南开中学-数学答案--20200904
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题文(含解析)
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 文(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.已知集合{}|sin 0A x x ==,{}2|log 2B x x =<,则集合A B =I () A. {}0 B. {}π C. {}0,πD. 2π⎧⎫⎨⎬⎩⎭【答案】B 【解析】 【分析】求出集合A ,B ,然后进行交集的运算即可.【详解】∵A ={x |x =k π,k ∈Z },B ={x |0<x <4}, ∴A ∩B ={π}.故选B .【点睛】本题主要考查交集的运算,涉及三角方程的解法以及对数函数的单调性的应用.2.命题“若0x >,则21x >”的否命题是() A. 若0x >,则21x ≤ B. 若0x ≤,则21x > C. 若0x ≤,则21x ≤ D. 若21x >,则0x >【答案】C 【解析】 分析】根据四种命题之间的关系,直接写出否命题即可.【详解】命题“若x >0,则2x >1的否命题是:若x ≤0,则2x ≤1,故选C .【点睛】本题主要考查四种命题之间的关系应用。
3.已知复数z ,若z 的实部为1,且zi的模长为2,则z =() A. 1i - B. 1i ±C. 13i +D. 13i ±【答案】D 【解析】 【分析】由已知设z =1+mi (m ∈R ),代入zi,再由模长为2列式求得m 值,则z 可求. 【详解】设z =1+mi (m ∈R ), 则|z i |=|1mii+|2112mi m i +==+=, 解得m 3=±.∴z =13i ±.故选D .【点睛】本题主要考查复数的定义以及复数模的公式应用。
重庆南开中学2020-2021学年初三上半期数学试题有答案(全套样卷)
重庆南开中学初2020级九年级(上)半期考试数学试题(全卷共五个大题。
满分150分,考试时间12020)一.选择题:(本大题共l2个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑. 1.-3的绝对值为( ▲ )A .3B .﹣3C .31 D .31- 2.代数式21+y 中,y 的取值范围是( ▲ ) A .0y ≠ B .2y ≠ C .2y >- D .2y ≠- 3.下列因式分解中,正确的是( ▲ )A .2()ax ax x ax a -=-B .222()x y x y -=-C .222222(1)a b ab c b b a ac ++=++D .256(2)(3)x x x x --=-- 4.如图,已知AB ∥CD ,若︒=∠15E ,︒=∠55C ,则A ∠的度数为( ▲ ) A .45° B .40° C .35° D .25° 5.下列欧洲足球俱乐部标志中,是中心对称图形的是( ▲ )A B C D 6.若一个多边形的内角和是1080°,则这个多边形是( ▲ )A .六边形B .七边形C .八边形D .九边形 7.下列说法中不正确...的是( ▲ ) A .要反映我市一周内每天的最低气温的变化情况宜采用折线统计图 B .打开收音机正在播放TFBOYS 的歌曲是必然事件 C .方差反映了一组数据的稳定程度D .为了解一种灯泡的使用寿命。
应采用抽样调查的办法 8.关于x 的方程1131=-+-xx k 有增根。
则k 的值为( ▲ ) A .1 B .2 C .3 D .49.“十一”黄金周,山西乔家大院迎来了全国各地的游客,小渝就是数万游客中的一个;他在游览过程中,对传统建筑非常感兴趣.并发现窗户的每个窗格上都贴有剪纸.如下图,其中“O ”代表的就是剪纸。
天津南开中学2024届高三第三次月检测答案
,
4
4
而
3
(125
4 3
4
− 803 )
210.2
,
3
(126
4 3
4
− 813 )
210.9
,
4
4
由[S] 的定义,得[S] = 211 ,
所以[S] 的值是 211.
6/6
=3
2,
解得 k =
2 2
,所以直线 l1
的斜率为
2. 2
所以
P
2c , 6 5
2c 5
,△APQ
的外接圆圆心
C
−
c 5
,
0
, kCP
=
62
5 3c
c
=
2
2,
5
因为 CP ⊥ PT ,所以直线 l2 的斜率为 k2 = −
2. 4
(3)设直线 l2 的方程为 y = −
2 x + 13 2 c ,与椭圆方程联立可得:
1
−
−
1 4
2
=
15 , 4
△ABC 的面积为 3
15
,可得
1 2
bc
sin
A
=
3
15 ,即 1 bc 2
15 = 3 15 ,则 bc = 24 , 4
联立 b − c = 2 ,解得 b = 6 , c = 4 ,
由
a2
=
b2
+
c2
−
2bc cos
A
=
36
+ 16
−
26
4
−
1 4
=
64
=1504 ;
2020年重庆市南开中学(融侨)中考数学综合卷四(含答案)
第 3 题图
第 4 题图
第 6 题图
5.已知正比例函数 y1 的图象与反比例函数 y2 的图象相交于点 A(2,4),下列说法正确的 是( )
A.反比例函数 y2 的解析式是 y2=﹣ 8 B.两个函数图象的另一交点坐标为(2,﹣4) x
C.当 x<﹣2 或 0<x<2 时,y1<y2
D.函数 y1 与函数 y2 都随 x 的增大而增大
度.如图,某路口的斑马线路段 A﹣B﹣C 横穿双向行驶车道,其中 AB=BC=6 米,在
绿灯亮时,小明共用 11 秒通过 AC,其中通过 BC 的速度是通过 AB 速度的 1.2 倍,求小
明通过 AB 时的速度.设小明通过 AB 时的速度是 x 米/秒,根据题意列方程得:
.
17. 在平面直角坐标系中,A,B,C 三点的坐标分别为(4,0),(4,4),(0,4),点 P 在 x
顶 B 点的仰角 BAO 35 ,山坡 AC 的坡度 i = 1: 2 , OA 500 米,则山顶 C 的垂直
高度约为( )(参考数据:sin13 0.22 tan13 0.23 ,,sin 35 0.57 ,tan 35 0.70 )
A.161.0 B.116.4
C.106.8
D. 76.2 y D
AO
CM x
E B
第 10 题
第 11 题图
11.如图,直线 y 1 x 2 与 x 轴交于 C,与 y 轴交于 D,以 CD 为边作矩形 CDAB,点 A 2
在
x
轴上,双曲线
y
k x
(k
0)
经过点
B
与直线
CD
交于
E,EM⊥x
轴于
M,则
重庆南开中学2020级高三第四次教学质量检测考试数学理科试卷+解析
【解析】:由 为奇函数,则 , ,故选B.
【点评】此题考查函数的基本性质。属于简单题。
6.已知圆 的半径为 ,圆心在 轴的正半轴上,直线 与圆 相切,则圆 的方程为
()
A. B.
C. D.
【答案】D.
【解析】:由题意设圆心C为 , 则 圆 的方程为
,故选D.
【点评】此题考查圆的相关知识,其关键点为直线与圆相切即圆心到直线的距离等于半径即可求解,属于简单题。
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知 ,则 __________.
14.已知椭圆 的上顶点为 ,右焦点为 , ,且满足 ,则椭圆 的标准方程为__________.
15.已知实数 ,且满足 ,则 的最小值为__________.
16.在学习导数和微积分是,应用到了“极限”的概念,极限分为函数极限和数列极限,其中数列极限的概念为:对数列 ,若存在常数 ,对于任意 ,总存在正整数 ,使得当 时, 成立,那么称 是数列 的极限,已知数列 满足: , , ,由以上信息可得 的极限 __________,且 时, 的最小值为__________.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题理(含解析)
重庆市南开中学2020届高三数学上学期第一次教学质量检测考试试题 理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.已知集合{}2|230A x x x =--≤,{}|21xB y y ==+,则A B =I () A. ∅ B. (]1,3 C. (]0,3D. ()1,+∞【答案】B 【解析】 【分析】根据一元二次不等式的解集和指数函数的值域求得. 【详解】由已知解得[]()1,3,1,A B =-=+∞, 所以(]1,3A B =I ,故选B.【点睛】本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.2.已知复数z 满足()()12z i i i -+=,则z =() A. 12i + B. 12i - C. 12i -+ D. 12i --【答案】B 【解析】 【分析】根据复数的除法运算和复数的共轭复数的概念求得. 【详解】由已知得21i z i i-=+,所以()()()211211i i z i i i i -=+=++-,所以12.z i =- 故选B.【点睛】本题考查复数的除法运算和复数的共轭复数的概念,属于基础题.3.命题“若220x y +=,则0x =,0y =”的否命题为()A. 若220x y +=,则0x ≠,0y ≠B. 若220x y +=,则0x ≠或0y ≠ C. 若x y +≠220,则0x =,0y =D. 若x y +≠220,则0x ≠或0y ≠【答案】D 【解析】 【分析】根据否命题是对命题的条件和结论均要否定求得. 【详解】否命题是对命题的条件和结论均要否定,故选D.【点睛】本题注意区分“否命题”和“命题的否定”,属于基础题.4.关于函数()y f x =与()ln y f x =,下列说法一定正确的是() A. 定义域相同 B. 值域相同C. 单调区间相同D. 奇偶性相同 【答案】B 【解析】 【分析】根据函数的定义域、值域、单调性和奇偶性的判断解得.【详解】对于A 答案:()y f x =的定义域是R ,而()ln y f x =的定义域是()0,∞+,故A 错误;对于C 答案:()ln y f x =是复合函数,其单调需遵循“在定义域上,同增异减”的原则,故C 错误;对于D 答案:()ln y f x =的定义域是()0,∞+的子集,故()ln y f x =不具有奇偶性,故D 错误;因为ln y x =的值域是R ,故B 正确.【点睛】本题考查函数的的定义域、值域、单调性和奇偶性,属于基础题.5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A. 12xy ⎛⎫= ⎪⎝⎭B. 23y x -=C. 1y x x=- D.()2ln 1y x =+【答案】D 【解析】 【分析】根据函数的奇偶性和单调性求解.【详解】由函数的奇偶性的判定方法,知C 选项是奇函数,所以排除C 选项, 又因为在(),0-∞上单调递减,在,,A C D 选项中,只有D 选项符合, 故选D .【点睛】本题考查函数的奇偶性和单调性,属于基础题.6.已知函数()()1,022,0xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则21log 5f ⎛⎫= ⎪⎝⎭()A.516B.54C.52D. 5【答案】A 【解析】 【分析】先判断自变量的范围是分段函数的某一段,再代入相应的解析式中求函数的值.【详解】22221114log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,222244416log 0,log log 2log 5555f f f ⎛⎫⎛⎫⎛⎫<∴=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,()22216log 516log 5log 116522161615log 0,log 2255216f⎛⎫ ⎪-⎝⎭⎛⎫⎛⎫>∴====⎪ ⎪⎝⎭⎝⎭Q , 故选A.【点睛】本题考查分段函数和对数运算,属于基础题.7.黎曼函数是一个特殊的函数,由德国数学家黎曼发现提出,在高等数学中有着广泛的应用.黎曼函数()R x 定义在[]0,1上,且()()1,,,0,010,1q q x p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当为正整数为既约真分数当或或内的无理数,则以下说法:①()R x 的值域为[]0,1;②方程()R x x =有无穷多个解;③()R x 的图像关于直线12x =对称;其中正确的个数为() A. 0 B. 1C. 2D. 3【答案】C 【解析】 【分析】由函数的定义判断选项,可以选取特殊的值验证求解. 【详解】由黎曼函数的定义可知()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭L L (其中p 是大于或等于2的自然数),故①错误;方程()R x x =的解有:11111,,,,,,234pL L ,(其中p 是大于或等于2的自然数),故②正确; 对于任何的自然数2p ≥,根据()()f f 1x x =-,所以()R x 的图像关于直线12x =对称,故③正确; 故选C.【点睛】本题考查新定义函数,思考时牢牢抓住函数的定义,属于中档题.8.设0.30.2a =,0.3log 0.2b =,0.20.4c =,则() A. a b c <<B. a c b <<C. c a b <<D.b ac <<【答案】B 【解析】 【分析】运用中介值“1 ”,和指数的同指或同底时的大小比较得解. 【详解】0.30.3log 0.2log 0.31b =>=Q , 0.30.20.20.20.20.41a =<<<,b c a ∴>>故选B.【点睛】本题考查指数、对数的大小比较,属于中档题.9.若函数()()213log 28f x ax x =++的值域为[)2,-+∞,则()f x 的单调递增区间为() A. (),2-∞- B. (]2,1- C. [)1,4D. ()4,+∞【答案】C 【解析】 【分析】根据函数的值域得真数的最大值,从而求出参数的值,再根据复合函数的单调性的判断求解. 【详解】由已知得令228t ax x =++的最大值是9,所以解得1a =-,所以()()213log 28f x x x =-++, 又因为228t ax x =++在()2,4-上0,t >且在(],1-∞上单调递增,在[)1,∞上单调递减, 根据复合函数的单调性得C 选项正确. 故选C.【点睛】本题考查对数函数的值域和单调性,属于中档题.10.下图可能是下列哪个函数的图像()A. ()221x x y x -=- B. ()2ln 1x x y x -=-C. 2ln 1y x x =- D. ()tan ln 1y x x =⋅+【答案】C 【解析】 【分析】可考虑用排除法,从函数的定义域和特殊点的函数的正负着手.【详解】由图像可知,()tan ln 1y x x =⋅+在02π⎛⎫⎪⎝⎭,上单调递增,故可排除D ;当13x =时,A 、B 选项中的0,y >C 选项中的0,y < 故选C.【点睛】本题考查函数的定义域和特殊点的函数值辨别图像,属于基础题.11.已知()'f x 是奇函数()()f x x R ∈的导函数,()20f =,当0x ≠时,()()2'f x f x x>,则不等式()()10x f x -<的解集为() A. ()(),20,2-∞-U B. ()()2,02,-+∞U C. ()(),21,2-∞-U D. ()()2,01,2-U【答案】D 【解析】 【分析】将已知的含导函数的不等式构造成某个函数的导函数,得这个函数的单调性,再根据奇偶性得这个函数的大致图像趋势,并且得出其函数值的正负,从而得出()f x 的函数值的正负求解. 【详解】当0x >时,由()()2'f x f x x >得()()2'0f x f x x ->,即()()'20xf x f x x->,所以()()24'20x f x xf x x ->,即()'20f x x ⎛⎫> ⎪⎝⎭, 所以令()()2f x g x x=,则()g x 在()0,∞+上单调递增,且()20g =, 又因为()f x 上奇函数,所以()g x 也是奇函数,且在()()2,02,-+∞U 时()0g x >,在()()2,0,2-+∞⋃时()0g x <, 又因为20x >,所以在()()2,02,-+∞U 时()0f x >,在()()2,0,2-+∞⋃时()0f x < 解不等式()()10x f x -<中,当1x >时,()0f x <,所以其解集为()1,2; 当1x <时,()0f x >,所以其解集为()2,0-. 故得解.【点睛】本题的关键在于构造函数分析其单调性、奇偶性和函数值的正负,从而得出()f x 的函数值的正负的取值范围,属于难度题.12.已知函数()f x 对x R ∀∈满足:()()2f x f x +=-,()()()12f x f x f x +=⋅+,且()0f x >,若()14f =,则()()20192020f f +=()A.34B. 2C.52D. 4【答案】A 【解析】 【分析】由抽象函数关系式赋值得特殊点的函数值,找出其函数值的周期规律得解. 【详解】因为()()()12f x f x f x +=⋅+, ∴()()()213f x f x f x +=+⋅+,又()0f x > 故()()13f x f x +=,即()()6f x f x += 所以函数的周期为6, 由已知可得当0x =时,()()20f f =,()()()102f f f =⋅,又()0f x >,所以()()202f f ==,并且()()()()1113,4,5,62242f f f f ====, 所以()()()()1132019202034244f f f f +=+=+=,故选A.【点睛】本题考查抽象函数的求值,考查函数的周期性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
重庆市南开中学2020年高三下期中数学试题及答案(理科)
A﹒ 3 2
B﹒ 2
C﹒ 9 4
8
D﹒
3
二、填空题 :本 大题共 4 小题,每小题 5分,共 20 分。
13.已知 a , b 均为单位向量,且 (3a b) (a 2b) ,则向量 a 与 b 夹角的余弦值为
﹒
14.已知 (x 2 )n( n N * )的展开式中第 3 项与第 6 项的二项式系数相等,则展开式中 x 的系数为
A﹒ 2
B﹒ 1
C﹒ 0
D﹒ 1 2
8.抛物线 C:y2 2 px ( p 0) 的焦点为 F , A,B 是抛物线 C 上两点,
且 | AF | | BF | 10 , O 为坐标原点,若 OAB 的重心为 F ,则 p
A﹒1
B﹒ 2
C﹒ 3
D﹒ 4
开始
输入 x 1,s 0
x 2x
则 P0,0,1, D 2 2,1,0 ,C 2 2,1,0 , M 2,1,0 ,CP 2 2,1,1 , MD 2,2,0 , MP
2,1,1 ,
设平面
PMD
的法向量为
m
x,
y,
z ,则由
m
MP
0
m
2,1,3 ,设直线 PC 与平面 PMD 所成角
m MD 0
(1)若函数 y f (x) g(x) 在其定义域内单调递增,求实数 a 的取值范围; (2)是否存在实数 a ,使得函数 y f (x) g (x) 的图像与 x 轴相切?若存在,求满足条件的 a 的个数,
请说明理由.
21.(12
分)已知椭圆 :
x2 a2
y2 b2
1(a
b
0 )的离心率为
1 恒成立,令 mx
2020届天津市南开区南开中学高三上学期2月月考数学试题(含答案解析)
2020届天津市南开区南开中学高三上学期2月月考数学试题一、单选题1.设{}{}2,|21,log 0xU A x B x x ==>=R ,则C U A B ⋂= A .{|0}x x < B .{}1x xC .{|01}x x <≤D .{|01}x x ≤<【答案】C【解析】因为{}|21xA x =>=()0,∞+,B ={}2|log 0x x >=()1,∞+,所以(](]C ,1,C 0,1U U B A B ∞=-⋂=.故选C .2.一个圆锥的表面积为π,它的侧面展开图是圆心角为120o 的扇形,则该圆锥的高为( ) A .1 B .2C .2D .22【答案】B【解析】试题分析:设圆锥底面半径是,母线长,所以,即,根据圆心角公式,即,所以解得,,那么高【考点】圆锥的面积3.设函数246,0()6,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()(1)f x >f 的解集是( )A .(3,1)(3,)-⋃+∞B .(3,1)(2,)-+∞UC .(1,1)(3,)-+∞UD .(,3)(1,3)-∞-U【答案】A【解析】试题分析:由函数f (x )=246,0{6,0x x x x x -+≥+<得(1)3()3f f x =∴>不等式化为即20{463x x x ≥-+>或0{63x x <+>所以301-303-31x x x x x >≤<<∴<<或或或【考点】分段函数和解不等式.4.下列四个函数:①y =3-x ;②y =2x -1(x>0);③y =x 2+2x -10;④y =()0{?1(0)x x x x≤>,其中定义域与值域相同的函数的个数为( ) A .1 B .2C .3D .4【答案】B【解析】逐个选项分析,分析函数的定义域及值域即可. 【详解】对于①,函数y =3-x 的定义域和值域均为R ,符合题意; 对于②,函数y =2x -1(x>0)的定义域为()0,+∞,值域为1,2⎛⎫+∞⎪⎝⎭,不合题意; 对于③,函数y =x 2+2x -10的定义域为R ,值域为[-11,+∞),不合题意;对于④,函数,0{1,0x x y x x≤=>的定义域和值域都是R .综上可知定义域与值域相同的函数是①④,共有2个.选B . 【点睛】本题主要考查了一次函数,指数型函数,二次函数,分段函数的定义域及值域的求法,属于中档题.5.函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩是R 上的单调减函数,则实数a 的取值范围是( )A .(),2-∞B .13,8⎛⎤-∞ ⎥⎝⎦C .()0,2D .138,2⎡⎫⎪⎢⎣⎭【答案】B【解析】分段函数在定义域内单调递减须满足在各段单调递减,还需要注意连接点处的函数值,由此可得()22012212a a -<⎧⎪⎨⎛⎫⨯-≤- ⎪⎪⎝⎭⎩,解出即可. 【详解】解:因为函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩是R 上的单调减函数,所以()22012212a a -<⎧⎪⎨⎛⎫⨯-≤- ⎪⎪⎝⎭⎩, 所以138,a ⎛∈-∞⎤ ⎥⎝⎦, 故选:B . 【点睛】本题主要考查分段函数的单调性,属于易错的基础题. 6.已知函数()1,2,{(02log ,2a x x f x a x x -≤=>+>且1)a ≠的最大值为1,则a 的取值范围是A .1,12⎡⎫⎪⎢⎣⎭B .()0,1C .10,2⎛⎤ ⎥⎝⎦D .()1,∞+【答案】A【解析】对x 进行分类讨论,当x≤2时,f (x )=x ﹣1和当x >2时,2+log a x≤1.由最大值为1得到a 的取值范围. 【详解】∵当x≤2时,f (x )=x ﹣1, ∴f (x )max =f (2)=1 ∵函数()1,2,{2log ,2a x x f x x x -≤=+>(a >0且a≠1)的最大值为1,∴当x >2时,2+log a x≤1. ∴01log 21aa <<⎧⎨≤-⎩,解得a ∈[12,1) 故答案为:A 【点睛】(1)本题主要考查分段函数的最值问题,考查对数函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是分析推理出当x >2时,2+log a x≤1.7.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 【答案】D【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内8.已知函数()2sin 3f x x x =-,若对任意[2,2]m ∈-,2(3)()0f ma f a -+>恒成立,则a 的取值范围是( ) A .(1,1)- B .(,1)(3,)-∞-+∞U C .()3,3-D .-∞-+∞U (,3)(1,)【答案】A【解析】()()f x f x -=-, 且()2cos 30f x x =-<' ,所以函数()f x 为单调递减的奇函数,因此()()230f ma f a -+>222(3)()()3f ma f a f a ma a ⇒->-=-⇒-<-即223123111323a a a a a a a-<<⎧-<-⎧⇒⇒-<<⎨⎨-<<--<-⎩⎩ ,选A. 点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内9.已知函数()y f x =是R 上的偶函数,对于x ∈R 都有()()()63f x f x f +=+成立,且()62f -=-,当1x ,[]20,3x ∈,且12x x ≠时,都有()()12120f x f x x x ->-.则给出下列命题:①()20162f =-;②6x =-为函数()y f x =图象的一条对称轴;③函数()y f x =在()9,6--上为减函数;④方程()0f x =在[]9,9-上有4个根;其中正确的命题个数为( ) A .1 B .2C .3D .4【答案】D【解析】由()()()63f x f x f +=+可得()30f -=,结合偶函数的性质可得()30f =,从而推出()()6f x f x +=,可得函数()y f x =是以6为周期的周期函数,从而可判断①②,又根据当1x ,[]20,3x ∈,且12x x ≠时,都有()()12120f x f x x x ->-可得函数在[]0,3上单调递增,结合函数值以及对称性可判断③④. 【详解】解:对于①,令3x =-,由()()()63f x f x f +=+得()30f -=, 又函数()y f x =是R 上的偶函数, ∴()()330f f =-=, ∴()()6f x f x +=,即函数()y f x =是以6为周期的周期函数, ∴()()()201633660f f f =⨯=;又()62f -=-,所以()02f =-,从而()20162f =-,即①正确; 对于②,函数关于y 轴对称,周期为6,∴函数()y f x =图象的一条对称轴为6x =-,故②正确; 对于③,当1x ,[]20,3x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,设12x x <,则()()12f x f x <,故函数()y f x =在[]0,3上是增函数, 根据对称性,易知函数()y f x =在[]3,0-上是减函数, 根据周期性,函数()y f x =在()9,6--上为减函数,故③正确; 对于④,因为()()330f f =-=,又由其单调性及周期性可知 在[]9,9-,有且仅有()()()()33990f f f f =-==-=, 即方程()0f x =在[]9,9-上有4个根,故④正确; 故选:D . 【点睛】本题主要考查抽象函数的基本性质的综合应用,属于中档题.二、填空题10.已知函数的定义域为,且,则______.【答案】【解析】易知,联立已知式子,得关于和的方程组,解方程进而可解. 【详解】在,用代替x ,得,联立得 ,将代入中,可求得.故填:【点睛】本题考查了通过给定条件求函数解析式的问题;求解函数解析式的几种常用方法有 :①换元法;②待定系数法;③凑配法;④消元法;⑤赋值法等.11.已知函数()f x 的定义域为R ,直线1x =和2x =是曲线()y f x =的对称轴,且()01f =,则()()410f f +=________.【答案】2【解析】(定义法)由()y f x =的图象关于直线1x =对称,得()()2f x f x -=+,同理得()()4f x f x -=+,从而可推出()()2f x f x =+,进而可得出答案. (性质法)由直线1x =和2x =是曲线()y f x =的对称轴,可得函数()y f x =的周期是2,从而可求出答案. 【详解】解:(定义法)由()y f x =的图象关于直线1x =对称,得()()2f x f x -=+,同理得()()4f x f x -=+,则()()222f x f x +=++⎡⎤⎣⎦,所以()()2f x f x =+,则()()()()410002f f f f +=+=. (性质法)由直线1x =和2x =是曲线()y f x =的对称轴,可得函数()y f x =的周期是2. 又()01f =,则()()()()410002f f f f +=+=. 故答案为:2. 【点睛】本题主要考查函数对称性的应用,考查函数的周期性,属于中档题.12.设()f x 是定义在R 且周期为1的函数,在区间[)0,1上,()2,,x x D f x x x D⎧∈=⎨∉⎩其中集合1,n D x x n N n *⎧⎫-==∈⎨⎬⎩⎭,则方程()lg 0f x x -=的解的个数是____________ 【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此范围内,x Q ∈且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x Q ∈,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10nmq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分, 且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点, 因此方程()lg 0f x x -=的解的个数为8.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.13.设函数()y f x =的定义域为D ,若对于任意的12,x x D ∈,当122x x a +=时,恒有()()122f x f x b +=,则称点(),a b 为函数()y f x =图像的对称中心.研究函数()3sin 2f x x x =++的某一个对称中心,并利用对称中心的上述定义,可得到()()1919112020f f f f ⎛⎫⎛⎫-+-+⋅⋅⋅++= ⎪ ⎪⎝⎭⎝⎭.【答案】82【解析】试题分析:由()3sin 2f x x x =++知当时,()()1222f x f x +=⨯.1120-+=⨯Q ,1919202020-+=⨯,⋅⋅⋅,(1)(1)22f f ∴-+=⨯,1919()()222020f f -+=⨯,⋅⋅⋅,则 ()()1919112020f f f f ⎛⎫⎛⎫-+-+⋅⋅⋅++=⎪ ⎪⎝⎭⎝⎭.【考点】函数的对称性.【方法点晴】平时我们讲得对称中心都在轴上,很容易得到为奇函数,对称中心为,由()3sin 2f x x x =++可得到该函数对称中心为,由此可得,再由值的对称性,即可求结果.本题虽然考查的知识点比较少,但内容抽象,不易理解,还要借助于数的对称,来解决问题.本题属于难题.14.已知定义在R 上的奇函数()f x 满足()()4f x f x -=-,且在区间[]0,2上是增函数,若方程()()0f x m m =>在区间[]8,8-上有四个不同的根1x ,2x ,3x ,4x ,则1234x x x x +++=________. 【答案】8-【解析】()()4f x f x -=-可得()()8f x f x +=,从而有函数的一个周期为8,再结合奇函数的性质可得函数()f x 的图象关于2x =对称,结合题意可画出函数的大致图象,结合图象可求出答案. 【详解】解:因为()()4f x f x -=-,所以()()()84f x f x f x +=-+=, 即函数()f x 的一个正周期为8,又因为()f x 为奇函数,()()()4f x f x f x +=-=-,故函数()f x 的图象关于2x =对称,又由题意可知()f x 在[]0,2上单调递增, 综上,可以画出函数图象的示意图:方程()()0f x m m =>在区间[]8,8-上有四个不同的根1x ,2x ,3x ,4x , 不妨设1234x x x x <<<,则1212x x +=-,344x x +=,则12348x x x x +++=-. 【点睛】本题主要考查函数的图象与性质得综合应用,考查数形结合思想,属于难题. 15.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()()0f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”,0x 是它的一个均值点,例如2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()3f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是________.【答案】33,4⎛--⎤⎥⎝⎦【解析】根据新定义可得31x mx m +=+在区间()1,1-上有解,利用分离变量法即可求出答案.【详解】解:设11x -<<,()()()()11111f f f x m --==+--,∴31x mx m +=+在区间()1,1-上有解,∴()311x m x -=-,21m x x =---,()1,1x ∈-.∵2213124y x x x ⎛⎫=---=-+- ⎪⎝⎭在()1,1-的值域为33,4⎛--⎤ ⎥⎝⎦, 所以方程有解实数m 的取值范围是33,4⎛--⎤⎥⎝⎦,故答案为:33,4⎛--⎤⎥⎝⎦.【点睛】本题主要考查函数在区间上能成立的问题,常用分离变量法,属于难题.三、解答题16.设函数()2sin cos sin 4f x x x x π=--⎛⎫⎪⎝⎭. (1)求函数()f x 的最小正周期; (2)求函数6f x π⎛-⎫⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值. 【答案】(1)π;(2)最大值12,最小值3122--. 【解析】(1)根据降幂公式以及诱导公式化简函数()f x ,再根据周期计算公式即可得出答案;(2)先求得1sin 2632f x x ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=--,再求出23x π-的范围,从而可求出函数的最值. 【详解】解:(1)因为()2sin cos sin 4f x x x x π=--⎛⎫⎪⎝⎭1cos 212sin 222x x π⎛⎫ ⎪⎝=-⎭-- 111sin 2cos 22222x x π⎛⎫ ⎪⎝=+-⎭- 111sin 2sin 2222x x =-+ 1sin 22x =-,所以函数()f x 的最小正周期为π;(2)由(1)得1sin 2632f x x ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭-=--,因为02x π≤≤,所以22333x πππ-≤-≤, 所以3sin 2123x π⎛⎫-≤-≤ ⎪⎝⎭,所以3111sin 222322x π--≤--⎛⎫⎪⎭≤ ⎝, 当512x π=时,6f x π⎛-⎫ ⎪⎝⎭取到最大值12;当0x =时,6f x π⎛-⎫⎪⎝⎭取到最小值3122--. 【点睛】本题主要考查三角函数的周期、最值,属于基础题.17.如图,三棱锥P ABC -,侧棱2PA =,底面三角形ABC 为正三角形,边长为2,顶点P 在平面ABC 上的射影为D ,有AD DB ⊥,且1DB =.(1)求证://AC 平面PDB ; (2)求二面角P AB C --的余弦值;(3)线段PC 上是否存在点E 使得PC ⊥平面ABE ,如果存在,求CECP的值;如果不存在,请说明理由.【答案】(Ⅰ)见解析;(Ⅱ)217-;(Ⅲ)见解析.【解析】【详解】试题分析:(1)证线面平行,则要在平面PDB 找一线与之平行即可,显然分析//DB AC 即得证,(2)求二面角可借助空间直角坐标系将两个平面的法向量一一求出,再根据向量的数量积公式便可求解(3)存在问题可以根据结论反推即可,容易得因为()()2,3,11,3,010PC AB ⋅=-⋅-=-≠u u u r u u u r,所以PC 与AB 不垂直,故不存在 试题解析:(Ⅰ)因为AD DB ⊥,且1DB =,2AB =,所以3AD =,所以60DBA ∠=o .因为ABC ∆为正三角形,所以60CAB ∠=o , 又由已知可知ACBD 为平面四边形,所以//DB AC . 因为AC ⊄平面PDB ,DB ⊂平面PDB , 所以//AC 平面PDB .(Ⅱ)由点P 在平面ABC 上的射影为D 可得PD ⊥平面ACBD , 所以PD DA ⊥,PD DB ⊥.以,,DB DA DP 分别为,,x y z 建立空间直角坐标系,则由已知可知()1,0,0B ,()0,3,0A ,()0,0,1P ,()2,3,0C .平面ABC 的法向量()n 0,0,1=r,设()m ,,x y z =u u r为平面PAB 的一个法向量,则由m 0,{m 0BA BP ⋅=⋅=u u u r u u u r u u r u u r可得令1y =,则3,3x z ==,所以平面PAB 的一个法向量m 3,1,3=u u r,所以m n 321cos m,n 71m n ⋅===⨯u u r ru u r r u u r r所以二面角P AB C --的余弦值为21. (Ⅲ)由(Ⅱ)可得()1,3,0AB =-u u u r ,()3,1PC =-u u u r,因为()()3,11,3,010PC AB ⋅=-⋅-=-≠u u u r u u u r,所以PC 与AB 不垂直,所以在线段PC 上不存在点E 使得PC ⊥平面ABE .点睛:对于立体几何问题,首先要明确线面平行,线面垂直,以及二面角的定义和判定定理,而对于二面角问题我们通常首选建立坐标系用向量来解题,但在写坐标时要求其注意坐标的准确性18.已知数列{}n a 的前n 项和n S 满足113n n n n S S a n++=+⋅(*n N ∈),且11a =. (Ⅰ)证明:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S .【答案】(1)见解析(2)94n S =-931423nn ⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭. 【解析】试题分析:证明数列为等比数列,就是要证明等比数列符合等比数列的定义,所证数列的通项恰好就是最好的暗示,从已知利用11n n n S S a ++-=把条件转化为1n a +与n a 的关系,进而得到证明;再利用错位相减法求出数列的和.试题解析:(Ⅰ)依题意可得:113n n n n S S a n++-=⋅, 113n n n a a n ++∴=⋅,1113n n a an n+∴=⋅+. 又11a =,∴数列n a n ⎧⎫⎨⎬⎩⎭是首项为1,公比13q =的等比数列.(Ⅱ)令n n a b n =,113n n b b +∴=.又1111ab ==Q , ∴数列{}n b 是以1为首项,13为公比的等比数列.1111133n n n b b --⎛⎫⎛⎫∴=⋅= ⎪⎪⎝⎭⎝⎭.113n n a n -⎛⎫∴=⋅ ⎪⎝⎭(*n N ∈).01111233n S ⎛⎫⎛⎫=⋅+⋅+ ⎪ ⎪⎝⎭⎝⎭Q 2133L ⎛⎫⋅++ ⎪⎝⎭ ()2111133n n n n --⎛⎫⎛⎫-⋅+⋅ ⎪⎪⎝⎭⎝⎭,111133n S ⎛⎫∴⋅=⋅+ ⎪⎝⎭ 23112333⎛⎫⎛⎫⋅+⋅+ ⎪ ⎪⎝⎭⎝⎭L ()111133n nn n -⎛⎫⎛⎫+-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭.∴两式相减得:122111333n S ⎛⎫⎛⎫∴⋅=++ ⎪ ⎪⎝⎭⎝⎭ 313⎛⎫+++ ⎪⎝⎭L 11133n nn -⎛⎫⎛⎫-⋅ ⎪ ⎪⎝⎭⎝⎭.11112331313n n S -⎛⎫-⋅ ⎪⎝⎭∴⋅=-1332nn ⎛⎫-⋅=- ⎪⎝⎭ 3123nn ⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭.94n S ∴=-931423nn ⎛⎫⎛⎫+ ⎪⎪⎝⎭⎝⎭.【点睛】数列问题是高考必考问题,特别是等差数列和等比数列,使用12,n n n n a S S -≥=-这个公式是解决数列问题的关键;数列求和要掌握几种基本方法,19.已知函数()()21ln 3f x t x tx t =+++,t ∈R .(1)若0t =,求证:当0x ≥时,()2112x f x x -≥+; (2)若()4f x x ≥对任意[)1,x ∈+∞恒成立,求t 的取值范围. 【答案】(1)证明见解析;(2)[)1,+∞.【解析】(1)将0t =代入解析式得()ln f x x =,从而有()()1ln 1f x x +=+,令()()()21ln 102g x x x x x =+-+≥,求导判断函数的单调性,从而求出最值得出结论;(2)由题意得()21ln 340t x tx t x +++-≥,令()()21ln 34x t x tx t x ϕ=+++-,先根据()101t ϕ≥⇒≥,此时()2241tx x t x xϕ-++'=,令()2241h x tx x t =-++,从而可推出函数()x ϕ在[)1,+∞递增,从而得出结论. 【详解】(1)证:当0t =时,()ln f x x =,()()1ln 1f x x +=+,即证()21ln 12x x x -≥+; 令()()()21ln 102g x x x x x =+-+≥,则()201xg x x '=>+,所以()g x 在()0,∞+上单调递增, 所以()()00g x g ≥=, 即()2112x f x x -≥+;(2)解:由()()241ln 340f x x t x tx t x ≥⇒++-≥+,令()()21ln 34x t x tx t x ϕ=+++-,首先由()101t ϕ≥⇒≥,此时()2241tx x t x xϕ-++'=,令()2241h x tx x t =-++,因为1t ≥所以()16810t t ∆=-+≤, 所以()0h x ≥恒成立,即()0x ϕ'≥,()x ϕ在[)1,+∞递增, 故()()1440x t ϕϕ≥=-≥, 综上:t 的取值范围[)1,+∞. 【点睛】本题主要考查利用导数研究函数的单调性与最值问题,考查恒成立问题,属于难题. 20.已知函数()()12f x lnx ax a R x=++∈在2x =处的切线经过点()4,2ln2- (1)讨论函数()f x 的单调性; (2)若不等式2211lnx m x x>--恒成立,求实数m 的取值范围. 【答案】(1)()f x 在()0,+∞单调递减;(2)(],0-∞. 【解析】试题分析:(1)对函数进行求导,结合导函数与切线的关系求得 实数a 的值,确定函数的解析式之后即可讨论函数的单调性.(2)分离系数后讨论m 的取值范围即可,构造新函数后求导,讨论新函数的值域,注意讨论值域时利用反证法假设存在实数b 满足()0g x b >> ,由得出的矛盾知假设不成立,即函数的最小值开区间处为0 . 试题解析:(1)由题意得()221,0f x a x x x=+->'∴()324f a '=+,∴()f x 在2x =处的切线方程为()()()222y f f x '-=-即32214y a x ln ⎛⎫=++- ⎪⎝⎭,∵点()4,22ln -在该切线上,∴1a =-,∴()()22212110x f x x x x--=--=≤' 函数()f x 在()0,+∞单调递减; (2)由题意知0x >且1x ≠, 原不等式2211lnx m x x >--等价于21121lnx x m x x ⎛⎫-+> ⎪-⎝⎭,设()()22111211g x lnx x f x x x x⎛⎫=-+= ⎪--⎝⎭, 由(1)得()f x 在()0,+∞单调递减,且()10f =,当01x <<时, ()()0,0f x g x >>;当1x >时, ()()0,0f x g x ; ∴()0g x >,假设存在正数b ,使得()0g x b >>,若01b <≤,当1x b >时, ()22111lnx g x b x x x=+<<-; 若1b >,当11x b <<时, ()22111lnx g x b x x x =+<<-;∴不存在这样的正数b ,使得()0g x b >>,∴()g x 的值域为()0,+∞ ∴m 的取值范围为(],0-∞.点睛:(1)准确求切线的方程是本题求解的关键;第(2)题将分离系数后考查恒成立的问题,进而运用导数研究,体现了函数思想与转化思想的应用.。
精品解析:2020届天津市南开中学高三数学开学统练试题(解析版)
a
a
∴
AB
2b 2b
,
4 , b 2a ,
aa
∴e c a2 b2 5 .
a
a
故选 D.
【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 AB 的长度.
5.已知 a log5 2 , b log0.5 0.2 , c 0.50.2 ,则 a, b, c 的大小关系为( )
D. 1, 2,3, 4
【答案】D 【解析】 【分析】
求出 A C 后可求 ( A C) B .
【详解】 A C 1, 2 ,故 (A C) B 1, 2,3, 4,
故选 D.
【点睛】本题考查集合的运算,此类问题属于基础题.
2.设 x R ,则“ x2 5x 0 ”是“| x 1| 1”的( )
C. 2 6
D. 6
【答案】D 【解析】 【分析】
先证得 PB 平面 PAC ,再求得 PA PB PC 2 ,从而得 P ABC 为正方体一部分,进而知正方体
的体对角线即为球直径,从而得解.
【详解】解法一: PA PB PC, ABC 为边长为 2 的等边三角形, P ABC 为正三棱锥, PB AC ,又 E , F 分别为 PA 、 AB 中点, EF / /PB , EF AC ,又 EF CE , CE AC C, EF 平面 PAC , PB 平面 PAC , APB PA PB PC 2 , P ABC 为正方体一部分, 2R 2 2 2 6 ,即
故当 a 0 时, x2 2ax 2a 0 在 (,1] 上恒成立;
若 x a ln x 0 在 (1, ) 上恒成立,即 a x 在 (1, ) 上恒成立, ln x
重庆市南开中学2020届高三上学期期中考试数学(理)试题Word版含答案
重庆市南开中学2020届上学期期中考试高三数学(理)试题考试说明:试卷分第I 卷(选择题)和第Ⅱ卷(非选择题),满分150分,考试时间120分钟第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题只有一个选项符合要求) 1.若复数2323z i i i =-+(其中i 为虚数单位),则z =( )A .4B ..2 D2.已知集合{}2340A x x x =+-≤,}11|{<=xx B ,那么=B A ( ) A.]1,4[- B.[]1,4- C.),1(+∞ D.)0,4[- 3.若递增的等比数列{}n a 满足1442425364=+-a a a a a a ,则=-35a a ( ) A.6 B.8 C.10 D.12 4.若R c b a ∈,,,则下列说法正确的是( ) A.若b a >则22b a > B.若b a >则ba 11< C.若b a >则c b c a ->- D.若b a >则22bc ac > 5.已知向量)1,1(),,2(-==x ,且)//(+,则=⋅b a ( ) A.4 B.2 C.1- D.6 6.已知函数)2||,0)(sin()(πϕωϕω<>+=x x f 的部分图象如图所示,将)(x f 的图象向左平移4π个单位,则得到的新函数图象的解析式为( )A.)32cos(π+=x y B.cos(2)6y x π=+ C.)1272sin(π+=x y D.)122sin(π+=x y7.我国古代数学专著《九章算术》中有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,则需( )日两马相逢A.16B. 12C.9D.88.设0,0>>y x 且4=+y x ,则2122+++y y x x 的最小值是( ) A.716 B.37 C.1023D.499.如图是2017年上半年某五省GDP 情况图,则下列叙述正确的是( ) ①与去年同期相比,2017年上半年五个省的GDP 总量 均实现了增长;②2017年上半年山东的GDP 总量和增速均居第二; ③2016年同期浙江的GDP 总量高于河南;④2016和2017年上半年辽宁的GDP 总量均位列第五. A.①② B.①③④ C.③④ D.①②④10.正项数列{}n a 前n 项和为n S ,且2,,n n n a S a (*N n ∈)成等差数列,n T 为数列}{n b 的前n 项和,且21nn a b =,对任意*N n ∈总有)(*N K K T n ∈<,则K 的最小值为( ) A.1 B.2 C.3 D.411.若函数⎪⎩⎪⎨⎧<+++>-=)0(21)0(ln )(2x a x x x x x a x f 的最大值为)1(-f ,则实数a 的取值范围是( ) A.]2,0[2e B.]2,1(2e C.]2,0[3e D.]2,(3e e12.已知单位向量,,,满足:,3||,=-⊥向量)sin (cos 2222⋅+⋅=θθ (R ∈θ),则)()(-⋅-的最小值为( ) A.23B.1C.122-D.21第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分,各题答案必须填写在答题卡上相应位置)13.已知向量,a b 的夹角为45,且1,210a a b =-=,则b =14.已知函数)(x f 是定义在实数集R 上周期为2的奇函数,当]1,0(∈x 时,)1lg()(+=x x f ,则=+14lg )52018(f 15.已知ABC ∆三内角C B A ,,的对边分别为c b a ,,,且22cos 2sin 22=+CC , 若c b a ,,成等比数列,则A sin =16.为庆祝党的十九大的胜利召开,小南同学用数字1和9构成数列}{n a ,满足:11=a ,在第k 个1和第1+k 个1之间有12-k 个9)(*N k ∈,即1,9,1,9,9,9,1,9,9,9,9,9,……,设数列}{n a 的前n 项和为n S ,若2050()m S m N *=∈,则=m三、解答题:(本大题共6个小题,共70分)各题解答必须答在答题卡上(必须写出必要的文字说明、演算步骤或推理过程)17.(本小题满分12分)设等差数列}{n a 的前n 项和为*,N n S n ∈,公差0≠d ,153=S , 且1341,,a a a 成等比数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设142++=n a b n n ,求数列}{n b 的前n 项和.18.(本小题满分12分)甲、乙两所学校的代表队参加诗词大赛,在比赛第二阶段,两队各剩最后两个队员上场,甲队两名队员通过第二阶段比赛的概率分别是21和32,乙队两名队员通过第二阶段比赛的概率都是21,通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛的人数为0),所有参赛队员比赛互不影响,其过程、结果都是彼此独立的. (Ⅰ)求甲、乙两队进入第三阶段比赛的人数相等的概率;(Ⅱ)设X 表示进入第三阶段比赛甲、乙两队人数差的绝对值,求X 的分布列和数学期望.19.(本小题满分12分)已知向量)1,(cos ),43,(sin -==x n x m ,设x f ⋅+=)(2)((Ⅰ)若23)(=x f ,求x 的所有取值; (Ⅱ)已知锐角ABC ∆三内角C B A ,,所对的边分别为c b a ,,,若)(2c a a b +=,求)(A f 的取值范围.20.(本小题满分12分)设椭圆)0(1:2222>>=+b a by a x C ,以短轴为直径的圆O 面积为π2,椭圆上的点到左焦点的最小距离是22-,O 为坐标原点.(Ⅰ)求椭圆C 和圆O 的方程;(Ⅱ)如图,B A ,为椭圆的左右顶点,N M ,分别为圆O 和椭圆C 上的点,且x MN //轴,若直线BN AN ,分别交y 轴于E D ,两点(N M ,分别位于y 轴的左、右两侧). 求证:MD ME ⊥,并求当314||=⋅∆DEN S OD 时直线AN 的方程.21.(本小题满分12分)已知函数xx x a x f 1ln 2)(+-=. (Ⅰ)若2=a ,求)(x f 在)0,1(处的切线方程;(Ⅱ)若)(x f 对任意]1,0(∈x 均有0)(≥x f 恒成立,求实数a 的取值范围; (Ⅲ)求证:2111ln 1()2nk k n N k n *=+<-∈+∑.请从下面所给的22、23两题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
重庆南开中学2020届高三下学期第九次质检文科数学试卷 含答案详解
销量等级大量适量Fra bibliotek少量好
■
9
4
中
8
7
4
差
-4
0
2
但表格中有一格数据被墨迹污损,好在当时调查的数据频数分布表还在,其中大量种植的100户农民在市场销量好的情况下收入情况如表2:
收入(万元)
11
11.5
12
12.5
13
13.5
14
14.5
15
频数(户)
5
10
15
10
15
20
10
10
5
(1)若该地区年销量在10千吨以下表示销量差,在10千吨至30千吨之间表示销量中,在30千吨以上表示销量好,试根据频率分布直方图计算销量分别为好、中,差的概率(以频率代替概率);
17.(12分)
为了打好“精准扶贫攻坚战”,某村书记打算带领该村农民种植新品种蔬菜,可选择的种植量有三种:大量种植、适量种植,少量种植.根据收集到的市场信息,得到该地区该品种蔬菜年销量频率分布直方图如下图所示.同时该书记调查了其他地区采取三种不同种植量的农民在不同市场销量等级下的平均收入如表1(表中收入单位:万元):
重庆南开中学2020级高三第九次教学质量检测考试
数学(文科)
2020.6
注意事项:
1.答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
A.主角B.配角C.小生D.快递员
9.以双曲线 右焦点为圆心,与双曲线的渐近线相切的圆方程为
24届天津南开中学高三第一次月考数学科参考答案
x
π 2
,t
=
2x
−
π 3
π 6
,
2π 3
当t
=
π 6
即
x
=
π 4
时, (sin t )min
=
sin
π 6
=
1 2
,此时
ymin
=1
当t
=
π 2
即
x
=
5π 12
时, (sin t )max
=
sin
π 2
= 1此时
ymax
=
2.
17. 解:(1)方法一:由 b − ccosA = 2acosBcosC 根据正弦定理边化角得:
(Ⅲ)若 F ( x) 有两个不同的零点 x1, x2 ,不妨设 x1 x2 ,
则
x1 ,
x2 为
f
(x)
=
ln
x
−
a( x −1)
x +1
的两个零点,且
x1
1,
x2
1,
由(Ⅱ)知此时 a 2 ,并且 f ( x) 在 (0,t1 ) , (t2 , +) 为单调递增函数,
在 (t1,t2 ) 上为单调递减函数,且 f (1) = 0 ,所以 f (t1 ) 0 , f (t2 ) 0 ,
h( x)
=
1 x
−
x
+1) − 2( x ( x + 1)2
− 1)
=
( x + 1)2 − 4x x ( x + 1)2
=
( x −1)2 x ( x + 1)2
,
当 x 1时, h( x) 0 ,
重庆市南开中学2020届高三高考模拟数学(文)试题及答案
重庆南开中学高2020级高考模拟考试数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{|||1,},{1,2,3}A x x x Z B =∈=,则A B ⋂为() A .{}1-B .{}1C .{1,0,1}- D .∅2.设i 是虚数单位,若复数1iz i =+,则z 的共轭复数为() A .1122i +B .1122i -C .112i -D .112i +3.下列函数中,值域是R 且是奇函数的是()A .31y x =+B .sin y x = C .3y x x =- D .2xy = 4.向量(3,),(1,2)a m b ==,若()a b b +⊥,则m =() A .4-B .32-C .0D .6 5.已知,x y R ∈,命题“若220x y +=,则0x =或0y =”的原命题,逆命题,否命题和逆否命题这四个命题中,真命题个数为() A .0B .2C .3D .46.2019年被誉为“5G 商用元年”.6月,5G 商用牌照正式发放;9月,5G 套餐开启预约;11月,5G 套餐公布;12月,5G 手机强势营销.据统计2019年网络上与“5C ”相关的信息量总计高达6875.4万条.从下面的2019年全网信息走势图中可以看到,下列哪个选项是错误的()A .相关活动是5G 信息走势的关键性节点B .月均信息量超过600万条C .第四季度信息量呈直线增长态势D .月信息量未出现持续下降态势7.椭圆22217x y b +=,过原点O C ,D ,若||4CD =,则椭圆的标准方程为() A .22174x y +=B .22173x y += C .22176x y += D .222177x y += 8.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的体积为()A .43 B .83C .4D .8 9.定义在R 上的奇函数()f x 满足()()11f x f x +=-,且[0,1]x ∈时,()21xf x =-,则()2log 8f =()A .1-B .1C .7D .12-10.点P 在函数ln y x =的图象上,若满足到直线y x a =+P 有且仅有3个,则实数a 的值为()A .1B .3-C .2D .-11.重庆誉为“桥都”,数十座各式各样的大桥横跨长江、嘉陵江两岸,其中朝天门长江大桥是世界第一大拱桥,其主体造型为:桥拱部分(开口向下的抛物线)与主桁(图中粗线)部分(可视为余弦函数一个周期的图象)相结合.已知拱桥部分长552m ,两端引桥各有190m ,主桁最高处距离桥面89.5m ,则将下列函数等比放大后,与主桁形状最相似的是()A .20.45cos3y x = B .24.5cos 3y x = C .30.9cos 2y x = D .39cos 2y x =12.若P 是双曲线2222:1(,0)x y C a b a b-=>在第一象限上一点,12,F F 为双曲线C 的左右焦点,22PF b =,,02a Q ⎛⎫⎪⎝⎭到直线12,PF PF 距离相等,则双曲线C 的离心率为() A .53B .32C .43 D .54二、填空题:本题共4小题,每小题5分,共20分.16题第一空2分,第二空3分.13.若变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+⎨⎪--⎩,则23z x y =+的最大值为__________.14.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2,1,a b c ===则BC 边上的高为________.15.《九章算术》商功章中研究了一个粮仓的容积计算问题.假设该粮仓近似于由如图的直角梯形以底边AB 为轴旋转而成的几何体(图中长度单位为米),则该粮仓能容纳的体积为________立方米.16.已知()4sin 3cos f x x x =+,()f x 向右平移(0)ααπ<<个单位后为奇函数,则tan α=________,若方程()0f x m -=在[,]απ上恰有两个不等的根,则m 的取值范围是________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)正项等比数列{}n a 的前n 项和为n S ,且12461,4a S S S =+=. (1)求{}n a 的通项公式;(2)求数列{}n a n +的前n 项和n T . 18.(12分)在中华人民共和国成立70周年,国庆期间三大主旋律大片,集体上映,拉开国庆档电影大幕.据统计《我和我的祖国》票房收入为31.71亿元,《中国机长》票房收入为29.12亿元,《攀登者》票房收入为10.98亿元.已知某城市国庆后统计得知大量市民至少观看了一部国庆档大片,在观看的市民中进行随机抽样调查,抽样100人,其中观看了《我和我的祖国》有49人,《中国机长》有46人,《攀登者》有34人,统计图表如下.(1)计算a ,b ,c ;(2)在恰好观看了两部大片的观众中进行分层抽样访谈,抽取总数为7人. (ⅰ)写出各组中抽取人数;(ⅱ)访谈中有2人表示后面将要看第三部,求这2人中要观看的都是《我和我的祖国》的概率. 19.(12分)正三棱柱111ABC A B C -中,D 为1CC 中点,2AB =.(1)求证:平面1ADB ⊥平面11ABB A ; (2)若AD 与平面11ABB A 所成角为4π,求四棱锥1A BCDB -的体积. 20.(12分)已知圆22:(3)8C x y +-=和动圆22:()8P x a y -+=交于A ,B 两点. (1)若直线AB 过原点,求a ;(2)若直线AB 交x 轴于Q ,当PQC 面积最小时,求||AB . 21.(12分) 已知21()cos 2f x x x x k =-+--. (1)若()f x 的一条切线为y x =,求此时的k ;(2)求使得()0f x >有解的最大整数k .请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l的参数方程为:cos sin x t y t αα=⎧⎪⎨=+⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为2([0,]ρθπ=∈,直线l 与曲线C 交于两不同的点M ,N .(1)写出直线l 的普通方程与曲线C 的直角坐标方程,并求α的范围; (2)求MN 中点P 轨迹的参数方程. 23.(10分)选修4-5:不等式选讲 已知对于任意1x -,不等式3(1)13x x ++成立.(1)求证:对于任意1x -,4(1)14x x ++; (2)若0a >,0b >,求证:443()4a b a a b ++.重庆南开中学高2020级高考模拟考试·文科数学参考答案、提示及评分细则一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分.16题第一空2分,第二空3分. 13.3 14.2 15.21π 16.3424,55⎡⎫⎪⎢⎣⎭三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)若公比1111,2166q a a a =+=,不成立; 1分 则()()()2461111,1411111a a a q q q q q q q≠-+-=---- 由于正项等比数列,210q -≠,所以()2241411q q q ++=++, 3分422340,4,2q q q q --=== 5分所以12n n a -=; 6分(2)()1122(12)n n T n -=+++++++(1)212n n n +=-+12分(每个3分) 18.解:(1)274463044918434a b a c b c +++=⎧⎪+++=⎨⎪+++=⎩解得:966a c b =⎧⎪=⎨⎪=⎩; 4分(2)记“同时观看了《机长》和《祖国》”的为A 组:“同时观看了《机长》和《攀登者》”为B 组;“同时观看《祖国》和《攀登者》“为C 组,∴按分层抽样,A ,B ,C 组人数分别为3,2,2 8分 在抽样的7人中,没有观看《祖国》的有2人,设这七个人分别为1231212A A A B B C C ,则还会继续观看第三部的2人可能是:1213231212111221233132A A A A A A B B C C A B A B A B A B A B A B 11213112223211122122AC A C A C AC A C A C B C B C B C B C共21种, 10分 则2人都没有观看《我和我的祖国》的只有12B B 一种,概率是12112分 19.解:(1)取1AB 中点E ,连接DE ,取11A B 中点F ,连接1,EF FC , 由于是正棱柱,1CC ⊥面111A B C ,从而11CC FC ⊥ 由于D 为1CC 中点,1111,CC AC CC B C ⊥⊥,所以1AD B D ==1AD B D =,则由三线合一性1DE AB ⊥① 3分因为E ,F 分别为111,AB A B 中点,所以1112EF AA DC ==∥∥,则四边形1EFC D 为平行四边形从而1//DE FC ,由于是正棱柱,1CC ⊥面111A B C ,从而11CC FC ⊥,则1CC DE ⊥ 5分 综合①②可知,DE ⊥面11ABB A ,而DE ⊂面1ADB ,所以平面1ADB ⊥平面11ABB A 6分(2)由DE ⊥面11AA B B 知AD 与平面11ABB A 所成角即为4EAD π∠=,而1DE FC == 7分则AD ==1CD CC ==所以1122BCDB S =⋅⋅=,1122BCB S =⋅=,则1132A BCDB A BCB V V --= 9分而11111112332A BCB C ABB ABB V V S CF --==⋅=⋅⋅= 11分所以132A BCDB V -== 12分 20.解:(1)由于两圆有两个公共点,则圆心距小于半径之和,229a +<,得(a ∈. 1分(也可求出a 后检验是否两圆相交)两圆相减得公共弦直线2:692AB y ax a -+=-+, 3分 过原点得,29,3a a ==±,检验成立 5分 (2)直线2:692AB y ax a -+=-+交x 轴,得192Q x a a ⎛⎫=- ⎪⎝⎭7分 1919||22PQ a a a a a⎛⎫=--=+ ⎪⎝⎭,139||3922PQCS PQ a a=⋅=+≥在3a =±时取得最小值,满足(a ∈,成立 10分此时直线:AB y x == 12分21.解:(1)设切点横坐标为t ,()1sin 1,sin 0f t t t t t '=-++=-= 1分()sin ,()cos 10g x x x g x x '=-=-≤,所以()g x 恒单减,而()00g = 3分所以0t =,从而()00f =得1k =- 4分 (2)由题意,要使得21cos 2x x x k -+->有解,即求21()cos 2h x x x x =-+-的最大值 ()1sin ,()1cos 0h x x x h x x '''=-++=-+≤, 5分从而()h x '单减,而22220,12022333h h πππππ⎛⎫⎛⎫''=->=+-<-<⎪ ⎪⎝⎭⎝⎭所以()h x '在2,23ππ⎛⎫⎪⎝⎭有唯一零点0x ,所以()h x 在()0,x -∞单增,()0,x +∞单减 7分 则()200001()cos 2h x h x x x x ≤=-+-,而()0001sin 0h x x x '=-++= 所以()()2000011sin 1sin cos 2h x x x x =-+++-()2220000001111sin 1cos 2cos 1cos cos cos 222x x x x x x ⎡⎤⎡⎤=-++-=--+-=-⎣⎦⎣⎦ 10分 由于0021,,cos ,0232x x ππ⎛⎫⎛⎫∈∈-⎪ ⎪⎝⎭⎝⎭()()200113cos 10,224h x x ⎛⎫=--∈ ⎪⎝⎭,所以整数k 最大值为0. 12分22.解:(1)直线l的普通方程为:sin cos x y αα⎛⋅=-⎝⎭; 曲线C 的直角坐标方程为:224(0)x y y +=≥ 3分 直线l为过⎛ ⎝,倾斜角α的直线,与曲线C 有两个公共点,作图可知在直线过左右顶点时为临界情况,倾斜角50,,66ππαπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭5分 (2)直线l 代入曲线C :21240,32P t t t t t αα++⋅+=== 8分 代入得到中点P 轨迹的参数方程:2cos 3sin 33x y ααα⎧=-⎪⎪⎨⎪=-⎪⎩(α为参数,50,,66a πππ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭) 10分 23.解:(1)因为1x ≥-,所以10x +≥ 1分从而32(1)(1)(13)(1)14314x x x x x x x ++≥++=++≥+,得证 5分 (2)欲证443()4a b a a b +≥+只需43414a b a b a a +⎛⎫≥+ ⎪⎝⎭4114b b a a ⎛⎫⇐+≥+⋅ ⎪⎝⎭(*) 7分由于,0a b >,所以01ba>>-, 8分 由(1)知取bx a=时(*)式成立,从而原不等式得证. 10分。
2024-2025学年重庆市南开中学九年级上学期9月月考数学试题及答案
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。