求出两队合运需用多少天。
甲车队每天运的吨数:(甲车队工作效率)1200÷15=80(吨)乙车队每天运的吨数:(乙车队工作效率)1200÷10=120(吨)两个车队一天共运的吨数:80+120=200(吨)两个车队合运需用的天数:1200÷200=6(天)综合算式:1200÷(1200÷15+1200÷10)=1200÷(80+120)=1200÷200=6(天)答略。
*例2 生产350个零件,李师傅14小时可以完成。
如果李师傅和他的徒弟小王合作,则10小时可以完成。
如果小王单独做这批零件,需多少小时?(适于四年级程度)解:题中工作总量是具体的数量,李师傅完成工作总量的时间也是具体的。
冀教小学奥数工程问题题型大全及答案
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间,在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假: 1.分想:划分工作量。
2.假设法:假设不休息。
3.方程法四:周期工程休息与周期:已知条件的顺序:①先工效,再周期,②先周期,再天数。
1..天数:①近似天数,②准确天数。
2.列表确定工作天数。
交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
五:工效变化。
六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
六年级奥数分册第16周 用组合法解工程问题-精华版
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
小学奥数工程问题十大类
小学奥数工程问题十大类Revised on November 25, 2020小学奥数工程问题十大类工程问题就是从分率的角度来解决工作方面的问题,其基本数量关系仍然是工作量,工作时间和工作效率三者之间的关系,只不过不再是具体的数量,而是把“一项工程”、“一段路”、“一批零件”、“一份稿件”、“一个水池”等这些没有告诉具体数量的工作量看作“1”;几天完成,也就是把这个“1”平均分成几份;每天完成几分之几,就是工作效率。
在解答工程问题时,要充分利用“工作效率×工作时间=工作总量”这个关系。
建立“数量间的对应关系”是解题的突破口;掌握工程问题的解题方法,抓住解答工程问题的特点,理清题目的解题思路,是提高解答工程问题能力的关键。
运用常用的数学思想及解题方法,如:假设法、转化法、代换法、列举法、方程等来解答工程问题。
一、单位“1”例题1一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工用了14天。
这件工作由甲先做了几天例题2一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成练习一:1、一项工程,甲独做要40天完成,乙独做要30天完成。
现在先由甲做了若干天,然后由乙接着做,共用了35天完成任务。
乙队单独做了多少天2、一条水渠,甲队独挖120天完成,乙队独挖40天完成。
现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。
这条水渠由丙队单独挖,多少天可以完成3、一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
如果甲、丙合做3天后,由乙单独做,还要9天才能完成。
如果全部工作由3人合做,需几天可以完成二、“组合法”解工程问题例题3 一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的32;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的32。
小学奥数工程问题十大类
小学奥数工程问题十大类小学奥数工程问题十大类工程问题是解决工作方面问题的一种方法,它通过分析工作量、工作时间和工作效率之间的关系来解决问题。
在工程问题中,我们将“一项工程”、“一段路”、“一批零件”、“一份稿件”、“一个水池”等工作量看作“1”,然后根据工作时间和工作效率来计算完成时间。
解决工程问题的关键是建立数量间的对应关系,掌握解题方法,理清解题思路。
我们可以使用常用的数学思想和解题方法,如假设法、转化法、代换法、列举法和方程等来解决工程问题。
一、单位“1”例题1:甲独自完成一项工作需要20天,乙独自完成需要12天。
如果甲先做了若干天,然后乙接手完成,共用了14天,那么甲一开始做了几天?例题2:甲队修一条公路需要24天,乙队修需要30天。
甲、乙两队先合作修了4天,然后丙队参加一起修了7天,最终完成了修路任务。
如果三队同时开工修路,需要多少天才能完成?练一:1、甲独自完成一项工作需要40天,乙独自完成需要30天。
现在甲先做了若干天,然后乙接手完成,共用了35天,那么乙单独完成需要多少天?2、甲队挖一条水渠需要120天,乙队需要40天。
两队合作挖了8天,然后丙队加入一起挖,共用了12天完成了任务。
那么丙队单独挖需要多少天?3、甲、乙合作完成一项工作需要6天,乙、丙合作完成需要10天。
如果甲、丙合作完成了3天,然后乙单独完成还需要9天才能完成任务。
那么如果三人一起工作,需要多少天才能完成?二、“组合法”解工程问题例题3:甲、乙、丙三人合作6小时可以完成一项工作。
如果甲工作了6小时,然后乙、丙合作2小时,那么他们能完成多少工作?例题4:甲、乙、丙三人一起抄一份稿件,如果他们合作只需要8天就能完成任务。
如果甲的工作效率等于乙、丙两人的工作效率之和,丙的工作效率等于甲、乙两人的工作效率之和,那么乙单独抄需要多少天才能完成?练二:一项工程,甲、乙合作30天可以完成,甲队单独做24天后,乙队加入,两队又合作做了12天。
小学工程问题精选题(含答案)
小学工程问题精选题(含答案)工程问题是数学中的一类应用题,通常没有具体的工作总量,而是用单位“1”来表示工作总量。
工作效率与完成工作总量所需时间互为倒数。
解决工程问题的应用题,一般都是围绕寻找工作效率的问题进行。
工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。
例1:一项工程,甲队单独干20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成。
问乙队单独完成这项工作需多少天?解题思路:首先,可以通过甲队单独干20天完成这个信息,求出甲队的工作效率。
然后,根据工作效率和乙队单独完成工作的时间的关系,求出乙队的工作效率,最后用乙队的工作效率求出乙队单独完成这项工作需要的时间。
计算得出,乙队单独完成这项工作需要20天。
例2:一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?解题思路:已知甲、乙两队的工作效率和是,只要求出甲队和乙队的工作效率,就可以解决问题。
通过“组合法”,将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量,从而求出甲队的工作效率。
最终计算得出,乙队单独完成全部工程需要20天。
例3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的11/16没有栽,已知哥哥每小时比弟弟每小时多栽7棵。
共要移栽西红柿苗多少棵?解题思路:将“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、弟合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。
然后,根据已知的总棵数和哥哥每小时栽总数的几分之几,求出共要移栽的西红柿苗的数量。
最终计算得出,共要移栽西红柿苗112棵。
例4:一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、XXX做2小时,可以完成这项工作的;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的。
六年级奥数分册第16周 用组合法解工程问题【经典】
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
小学奥数工程问题题型大全含答案
小学奥数工程问题题型大全含答案Company number:【WTUT-WT88Y-W8BBGB-BWYTT-奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作、工作这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法:1.分想:划分工作量。
2.假设法:假设不休息。
3.方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。
2..天数:①近似天数,②准确天数。
3.列表确定工作天数。
交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
五:工效变化。
六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
六年级用组合法解工程问题
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
用“组合法”解工程问题
用“组合法”解工程问题一、知识要点在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
二、精讲精练【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是1/15,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量7/30-1/15×3=1/30,从而求出甲队的工作效率。
所以1÷【1/15-(7/30-1/15×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。
【例题2】一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的1/2。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(1/2-1/12×3)÷2=1/8;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
(1)乙队每天完成这项工程的(1/2-1/12×3)÷2=1/8(2)两段时间一共是1÷(1/8×2+1/12)×2=6(天)答:两段时间一共是6天。
【例题3】移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的11/16没有栽,已知哥哥每小时比弟弟每小时多栽7棵。
共要移栽西红柿苗多少棵?【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一项工程甲干3天,乙干5天可以完 成1/2,甲干5天,乙干3天可以完成 1/3,甲、做2天,乙做5天,共 完成全部工程的4/15;甲做5天,乙 做2天,共完成全部工程的19/60。 甲、乙合作完成这项工程共需要多 少天?
师徒二人合作一批零件,12天可 以完成,师傅先做3天,由徒弟 接独做1天,共完成任务的3/20, 如果让师傅独做,多少天可以完成?
练习:1、一项工程,甲、乙两队合作 12天完成,现在由甲乙两队合作4天 后,余下的工程先由甲独做10天,再 由乙独做5天,正好完成,求甲、乙 独做这项工程各需要几天?
1.修一条街道,甲队每天修8小是地, 5天可以修完;乙队每天修10小时, 6天完成。两队合作,每天6小时, 几天可以完成?
货场有一堆沙子,如果用3辆卡车4 天可运完,用4辆马车5天可以运完, 用20辆板车6天可以运完;现在用2 辆卡车、3辆马车和7辆板车运了两 天后,全用板车(15辆)运几天能 运完?
组合法解工程问题
例、一项工程,甲、乙合作要48天完成,如果由 甲独做60天,再由乙单独做32天,也能完成任务 ,问甲、乙两队各自独做,分别要多少天才能完 成?
练习1、一项工程,由甲、乙合作12天 完成,现在由甲、乙合作4天后下的工 程先由甲独做10天,再由乙独做5天, 正好完成,求甲、乙独做这项工程各需 要多少天?
?
一项工程,甲、乙两人合作,36天 完成,乙、丙合作,45天完成,甲 、丙两人合作,60天完成,甲、乙、 丙独做各需要多少天完成?
放满一个水池的水,若同时打开1、 2、3号阀门,则20分钟可以完成, 若同时打开2、3、4号阀门,则21分 钟可以完成,若同时打开1、3、4号 阀门则28分钟可以完成,若同时打 开1、2、4号阀门则30分钟可以完成 若同时打开1、2、3、4号阀门则多 少分钟可以完成?
2.一项工程,甲、乙两队合作15天完成,
若甲队做5天,乙队做3天,只能完成工程 的7/30乙队单独完成全部工程需要几天?
例2、一项工作,甲乙合作4小时完成, 乙丙合作5小时完成,现在甲、丙合作 2小时,余下的乙用了6小时做完, 求乙单独做完需要几小时?( 甲、丙呢?)
练习1、一个水池子,甲、乙两管同时开, 5小时灌满,乙、丙两管同时开,4小时灌 满,如果乙管先开6小时,还需要甲、丙两 管同时开2小时才能注满(这时乙管关闭) 那么乙管单独灌满水池需要几小时