高二数学同步测试—选修2-1空间向量与立体几何
数学选修2-1空间向量与立体几何练习题含答案
24.已知向量 , ,若向量 与 共线,则 ________;若 ,则 ________.
25.在正方体 中:
(1)分别给出直线 , 的一个方向向量;
(2)分别给出平面 ,平面 ,平面 的一个法向量.
26.如图,边长为 的正方形 中, , 分别是边 , 上的点, .将 , 分别沿着 , 折起,使 , 重合于点 ,且二面角 为直二面角.
B
【考点】
平面的法向量
向量方法证明线、面的位置关系定理
直线的方向向量
【解析】
由已知可得: ,因此 ,再利用线面垂直的判定即可得出.
【解答】
解:∵直线 的方向向量为 ,
平面 的法向量 , ,
∴ ,
∴ .
故选 .
二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )
11.
【答案】
【考点】
空间直线的向量参数方程
直线的方向向量
【解析】
设直线 的一个方向向量为 ,运用向量垂直的条件:数量积为 ,化简可得所求向量.
【解答】
解:设直线 的一个方向向量为 ,
由两平面 与 分别以 与 为其法向量,
可得 , ,
可得 , ,
可设 ,则 , ,
可得 .
故答案为: .
16.
【答案】
【考点】
用空间向量求平面间的夹角
数学选修2-1空间向量与立体几何练习题含答案
学校:__________ 班级:__________ 姓名:__________ 考号:__________
1.已知 是空间的一组单位正交基底,而 是空间的另一组基底.若向量 在基底 下的坐标为 ,则向量 在基底 下的坐标为()
高中数学选修2-1 第三章《空间向量与立体几何》单元测试题(含答案)
这时Q ⎝ ⎛⎭⎪⎫43,43,83.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.若A (x,5-x,2x -1),B (1,x +2,2-x ),则当|AB →|取最小值时,x 的值等于________.解析:AB →=(1-x,2x -3,-3x +3),则 |AB →|=1-x2+2x -32+-3x +32=14x 2-32x +19=14⎝⎛⎭⎪⎫x -872+57,故当x =87时,|AB →|取最小值.答案:8714.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 夹角的正弦值是________. 解析:如图,以DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C 1(0,1,1), 易证AC 1→是平面A 1BD 的一个法向量.AC 1→=(-1,1,1),BC 1→=(-1,0,1). cos 〈AC 1→,BC 1→〉=1+13×2=63. 所以BC 1与平面A 1BD 夹角的正弦值为63.答案:63设AC ∩BD =N ,连结NE ,则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1), ∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1. 又A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1, ∴AM →=⎝ ⎛⎭⎪⎫-22,-22,1. ∴NE →=AM →,且NE 与AM 不共线.∴NE ∥AM .又NE ⊂平面BED ,AM ⊄平面BDE ,∴AM ∥平面BDE .(2)设P (t ,t,0)(0≤t ≤2),则PF →=(2-t ,2-t,1),CD →=(2,0,0).又∵PF →与CD →所成的角为60°,|2-t ·2|2-t2+2-t 2+1·2=12, 解之得t =22,或t =322(舍去). 故点P 为AC 的中点.22.(本小题满分12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.。
高二数学选修2-1第三章 空间向量与立体几何练习题及答案
第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
选修2-1空间向量与立体几何练习题及答案
选修2-1空间向量及立体几何练习题一、选择题(本大题共10个小题,每小题5分,共50分)1.(2013高密高二检测)已知a=(2x,1,3),b=(1,-2y,9),如果a 与b 为共线向量,则( C ) (A)x=1,y=1 (B)x=12,y=-12(C)x=16,y=-32(D)x=-16,y=32解析:∵a=(2x,1,3)与b=(1,-2y,9)共线,故有213129x y ==-, ∴x=16,y=-32.故选C. 2.(2013云南三明高二检测)已知a=3i+2j-k,b=i-j+2k,则5a 与3b 的数量积等于( A )(A)-15 (B)-5 (C)-3 (D)-1 解析:a=(3,2,-1),b=(1,-1,2), ∴5a ·3b=15a ·b=-15.故选A.3.若向量(1,0,z)与向量(2,1,2)的夹角的余弦值为,则z 等于( A )(A)0 (B)1 (C)-1 (D)2 解析:22331z =⨯+,22331z =+, 解得z=0, 故选A.4.(2013德州高二检测)空间直角坐标系中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( A ) (A)平行 (B)垂直 (C)相交但不垂直 (D)无法确定 解析:∵=(-2,-2,2),=(1,1,-1),=-2, ∴∥,又A,B,C,D 不共线, ∴AB ∥CD.5.在正方体ABCD A 1B 1C 1D 1中,B 1C 与对角面DD 1B 1B 所成角的大小为( B )(A)15° (B)30° (C)45° (D)60°解析:设正方体棱长为2,建立如图所示空间直角坐标系.则C(0,,0),B 1(,0,2), ∴=(-,,-2),又=(0,,0)是平面BB 1D 1D 的法向量. ·=2,且||=2,||=,∴cos<,12222=⨯. ∴B 1C 与平面BDD 1B 1的法向量夹角为60°, ∴B 1C 与平面BDD 1B 1的夹角为30°,故选B.6.已知平面α和平面β的法向量分别为m=(3,1,-5),n=(-6,-2,10),则( B )(A)α⊥β (B)α∥β(C)α与β相交但不垂直(D)以上都不对解析:∵n=-2(3,1,-5)=-2m,∴m∥n,∴α∥β.故选B.7.已知向量a=(1,x,1),b=(2,1,-1),a·b>0,则函数y=x2+4x-1的值域是( C )(A)(-∞,3) (B)(-∞,-3)(C)(-4,+∞) (D)(-∞,-4)解析:由于a·b=1×2+x-1=x+1>0,∴x>-1.∴y=x2+4x-1=(x+2)2-5在(-1,+∞)为增函数,所以y>(-1)2+4×(-1)-1=-4,即y∈(-4,+∞),故选C.8.(2013长春外国语学校高二检测)如图,在正方体ABCD A1B1C1D1中,下面结论错误的是( D )(A)BD∥平面CB1D1(B)AC1⊥BD(C)AC1⊥平面CB1D1(D)向量与的夹角为60°解析:以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系,不妨设正方体的棱长为1,则有D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),D1(0,0,1).=(-1,-1,0),=(-1,1,1),=(0,-1,1),=(-1,-1,0),=(1,0,1).对于选项A.由=知结论正确;对于选项B,由·=(-1,1,1)·(-1,-1,0)=0知结论正确;对于选项C,由选项B,易知AC1⊥B1D1,再由·=(-1,1,1)·(-1,0,-1)=0知结论正确;对于选项D,由cos<,>==-2,知结论不正确.29.正方体ABCD A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面ABC1D1的距离为( B )(A)1(B)2(C)2(D)32解析:如图所示,建立空间直角坐标系,则A(1,0,0),C(0,1,0),B1(1,1,1),O12,12,1.∴=12,-12,-1,=(1,0,1).由于B1C⊥BC1,B1C⊥D1C1,∴B1C⊥平面ABC1D1,因此=n=(1,0,1)是平面ABC1D1的一个法向量, ∴点O到平面ABC1D1的距离d==122=24,故选B.10.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当·取得最小值时,点Q的坐标为( C )(A)12,34,13(B)12,32,34(C)43,43,83(D)43,43,73解析:设Q(x,y,z),∵Q在上,故有∥,∴x=λ,y=λ,z=2λ,则Q(λ,λ,2λ),∴=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ),∴·=6λ2-16λ+10=6(λ-43)2-23,当λ=43时,·取得最小值,此时Q43,43,83,故选C.二、填空题(本大题共4个小题,每小题5分,共20分)11.(2012北京高二模拟)已知a=(3λ,6,λ+6),b=(λ+1,3,2λ)为两平行平面的法向量,则λ= .解析:由题意知a ∥b,∴366132λλλλ+==+,解得λ=2. 答案:2 12.命题:①若a 与b 共线,b 与c 共线,则a 与c 共线; ②向量a 、b 、c 共面,则它们所在的直线也共面; ③若a 与b 共线,则存在惟一的实数λ,使b=λa; ④若A 、B 、C 三点不共线,O 是平面ABC 外一点,= 13+13+13,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是 .解析:当b=0时,①不正确;a,b,c 共面于平面α,a,b,c 所在直线可能异面,但都与平面α平行,所以②不正确;③不正确,a ∥b ⇔b=λa,但 a ≠0;由空间向量基本定理可知④正确. 答案:④13.(2012重庆高二上学期质量检测)空间四点O(0,0,0),A(0,0,3), B(0,3,0),C(3,0,0),O 点到平面ABC 的距离为 . 解析:设平面ABC 的一个法向量为n=(x,y,z),=(0,0,3),=(0,3,-3),=(3,0,-3), 则⇒,.y z x z =⎧⎨=⎩ ∴取n=(1,1,1) 故所求距离为d==.答案:14.(2012政和高二检测)如图,空间四边形OABC,点M,N分别为OA,BC 的中点,且=a,=b,=c,用a,b,c表示,则= .解析:=-=1 2(+)-12=-12a+12b+12c.答案:-12a+12b+12c三、解答题(本大题共4个小题,共50分)15.(本小题满分12分)已知矩形ABCD和矩形ADEF所在平面互相垂直,点M、N分别在对角线BD、AE上,且BM=13BD,AN=13AE,求证:MN∥平面CDE.证明:建立如图所示空间直角坐标系,设AB,AD,AF长分别为3a,3b,3c,则=++=(2a,0,-c).又平面CDE的一个法向量=(0,3b,0),由·=0,得到⊥.因为MN不在平面CDE内,所以NM∥平面CDE.16.(本小题满分12分)(2012浙江温州高二上学期期末联考)如图,在平行六面体ABCD A1B1C1D1中,AB=AD=AA1=1,∠BAD=60°,∠BAA1=∠DAA1=45°.(1)求||;(2)求证:BD⊥平面ACC1A1.(1)解:=++||2=(++)2=+++2(·+·+·)-2+2=2,=1+1+1+2-12∴|BD 1|=.(2)证明:=-,·=·(-)=0,则BD⊥AA1,又BD⊥AC,所以BD⊥平面ACC1A1.17.(本小题满分12分)(2013郴州高二检测)如图,在三棱柱ABC A1B1C1中,AA1⊥平面ABC,AC=3,BC=4,AB=5,AA1=4.(1)证明:AC ⊥BC 1;(2)求二面角C 1AB C 的余弦值大小.解:在三棱柱ABC A 1B 1C 1中,AA 1⊥平面ABC,AC=3,BC=4,AB=5,故AC,BC,CC 1两两垂直,建立空间直角坐标系(如图), 则C(0,0,0),A(3,0,0),C 1(0,0,4),B(0,4,0),B 1(0,4,4). (1)证明:=(-3,0,0), =(0,-4,4),∴·=0.故AC ⊥BC 1.(2)平面ABC 的一个法向量为m=(0,0,1),设平面C 1AB 的一个法向量为 n=(x,y,z), =(-3,0,4),=(-3,4,0),由得340,340,x z x y -+=⎧⎨-+=⎩ 令x=4,则y=3,z=3.∴n=(4,3,3), 故cos<m,n>=34=334.即二面角C 1AB C 的余弦值为33434.18.(本小题满分14分)(2011年高考北京卷)如图,在四棱锥P ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.(1)证明:∵PA⊥平面ABCD,∴PA⊥BD,∵底面ABCD为菱形,∴AC⊥BD,∵PA∩AC=A,∴BD⊥平面PAC.解:(2)设AC∩BD=O,∵∠BAD=60°,PA=AB=2,∴BO=1,AO=OC=,如图,以O为坐标原点,OB、OC所在直线为x,y轴,以过O点且垂直平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则:P(0,-,2),A(0,-,0),B(1,0,0),C(0,,0), ∴=(1,,-2),=(0,2,0),设PB 与AC 所成的角为θ,则cos θ=|cos<,>| =||=64. (3)由(2)知,=(-1,,0),设|PA|=t>0, 则P(0,-,t),∴=(-1,-,t),设平面PBC 的法向量为m=(x,y,z),则·m=0,·m=0, 即30,30,x y x y tz ⎧-+=⎪⎨--+=⎪⎩ 令y=,则x=3,z=6t, ∴m=3,,6t, 同理可得平面PDC 的法向量n=-3,,6t,∵平面PBC ⊥平面PDC,∴m ·n=0,即-6+236t =0, ∴t=,即|PA|=.。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.2知识点总结含同步练习题及答案
描述:例题:高中数学选修2-1(人教B版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 空间向量在立体几何中的应用一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角线面角 二面角空间向量的应用三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△A B 1D 1A D 1A B 1A平面平行,或在平面内,则称直线和平面所成的角是,即 与 60A D 1D C 求直线 与 平面 AP P ∠AP B =∠AP Rt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM −EF −N ,并且 交坐标平面 AD ∥BC AD(2)求证:证明:建立如图所示的空间直角坐标系.平面 BDP ⊥使 和 成 角,求 、 间的距离.AB CD 60B D −→−−→−−→−22A−CD−E (3)求二面角立空间直角坐标系.()∴d=63 2。
(典型题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)
一、选择题1.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .12.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .(0,63D .()63,+∞3.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π 4.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±5.在长方体1111ABCD A BC D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5 C .5 D .2 6.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .2B .3C .5D .67.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+8.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A 7B .75C .72D .749.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33310.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A 45B .2C .22D .312.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个二、填空题13.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____. 14.已知直线l 的倾斜角为θ,则直线l 的一个方向向量为_______________. 15.如图,平行六面体ABCD A B C D ''''-中,1,2,AB AD AA BAD BAA ===∠=∠''60DAA =='∠,则AC '的长为__________16.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.19.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且22PA PD AD ===,设E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求直线EF 与平面PBD 所成角的正弦值.22.如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且5,4===.AB BC AC⊥.(1)证明:AD CF(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.23.如图所示,在梯形ABCD中,AB∥CD,∠BCD=120°,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.-中,PD⊥平面ABCD,四边形ABCD是等腰梯形24.如图,在四棱锥P ABCD====分别是,AB DC BC CD AD AB M N//,2,4,,AB AD的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积.25.如图,在三棱柱111ABC A B C -中,已知ABC 是直角三角形,侧面11ABB A 是矩形,AB =BC =1,BB 1=2,13BC =.(1)证明:BC 1⊥AC .(2)E 是棱CC 1的中点,求直线B 1C 与平面ABE 所成角的正弦值.26.如图,在四棱锥 P -ABCD 中,△PAB 为正三角形,四边形ABCD 为矩形,且平面PAB ⊥平面ABCD ,AB =2,PC =4(1)求证:平面PAB ⊥平面PAD(2)在线段PA 上是否存在一点N ,使得二面角A -BD -N 313N 的位置;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误;对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.2.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C. 【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.3.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得22331cos ,23101021a b z z ⨯===++⋅+++, 化简得22z =,解得2z =± C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.5.C解析:C 【详解】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D 为坐标原点,DA,DC,DD 1为x,y,z轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),D A B D ,所以11(1,0,3),(1,1AD DB =-=,因为111111cos ,52AD DB AD DB AD DB ⋅===⨯,所以异面直线1AD 与1DB 所成角的余C. 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.6.A解析:A 【解析】解:由题意可知:()1,1,b a t tt -=---- , 则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.7.B解析:B 【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤(2,,23MP a b ∴=--,(),4,0MC a b =--•0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-=M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B 【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题8.C解析:C 【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长. 【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,03M (0,0,3P (x ,y ,0). 于是有AM =(0,13MP =(x ,y ,3 由于AM ⊥MP ,所以(0,13•(x ,y ,30, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2371()4-=.故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题9.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】 设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 10.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.D解析:D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-, 由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选:D.【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.12.B解析:B【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论;②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假.【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面,则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立,即()a b xb x y c ya +=+++,所以1,1,0x y x y ==+=,显然无解,假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1,因此不正确.其中正确的命题有一个.故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C =解析:2【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO BO AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AO =2131()2-=, BO =22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯=+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |=22371044BO AO +=+=, 故答案为:102. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.(cos sin )【分析】分类讨论:当倾斜角为时可以得出直线的一个方向向量;当倾斜角不等于时先求出直线的斜率然后再写出直线的一个方向向量最后综合即可得出答案【详解】当时直线与垂直则可得直线的一个方解析:(cos θ,sin θ)【分析】分类讨论:当倾斜角θ为90︒时,可以得出直线的一个方向向量;当倾斜角θ不等于90︒时,先求出直线的斜率,然后再写出直线的一个方向向量,最后综合即可得出答案.【详解】当90θ︒=时,直线l 与x 垂直,则可得直线l 的一个方向向量为()0,1;当90θ︒≠时,则可得直线l 的斜率为tan k θ=,则可得直线l 的一个方向向量为()1,tan θ或()cos ,sin θθ;令θ90︒=,则有()()cos ,sin 0,1θθ=,综上可得:直线l 的倾斜角为θ时,直线l 的一个方向向量为()cos ,sin θθ.故答案为:()cos ,sin θθ.【点睛】本题考查了直线方向向量的求解,注意做题时一定要考虑到直线的倾斜角可能为90︒,属于一般难度的题.15.【解析】所以 解析:11 【解析】22222||222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅'''⋅'+' 222000112211cos60221cos60212cos6011=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=所以11AC =' 16.【解析】如图建系设则可得且故又因为故又故又因为且故故答案为 解析:22【解析】如图建系,设()()0,,,,0,B b m C c n ,则()()222210,,,0,11cos 600b m c n b m c n m n ⎧+=+=⎪=⋅⎨⎪<≤⎩,可得12mn =且0m n <≤,故22m ≤,又因为221c n +=,故1n <,又12mn =, 故12m >,又因为212tan 1,22b m m ϕ==-<≤且,故 2tan ϕ,故答案为22. 17.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。
高二数学选修2-1第三章空间向量与立体几_知识点+习题+答案
空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB+A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA +OB +O ++=.9、已知两个非零向量a 和b ,在空间任取一点O ,作a O A=,b OB =,则∠A O B 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则c o s ,a b ab 〈〉称为a ,b 的数量积,记作a b ⋅.即c o s ,a b a bab ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()82cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.--=23B.OC OB OA OM 513121++=C.0=+++D.0=++3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则⋅等于A.41B.41-C.43D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=,)8,2,3(=,)0,1,0(=,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为55210.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A BC D -是正方体,其中2,AB PA ==,则1B 到平面PAD 的距离为 .三、解答题(共80分)俯视图正(主)视图 侧(左)视图15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F,正视图MPD C BA分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D C B A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论;D 'C 'B'A'PD C BA俯视图侧视图正视图ED CBA P (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.参考答案 一、选择题PBECDFA1.)(21111A B B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x OC z OB y OA x OM C B A M 且四点共面、、、由于C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴DC BD DC BD DC EF 故选B.4.B5.B6.D7.D8.D9.D 10.4,cos ==><=AC AB ,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-⋅=⋅=⋅===DB AC DB CD CD AC0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离15B A m d m⋅==三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于23)]110(2211[41)](2[41)(412222222=+-+++=⋅+⋅-⋅-+++=++-=c b c a b a c b a c b a2626的长为,BM ∴=. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=. (3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面ACD ,EF ⊄面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵BD ⊂面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -. 则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.A C D E F GA 'B 'C 'D '在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m = 解得2m=,所以21DH ⎛⎫= ⎪⎪⎝⎭.(1)因为0011cos DH CC ++⨯'<>==, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC +⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30.19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===- 设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角.在Rt EAH △中,AE = 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan AE EHA AH ∠===因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角,在Rt AOE△中,3sin302EO AE==3cos302AO AE==,又F是PC 的中点,在Rt ASO△中,3sin454 SO AO==,又SE==Rt ESO△中,cos SOESOSE∠===即所求二面角的余弦值为5.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又EF,分别为BC PC,的中点,所以(000)10)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以31(300)12AE AF⎛⎫== ⎪⎪⎝⎭,,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PAAC A=,所以BD⊥平面AFC,故BD为平面AFC的一法向量.又(0)BD=,,所以cos55BDBDBD<>===,mmm.因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.空间向量与立体几何2B一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g 2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b aλ,且a 与b 的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是( )A .21B .22 C .-21 D .07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//n C .α⊥m ,β//m , 则βα⊥ D .n //m ,α⊥m , 则 α⊥n8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ). A .3 B .362 C .2 D .22 9、如图,将无盖正方体纸盒展开,直线AB,CD 在原正方体中的位置关系是( ) A .平行 B .相交且垂直ABC DDCABC . 异面D .相交成60°10、点P 在平面ABC 外,若PA=PB=PC ,则点P 在平面ABC 上的射影 是△ABC 的 ( )A .外心 B.重心 C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )(A)2(B)12 (C)22+ (D)112、已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( ) (A )2对 (B )3对 (C )4对 (D )5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。
高二数学选修2-1空间向量与立体几何单元测试卷
高二数学选修2-1空间向量与立体几何课标要求一、空间向量及其运算课标要求1.理解空间向量的概念,了解空间向量的基本定理及其意义,理解空间向量的正交分解及其坐标表示。
2.掌握空间向量的线性运算及其坐标表示。
3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
二、空间向量及其运算课标要求的具体化和深广度分析1.经历向量及其运算由平面向量向空间向量推广的过程,理解空间向量的概念。
2.掌握空间向量的加法、减法运算。
3.掌握空间向量的数乘运算。
4.理解共线向量定理及其推论。
5.理解共面向量定理及其推论。
6.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积的概念、性质和计算方法及运算规律。
7.掌握两个向量的数量积的主要用途,会用它解决立体几何中的一些简单的问题。
8.了解空间向量基本定理,并能用基本定理解决一些几何问题。
9.理解基底、基向量及向量的线性组合的概念。
10.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标。
11.理解空间向量坐标的概念,会确定一些简单几何体的顶点坐标。
12.掌握空间向量的坐标运算规律,会判断两个向量的共线或垂直。
13.掌握空间向量的模、夹角公式和两点间距离公式,并能运用这些知识解决一些相关问题。
三、立体几何中的向量方法课标要求1.理解直线的方向向量与平面的法向量。
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系。
3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理、直线与平面垂直的判定定理)和一些简单命题。
4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角计算问题,了解向量方法在研究立体几何问题中的应用。
四、立体几何中的向量方法具体化和深广度分析1.理解直线的方向向量和平面的法向量。
2.能用向量语言表述线线、线面、面面平行于垂直关系。
3.能利用平面法向量证明两个平面垂直。
4.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系。
(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》检测(有答案解析)
一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .2302.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若AB =4,AC =6,BD =6,则线段CD 的长为( )A .29B .10C .241D .2133.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( ) A .313B .95C .18D .214.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .()0,63D .()63,+∞5.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A .3 B .23C .3πD .2π 6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A 3B 2C .1D 32-7.在长方体1111ABCD A BC D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .56C .5 D .228.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .89.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1PA AB BC ===,则二面角A PCB --的大小是( )A .30B .45︒C .60︒D .90︒10.如图,在正方体1111ABCD A BC D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C11.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.已知正方体ABCD ﹣A 1B 1C 1D 1,点E 为平面BCC 1B 1的中心,则直线DE 与平面ACD 1所成角的余弦值为( ) A .14B .13C .3 D .23二、填空题13.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为________.14.如图,在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为________.15.已知空间向量(1,0,0)a =,13(,2b =,若空间向量c 满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 16.如图,已知正方体1111ABCD A BC D -中,M 为棱11D C 的中点,则直线BM 和平面11AC B 所成角的正弦为_____________________.17.如图,平行六面体ABCD A B C D ''''-中,1,2,AB AD AA BAD BAA ===∠=∠''60DAA =='∠,则AC '的长为__________18.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.19.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.20.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,E 为PD 中点.(1)求证:BD ⊥平面PAC ; (2)求二面角P AC E --的余弦值;22.如图,在直三棱柱111ABC A B C -中,12AA AB AC ===,AB AC ⊥,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段1A B 的中点,求直线MP 与平面11ABB A 所成角的大小; (2)若N 是1CC 的中点,平面PMN 与平面CMN 所成锐二面角的余弦值为537,求线段BP 的长度.23.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(1)证明:1//BC 平面1AD E ; (2)求直线1BC 到平面1AD E 的距离; (3)求平面1AD E 与平面ABCD 夹角的余弦值.24.如图,在等腰直角三角形PAD 中,90A ∠=︒,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC折起,得到四棱锥P ABCD -,连结MN .(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求二面角B PC D --的余弦值. 25.如图,在四棱锥P ABCD -中,60APB BPD APD ∠=∠=∠=︒,4PB PD BC CD ====,6AP =.(Ⅰ)证明:AP BD ⊥;(Ⅱ)求PC 与平面PAD 所成角的正弦值.26.如图,在三棱锥P ABC -中,PAC △为等腰直角三角形,90APC ∠=︒,ABC 为正三角形,D 为AC 的中点,2AC =.(1)证明:PB AC ⊥; (2)若三棱锥P ABC -的体积为33,求二面角A PC B --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得. 【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++,∴22222()222AC a b c a b c a b b c a c'=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=AC '=. 故选:A . 【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算.2.D解析:D 【解析】 【分析】CD CA AB BD =++,利用数量积运算性质可得2222222CD CA AB BD CA AB CA BD AB BD =+++++.根据CA AB ⊥,BD AB ⊥,可得0CA AB =,0BD AB =,由60︒二面角可得;cos120CA BD CA BD =︒,代入计算即可得出. 【详解】解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,1cos12066182CA BD CA BD =︒=-⨯⨯=-.∴222264621852CD =++-⨯=, ∴213CD =故选:D . 【点睛】本题考查了利用向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题3.C解析:C 【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可. 【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩.故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C 【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.4.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C. 【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.5.C解析:C 【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度. 【详解】由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12,取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C 【点睛】本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目.6.D解析:D 【分析】由DB ED FE BF =++,利用数量积运算性质展开即可得到答案 【详解】BD ED FE BF =++,22222221112BD BF FE ED BF FE FE ED BF ED ∴=+++++=++故32BD =- 故选D 【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础.7.C解析:C 【详解】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D 为坐标原点,DA,DC,DD 1为x,y,z轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),D A B D ,所以11(1,0,3),(1,1AD DB =-=,因为111111cos ,2AD DB AD DB AD DB ⋅===⨯,所以异面直线1AD 与1DB 所成角的余 C. 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.8.A解析:A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2i AB A P B B +⋅,最后根据棱长为1以及i AB BP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A. 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.9.C解析:C 【分析】建立空间直角坐标系,利用空间向量法求二面角的余弦值;【详解】解:如图建立空间直角坐标系,因为1PA AB BC ===,所以()0,0,0A ,()0,2,0C ,22,,022B ⎛⎫ ⎪ ⎪⎝⎭,()0,0,1P ,()0,2,1CP =-,22,,022BC ⎛⎫=- ⎪ ⎪⎝⎭显然面APC 的一个法向量可以为()1,0,0n =, 设面BPC 的法向量为(),,m x y z =则·0·0m CP m BC ⎧=⎨=⎩,即2022022y z x y ⎧-+=⎪⎨-+=⎪⎩,令1y =则2z =,1x =,所以()1,1,2m = 设二面角A PC B --为θ,则()2221cos 21112n m n mθ===⨯++所以60θ=︒ 故选:C【点睛】本题考查利用空间向量法求二面角,属于中档题.10.B解析:B 【分析】将问题转化为动点P 到直线MN 的距离最小时,确定点P 的位置,建立空间直角坐标系,取MN 的中点Q ,通过坐标运算可知PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,再由空间两点间的距离公式求出||PQ 后,利用二次函数配方可解决问题. 【详解】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-, 设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为2221||(1)(10)(0)2PM z z z =--+--+-25334z z =-+2221||(11)(10)()2PN z z z =--+--+-25334z z =-+所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离, 由空间两点间的距离公式可得22231||(1)(10)()44PQ z z z =--+--+-29338z z =-+2133()28z =-+所以当12c =时,||PQ 取得最小值64P 为线段1CA 的中点, 由于2||MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点. 故选:B 【点睛】本题考查了空间向量的坐标运算,考查了空间两点间的距离公式,考查了数形结合法,考查了二次函数求最值,属于基础题.11.B解析:B【分析】根据向量运算得到1113144BE BA AA A E AB AD AA =++=-++,得到答案. 【详解】()11111111131444BE BA AA A E AB AA A B A D AB AD AA =++=-+++=-++,故34x =-.故选:B . 【点睛】本题考查了向量的运算,意在考查学生的计算能力和空间想象能力.12.B解析:B 【分析】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭.易知平面1ACD 的法向量为()1,1,1n =,计算夹角得到答案. 【详解】如图所示,建立空间之间坐标系,设正方体边长为1,则()0,0,0D ,11,1,22E ⎛⎫⎪⎝⎭. 根据1,n AC n AD ⊥⊥得到平面1ACD 的法向量为()1,1,1n =,11,1,22DE ⎛⎫= ⎪⎝⎭, 故22cos 3n DE n DEα⋅==⋅,故1sin 3α=, 直线DE 与平面ACD 1所成角θ,满足1cos sin 3θα==. 故选:B .【点睛】本题考查了线面夹角,意在考查学生的空间想象能力和计算能力.二、填空题13.【解析】由平行四边形中对角线互相平分的性质知AC 的中点即为BD 的中点AC 的中点设D(xyz)则∴x =5y =13z =-3故D(513-3)解析:(5,13,3)- 【解析】由平行四边形中对角线互相平分的性质知,AC 的中点即为BD 的中点,AC 的中点7(,4,1)2O - ,设D (x ,y ,z ), 则7251,4,12222x y z +-++==-= ∴x =5,y =13,z =-3,故D (5,13,-3).14.【分析】以为原点分别以所在的直线为轴建立空间直角坐标系利用向量法即可求解点N 到平面的距离得到答案【详解】由题意以为原点分别以所在的直线为轴建立空间直角坐标系则可得设平面的一个法向量为则令可得所以点N 5【分析】以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系,利用向量法,即可求解点N 到平面1D EF 的距离,得到答案. 【详解】由题意,以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴,建立空间直角坐标系,则13(2,0,1),(2,,2),(2,,),(0,0,2),(2,2,1)22E M N DF λλ, 可得11(0,2,0),(0,,),(2,0,1)22EF EN ED λ===-, 设平面1D EF 的一个法向量为(,,)n x y z =,则12020n EF y n ED x z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,可得(1,0,2)n =,所以点N 到平面1D EF 的距离555n EN d n⋅===. 故答案为:5.【点睛】本题主要考查了点到平面的距离的求法,以及空间中点、线、面的位置关系等知识的应用,着重考查了空间想象能力,以及推理与运算能力.15.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题 解析:22【分析】设空间向量(),,c m n z =,由已知条件可得m 、n 的值,由对任意x ,y R ∈,00|()||()|1c xa yb c x a y b -+-+=得:||1z =,进而得到答案.【详解】 解:空间向量(1,0,0)a =,13(,2b =, 设空间向量(),,c m n z =,2c a ⋅=,52c b ⋅=, 2m ∴=,1522m = 2m ∴=,3n =,∴空间向量()2,3,c z =,又由对任意x ,y R ∈,()()001c xa yb c x a y b -+≥-+=, 则||1z =, 故(22c =+=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.16.【分析】以为原点建立空间直角坐标系写出相应点的坐标从而表示出和平面的法向量根据向量的夹角公式得到答案【详解】以为原点为轴为轴为轴建立空间直角坐标系如图所示设正方体棱长为则所以设面的法向量为所以取得设 【分析】以D 为原点,建立空间直角坐标系,写出相应点的坐标,从而表示出BM 和平面11AC B 的法向量,根据向量的夹角公式,得到答案. 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图所示, 设正方体棱长为2,则()12,0,2A ,()10,2,2C ,()2,2,0B ,()0,1,2M所以()10,2,2BA =-,()12,0,2BC =-,()2,1,2BM =--, 设面11BAC 的法向量为(),,m x y z =, 所以1100BA m BC m ⎧⋅=⎪⎨⋅=⎪⎩,220220y z x z -+=⎧⎨-+=⎩,取1z =,得()1,1,1m =,设直线BM 和平面11AC B 所成的角为θ, 所以sin cos ,m BM m BMm BMθ⋅==⋅()()()22222221112139212111-⨯+-⨯+⨯==-+-+⨯++,所以直线BM和平面11AC B所成角的正弦值为39.故答案为:39.【点睛】本题考查利用空间向量的方法求线面角,属于中档题.17.【解析】所以解析:11【解析】22222||222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅'''⋅'+'222000112211cos60221cos60212cos6011=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=所以11AC='18.【解析】即解析:12λλ<≠-且【解析】a b a b⋅<且与不共线,即212110,1λλ---<≠⇒12λλ<≠-且19.(003)【解析】试题分析:设由题意所以解得考点:两点间的距离公式解析:(0,0,3)【解析】试题分析:设,由题意,所以,解得考点:两点间的距离公式20.【分析】建立空间直角坐标系分别求得再利用即可得到所求角大小【详解】三棱柱为直三棱柱且以点为坐标原点分别以为轴建立空间直角坐标系设则又异面直线所成的角在异面直线与所成的角等于【点睛】本题考查了异面直线 解析:60【分析】建立空间直角坐标系分别求得1=(0,1,1)BA ,1(1,0,1)AC ,再利用111111,cos BA AC BA AC BA AC 即可得到所求角大小.【详解】三棱柱111ABC A B C -为直三棱柱,且BAC 90︒∠=∴ 以点A 为坐标原点,分别以AC ,AB ,1AA 为,,x y z 轴建立空间直角坐标系设1=1AB AC AA ==,则(0,0,0)A ,(0,1,0)B ,1(0,0,1)A ,1(1,0,1)C1=(0,1,1)BA ,1(1,0,1)AC ∴11111101co 2,s 22BA AC BA AC BA AC 又异面直线所成的角在(0,90]∴ 异面直线1BA 与1AC 所成的角等于60︒ .【点睛】本题考查了异面直线所成角的计算,一般建立空间直角坐标系利用向量法来解决问题,属于中档题.三、解答题21.(1)证明见解析;(26【分析】(1)本题首先可根据PA ⊥平面ABCD 得出PA BD ⊥,然后根据底面ABCD 为正方形得出AC BD ⊥,最后根据线面垂直的判定即可得出结果;(2)本题首先可建立空间直角坐标系,然后求出平面EAC 的法向量n 以及平面PAC 的法向量BD ,最后通过cos ,n BD n BD n BD⋅=⋅即可得出结果.【详解】(1)因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥, 因为底面ABCD 为正方形,所以AC BD ⊥, 因为=APAC A ,所以BD ⊥平面PAC .(2)如图,以A 为原点,分别以AB 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系,则(0,0,0)A 、(2,0,0)B 、(2,2,0)C 、(0,2,0)D 、(0,0,2)P , 则(2,2,0)BD =-,(2,2,0)AC =,因为E 为PD 中点,所以(0,1,1)E ,(0,1,1)AE =, 设平面EAC 的法向量为(,,)n x y z =,则00AC n AE n ⎧⋅=⎨⋅=⎩,即2200x y y z +=⎧⎨+=⎩,令1y =,则(1,1,1)n =--,因为BD ⊥平面PAC ,所以BD 为平面PAC 的法向量, 则6cos ,3322n BD n BD n BD⋅===⋅⋅, 故结合图像易知,二面角P AC E --6【点睛】关键点点睛:本题考查线面垂直的判定以及二面角的余弦值的求法,若平面外一条直线与平面内两条相交直线都垂直,则线面垂直,可通过建立空间直角坐标系的方式求二面角,考查数形结合思想,是中档题.22.(1)4π;(2)42. 【分析】(1)过M 作MH AB ⊥于H ,连接PH ,由已知条件知1//PH AA 且112PH AA =,即PM 与面11ABB A 所成角为MPH θ=∠,即可求其大小. (2)构建空间直角坐标系,由已知线段长度标识,,M N C 的坐标,令(,0,2)P a a -,由向量坐标表示NP ,MN ,NC ,MC ,进而求得面PMN 与面CMN 的法向量,由二面角余弦值即可求参数a ,即可求BP 的长度. 【详解】(1)过M 作MH AB ⊥于H ,连接PH ,又AB AC ⊥ ,∴//MH AC ,M 是棱BC 的中点,所以H 是AB 的中点,而P 是线段1A B 的中点, ∴1//PH AA 且112PH AA =, PM 与面11ABB A 所成角为MPH ∠,设MPH θ=∠则12tan 12ACMHAA PHθ===,[0,]2πθ∈,∴4πθ=,(2)构建以A 为原点,1,,AB AC AA 分别为x 、y 、z 轴正方向,则(1,1,0),(0,2,1),(0,2,0)M N C ,由等腰1Rt A AB ,可令(,0,2)P a a -,∴(,2,1)NP a a =--,(1,1,1)MN =-,(0,0,1)NC =-,(1,1,0)MC =-, 若(,,)m x y z =为面PMN 的一个法向量,则2(1)00ax y a z x y z -+-=⎧⎨-++=⎩,令1y =,有(3,1,2)m a a =--,若()111,,n x y z =为面CMN 的一个法向量,则110{0z x y -=-+=,令11x =,有(1,1,0)n =, ∴由题意,知:253737||||221014m n m n a a ⋅==⋅-+,整理得22168360a a -+=,解得187a =或23a =,而P 在线段A 1B 上,有23a =则24(,0,)33P ,∴423BP =.【点睛】 关键点点睛:(1)根据线面角的几何定义,找到直线MP 与平面11ABB A 所成角的平面角,进而求角. (2)构建空间直角坐标系,设(,0,2)P a a -,求二面角的两个半面的法向量,根据二面角的余弦值求参数a ,进而求线段长. 23.(1)证明见解析;(2)23;(3)23. 【分析】建立空间直角坐标系A xyz -,设正方体的棱长为2(1)求出平面1AD E 的法向量和1BC ,由11BC n ⊥可得答案;(2)直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,利用AB n d n⋅=可得答案;(3)求出平面ABCD 的一个法向量设平面1AD E 与平面ABCD 夹角为θ,111cos cos n n n n n n θ⋅=⋅=可得答案.【详解】如图建立空间直角坐标系A xyz -,设正方体的棱长为2则(0,0,0)A ,(0,2,0)B ,1(2,0,2)D ,1(2,2,2)C , (0,2,1)E ,(1)设平面1AD E 的法向量为1111(,,)n x y z =,100n AD n AE ⎧⋅=⎨⋅=⎩22020x z y z +=⎧∴⎨+=⎩,令1x =,则1,z =-1,2y =111,,12n ⎛⎫∴=- ⎪⎝⎭,1(2,0,2)BC =, 111(2,0,2)1,,12202C n B ⎛⎫⋅=⋅-=-= ⎪⎝⎭,∴11BC n ⊥,1C B ⊄面1AD E 1//BC ∴平面1AD E .(2)1//BC 平面1AD E ,直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,(0,2,0)AB =,111,,12n ⎛⎫=- ⎪⎝⎭,11AB n d n ⋅==10120(1)21114⨯+⨯+⨯-++=23, ∴直线1BC 到平面1AD E 的距离为23.(3)平面ABCD 的一个法向量为(0,0,2)n =,设平面1AD E 与平面ABCD 夹角为θ,111,,12n ⎛⎫=- ⎪⎝⎭,111cos cos n n n n n n θ⋅=⋅==10102(1)212114⨯+⨯+⨯-++=23,所以平面1AD E 与平面ABCD 夹角的余弦值23. 【点睛】方法点睛:本题考查空间中线面平行关系、线面距离、面面角的求法,关键点是建立空间直角坐标系,利用向量法解决问题,考查学生的空间想象力和运算能力. 24.(1)证明见解析;(2)6- 【分析】(1)取AB 的中点E ,连结EM ,EN ,根据线面平行的判定定理以及面面平行的判定定理,先证明平面//MNE 平面PAD ,进而可证//MN 平面PAD ;(2)根据题中条件,以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,分别求出两平面的法向量,由向量夹角公式,即可求出结果. 【详解】(1)证明:在四棱锥P ABCD -中,取AB 的中点E ,连结EM ,EN . 因为M ,N 分别为BP ,CD 的中点,//AD BC . 所以//ME PA ,//EN AD .因为PA ⊂平面PAD ,ME ⊄平面PAD , 所以//ME 平面PAD , 同理,//EN 平面PAD .又因为ME NE E ⋂=,ME 、NE ⊂平面MNE , 所以平面//MNE 平面PAD . 因为MN ⊂平面MNE , 所以//MN 平面PAD ;(2)因为在等腰直角三角形PAD 中,90A ∠=︒,//AD BC , 所以BC PA ⊥,即在四棱锥P ABCD -中,BC PB ⊥,BC AB ⊥. 因为//AD BC ,所以AD PB ⊥,AD AB ⊥, 因为PB AB B ⋂=,PB 、AB平面PAB ,所以AD ⊥平面PAB ,所以PA AD ⊥.又因为8AD =,3AB =,4PA =,所以5PB =. 所以222AB PA PB +=,所以PA AB ⊥.以点A 为坐标原点,AB ,AD ,AP 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则()3,0,0B ,()0,0,4P ,()0,8,0D ,()3,5,0C , 所以(3,0,4)PB =-,(3,5,4)PC =-,(0,4)8,PD =-. 设()1111,,x n y z =为平面PBC 的一个法向量,则1100n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即111113403540x z x y z -=⎧⎨+-=⎩,令14x =,得1(4,0,3)n =;设()2222,,n x y z =为平面PCD 的一个法向量,则2200n PD n PC ⎧⋅=⎪⎨⋅=⎪⎩,即222228403540y z x y z -=⎧⎨+-=⎩, 令21y =,得2(1,1,2)n =.所以1212212cos ,34n n n n n n⋅<>===. 因为二面角B PC D --是钝角, 所以二面角B PC D --的余弦值是 【点睛】 方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可. 25.(Ⅰ)证明见解析;(Ⅱ 【分析】(Ⅰ)由线面垂直证得线线垂直;(Ⅱ)根据条件证得ED ,EA ,EP 两两垂直,以此建立空间直角坐标系,利用向量法求线面角的正弦值. 【详解】解:(Ⅰ)因为60APB APD ∠∠==︒,PD PB =, 所以APB APD △≌△,所以AD AB =. 取BD 的中点E ,连接AE ,PE , 所以AE BD ⊥,PE BD ⊥, 又AE PE E ⋂=,所以BD ⊥平面PAE . 又AP ⊂平面PAE ,所以AP BD ⊥.(Ⅱ)在APB △中,根据余弦定理得2222cos6028AB AP PB AP PB =+-⋅⋅⋅︒=, 所以27AB =,又因为2BE =,所以26AE =,23PE =, 所以222AP AE PE =+,即AE PE ⊥.又因为PE DB ⊥,AE DB E ⋂=,AE ,DB ⊂平面ABCD , 所以PE ⊥平面ABCD .如图,以E 为原点,分别以ED ,EA ,EP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系E xyz -,则()0,26,0A ,()2,0,0D ,(0,0,23P ,()0,23,0C -,()2,26,0AD =-,(2,0,23DP =-,(0,23,23PC =--.设平面PAD 的法向量为(),,n x y z =,则0,0,n AD n DP ⎧⋅=⎨⋅=⎩即2260,2230,x y x z ⎧-=⎪⎨-+=⎪⎩令1y =,则6x =2z =, 所以(6,1,2n =.设PC 与平面PAD 所成角为θ,2sin cos ,PC n θ===,所以PC 与平面PAD 所成角的正弦值为26+. 【点睛】利用向量求直线与平面所成的角有两个思路:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求.若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则2πθβ=-或2πθβ=-,故有sin cos l n l nθβ⋅==⋅.26.(1)证明见解析;(2 【分析】(1)根据PAC △为等腰直角三角形,D 为中点,得到PD AC ⊥,再根据ABC 为正三角形,D 为中点,得到BD AC ⊥.然后利用线面垂直的判定定理证明.(2)设三棱锥P ABC -的高为h ,由 1132P ABC V AC BD h -=⨯⨯⨯⨯==, 求得h ,由以D 为坐标原点,建立空间直角坐标系,设为平面PBC 的一个法向量(),,n x y z =,又DB 是平面PAC 的一个法向量,然后由cos ,DB n DB n DB n⋅=求解..【详解】(1)∵PAC △为等腰直角三角形,D 为中点,. ∴PD AC ⊥,又ABC 为正三角形,D 为中点, ∴BD AC ⊥.又PD BD D ⋂=,PD ,BD ⊂平面PBD , ∴AC ⊥平面PBD . 又PB ⊂平面PBD , ∴PB AC ⊥.(2)设三棱锥P ABC -的高为h ,sin60BD BC =︒=∴113233P ABC V AC BD h -=⨯⨯⨯⨯==, ∴1h =. 又112PD AC ==,∴PD ⊥平面ABC .如图,以D 为坐标原点,建立空间直角坐标系D xyz -,则()1,0,0A ,()3,0B,()1,0,0C -,()0,0,1P∴()0,3,0=DB ,()1,0,1CP =,()1,3,0CB =. 设(),,n x y z =为平面PBC 的一个法向量,则00CP n CB n ⎧⋅=⎨⋅=⎩,即030x z x +=⎧⎪⎨+=⎪⎩令1x =,得31y z ⎧=-⎪⎨⎪=-⎩∴31,1n ⎛⎫=-- ⎪ ⎪⎝⎭. 又DB 是平面PAC 的一个法向量, ∴7cos ,DB n DB n DB n⋅==-∴二面角A PC B --的余弦值为77. 【点睛】方法点睛:向量法求二面角的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案
→
→
∣→∣ ∣ ∣ →
∣→∣ ∣ ∣
→
→
④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )
→
→ →
→
→
中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2
最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(含答案解析)
一、选择题1.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4 B .3C .2D .12.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( ) A .26B .36C .56D .133.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B .2C .223λ D .2554.如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是( )A .30B .45C .60D .905.将直角三角形ABC 沿斜边上的高AD 折成120︒的二面角,已知直角边43,46AB AC ==,那么下面说法正确的是( )A .平面ABC ⊥平面ACDB .四面体D ABC -的体积是86C .二面角A BCD --的正切值是423D .BC 与平面ACD 所成角的正弦值是2176.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22 C .13D .167.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A 5B 5C 5D 3 10.在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) A .10 B .15C 10D 15 11.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33312.在长方体1111ABCD A BC D -中,若13AC =111()AB AC AD AC ++⋅=( )A .0B 3C .3D .6二、填空题13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.14.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为104,则线段BD 的长为_______.15.已知空间直角坐标系中点()123p ,,,()321Q ,,,则||PQ =__________. 16.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.17.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA β⊂,CB β⊂,且DA AB ⊥,CB AB ⊥,4=AD ,8BC =,6AB =,在平面α内有一个动点P ,使得APD BPC ∠=∠,则PAB △的面积的最大值是______.18.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________19.在棱长为2的正方体△ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1、CD 的中点,则点B 到截面AMC 1N 的距离为_____.20.在正方体ABCD -A 1B 1C 1D 1中,下列给出四个命题: (1)四边形ABC 1D 1的面积为1AB BC (2)11AD A B 与的夹角为60°;(3)22111111111111()3();(4)()0AA A D A B A B AC A B A D ++=⋅-=; 则正确命题的序号是______.(填出所有正确命题的序号)三、解答题21.已知直角梯形SBCD 中,//SD BC .BC CD ⊥,336SD BC CD ===,过点B 作//BA CD 交SD 于A (如图1),沿AB 把SAB 折起,使得二面角S AB C --为直二面角,连接SC ,E 为棱SC 上任意一点(如图2).(1)求证:平面EBD ⊥平面SAC ;(2)在棱SC 上是否存在点E ,使得二面角E BD S --的余弦值为223?若存在,求出点E 的位置;若不存在,请说明理由.22.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 是PD 上的点.(1)当E 是PD 的中点时,求证://PB 平面AEC ;(2)设1==PA AB ,3PC ,若直线PC 与平面AEC 所成角的正弦值为13,求PE 的长.23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,且3AD PD ==,33PC =PCD ⊥平面ABCD ,点E 为线段PC 的中点.(1)求证:DE ⊥面PBC ; (2)若点F 在线段AB 上,且13AF AB =,求二面角C DE F --的平面角的正弦值. 24.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.25.如图,在四棱锥P ABCD -中,已知ABCD 是平行四边形,60DAB ∠=,AD AB PB ==,PC PA ⊥,PC PA =.(1)求证:BD ⊥平面PAC ; (2)求二面角A PB C --的余弦值.26.如图所示,在直三棱柱111ABC A B C -中,ABC 是边长为6的等边三角形,,D E 分别为1,AA BC 的中点.(1)证明://AE 平面1BDC(2)若123CC =,求DE 与平面11ACC A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误; 对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.2.A解析:A 【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0),()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >=4226922-=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A . 【点睛】本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3.D解析:D 【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 . 【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系, 则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =, 则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =,∴点G 到平面1D EF 的距离为25EG n d n⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.4.D解析:D 【分析】可以建立空间直角坐标系,求出向量1A M 与DN 的夹角进而求出异面直线1A M 与DN 所成角. 【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A BC D -中棱长为2, 则1(2,A 0,2),(0,M 1,0),(0,D 0,0),(0,N 2,1),1(2,AM =-1,2)-,(0,DN =2,1), 设异面直线1A M 与DN 所成角为θ, 则11cos 0A M DN A M DNθ⋅==⋅,90θ∴=.∴异面直线1A M 与DN 所成角的大小为90.故选D .【点睛】本题考查异面直线所成角的求法,考查正方体的结构特征,异面直线所成角等基础知识,是基础题.5.C解析:C 【分析】先由图形的位置关系得到CDB ∠是二面角C AD B --的平面角,120CDB ∠=,故A不正确;B 由于11132684sin120423323D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯= ⎪⎝⎭故得到B 错误;易知AFD ∠为二面角A BC D --的平面角,4242tan 34217AD AFD DF ∠===,由题意可知∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,sin ∠BCO=BOBC. 【详解】 沿AD 折后如图,AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角,120CDB ∠=,12,4,42,CD BD AD ===由余弦定理得2222BC CD BD CD =+-cos120BD ⋅,可得BC =过D 作DF BC ⊥于F ,连接AF ,则AF BC ⊥,由面积相等得11sin12022CD BD DF BC ⋅=⋅,可得DF =. 根据AD BC ⊥,易知CDB ∠是二面角C AD B --的平面角, 120CDB ∠=故A 平面ABC 与平面ACD 不垂直,A 错;B由于11184sin12042332D ABC A BCD BCD V V S AD --⎛⎫==⋅=⨯⨯⨯= ⎪⎝⎭,B 错;C 易知AFD ∠为二面角A BC D --的平面角,tan 7AD AFD DF ∠===C 对;D 故如图,由题意可知∠BDC 为B ﹣AD ﹣C 的平面角,即∠BDC=120°,作DF ⊥BC 于F ,连结AF ,,BD=4,DC=8,AD=4,过O 作BO 垂直BO⊥CO 于O ,则∠BCO 就是BC 与平面ACD 所成角,OD=2,sin ∠BCO=BO BC ==. 选.C 【点睛】本题考查了平面的翻折问题,考查了面面垂直的证明,线面角的求法,面面角的求法以及四面体体积的求法,求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.6.C解析:C 【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c=⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n⋅+-=== 故选C 【点睛】本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(包含答案解析)(4)
一、选择题1.如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,BAC 与BCD △均为直角三角形,且90BAC BCD ∠=∠=︒,AB AC =,112CD BC ==,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得异面直线PQ 与AD 成30的角,则线段PA 长的取值范围是( )A .2⎛ ⎝⎦B .6⎛ ⎝⎦C .(0,1]D .(2 2.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC 的值为( )A .0B .22C .12-D .123.正方体ABCD —A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为A .0°B .45°C .60 °D .90°4.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等;②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形;④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③ 5.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12 B .22 C .13 D .16 6.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD >D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .76 B .75 C .72 D .748.如图,在直三棱柱111ABC A B C -中,1AB AC ==,12BC AA =,E O 分别是线段1,C C BC 的中点,1113A F A A =,分别记二面角1F OB E --,1F OE B --,1F EB O --的平面角为,,αβγ,则下列结论正确的是( )A .γβα>>B .αβγ>>C .αγβ>>D .γαβ>> 9.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A .45B .2C .22D .310.以下命题 ①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅.其中正确的命题有( )A .0个B .1个C .2个D .3个11.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .5212.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.如图,正方体1111ABCD A BC D -中,E 为线段1BB 的中点,则AE 与1CD 所成角的余弦值为____.14.在空间四边形ABCD 中,连接AC 、BD ,若BCD 是正三角形,且E 为其中心,则1322AB BC DE AD +--的化简结果为________. 15.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为__________.16.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,,,M E F 分别为,,PQ AB BC 的中点,则直线ME 与平面ABCD 所成角的正切值为________;异面直线EM 与AF 所成角的余弦值是________.17.直线1:(3)30l a x y ++-=与直线2:5(3)40l x a y +-+=,若的方向向量是的法向量,则实数_____.18.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为__________. 19.已知平行六面体中,则____. 20.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 三、解答题21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 是一个菱形,3ABC π∠=,2AB =,23PA =.(1)若Q 是线段PC 上的任意一点,证明:平面PAC ⊥平面QBD ;(2)求直线DB 与平面PBC 所成角θ的正弦值.22.如图,在三棱锥A BCD -中,O 、E 、F 分别为AB 、AC 、AD 的中点,DO ⊥平面ABC ,1DO =,AC BC ⊥,2AC BC =(1)求证:平面//OEF 平面BCD ;(2)求平面OEF 与平面OCD 所成锐二面角的余弦值.23.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是57?若存在,求点M 的位置;若不存在,请说明理由.24.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//BC AD ,AB BC ⊥,2PA =,1AB =,22AD BC ==,M 是PD 的中点.(1)求证://CM 平面PAB ;(2)求二面角M AC D --的余弦值.25.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.26.如图,已知正方体1111ABCD A BC D -的棱长为2,M 为1AA 的中点.(1)求证:1//A B 平面1MCD; (2)求平面1MCD 与平面11C CD 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出PA 长的取值范围.【详解】如图,以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则()()()()0,0,0,0,1,1,0,2,0,1,0,0C A B D ,设(),0,0Q q ()01q ≤≤,设()0,,AP AB λλλ==-()01λ<≤,则()(,0,0)(0,1,1)(0,,)(,1,1)PQ CQ CA AP q q λλλλ=-+=---=---, (1,1,1)AD =--,异面直线PQ 与AD 成30的角,22||3cos30||||223PQ AD PQ AD q λ⋅∴===⋅++⋅, 22182516q q λ∴+=-+,201,516[0,11]q q q ≤≤∴-+∈,即22182018211λλ⎧+≥⎨+≤⎩,解得2222λ-≤≤, 201,0λλ<≤∴<≤, 可得2||||22(0,1]PA AP λλ===∈.故选:C.【点睛】利用向量求解空间角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.A解析:A【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解.【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅ cos cos 33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=.故选A .【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.D解析:D【分析】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系,利用向量1(1,0,2)B M =--,(2,0,1)CN =-的数量积为0,即可求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴建立空间直角坐标系如图所示, 设正方体1111ABCD A BC D -的棱长为2,由图可知(1,0,0)M ,1(2,0,2)B ,(2,2,0)C ,(0,2,1)N ,所以1(1,0,2)B M =--,(2,0,1)CN =-所以1cos ,0B M CN 〈〉=所以异面直线B M '与CN 所成的角为90︒.故本题正确答案为D .【点睛】本题主要考查了异面直线所成角,属于基础题.4.D解析:D【解析】【分析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】 如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2①正确;直线A 1H 与该正方体各面所成角相等,均为arctan 22,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确;垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.5.C解析:C【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c=⎧⎨=⎩ 可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n ⋅+-=== 故选C【点睛】 本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.3知识点总结含同步练习题及答案
第三章 空间向量与立体几何 3.3 异面直线的距离(补充)
一、知识清单
异面直线的距离
二、知识讲解
1.异面直线的距离 描述: 设直线 a ,b 是异面直线,则存在直线 l 与直线 a ,b 均相交且垂直,此时直线 l 称为异面直 线 a ,b 的公垂线,直线 l 夹在直线a ,b 之间的部分称为异面直线a ,b 的公垂线段.异面直线 a, b 的公垂线段的长度称为异面直线 a ,b 的距离. 例题: 如图,长方体 ABCD − A 1 B 1 C1 D 1 中, AB = BC = 1,AA 1 = 2 ,求直线 A 1 C 2
因此直线 A 1 C1 与 B 1 B 之间的距离为
√2 . 2
高考不提分,赔付1万元,关注快乐学了解详情。
解:连接 B 1 D 1 交 A 1 C1 于 E 点,因为长方体中 AB = BC,所以长方体上下底面均为正 方形,故 A 1 C1 ⊥ B 1 D 1 . 又长方体可知 BB 1 ⊥ 面 A 1 B 1 C1 D 1 ,B 1 E ⊂ 面 A 1 B 1 C1 D 1 ,所以 BB 1 ⊥ B 1 E. 综上可知,B 1 E 为异面直线 A 1 C1 和 BB 1 的公垂线,结合 AB = BC = 1,所以
高二数学选修2-1空间向量与立体几何单元测试题
东升学校《空间向量与立体几何》单元测试题一、选择题(本大题8 小题 , 每小题 5 分,共 40 分)1、若a ,b , c是空间任意三个向量 ,R ,下列关系式中,不成立的是()A.a b b a B. a b a bC.a b c a b c D.b a2、给出下列命题①已知 a b ,则 a b c c b a b c ;②A、B、M 、N 为空间四点 ,若BA, BM , BN不构成空间的一个基底 ,则 A、B、M、N 共面 ;③已知 a b ,则 a, b 与任何向量不构成空间的一个基底;④已知a,b, c 是空间的一个基底,则基向量a, b可以与向量m a c 构成空间另一个基底 .正确命题个数是()A.1B.2C.3D.43、已知a, b均为单位向量 ,它们的夹角为 60 ,那么a3b 等于()A.7B.10C.13D.44、a1, b 2, c a b, 且 c a ,则向量 a与b 的夹角为()A.30B.60C.120D.1505、已知a3,2,5 , b 1, x, 1 , 且 a b 2 ,则x的值是()A.3B.4C.5D.66、若直线 l 的方向向量为a ,平面的法向量为n,则能使l //的是()A.a1,0,0 , n2,0,0B.a1,3,5 , n 1,0,1C.a0,2,1 , n1,0, 1D.a1, 1,3 , n0,3,17、在平面直角坐标系中 ,A( 2,3), B(3, 2) ,沿x轴把平面直角坐标系折成120第1页共15页的二面角后 ,则线段 AB 的长度为()A.2B.2 11C.3 2D.4 2、正方体ABCD-AB11C1D1的棱长为 1,E 是 A中点 ,则 E 到平面 ABC的距离8 1 B11D1是()A.3B.2C.1D.3 2223二、填空题(本大题共 6 小题,每空 5 分,共 30 分)9、已知F1i 2 j3k, F22i 3 j k , F33i 4 j5k ,若 F1 , F2 , F3共同作用于一物体上,使物体从点M(1,-2,1)移动到 N( 3,1,2),则合力所作的功是.10 、在平行六面体 ABCD-A1B1C1D1中 , 已知∠ BAD= ∠ A1AB= ∠A1AD=60 ,AD=4,AB=3,AA1=5, AC1 =.11、△ABC和△ DBC所在的平面互相垂直,且 AB=BC=BD,∠CBA=∠DBC=60,则 AD 与平面 BCD所成角的余弦值为.12、若直线l 的方向向量为(4,2,m),平面的法向量为 (2,1,-1),且 l⊥ ,则 m =.13、已知 A(-3,1,5),B(4,3,1),则线段 AB 的中点 M 的坐标为.三、解答题(本大题共 6 小题,共 80 分)14、(本题满分 12分 )设空间两个不同的单位向量a x1, y1 ,0,b x2 , y2 ,0 与向量 c1,1,1的夹角都等于 45 .(1)求x1y1和 x1 y1的值;(2)求a,b的大小 .15、(本题满分 12 分)已知四棱锥 P-ABCD的底面是边长为 a 的正方形 ,侧棱 PA⊥底面 ABCD,E为 PC上的点且 CE:CP=1:4,则在线段 AB上是否存在点 F 使 EF// 平面 PAD?第2页共15页17、(本题满分 14 分) 如图 ,四棱锥 S-ABCD的底面是矩形 ,AB=a,AD=2,SA=1,且SA ⊥底面 ABCD,若边 BC上存在异于 B,C的一点 P,使得PS PD .(1)求 a 的最大值 ;(2)当 a 取最大值时 ,求异面直线 AP 与 SD所成角的大小 ;(3)当 a 取最大值时 ,求平面 SCD的一个单位法向量n及点 P 到平面 SCD的距离 .18、 (本题满分14 分)已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB2, AF=1,M是线段EF的中点.(1)求证: AM// 平面 BDE;(2)求证: AM⊥平面 BDF.第3页共15页19、(本题满分14 分)如图所示 ,矩形 ABCD 的边 AB=a,BC=2,PA⊥平面 ABCD,PA=2,现有数据 :① a 3;②a 1;③a 3 ;④ a 2 ;⑤ a 4 ; 2(1)当在 BC边上存在点⊥QD 时,a 可能取所给数据中的哪些值 ?请说明理由 ; Q,使 PQ(2)在满足 (1)的条件下 ,a 取所给数据中的最大值时,求直线 PQ与平面 ADP所成角的正切值 ;(3)记满足 (1)的条件下的Q 点为 Q n(n=1,2,3, ⋯ ),若 a 取所给数据的最小值时,这样的点Q n有几个 ?试求二面角Q n-PA-Q n+1的大小 ;20、 (本题满分14 分 )如图所示,在底面是菱形的四棱锥 P-ABCD中,∠ABC=60 ,PA=AC=a,PB=PD= 2a,点E在PD上,且PE:ED=2:1.(1)证明: PA⊥平面ABCD;(2)求以 AC 为棱 ,EAC与 DAC为面的二面角θ的大小;(3)棱 PC上是否存在一点F,使 BF∥平面 AEC?证明你的结论 .第4页共15页参考答案: 一、选择题题号 1 23 4 5 6 7 8 答案 DCCCCDBB二、 填空题题号 9 1011 121314答案1497302-212, 2,32三、 解答题x 12 y 121x2y 21x y611112 ;15、解:( 1)依题意,x 1 y 12 x 1 y 16322x 1 y 114(2)∵单位向量 ax 1, y 1 ,0 ,bx 2 , y 2 ,0与向量 c 1,1,1 的夹角都等于45.x y 6x 162x 162112 4 或4 , ∴由x 1 y 11y 162 y 162444∴ a62 ,6 2,0 ,b62 ,6 2,04444x 1x 2y 1 y 26 2 6262 6 2 1由 cos a, b a b44442∴ a, b.316、解:建立如图所示的空间直角坐标系,设 PA=b ,则 A(0,0,0),B(a,0,0),C(a,a,0),D(0,a,0),P(0,0,b),则 CPa, a, b ,∵E 为 PC 上的点且 CE : CP=1: 3,第5页共15页∴ CE1CP1a, a, b a , a , b44444∴由 CE AE AC AE CE AC3a , 3a , b,444设点 F 的坐标为 (x,0,0,) (0≤x≤a),则 EFx3a ,3a ,b,444又平面 PAD的一个法向量为AB a,0,0,依题意 , EF AB x3a a0 x3a ,443∴在线段 AB 上存在点 F,满足条件 ,点 F 在线段 AB 的处.17、解:建立如图所示的空间直角坐标系,则各点坐标分别为:A(0,,0,0),B(a,0,0),C(a,2,0),D(0,2,0),S(0,0,1),设 P(a,x,0). (0<x<2)(1) ∵PS a, x,1 , PD a, 2x,0∴由 PS PD 得: a2x(2 x)0即:a2x(2 x) (0 x 2)∴当且仅当 x=1 时,a 有最大值为 1.此时 P 为 BC中点 ;(2)由(1)知 : AP (1,1,0), SD (0,2, 1),AP SD210,∴ cos AP, SD2 55AP SD∴异面直线 AP 与 SD所成角的大小为arc cos10 .5(3) 设n1x, y, z 是平面SCD的一个法向量,∵DC (1,0,0), SD(0, 2,1),第6页共15页∴由n1DC n1DC0x0x02 y z 0y 1 得 n1 (0,1, 2),n1SD n1SD0取 y1z2n11∴平面 SCD的一个单位法向量 n0,1,2n155又 CP CP n5(0, 1,0), 在 n 方向上的投影为1n∴点 P 到平面 SCD的距离为 5 .518、解:建立如图的直角坐标系,则各点的坐标分别为:O(0,0,0),A(0,1,0),B(-1,0,0),C(0,-1,0,),D(1,0,0,),E(0,-1,1),F(0,1,1),M(0,0,1).(1) ∵AM(0, 1,1),OE (0,1,1)∴ AM OE ,即AM//OE,又∵ AM平面BDE, OE平面BDE,∴A M// 平面 BDE;(2) ∵BD(2,0,0), DF(1,1,1),∴ AM BD 0, AM DF0,∴AM⊥BD,AM⊥DF,∴AM⊥平面BDF.19、解:建立如图所示的空间直角坐标系,则各点坐标分别为:A(0,0,0,),B(a,0,0),C(a,2,0),D(0,2,0),P(0,0,2),设 Q(a,x,0).(0≤ x≤2)(1) ∵PQ a, x, 2 ,QD a,2x,0 ,∴由 PQ⊥QD 得PQ QD a2x(2x)0a2x(2 x)∵ x0, 2 , a2x(2x)0,1525 (0,,),555,5第7页共15页∴在所给数据中 ,a 可取 31两个值 .a和 a2(2) 由 (1)知 a 1,此时 x=1,即 Q 为 BC 中点 , ∴点 Q 的坐标为 (1,1,0)从而 PQ1,1, 2 , 又 AB 1,0,0为平面 ADP 的一个法向量 ,∴ cos PQ, ABPQ AB 1 6PQAB6 1,6∴ 直线 PQ 与平面 ADP 所成角的正切值为5 .5(3) 由(1)知 a31 或 x3,此时 x,,即满足条件的点 Q 有两个 ,222其坐标为 3 13 3Q 1, ,0 和Q 2 , ,02 22 2∵PA ⊥平面 ABCD,∴ PA ⊥AQ ⊥1,PA AQ 2,∴∠ Q 1AQ 2 就是二面角 Q 1-PA-Q 2 的平面角 .AQ 1 AQ 23 3 3由 cos AQ 1 , AQ 2 4 4AQ 1AQ 2 13,得∠Q 1AQ 2=30 ,2∴二面角 Q 12 的大小为 30 .-PA-Q20、解:( 1) ∵PA=AC=a ,PB=PD= 2a∴ PA 2 AB 2 PB 2 , PA 2 AD 2 PD 2,∴ PA ⊥AB 且 PA ⊥AD , ∴ PA ⊥平面 ABCD ,( 2)∵底面 ABCD 是菱形, ∴ AC ⊥BD ,设 AC ∩ BD=O ,∴以 O 为原点,建立如图所示的空间直角坐标系,则各点坐标分别为:A 0, a,0 , B3a ,0,0 , C 0, a ,0 , D 3a,0,0 ,P 0,a, a ,22 222∵ 点 E 在 PD 上,且 PE :ED=2:1.∴ DP3DE ,即: DP3 OEOD第8页共15页∴ OE3a, a , a ,即点 E 的坐标为 E 3a, a , a3 6 33 63又平面 DAC 的一个法向量为 n 10,0,1EAC 个 法 向 量 为 n 2x, y, z , OC0,a 设 平 面的 一 ,0 ,23 a aOEa,,36 3ay 02x 1n 2OCn 2 OC3a a由y, 得axyz 0n 2OEn 2 OE3 63z3取x=1n 2 1 , 0 , 3 ,n 1 n 2 3 3 ,n 2∴cos n 1, n 2n 21 2n 1 6n 1 2∴由图可知二面角 E-AC-D 的大小为.6( 3)设在 CP 上存在点 F ,满足题设条件,由 CFCP (01) ,得 OF OCCP0,12 a, a2 ∴ BF0,12 a, a 3a,0,03 a,1 2 a, a2222依题意,则有 BFn 2∴3 a,1 2a, a 1,0, 3 03 a 3 a 012222∴点 F 为 PC 中点时 ,满足题设条件 .第9页共15页一 . 选择题: (10 小题共 40 分 )1. 已知 A、B、C 三点不共线,对平面ABC外的任一点O,下列条件中能确定点M与点 A、B、C 一定共面的是( )A. OM OA OB OCB. OM2OA OB OCC. OM OA 1OB1OC D. OM1OA1OB1OC 233332. 直三棱柱 ABC— A1B1C1中,若 CA a,CB b,CC1C,则 A1 B( )A. a b cB. a b cC. a b cD. a b c3. 若向量m垂直向量 a和 b,向量 na b( ,R且、0)则()A. m// nB. m nC.m不平行于 n, m也不垂直于 nD. 以上三种情况都可能4.以下四个命题中,正确的是( )A.若 OP 1 OA 1OB,则P、A、B三点共线2 3B.设向量 { a,b, c} 是空间一个基底,则{ a +b , b +c , c + a }构成空间的另一个基底C. (a b) c a b cD. △ ABC是直角三角形的充要条件是AB AC05. 对空间任意两个向量a,b(b o), a // b 的充要条件是( )第10页共15页A. a bB. a bC. b aD. a b6.已知向量 a(0,2,1), b(1,1,2),则 a与 b 的夹角为()A.0 °B.45°C.90°D.180 °7.在平行六面体ABCDA1B1C1D1中,M为 AC与 BD的交点,若A1 B1 a, A1D1b, A1 A c ,则下列向量中与B1M相等的是()A. 1 a 1 b1c B. 1 a 1 b1c C. 1 a1b c D.- 1 a1b c22222222228.已知a(1,0,2), b(6,21,2), 若 a // b, 则与的值分()A.11B.5 ,2C. 1 ,1D.-5 , -2 5,2529.已知 a3i 2 j k, b i j2k, 则5a与 3b的数量积等于()A.-15B.-5C.-3D.-110. 在棱长为1 的正方体 ABCD— A1B1C1D1中, M和 N 分别为 A1B1和 BB1的中点,那么直线AM与CN所成角的余弦值是()A.2B.2C. 3D.1055510二. 填空题 : (4 小题共 16 分)11. 若 A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9)三点共线,则m+n=.第11页共15页12. 已知 A(0,2,3),B( -2 ,1,6),C( 1,-1 ,5),若| a |3,且 a AB, a AC ,则向量 a的坐标为.13.已知a,b是空间二向量,若| a |3, | b | 2, | a b |7,则 a与b 的夹角为.14. 已知点G 是△ ABC 的重心, O 是空间任一点,若OA OB OC OG ,则的值为.三. 解答题 :(10+8+12+14=44 分 )15.如图: ABCD为矩形, PA⊥平面 ABCD, PA=AD, M、 N 分别是 PC、AB中点,(1)求证: MN⊥平面 PCD;(2) 求 NM与平面 ABCD所成的角的大小 .16. 一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小.17. 正四棱锥S— ABCD中,所有棱长都是2, P 为 SA的中点,如图.第12页共15页(1)求二面角 B— SC— D 的大小; (2) 求 DP与 SC所成的角的大小 .18.如图,直三棱柱 ABC— A1B1C1,底面△ ABC中, CA=CB=1,∠ BCA=90°,棱 AA1=2,M、 N分别是 A1B1, A1A 的中点;(1)求 BN的长 ;(2)求 cos BA1 , CB1的值 ;(3)求证 : A1B C1M .(4)求 CB1与平面 A1ABB1所成的角的余弦值 .第13页共15页高中数学选修2-1 测试题 (10)—空间向量 (1) 参考答案DDBB DCDA AB 11.012.(1, 1,1)13.60014.315.(1)略016.45017.(1)1(2)45(2)318.(1)3(2)30(3)略310 10(4)1018.如图,建立空间直角坐标系O— xyz. ( 1)依题意得 B( 0, 1,0)、 N( 1,0, 1)∴| BN |=(1 0)2(0 1)2(1 0)23.( 2)依题意得 A ( 1,0, 2)、B( 0, 1,0)、 C( 0, 0, 0)、 B ( 0,1, 2)11∴ BA ={-1,-1,2}, CB ={0,1,2,}, BA · CB =3,| BA |= 6 ,11111| CB1 |= 5 ∴cos< BA1, CB1>=BA1 CB11|BA1 | |CB1 |30 .10图第14页共15页1,1, C1M ={1,1( 3)证明:依题意,得 C( 0,0,2)、M(,2),A1B ={ -1,1,2},1222211⊥ C1M ,∴AB⊥CM.0}. ∴A1B·C1M =-+0=0,∴A1B2211评述:本题主要考查空间向量的概念及运算的基本知识. 考查空间两向量垂直的充要条件.第15页共15页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AA 1DB 1C 1命题人:罗吉宏2012.12.30选修2-1空间向量与立体几何期末复习卷 说明:本试卷分第一卷和第二卷两部分,第一卷70分,第二卷80分,共150分;时间120分钟.温馨提示:同学们可于2013年1月1日后登录佛山三中数学科组网页查阅试题答案,自行订正。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1、在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2、如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( ) A .1715 B .21 C .178 D .233、下列等式中,使M,A,B,C 四点共面的个数是( B )①;OM OA OB OC =-- ②111;632OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++=. A. 1 B. 2 C. 3 D. 44、若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( C )A .19B .78-C .78D .14195、已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点. 点1C 到平面1AB D 的距离( ) A .a 42 B .a 82 C .a 423 D .a 22 6、在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 7、在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( )A .621B .338 C .60210D .302108、在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32 B .37C .23 D .739、正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3πB .6π C .65π D .32π10、正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66 B .3316 C .316D .16二、填空题:请把答案填在题中横线上(每小题5分,共20分).11、已知A(3,5,-7),B(-2,4,3),则AB 在坐标平面yoz 上的射影的长度为_____12、若向量,94,2k j i b k j i a++=+-=,则这两个向量的位置关系是___________。
13、已知空间四边形OABC ,点,M N 分别为,OA BC 的中点,且c C O b B O a A O ===,,,用a ,b ,c表示N M ,则N M=_______________14、若(3)a b +⊥)57(b a -,且(4)a b -⊥)57(b a -,则a 与b的夹角度数为____________三、解答题:解答应写出文字说明、证明过程或演算步骤(共80分). 15.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,(1)求证:平面A 1EF ∥平面B 1MC .(2)求平面A 1B C 1与平面AB CD 所成二面角余弦值的大小16.(13分)如图,已知矩形ABCD所在平面外一点P,P A⊥平面ABCD,E、F分别是AB、PC的中点.Array(1)求证:EF∥平面P AD;(2)求证:EF⊥CD;(3)若∠PDA=45︒,求EF与平面ABCD所成的角的大小.17.(13分)已知棱长为1的正方体A C1,E、F分别是B1C1、C1D的中点.(1)求证:E、F、D、B共面;(2)求点A1到平面的B DEF的距离;(3)求直线A1D与平面B DEF所成的角.18.(14分)已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:(Ⅰ)D1E与平面BC1D所成角的余弦值大小;(Ⅱ)二面角D-BC1-C的余弦值大小;(Ⅲ)异面直线B1D1与BC1之间的距离.19、(14分)已知斜三棱柱111ABC A B C -,90BCA ∠=︒,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(Ⅰ)求证:1AC ⊥平面1A BC ; (Ⅱ)求1CC 到平面1A AB 的距离; (Ⅲ)求二面角1A A B C --的余弦值.120、(14分)已知矩形ABCD 中,12==AD AB ,,将ΔABD 沿BD 折起,使点A 在平面BCD 内的射影落在DC 上,E 、F 、G 分别为棱BD 、AD 、AB 的中点。
(I )求证:DA ⊥平面ABC ;(II )求点C 到平面ABD 的距离;(III )求二面角G —FC —E 的余弦值。
2012.12.30选修2-1空间向量与立体几何期末复习卷参考答案二、填空题11、101 12、a b ⊥ 13、1()2b c a +- 14、0 三、解答题 15、(1)略(2)解:如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由 011=⋅A n 可解得1n =(1,1,1)0111=⋅C A n易知2n =(0,0,1),所以,=33由图可知,平面A 1B C 1与平面AB CD 所成的二面角为锐角, 所以平面A 1B C 1与平面AB CD 所成的二面角余弦值大小为33。
16.(12分) 证:如图,建立空间直角坐标系A -xyz ,设AB =2a ,BC =2b ,P A =2c , 则:A (0, 0, 0),B (2a , 0, 0),C (2a , 2b , 0),D (0, 2b , 0),P (0, 0, 2c ) ∵ E 为AB 的中点,F 为PC 的中点 ∴ E (a , 0, 0),F (a , b , c ) (1)∵ → EF =(0, b , c ),→ AP =(0, 0, 2c ),→ AD =(0, 2b , 0)∴ → EF =12 (→ AP +→ AD ) ∴ → EF 与→ AP 、→AD 共面又∵ E ∉ 平面P AD ∴ EF ∥平面P AD . (2) ∵ → CD =(-2a , 0, 0 )∴ → CD ·→ EF =(-2a , 0, 0)·(0, b , c )=0 ∴ CD ⊥EF .(3) 若∠PDA =45︒,则有2b =2c ,即 b =c , ∴ →EF =(0, b , b ),→ AP =(0, 0, 2b ) ∴ cos 〈→ EF ,→ AP 〉=2b 22b ·2b =22 ∴ 〈→ EF ,→AP 〉= 45︒∵ → AP ⊥平面AC ,∴ →AP 是平面AC 的法向量∴ EF 与平面AC 所成的角为:90︒-〈→ EF ,→AP 〉= 45︒. 17.解:(1)略.(2)如图,建立空间直角坐标系D —xyz , 则知B (1,1,0),).1,21,0(),1,1,21(F E 设.),,(的法向量是平面BDEF z y x = )1,21,0(),0,1,1(,,==⊥⊥DF DB DF n DB n 由得⎪⎩⎪⎨⎧=+=⋅=+=⋅0210z y y x DB n 则⎪⎩⎪⎨⎧-=-=.21y z y x令)21,1,1(,1--==n y 得.设点A 1在平面B DFE 上的射影为H ,连结A 1D ,知A 1D 是平面B DFE 的斜线段..23)21)(1(10)1)(1(),1,0,1(1=--+⨯+--=⋅∴--=A.1222,cos ||||.2223223,cos ,23)21(1)1(||,2)1()1(||111111112222221=⨯>=<⨯=∴=⨯<∴=-++-==-++-=H A D A D A H A H A D A n O D A 又 即点A 1到平面B DFE 的距离为1.(3)由(2)知,A 1H=1,又A 1D=2,则△A 1HD 为等腰直角三角形, 4511=∠=∠H DA DH A .45,,,11111=∠∴∠∴⊥DH A BDFE D A DH A BDFE D A HD BDFE H A 所成的角与平面就是直线上的射影在平面是平面18.解:建立坐标系如图,则()2,0,0A 、()2,2,0B ,()0,2,0C , ()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,()12,2,2A C =--()12,1,2D E =-,()0,2,0AB =,()10,0,2BB =.(Ⅰ)不难证明1A C 为平面BC 1D 的法向量, 1111113,9AC D E AC D E AC D E ==所成的角的余弦值大小为(Ⅱ)1A C 、AB 分别为平面BC 1D 、BC 1C 的法向量, 1113,3AC AB AC AB AC AB ==(Ⅲ)∵ B 1D 1∥平面BC 1D ,∴ B 1D 1与BC 1之间的距离为1112AC BB d AC ==.19、解法1:(Ⅰ)∵1A D ⊥平面ABC ,∴平面11AAC C ⊥平面ABC , 又BC AC ⊥,∴BC ⊥平面11AA C C , 得1BC AC ⊥,又11BA AC ⊥, ∴1AC ⊥平面1A BC .(Ⅱ)∵11AC A C ⊥,四边形11AA C C 为菱形,故12AA AC ==, 又D 为AC 中点,知∴160A AC ∠=︒.取1AA 中点F ,则1AA ⊥平面BCF ,从而面1A AB ⊥面BCF ,过C 作CH BF ⊥于H,则CH ⊥面1A AB ,在Rt BCF ∆中,2,BC CF =,故7CH =,即1CC 到平面1A AB 的距离为7CH =.(Ⅲ)过H 作1HG A B ⊥于G ,连CG ,则1CG A B ⊥,从而CGH ∠为二面角1A A B C --的平面角,在1Rt A BC ∆中,12AC BC ==,∴CG 在Rt CGH ∆中,7sin CH CGCGH ∠==,故二面角1A A B C --的余弦值为7.解法2:(Ⅰ)如图,取AB 的中点E ,则//DE BC ,∵BC AC ⊥,∴DE又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则(0,1,0)A -,(0,1,0)C ,(2,1,0)B ,1(0,0,)A t ,1(0,2,)C t ,1(0,3,)AC t =,1(2,1,)BA t =--,(2,0,0)CB =,由10A C CB ⋅=,知1AC CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(Ⅱ)由21130AC BA t ⋅=-+=,得t =设平面1A AB 的法向量为(,,)n x y z =,1AA =,(2,2,0)AB =,10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则33(,n =-.…………6分 ∴点1C 到平面1A AB 的距离1||2217||AC n n d ⋅==.(Ⅲ)设面1A BC 的法向量为(,,)m x y z =,1(0,CA =-,(2,0,0)CB =,∴1020m CA y m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩. 设1z =,则3(0,m =,故77||||cos ,m n m n m n ⋅⋅<>==-,BAC1A1B 1CD GHF1由图可知,二面角1A A B C --为锐角, 故二面角1A A B C --的余弦值为7.20解:如图,以CB 所在直线为x 轴,DC 所在直线为y 轴,过点C ,平面BDC 方向向上的法向量为Z 轴建立空间直角坐标系。