最新初中数学竞赛几何练习题
数学初中竞赛大题训练:几何专题(含答案)
数学初中竞赛大题训练:几何专题1.阅读理解:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆.(1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°;(2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长;(3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长.解:(1)∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°,故答案为:55°;(2)在线段CA取一点F,使得CF=CD,如图2所示:∵∠C=90°,CF=CD,AC=CB,∴AF=DB,∠CFD=∠CDF=45°,∴∠AFD=135°,∵BE⊥AB,∠ABC=45°,∴∠ABE=90°,∠DBE=135°,∴∠AFD=∠DBE,∵AD⊥DE,∴∠ADE=90°,∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°,∴∠FAD=∠BDE,在△ADF和△DEB中,,∴△ADF≌△DEB(ASA),∴AD=DE,∵∠ADE=90°,∴△ADE是等腰直角三角形,∴AE=AD=2;(3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°,∴E、K、G、B和E、K、F、A分别四点共圆,∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°,∴△ABK是等边三角形,∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点,∴KM=AK•sin60°=2,∵AE=3,AM=AB=2,∴ME=3﹣2=1,∴EK===,∴EF===.2.问题再现:如图1:△ABC 中,AF 为BC 边上的中线,则S △ABF =S △ACP =S △ABC 由这个结论解答下列问题: 问题解决:问题1:如图2,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,则S △BOC =S 四边形ADOE.分析:△ABC 中,CD 为AB 边上的中线,则S △BCD =S △ABC ,BE 为AC 边上的中线,则S △ABE =S △ABC ∴S △BCD =S △ABE∴S △BCD ﹣S △BOD =S △ABE ﹣S △BOD又∵S △BOC =S △BCD ﹣S △BOD ,S 四边形ADOE =S △ABE ﹣S △BOD 即S △BOC =S 四边形ADOE问题2:如图3,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,AF 为BC 边上的中线.(1)S △BOD =S △COE 吗?请说明理由.(2)请直接写出△BOD 的面积与△ABC 的面积之间的数量关系:S △BOD = S △ABC .问题拓广:(1)如图4,E 、F 分别为四边形ABCD 的边AD 、BC 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴=S 四边形ABCD .(2)如图5,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴=S 四边形ABCD .(3)如图6,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点, 若S △AME =1、S △BNG =1.5、S △CQF =2、S △DPH =2.5,则S 阴= 7 .解:问题2:S △BOD =S △COE 成立,理由:∵△ABC 中,CD 为AB 边上的中线, ∴S △BCD =S △ABC , ∵BE 为AC 边上的中线, ∴S △CBE =S △ABC ∴S △BCD =S △CBE∵S △BCD =S △BOD +S △BOC ,S △CBE =S △COE +S △BOC ∴S △BOD =S △COE(2)由(1)有S △BOD =S △COE , 同(1)方法得,S △BOD =S △AOD ,S △COE =S △AOE , S △BOF =S △COF ,∴S △BOD =S △COE =S △AOE =S △AOD , ∵点O 是三角形三条中线的交点, ∴OA =2OF ,∴S △AOC =2S △COF =S △AOE +S △COE =2S △COE , ∴S △COF =S △COE ,∴S △BOD =S △COE =S △AOE =S △AOD =S △BOF =S △COF , ∴S △BOD =S △ABC,故答案为问题拓广:(1)如图4:连接BD,由问题再现:S△BDE =S△ABD,S△BDF =S△BCD,∴S阴影=S四边形ABCD,故答案为,(2)如图5:连接BD,由问题解决:S△BMD =S△ABD,S△BDN=S△BCD,∴S阴影=S四边形ABCD,故答案为;(3)如图6,设四边形的空白区域分别为a,b,c,d,∵S△AME =1、S△BNG=1.5、S△CQF=2、S△DPH=2.5,由(1)得出:a+1+2.5=a+3.5=S△ACD①,c+1.5+2=c+3.5=S△ACB②,b +1+1.5=b +2.5=S △ABD ③, d +2+2.5=d +4.5=S △BCD ④,①+②+③+④得,a +3.5+c +3.5+b +2.5+d +4.5=a +b +c +d +14=S 四边形ABCD ⑤ 而S 四边形ABCD =a +b +c +d +7+S 阴影⑥ ∴S 阴影=7, 故答案为7.3.如图,在△ABC 中,AB >AC ,内切圆⊙I 与边BC 切于点D ,AD 与⊙I 的另一个交点为E ,⊙I 的切线EP 与BC 的延长线交于点P ,CF ∥PE 且与AD 交于点F ,直线BF 与⊙I 交于点M 、N ,M 在线段BF 上,线段PM 与⊙I 交于另一点Q .证明:∠ENP =∠ENQ .证明:如图,设⊙I 与AC 、AB 分别切于点S 、T ,连接ST 、AI 、IT ,设ST 与AI 交于点G .则IE ⊥PE ,ID ⊥PD ,故I 、E 、P 、D 四点共圆, ∵AS 2=AE •AD =AG •AI , ∵∠EAG =∠DAI , ∴△AEG ∽△AID ,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.4.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.5.如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD 和AC交于点N.求证:OH⊥MN.证明:∵A 、C 、D 、F 四点共圆, ∴∠BDF =∠BAC又∵∠OBC =(180°﹣∠BOC )=90°﹣∠BAC , ∴OB ⊥DF . ∵CF ⊥MA ,∴MC 2﹣MH 2=AC 2﹣AH 2(①) ∵BE ⊥NA ,∴NB 2﹣NH 2=AB 2﹣AH 2 (②) ∵DA ⊥BC ,∴BD 2﹣CD 2=BA 2﹣AC 2 (③) ∵OB ⊥DF ,∴BN 2﹣BD 2=ON 2﹣OD 2 (④) ∵OC ⊥DE ,∴CM 2﹣CD 2=OM 2﹣OD 2,①﹣②+③+④﹣⑤,得NH 2﹣MH 2=ON 2﹣OM 2 MO 2﹣MH 2=NO 2﹣NH 2 ∴OH ⊥MN .6.在图1到图4中,已知△ABC 的面积为m .(1)如图1,延长△ABC 的边BC 到点D 使CD =BC ,连接DA ,若△ACD 的面积为S 1,则S 1= m .(用含m 的式子表示)(2)如图2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连接DE .若△DEC 的面积为S 2,则S 2= 2m .(用含a 的代数式表示)(3)如图3,在图2的基础上延长AB 到点F ,使BF =AB ,连接FD 于E ,得到△DEF ,若阴影部分的面积为S 3,则S 3= 6m .(用含a 的代数式表示)(4)可以发现将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF ,如图3,此时,我们称△ABC 向外扩展了一次.可以发现扩展一次后得到的△DEF 的面积是原来△ABC 面积的 7 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC 空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH ,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?解:(1)∵CD =BC ,∴△ABC 和△ACD 的面积相等(等底同高), 故得出结论S 1=m .(2)连接AD ,,∵AE =CA ,∴△DEC 的面积S 2为△ACD 的面积S 1的2倍, 故得出结论S 2=2m .(3)结合(1)(2)得出阴影部分的面积为△DEC 面积的3倍, 故得出结论则S 3=6m . (4)S △DEF =S 阴影+S △ABC =S 3+S △ABC =6m +m =7m =7S △ABC故得出结论扩展一次后得到的△DEF 的面积是原来△ABC 面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米.7.(1)如图①,AD 是△ABC 的中线,△ABD 与△ACD 的面积有怎样的数量关系?为什么? (2)若三角形的面积记为S ,例如:△ABC 的面积记为S △ABC ,如图②,已知S △ABC =1,△ABC 的中线AD 、CE 相交于点O ,求四边形BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下: 连接BO ,设S △BEO =x ,S △BDO =y , 由(1)结论可得:S,S △BCO =2S △BDO =2y , S △BAO =2S △BEO =2x .则有,即.所以.请仿照上面的方法,解决下列问题:①如图③,已知S △ABC =1,D 、E 是BC 边上的三等分点,F 、G 是AB 边上的三等分点,AD 、CF 交于点O ,求四边形BDOF 的面积.②如图④,已知S △ABC =1,D 、E 、F 是BC 边上的四等分点,G 、H 、I 是AB 边上的四等分点,AD 、CG 交于点O ,则四边形BDOG 的面积为.解:(1)S △ABD =S △ACD . ∵AD 是△ABC 的中线, ∴BD =CD ,又∵△ABD 与△ACD 高相等, ∴S △ABD =S △ACD .(2)①如图3,连接BO ,设S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =S △ABC = S △BCO =3S △BDO =3y , S △BAO =3S △BFO =3x .则有,即,所以x +y =,即四边形BDOF 的面积为; ②如图,连接BO ,设S △BDO =x ,S △BGO =y ,S△BCG =S△ABD=S△ABC=,S△BCO =4S△BDO=4x,S△BAO =4S△BGO=4y.则有,即,所以x+y=,即四边形BDOG的面积为,故答案为:.8.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=62.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,,∵S A+S B+S C+S D+S E+S F+S G=S大正方形∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003=50502=25502500.故一切看不见的棱长为1的小立方体的总个数为25502500.故答案为:62;.9.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC 与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.10.如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过点C、D作边BC、AD 的垂线,设两条垂线的交点为P,过点P作PQ⊥AB于Q,求证:∠PQC=∠PQD.证明:连接AP、BP,取AP的中点E,取BP的中点F,连接DE、ME、QE、CF、QF、MF,如图.∵E为AP的中点,F为BP的中点,M为AB的中点,∴EM∥BP,EM=BP,MF∥AP,MF=AP.∵E为AP的中点,F为BP的中点,∠ADP=∠BCP=90°,∴DE=AE=EP=AP,FC=PF=BF=BP,∴DE=MF,EM=FC.在△DEM和△MFC中,,∴△DEM≌△MFC(SSS),∴∠DEM=∠MFC.∵EM∥BP,MF∥AP,∴四边形PEMF是平行四边形,∴∠PEM=∠PFM.又∵∠DEM=∠MFC,∴∠DEP=∠CFP.∵DE=AE,FC=BF,∴∠DAE=∠ADE=∠DEP,∠FBC=∠FCB=∠CFP,∴∠DAE=∠FBC,即∠DAP=∠PBC.∵∠ADP=∠AQP=90°,E为AP中点,∴ED=EA=EQ=EP=AP,∴D、A、Q、P四点共圆,∴∠PQD=∠DAP.同理可得:∠PQC=∠PBC,∴∠PQD=∠PQC.11.如图:D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,作CE∥AB,交AD或其延长线于E,连接BE交AC与G,AE=CE,过C作CM⊥AD交AD延长线于点M,MC与⊙O相切,CE=7,CD=6,求EG的长.解:连接OC,如图.∵MC与⊙O相切,∴OC⊥MC.∵CM⊥AD,∴OC∥AM.∵CE∥AB,∴四边形AOCE是平行四边形,∴OA=CE=7,∴AB=14.∵点C是弧BD的中点,∴BC=CD=6.∵AB是⊙O的直径,∴∠ACB=90°,∴AC===4.∵CE∥AB,∴△CGE∽△AGB,∴===,∴AG=AC=.在Rt△ACB中,cos∠BAC===.∵点C是弧BD的中点,∴∠BAC=∠CAD,即∠BAC=∠EAG,∴cos∠EAG=.在△EAG中,cos∠EAG=.∴=.∵AG=,AE=CE=7,∴=.整理得:GE2=.∵GE>0,∴GE=.∴EG的长为.12.如图,圆内接四边形ABCD的边AB、DC的延长线交于E,AD、BC延长线交于F,EF中点为G,AG与圆交于K.求证:C、E、F、K四点共圆.证明:延长AG到H,使得GH=AG,连接EH、FH、CK,如图所示.∵GH=AG,EG=FG,∴四边形AEHF是平行四边形,∴∠EAG=∠GHF,∠GAF=∠GHE.∵A、B、C、K四点共圆,∴∠KCF=∠EAG,∴∠KCF=∠GHF,∴K、C、H、F四点共圆.∵K、C、A、D四点共圆,∴∠KCD=∠KAF,∴∠KCD=∠GHE,∴K、C、E、H四点共圆,∴K、C、E、H、F五点共圆,∴C、E、F、K四点共圆.13.在半圆O中,AB为直径,一直线交半圆周于C、D,交AB延长线于M(MB<MA,AC<MD),设K是△AOC与△DOB的外接圆除点O外的另一个交点,求证:∠MKO=90°.证明:连接CK,BK,BC,如图所示.∵AB是⊙O直径,∴∠ACB=90°,∴∠OAC+∠ABC=90°.∵A、B、C、D四点共圆,∴∠BDC=∠BAC.∵A、O、C、K四点共圆,∴∠CKO=∠OAC.∵D、O、B、K四点共圆,∴∠BKO=∠BDO.∴∠BKC=∠BKO﹣∠CKO=∠BDO﹣∠OAC.∵OB=OD,∴∠ABD=∠BDO.∴∠BMC=∠ABD﹣∠BDC=∠BDO﹣∠BAC=∠BKC.∴B、C、K、M四点共圆.∴∠ABC=∠MKC.∴∠MKO=∠MKC+∠CKO=∠ABC+∠OAC=90°.14.已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,求证:AB=AE;(2)如图2,当∠BAC=90°,∠ABC=2∠ACB,过点D作AC的垂线,垂足为点H,并延是点D关于直线AC的对长DH交射线AE于点M,过点E作BP的垂线,垂足为点G,点D1之间的数量关系,并证明你的结论.称点,试探究AG和MD1解:(1)证明:连接BF,如图1.设∠A CB=x,则∠ABC=3x,∵FD垂直平分BC,∴FB=FC,∴∠FBC=∠FCB=x,∴∠ABF=∠AFB=2x,∴AB=AF,∠PAC=4x.∵AE平分∠PAC,∴∠EAC=2x.∵∠AFE=∠DFC=90°﹣x,∴∠AEF=180°﹣∠EAF﹣∠AFE=180°﹣2x﹣(90°﹣x)=90°﹣x,∴∠AEF=∠AFE,∴AE=AF,∴AB=AE..(2)AG=MD1证明:作EN⊥AC于N,取EC中点O,、NM、MC、MO、NO、EB、EC,如图2.连接AD1∵AE平分∠PAC,EN⊥AC,EG⊥AP,∴EG=EN,∠EGA=∠ENA=90°.∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,∴四边形EGAN是矩形.∵EG=EN,∴矩形EGAN是正方形,∴AG=AN,∠EAN=45°,∠GEN=90°.∵ED垂直平分BC,∴EB=EC.在Rt△BEG和Rt△CEN中,,∴Rt△BEG≌Rt△CEN(HL),∴∠GBE=∠NCE,∠GEB=∠NEC,∴∠GEN=∠BEC=90°∵EB=EC,∴∠ECB=∠EBC=45°.∵∠BAC=90°,∠ABC=2∠ACB,∴∠ABC=60°,∠ACB=30°,∴∠ABE=∠ACE=15°.∵∠BAC=90°,点D为BC中点,∴AD=CD,∴∠DAC=∠DCA=30°.∵点D与点D关于AC对称,1AC=∠DAC=30°,∴∠D1=45°﹣30°=15°.∴∠MAD1∵DA=DC,DM⊥AC,∴DM垂直平分AC,∴MA=MC,∴∠CMH=∠AMH=90°﹣45°=45°,∴∠AMC=90°,∴∠ENC=∠AMC=90°.∵点O为EC中点,∴ON=OM=OE=OC=EC,∴E、N、C、M四点共圆,∴∠EMN=∠ECN=15°,∴∠MAD=∠EMN=15°,1中,在△AMN和△MAD1,,∴△AMN≌△MAD1,∴AN=MD1.∴AG=MD115.在平面直角坐标系中,已知A(2,2),AB⊥y轴于B,AC⊥x轴于C.(1)如图1,E为线段OB上一点,连接AE,过A作AF⊥AE交x轴于F,连EF,ED平分∠OEF交OA于D,过D作DG⊥EF于G,求DG+EF的值;(2)如图2,D为x轴上一点,AC=CD,E为线段OB上一动点,连接DA、CE、F是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不变,求其值;若改变,求其变化范围.解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=90°.∵∠BOC=90°,∴四边形ABOC是正方形,∴AB=AC=BO=CO=2,OA平分∠BOC,∠BAC=90°.∵AF⊥AE,∴∠EAF=90°,∴∠BAC=∠EAF,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,BE=CF.设BE=CF=t,OE=2﹣t,OF=2+t.∵ED平分∠OEF,∴点D是△OEF的内心.如图1,作DM⊥OB于M,作DH⊥OF于H,且DG⊥EF于G,∴DG=DM=DH,∴四边形MOHD是正方形,∴MO=HO=DM=DG.设DG=MO=x,∴x=,∴x=,∴EF=4﹣2x,∴WF=2﹣x.∴DG+EF=x+2﹣x=2.即DG+EF的值为2;(2)∠KBF的大小不变,∠KBF=45°如图2,延长BF交AC于G,连接KG,作KM⊥AB于M,KN⊥AC于N,∵四边形ABOC是正方形,∴O B∥AC.∴∠EBF=∠CGF,∠BEF=∠GCF.∵F是CE的中点,∴EF=CF.在△BEF和△GCF中,,∴△BEF≌△GCF(AAS),∴BF=GF.∵BF⊥FK,∴∠BFK=∠GFK=90°.在△BFK和△GFK中,,∴△BFK≌△GFK(SAS)∴BK=GK.∵AC=CD,∠ACD=90°,∴△ACD是等腰直角三角形,∴∠CAD=45°.∵KN⊥AC,∴∠ANK=90°,∴∠AKN=45°,∴AN=KN.∵KM⊥AB,∴四边形AMKN是正方形,∴KM=KN.∠M=∠GNK=90°AM∥KN.在Rt△BKM和Rt△GKN中,,∴Rt△BKM≌Rt△GKN(HL),∴∠MBK=∠NGK.∠GKN=∠BKM.∵AM∥KN,∴∠BKN=∠MBK.∵∠BKM+∠BKN=90°,∴∠GKN+∠BKN=90°,即∠BKG=90°.∵BK=GK,∴△BKG是等腰直角三角形.∴∠KBF=45°,∴∠KBF的大小不变,∠KBF=45°.16.如图,已知⊙O1与⊙O2相交于A,B两点,直线MN⊥AB于A,且分别与⊙O1,⊙O2交于M、N,P为线段MN的中点,又∠AO1Q1=∠AO2Q2,求证:PQ1=PQ2.解:连接MQ1、BQ1、BQ2、NQ2,过点P作PH⊥Q1B于H,如图所示.则由圆内接四边形的性质可得:∠Q1MA+∠ABQ1=180°,∠ABQ2+∠ANQ2=180°,∠MAB=∠BQ2N.由圆周角定理可得:∠ABQ 1=∠AO 1Q 1,∠ANQ 2=∠AO 2Q 2. ∵∠AO 1Q 1=∠AO 2Q 2, ∴∠ABQ 1=∠ANQ 2,∴∠ABQ 2+∠ABQ 1=∠ABQ 2+∠ANQ 2=180°, ∴Q 1、B 、Q 2三点共线.由圆内接四边形的性质可得:∠ABQ 1=∠ANQ 2, ∴∠Q 1MA +∠ANQ 2=∠Q 1MA +∠ABQ 1=180°, ∴MQ 1∥NQ 2. ∵AB ⊥MN , ∴∠MAB =90°,∴∠Q 1Q 2N =∠MAB =90°. ∵PH ⊥Q 1B ,即∠Q 1HP =90°, ∴∠Q 1HP =∠Q 1Q 2N , ∴PH ∥NQ 2, ∴MQ 1∥PH ∥NQ 2. ∵P 为线段MN 的中点, ∴H 为线段Q 1Q 2的中点, ∴PH 垂直平分Q 1Q 2, ∴PQ 1=PQ 2.。
初中几何竞赛试题及答案
初中几何竞赛试题及答案1. 题目:已知三角形ABC中,AB=AC,点D在BC边上,且BD=DC。
求证:AD是角BAC的平分线。
答案:由于AB=AC,根据等腰三角形的性质,我们知道角B等于角C。
又因为BD=DC,所以三角形ABD和三角形ACD是全等的。
根据全等三角形对应角相等的性质,我们可以得出角BAD等于角CAD。
因此,AD是角BAC的平分线。
2. 题目:在一个矩形ABCD中,E是边AB上的一点,且AE=2EB。
如果三角形BCE的面积是6平方厘米,求矩形ABCD的面积。
答案:设矩形ABCD的长为a,宽为b。
则三角形BCE的底边BC等于b,高EC等于2/3a。
根据三角形面积公式,三角形BCE的面积为1/2 *BC * EC = 1/2 * b * (2/3)a = 6。
解得ab = 18。
因此,矩形ABCD的面积为ab = 18平方厘米。
3. 题目:如果一个圆的半径增加20%,那么它的面积增加了多少百分比?答案:设原圆的半径为r,那么增加后的半径为1.2r。
原圆的面积为πr^2,增加后的面积为π(1.2r)^2 = 1.44πr^2。
面积增加的百分比为(1.44πr^2 - πr^2) / πr^2 * 100% = 44%。
因此,圆的面积增加了44%。
4. 题目:在直角三角形ABC中,角C为直角。
如果角A的正切值是3/4,求角B的正切值。
答案:在直角三角形ABC中,角A和角B互为余角,即角A + 角B = 90度。
根据正切的定义,tan(A) = 对边/邻边 = 3/4。
由于tan(90度- B) = cot(B) = 1/tan(B),我们可以得出tan(B) = 4/3。
因此,角B的正切值为4/3。
5. 题目:一个正五边形的内角和是多少度?答案:正五边形有5个内角,每个内角的度数可以通过公式(n-2) * 180度/n计算,其中n为边数。
将5代入公式,我们得到(5-2) * 180度/5 = 540度/5 = 108度。
数学初中竞赛大题训练:几何专题(包含答案)
数学初中竞赛大题训练:几何专题1.阅读理解:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆.(1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°;(2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长;(3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长.解:(1)∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°,故答案为:55°;(2)在线段CA取一点F,使得CF=CD,如图2所示:∵∠C=90°,CF=CD,AC=CB,∴AF=DB,∠CFD=∠CDF=45°,∴∠AFD=135°,∵BE⊥AB,∠ABC=45°,∴∠ABE=90°,∠DBE=135°,∴∠AFD=∠DBE,∵AD⊥DE,∴∠ADE=90°,∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°,∴∠FAD=∠BDE,在△ADF和△DEB中,,∴△ADF≌△DEB(ASA),∴AD=DE,∵∠ADE=90°,∴△ADE是等腰直角三角形,∴AE=AD=2;(3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°,∴E、K、G、B和E、K、F、A分别四点共圆,∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°,∴△ABK是等边三角形,∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点,∴KM=AK•sin60°=2,∵AE=3,AM=AB=2,∴ME=3﹣2=1,∴EK===,∴EF===.2.问题再现:如图1:△ABC 中,AF 为BC 边上的中线,则S △ABF =S △ACP =S △ABC由这个结论解答下列问题:问题解决:问题1:如图2,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,则S △BOC =S 四边形ADOE .分析:△ABC 中,CD 为AB 边上的中线,则S △BCD =S △ABC ,BE 为AC 边上的中线,则S △ABE =S △ABC∴S △BCD =S △ABE∴S △BCD ﹣S △BOD =S △ABE ﹣S △BOD又∵S △BOC =S △BCD ﹣S △BOD ,S 四边形ADOE =S △ABE ﹣S △BOD即S △BOC =S 四边形ADOE问题2:如图3,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,AF 为BC 边上的中线.(1)S △BOD =S △COE 吗?请说明理由.(2)请直接写出△BOD 的面积与△ABC 的面积之间的数量关系:S △BOD =S △ABC .问题拓广:(1)如图4,E 、F 分别为四边形ABCD 的边AD 、BC 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD . (2)如图5,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD .(3)如图6,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,若S △AME =1、S △BNG =1.5、S △CQF =2、S △DPH =2.5,则S 阴= 7 .解:问题2:S △BOD =S △COE 成立,理由:∵△ABC 中,CD 为AB 边上的中线,∴S △BCD =S △ABC ,∵BE 为AC 边上的中线,∴S △CBE =S △ABC∴S △BCD =S △CBE∵S △BCD =S △BOD +S △BOC ,S △CBE =S △COE +S △BOC∴S △BOD =S △COE(2)由(1)有S △BOD =S △COE ,同(1)方法得,S △BOD =S △AOD ,S △COE =S △AOE ,S △BOF =S △COF ,∴S △BOD =S △COE =S △AOE =S △AOD ,∵点O 是三角形三条中线的交点,∴OA =2OF ,∴S △AOC =2S △COF =S △AOE +S △COE =2S △COE ,∴S △COF =S △COE ,∴S △BOD =S △COE =S △AOE =S △AOD =S △BOF =S △COF ,∴S △BOD =S △ABC ,故答案为问题拓广:(1)如图4:连接BD,由问题再现:S△BDE =S△ABD,S△BDF =S△BCD,∴S阴影=S四边形ABCD,故答案为,(2)如图5:连接BD,由问题解决:S△BMD =S△ABD,S△BDN=S△BCD,∴S阴影=S四边形ABCD,故答案为;(3)如图6,设四边形的空白区域分别为a,b,c,d,∵S△AME =1、S△BNG=1.5、S△CQF=2、S△DPH=2.5,由(1)得出:a+1+2.5=a+3.5=S△ACD①,c+1.5+2=c+3.5=S△ACB②,b +1+1.5=b +2.5=S △ABD ③,d +2+2.5=d +4.5=S △BCD ④,①+②+③+④得,a +3.5+c +3.5+b +2.5+d +4.5=a +b +c +d +14=S 四边形ABCD ⑤而S 四边形ABCD =a +b +c +d +7+S 阴影⑥∴S 阴影=7,故答案为7.3.如图,在△ABC 中,AB >AC ,内切圆⊙I 与边BC 切于点D ,AD 与⊙I 的另一个交点为E ,⊙I 的切线EP 与BC 的延长线交于点P ,CF ∥PE 且与AD 交于点F ,直线BF 与⊙I 交于点M 、N ,M 在线段BF 上,线段PM 与⊙I 交于另一点Q .证明:∠ENP =∠ENQ .证明:如图,设⊙I 与AC 、AB 分别切于点S 、T ,连接ST 、AI 、IT ,设ST 与AI 交于点G .则IE ⊥PE ,ID ⊥PD ,故I 、E 、P 、D 四点共圆,∵AS 2=AE •AD =AG •AI ,∵∠EAG =∠DAI ,∴△AEG ∽△AID ,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.4.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.5.如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD 和AC交于点N.求证:OH⊥MN.证明:∵A 、C 、D 、F 四点共圆,∴∠BDF =∠BAC又∵∠OBC =(180°﹣∠BOC )=90°﹣∠BAC ,∴OB ⊥DF .∵CF ⊥MA ,∴MC 2﹣MH 2=AC 2﹣AH 2(①)∵BE ⊥NA ,∴NB 2﹣NH 2=AB 2﹣AH 2 (②)∵DA ⊥BC ,∴BD 2﹣CD 2=BA 2﹣AC 2 (③)∵OB ⊥DF ,∴BN 2﹣BD 2=ON 2﹣OD 2 (④)∵OC ⊥DE ,∴CM 2﹣CD 2=OM 2﹣OD 2,①﹣②+③+④﹣⑤,得NH 2﹣MH 2=ON 2﹣OM 2 MO 2﹣MH 2=NO 2﹣NH 2∴OH ⊥MN .6.在图1到图4中,已知△ABC 的面积为m .(1)如图1,延长△ABC 的边BC 到点D 使CD =BC ,连接DA ,若△ACD 的面积为S 1,则S 1= m .(用含m 的式子表示)(2)如图2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连接DE .若△DEC 的面积为S 2,则S 2= 2m .(用含a 的代数式表示)(3)如图3,在图2的基础上延长AB 到点F ,使BF =AB ,连接FD 于E ,得到△DEF ,若阴影部分的面积为S 3,则S 3= 6m .(用含a 的代数式表示)(4)可以发现将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF ,如图3,此时,我们称△ABC 向外扩展了一次.可以发现扩展一次后得到的△DEF 的面积是原来△ABC 面积的 7 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC 空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH ,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?解:(1)∵CD =BC ,∴△ABC 和△ACD 的面积相等(等底同高),故得出结论S 1=m .(2)连接AD ,,∵AE =CA ,∴△DEC 的面积S 2为△ACD 的面积S 1的2倍,故得出结论S 2=2m .(3)结合(1)(2)得出阴影部分的面积为△DEC 面积的3倍, 故得出结论则S 3=6m .(4)S △DEF =S 阴影+S △ABC=S 3+S △ABC=6m +m=7m=7S △ABC故得出结论扩展一次后得到的△DEF 的面积是原来△ABC 面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米. 7.(1)如图①,AD 是△ABC 的中线,△ABD 与△ACD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S ,例如:△ABC 的面积记为S △ABC ,如图②,已知S △ABC =1,△ABC 的中线AD 、CE 相交于点O ,求四边形BDOE 的面积.小华利用(1)的结论,解决了上述问题,解法如下:连接BO ,设S △BEO =x ,S △BDO =y ,由(1)结论可得:S,S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x . 则有,即.所以.请仿照上面的方法,解决下列问题: ①如图③,已知S △ABC =1,D 、E 是BC 边上的三等分点,F 、G 是AB 边上的三等分点,AD 、CF 交于点O ,求四边形BDOF 的面积.②如图④,已知S △ABC =1,D 、E 、F 是BC 边上的四等分点,G 、H 、I 是AB 边上的四等分点,AD 、CG 交于点O ,则四边形BDOG 的面积为 .解:(1)S △ABD =S △ACD .∵AD 是△ABC 的中线,∴BD =CD ,又∵△ABD 与△ACD 高相等,∴S △ABD =S △ACD .(2)①如图3,连接BO ,设S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =S △ABC =S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有,即,所以x +y =,即四边形BDOF 的面积为;②如图,连接BO ,设S △BDO =x ,S △BGO =y ,S△BCG =S△ABD=S△ABC=,S△BCO =4S△BDO=4x,S△BAO =4S△BGO=4y.则有,即,所以x+y=,即四边形BDOG的面积为,故答案为:.8.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=62.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,,∵S A+S B+S C+S D+S E+S F+S G=S大正方形∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003=50502=25502500.故一切看不见的棱长为1的小立方体的总个数为25502500.故答案为:62;.9.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC 与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.10.如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过点C、D作边BC、AD 的垂线,设两条垂线的交点为P,过点P作PQ⊥AB于Q,求证:∠PQC=∠PQD.证明:连接AP、BP,取AP的中点E,取BP的中点F,连接DE、ME、QE、CF、QF、MF,如图.∵E为AP的中点,F为BP的中点,M为AB的中点,∴EM∥BP,EM=BP,MF∥AP,MF=AP.∵E为AP的中点,F为BP的中点,∠ADP=∠BCP=90°,∴DE=AE=EP=AP,FC=PF=BF=BP,∴DE=MF,EM=FC.在△DEM和△MFC中,,∴△DEM≌△MFC(SSS),∴∠DEM=∠MFC.∵EM∥BP,MF∥AP,∴四边形PEMF是平行四边形,∴∠PEM=∠PFM.又∵∠DEM=∠MFC,∴∠DEP=∠CFP.∵DE=AE,FC=BF,∴∠DAE=∠ADE=∠DEP,∠FBC=∠FCB=∠CFP,∴∠DAE=∠FBC,即∠DAP=∠PBC.∵∠ADP=∠AQP=90°,E为AP中点,∴ED=EA=EQ=EP=AP,∴D、A、Q、P四点共圆,∴∠PQD=∠DAP.同理可得:∠PQC=∠PBC,∴∠PQD=∠PQC.11.如图:D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,作CE∥AB,交AD或其延长线于E,连接BE交AC与G,AE=CE,过C作CM⊥AD交AD延长线于点M,MC与⊙O相切,CE=7,CD=6,求EG的长.解:连接OC,如图.∵MC与⊙O相切,∴OC⊥MC.∵CM⊥AD,∴OC∥AM.∵CE∥AB,∴四边形AOCE是平行四边形,∴OA=CE=7,∴AB=14.∵点C是弧BD的中点,∴BC=CD=6.∵AB是⊙O的直径,∴∠ACB=90°,∴AC===4.∵CE∥AB,∴△CGE∽△AGB,∴===,∴AG=AC=.在Rt△ACB中,cos∠BAC===.∵点C是弧BD的中点,∴∠BAC=∠CAD,即∠BAC=∠EAG,∴cos∠EAG=.在△EAG中,cos∠EAG=.∴=.∵AG=,AE=CE=7,∴=.整理得:GE2=.∵GE>0,∴GE=.∴EG的长为.12.如图,圆内接四边形ABCD的边AB、DC的延长线交于E,AD、BC延长线交于F,EF中点为G,AG与圆交于K.求证:C、E、F、K四点共圆.证明:延长AG到H,使得GH=AG,连接EH、FH、CK,如图所示.∵GH=AG,EG=FG,∴四边形AEHF是平行四边形,∴∠EAG=∠GHF,∠GAF=∠GHE.∵A、B、C、K四点共圆,∴∠KCF=∠EAG,∴∠KCF=∠GHF,∴K、C、H、F四点共圆.∵K、C、A、D四点共圆,∴∠KCD=∠KAF,∴∠KCD=∠GHE,∴K、C、E、H四点共圆,∴K、C、E、H、F五点共圆,∴C、E、F、K四点共圆.13.在半圆O中,AB为直径,一直线交半圆周于C、D,交AB延长线于M(MB<MA,AC<MD),设K是△AOC与△DOB的外接圆除点O外的另一个交点,求证:∠MKO=90°.证明:连接CK,BK,BC,如图所示.∵AB是⊙O直径,∴∠ACB=90°,∴∠OAC+∠ABC=90°.∵A、B、C、D四点共圆,∴∠BDC=∠BAC.∵A、O、C、K四点共圆,∴∠CKO=∠OAC.∵D、O、B、K四点共圆,∴∠BKO=∠BDO.∴∠BKC=∠BKO﹣∠CKO=∠BDO﹣∠OAC.∵OB=OD,∴∠ABD=∠BDO.∴∠BMC=∠ABD﹣∠BDC=∠BDO﹣∠BAC=∠BKC.∴B、C、K、M四点共圆.∴∠ABC=∠MKC.∴∠MKO=∠MKC+∠CKO=∠ABC+∠OAC=90°.14.已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,求证:AB=AE;(2)如图2,当∠BAC=90°,∠ABC=2∠ACB,过点D作AC的垂线,垂足为点H,并延是点D关于直线AC的对长DH交射线AE于点M,过点E作BP的垂线,垂足为点G,点D1称点,试探究AG和MD之间的数量关系,并证明你的结论.1解:(1)证明:连接BF,如图1.设∠A CB=x,则∠ABC=3x,∵FD垂直平分BC,∴FB=FC,∴∠FBC=∠FCB=x,∴∠ABF=∠AFB=2x,∴AB=AF,∠PAC=4x.∵AE平分∠PAC,∴∠EAC=2x.∵∠AFE=∠DFC=90°﹣x,∴∠AEF=180°﹣∠EAF﹣∠AFE=180°﹣2x﹣(90°﹣x)=90°﹣x,∴∠AEF=∠AFE,∴AE=AF,∴AB=AE..(2)AG=MD1证明:作EN⊥AC于N,取EC中点O,、NM、MC、MO、NO、EB、EC,如图2.连接AD1∵AE平分∠PAC,EN⊥AC,EG⊥AP,∴EG=EN,∠EGA=∠ENA=90°.∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,∴四边形EGAN是矩形.∵EG=EN,∴矩形EGAN是正方形,∴AG=AN,∠EAN=45°,∠GEN=90°.∵ED垂直平分BC,∴EB=EC.在Rt△BEG和Rt△CEN中,,∴Rt△BEG≌Rt△CEN(HL),∴∠GBE=∠NCE,∠GEB=∠NEC,∴∠GEN=∠BEC=90°∵EB=EC,∴∠ECB=∠EBC=45°.∵∠BAC=90°,∠ABC=2∠ACB,∴∠ABC=60°,∠ACB=30°,∴∠ABE=∠ACE=15°.∵∠BAC=90°,点D为BC中点,∴AD=CD,∴∠DAC=∠DCA=30°.∵点D与点D关于AC对称,1AC=∠DAC=30°,∴∠D1=45°﹣30°=15°.∴∠MAD1∵DA=DC,DM⊥AC,∴DM垂直平分AC,∴MA=MC,∴∠CMH=∠AMH=90°﹣45°=45°,∴∠AMC=90°,∴∠ENC=∠AMC=90°.∵点O为EC中点,∴ON=OM=OE=OC=EC,∴E、N、C、M四点共圆,∴∠EMN=∠ECN=15°,∴∠MAD=∠EMN=15°,1中,在△AMN和△MAD1,,∴△AMN≌△MAD1,∴AN=MD1.∴AG=MD115.在平面直角坐标系中,已知A(2,2),AB⊥y轴于B,AC⊥x轴于C.(1)如图1,E为线段OB上一点,连接AE,过A作AF⊥AE交x轴于F,连EF,ED平分∠OEF交OA于D,过D作DG⊥EF于G,求DG+EF的值;(2)如图2,D为x轴上一点,AC=CD,E为线段OB上一动点,连接DA、CE、F是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不变,求其值;若改变,求其变化范围.解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=90°.∵∠BOC=90°,∴四边形ABOC是正方形,∴AB=AC=BO=CO=2,OA平分∠BOC,∠BAC=90°.∵AF⊥AE,∴∠EAF=90°,∴∠BAC=∠EAF,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,BE=CF.设BE=CF=t,OE=2﹣t,OF=2+t.∵ED平分∠OEF,∴点D是△OEF的内心.如图1,作DM⊥OB于M,作DH⊥OF于H,且DG⊥EF于G,∴DG=DM=DH,∴四边形MOHD是正方形,∴MO=HO=DM=DG.设DG=MO=x,∴x=,∴x=,∴EF=4﹣2x,∴WF=2﹣x.∴DG+EF=x+2﹣x=2.即DG+EF的值为2;(2)∠KBF的大小不变,∠KBF=45°如图2,延长BF交AC于G,连接KG,作KM⊥AB于M,KN⊥AC于N,∵四边形ABOC是正方形,∴O B∥AC.∴∠EBF=∠CGF,∠BEF=∠GCF.∵F是CE的中点,∴EF=CF.在△BEF和△GCF中,,∴△BEF≌△GCF(AAS),∴BF=GF.∵BF⊥FK,∴∠BFK=∠GFK=90°.在△BFK和△GFK中,,∴△BFK≌△GFK(SAS)∴BK=GK.∵AC=CD,∠ACD=90°,∴△ACD是等腰直角三角形,∴∠CAD=45°.∵KN⊥AC,∴∠ANK=90°,∴∠AKN=45°,∴AN=KN.∵KM⊥AB,∴四边形AMKN是正方形,∴KM=KN.∠M=∠GNK=90°AM∥KN.在Rt△BKM和Rt△GKN中,,∴Rt△BKM≌Rt△GKN(HL),∴∠MBK=∠NGK.∠GKN=∠BKM.∵AM∥KN,∴∠BKN=∠MBK.∵∠BKM+∠BKN=90°,∴∠GKN+∠BKN=90°,即∠BKG=90°.∵BK=GK,∴△BKG是等腰直角三角形.∴∠KBF=45°,∴∠KBF的大小不变,∠KBF=45°.16.如图,已知⊙O1与⊙O2相交于A,B两点,直线MN⊥AB于A,且分别与⊙O1,⊙O2交于M、N,P为线段MN的中点,又∠AO1Q1=∠AO2Q2,求证:PQ1=PQ2.解:连接MQ1、BQ1、BQ2、NQ2,过点P作PH⊥Q1B于H,如图所示.则由圆内接四边形的性质可得:∠Q1MA+∠ABQ1=180°,∠ABQ2+∠ANQ2=180°,∠MAB=∠BQ2N.由圆周角定理可得:∠ABQ 1=∠AO 1Q 1,∠ANQ 2=∠AO 2Q 2. ∵∠AO 1Q 1=∠AO 2Q 2,∴∠ABQ 1=∠ANQ 2,∴∠ABQ 2+∠ABQ 1=∠ABQ 2+∠ANQ 2=180°, ∴Q 1、B 、Q 2三点共线.由圆内接四边形的性质可得:∠ABQ 1=∠ANQ 2, ∴∠Q 1MA +∠ANQ 2=∠Q 1MA +∠ABQ 1=180°, ∴MQ 1∥NQ 2.∵AB ⊥MN ,∴∠MAB =90°,∴∠Q 1Q 2N =∠MAB =90°.∵PH ⊥Q 1B ,即∠Q 1HP =90°,∴∠Q 1HP =∠Q 1Q 2N ,∴PH ∥NQ 2,∴MQ 1∥PH ∥NQ 2.∵P 为线段MN 的中点,∴H 为线段Q 1Q 2的中点,∴PH 垂直平分Q 1Q 2,∴PQ 1=PQ 2.。
全国初中数学竞赛试题汇编---几何解答题及答案
全国初中数学竞赛试题汇编---几何解答题1、如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解:(1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=°−∠=°−∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=.因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC =,即2r a l y =,故2alr y=.所以22223222()4422a l a aS S a Sr y y y y ==⋅=⋅≥,即r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r .2、如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明.因为FCD EAB ∠=∠,所以Rt △FCD ∽Rt △EAB .于是可得CD DF BE AB =⋅.同理可得CEEG AD AB=⋅.又因为tan AD BEACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅,于是可得DF EG =.解法2:结论是DF EG =.下面给出证明连接DE ,因为90ADB AEB ∠=∠=°,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠.又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠.所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .3、是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论.解:存在满足条件的三角形.当△ABC 的三边长分别为6=a ,4=b ,5=c 时,B A ∠=∠2.………………5分如图,当B A ∠=∠2时,延长BA 至点D ,使b AC AD ==.连接CD ,则△ACD 为等腰三角形.因为BAC ∠为△ACD 的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以D B ∠=∠.所以△CBD 为等腰三角形.又D ∠为△ACD 与△CBD 的一个公共角,有△ACD ∽△CBD ,于是BDCDCD AD =,即cb aa b +=,所以()c b b a +=2.而264(45)=×+,所以此三角形满足题设条件,故存在满足条件的三角形.………………15分说明:满足条件的三角形是唯一的.若B A ∠=∠2,可得()c b b a +=2.有如下三种情形:(i )当b c a >>时,设1+=n a ,n c =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()()()21121n n n +=−−,解得5=n ,有6=a ,4=b ,5=c ;(ⅱ)当b a c >>时,设1+=n c ,n a =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()n n n 212⋅−=,解得2=n ,有2=a ,1=b ,3=c ,此时不能构成三角形;(ⅲ)当c b a >>时,设1+=n a ,n b =,1−=n c (n 为大于1的正整数),代入()c b b a +=2,得()()1212−=+n n n ,即0132=−−n n ,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.4、△ABC 的三边长,,,,,BC a AC b AB c a b c === 都是整数,且,a b 的最大公约数是2.点G和点I 分别为△ABC 的重心和内心,且90oGIC ∠=,求△ABC 的周长.解:如图,连结GA ,GB ,过G ,I 作直线交BC 、AC 于点E 、F ,作△ABC 的内切圆I ,切BC 边于点D 。
八年级数学竞赛几何综合练习题
八年级数学竞赛几何综合练习题一、典型例题例1(2005重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD=CD 。
例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.A B C D EEB AC B A M CD M 图3 图4 图1 图2二、强化训练 练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠AOC = ___ .3.直角三角形两直角边的长分别为5cm 和12cm ,则斜边上的中线长为4.等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.5.已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.6.点O 是平行四边形ABCD 对角线的交点,若平行四边行ABCD 的面积为8cm ,则△AOB 的面积为 .7.如果圆的半径R 增加10% , 则圆的面积增加_________ . 8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. △ABC 三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 . 10.在Rt △ABC 中,AD 是斜边BC 上的高,如果BC=a ,∠B=30°,那么AD 等于 . 练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 [ ] A.30° B.45° C.60° D.75°2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]A .矩形B .三角形C .梯形D .菱形3.下列图形中,不是中心对称图形的是[ ]A. B. C. D.4.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段5.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形6.如果两个圆的半径分别为4cm 和5cm,圆心距为1cm ,那么这两个圆的位置关系是 [ ]A.相交B.内切C.外切D.外离7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为 [ ]8.A.B.C三点在⊙O上的位置如图所示,若∠AOB=80°,则∠ACB等于 [ ]A.160° B.80°C.40° D.20°9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF 的度数是[ ]A.160°B.150°C.70°D.50°(第9题图)(第10题图)10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有 [ ]A.2对B.3对C.4对D.5对练习三:几何作图1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。
全国各地初中(九年级)数学竞赛《几何》真题大全 (附答案)
全国各地初中(九年级)数学竞赛专题大全竞赛专题7 几何一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于AB 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率.13.(2021·全国·九年级竞赛)平面上给出n个不全共线的点,求证:存在一条直线l,它恰通过其中两个点.14.(2021·全国·九年级竞赛)已知A,B,C,D为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A,B,C,D在圆内或圆周上)问圆的半径最小该是多少?试证明之.15.(2021·全国·九年级竞赛)任意凸四边形ABCD中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19.20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.竞赛专题7 几何答案解析一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒【答案】B 【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y z k ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B .2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于A B 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =【答案】A 【详解】解 因函数y kx b =+的图象过点(1,4)P ,所以4,4k b b k =+=-,于是(4)y kx k =+-. 令0y =得4,0k A k -⎛⎫⎪⎝⎭. 令0x =得(0,4)B k -.连OP ,得 114122OABOAP OPBSSSOA OB =+=⨯⨯+⨯⨯ 14141(4)22k k k -=⨯⨯+⨯⨯- 11642k k ⎛⎫=-+ ⎪⎝⎭.显然0k <.令k u =-,则0u >,于是116116442822OABSu u u u⎛⎫=++≥+⨯⨯= ⎪⎝⎭.等号成立当且仅当16(0)u u u=>,即4u =,这时4,48k b k =-=-=. 故选A .注:OAB 的面积也可用114(4)22OABk SOA OB k k-=⨯⨯=⨯⨯-算出. 3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4【答案】C 【详解】作图知与DEF 相似的三角形,而相似比不同的三角形只有如图所示的三种,故选C .二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.【答案】550(010)y x x =+<< 【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFBAFPD y SS =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<. 故应填550(010)y x x =+<<.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 【答案】1133.【详解】如图,设1O 的半径为8,2O ,3O 的半径为5,切点为A .由对称性,能盖住这3个圆的最小圆形纸片的中心O 在对称轴1O A 上,且与已知三个圆内切.若设这个圆形纸片的半径为r ,则在12Rt O O A 中22221122(85)512O A OO O A =-=+-=,在2Rt OO A 中,25OO r =-,1112(8)OA O A OO r =-=--,25O A =,于是,由22222OO O A OA =+得222(5)5(128)r r -=+-+,由此解出4011333r ==,即所求圆形纸片的最小半径等于1133.6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______. 【答案】42π+【详解】如图,所覆盖面积2 114214222ABCS S S ππ=+=⨯⨯+⋅=+半圆.故答案为:42π+.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 【答案】49【详解】解 要使圆碟与地砖的边缘不相交的条件是落地后圆碟的中心到正六边形地砖ABCDEF 的任何一边的距离不小于圆的半径63cm ,也就是圆碟的中心必落在与地砖ABCDEF 同中心且边与地砖边彼此平行、距离为63111111A B C D E F 内(图6-1).作OG AB ⊥于G ,交11A B 于1G 且163cm GG =,所以33336183OG AB ====1118363123OG OG GG =-==而113OG =,所以1132433OA ===,故11124A B OA ==. 设正六边形ABCDEF 和111111A B C D E F 的面积分别为S 和1S ,则所求概率为22211122224243639S A B p S AB =====.故应填49. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.【答案】9条,见解析 【详解】解法一:设最少要连n 条线段,如图4-3中7个点之间共连有9条线段,其中任意三点间必有两点连有线段,故9n ≤.另一方面,我们证明9n ≥,下面分4种情形讨论: (1)若7点中存在一点1A 不与其他6点237,,,A A A 连线,则依题意1A ,i A ,j A (27)i j ≤<≤中必有2点连线,于是只可能i A 与j A 连有线,即237,,,A A A 这6点中任意两点连有线,图中一共连了65152⨯=条线. (2)若7点中存在一点1A 只连出一条线段,设1A 仅与2A 连有线而与其余5点3A ,4A ,5A ,6A ,7A ,没有连线,则同(1)可知3A ,4A ,5A ,6A ,7A 这5点中任意两点连有线,至少连有54102⨯=条线.(3)若每点出发至少连出2条线,且有一点恰连出2条线.设该点为1A ,它连出的两条线为12A A ,13A A ,则不与1A 相连的4个点每两点连有线,要连4362⨯=条线,而2A 连出的线段至少2条,除21A A 外,至少还有一条,所以此时至少要连6219++=条线. (4)若每点至少连出3条线,则至少要连73102⨯>条线. 综上所述,最少要连9条线段.解法二:设7点中从1A 出发所连的线段最少,只有k 条,设它们是121311,,,k A A A A A A +,其余6k -个点126,,,k B B B -都与1A 没有连线,于是对任意2点i B ,j B (16)i j k ≤<≤-,由已知条件知1A ,i B ,j B 中必有2点连有线,而1A 与i B ,1A 与j B 没有连线,故只可能i B 与j B 连有线,即16,,k B B -中每点与其余5k -点连有线,于是从各点连出的线段数的总和不少于(1)(6)(5)k k k k ++--221030k k =-+.但上述计数中每条线段计算了2次,故图中所连线段至少为()21210302k k -+=22551522k ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭22151522⎛⎫⎛⎫≥+- ⎪ ⎪⎝⎭⎝⎭1569=-=,即至少要连9条线段. 另一方面,如图4-3中,7点中连有9条线段时满足题设条件. 综上所述,最少要连9条线段.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 【答案】见解析 【详解】分析 把圆等分为9个扇形显然不行(虽然必有一扇形内至少有2点,但不保证它们的距离小于2),因此,我们先作一个与已知圆同心的小圆(其直径必须小于2,但不能太小),然后将余下的圆环部分8等分. 证明 设O 是已知圆心,如图,以O 为圆心作半径为0.9的圆,再将余下的圆环8等分,于是将已知圆面分成了9个部分,由抽屉原理知其中必有一部分内至少有已知10点中的101129-⎡⎤+=⎢⎥⎣⎦点,M N ,若,M N 在小圆内,则220.9 1.82MN OC ≤=⨯=<. 若,M N 同在一个扇面形内,则由余弦定理,有222cos45MN AC OC OA OC OA ≤+-⋅︒0.81 6.2520.9 2.50.7 3.912+-⨯⨯⨯<.从例2可以看出,分割图形制造“抽屉”时,可能不是将图形等分为几部分,而是要求分割的每一部分图形都具有所需要的性质(例2中每一部分图形内任意两点的距离都小于2),读者应用这种方法解题时,应该注意到这一点.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.【答案】见解析 【详解】证明 如图,以1A 为位似中心,以2:1为相似比作1M 的位似图形M ,则M 仍为凸五边形且1M 在M 内.下面我们证明2345,,,M M M M 都在M 内,例如先证4M 在M 内.设P 是4M 内任意一点,它是1M 内的点Q 经过平移得到的,于是14QP A A ∥,故14A A PQ 为平行四边形,又R 是14A A PQ 的两条对角线的交点,因Q 和4A 属于1M ,且1M 是凸五边形,故R 属于M ,而111,:2:1A R RP A P A R ==,故P 属于M .又P 是M ,内任意一点,所以4M 包含在M 之内,同理235,,M M M 都包含在M 内,设12345,,,,M M M M M 及M 的面积分别为12345,,,,S S S S S 及S ,则2123451152S S S S S S S S ++++=>⋅=.于是,由图形重叠原理知,12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.【答案】见解析 【详解】证明:我们称不超过120︒的弧为好弧.不妨设以1A 为端点的好弧最少,并且设它只有1n -条,它们是12131,,,n A A A A A A ,从而以231,,,n A A A -为端点的好弧都至少有1n -条,故以这n 个点为端点的好弧至少有1(1)2n n ⋅-条,除这n 个点外,其余21n -个点记为1221,,,n n A A A ++,从中任取两点,(121)i j A A n i j +≤<≤.因1i j A A A ,至少有一个内角不超过60︒,故11,,i j i j A A A A A A 中至少有一条弧不超过260120⨯︒=︒,根据1A 的取法,这条弧不能是1i A A 和1j A A ,而只能是j i A A ,即j i A A 是好弧.可见以1221,,,n n A A A ++中任意两点,(121)i j A A n i j +≤<≤为端点的弧都为好弧.这样的好弧有1(21)(20)2n n ⋅--条.综上所述知好弧至少有2211213991399(1)(21)(20)100222424y n n n n n ⎛⎫⎛⎫=⋅-+⋅--=-+≥+= ⎪ ⎪⎝⎭⎝⎭条.当10n =或11时,y 取到最小值100,于是结论成立.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率. 【答案】59 【详解】解 我们用,x y 分别表示,A B 到达的时刻,而两人能会面的充分必要条件为20x y -≤,其中060,060x y ≤≤≤≤.我们用平面直角坐标系中的点(),x y 表示,A B 到达的时刻(从中午12点以后算起,以分为单位),于是所有可能结果是一个边长为60的正方形OABC .代表能够会面的点都落在图中画有阴影线的区域H 内(图6-2),于是21260240402H ADE OABC S S S =-⨯=-⨯⨯⨯正方形 226040=-,故两人能会面的概率为22226040251()6039HOABC S p S -===-=正方形. 答:两人能会面的概率等于59. 13.(2021·全国·九年级竞赛)平面上给出n 个不全共线的点,求证:存在一条直线l ,它恰通过其中两个点.【答案】见解析【详解】证明:平面上只有有限点,过每两点作一直线只有有限点直线,每条直线与不在这条直线上的点(由已知条件知这样的点必存在)配成对,则这样的点只有有限个,每个点线对中都有该点到直线的距离,记这些距离最小的点对为(,)P l ,则l 为所求.实际上,设l 上有不少于3个给定的已知点,则过P 作PA l ⊥于A (如图),则在l 上A 的某一侧(包括A )必有2个已知点,设为,M N (M 可能与A 重合,连PN ,并M 作MQ PN ⊥于Q ,过A 作AR PN ⊥于R ,则MQ AR AP d ≤<=,这与AP d =最小矛盾,于是结论得证.注 本题是英国著名数学家希尔维斯特(J.J. Sylvester)在其逝世前不久提出的一个有趣的问题.这个貌似简单的问题,当时困扰过不少的数学家,并且这状况持续350年之久,直到1933年,伽莱(T. Callai)给出了一个非常复杂的证明.不久以后,凯里(L. M. Kelly) 才给出上述很简单的证明,其证法的关键就是利用极端原理.14.(2021·全国·九年级竞赛)已知A ,B ,C ,D 为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A ,B ,C ,D 在圆内或圆周上)问圆的半径最小该是多少?试证明之. 3 【详解】注意最不利的情形点A 、B 、C 、D 中有3点构成边长等于1的正三角形,覆盖此三角形的圆的半径不小33 (1)A 、B 、C 、D 共线,这时4点在一条长度不超过1的线段内,结论显然成立;(2)A 、B 、C 、D 中有3点(例如A 、B 、C )构成一个三角形,第4点D 在此三角形内,不妨设60C ∠≥︒,以AB 为弦作圆O ,使AB 所对的弓形弧(含C 的一侧)为60︒,则此圆O 覆盖A 、B 、C 、D 4点.作此圆直径2AE R =,则22222(2)1R R AE BE AB -=-=≤,即3R ≤,故A 、B 、C 、D 4点被一个半径不大3 (3)A 、B 、C 、D 是一个凸四边形的4个顶点,则A C ∠+∠,B D ∠+∠中必有一个不小于180︒,不妨设180B D ∠+∠≥︒,同(2)可证ABC 的外接圆半径3≤180B D ∠+∠≥︒知D 点也在这个圆内或圆周上,故A 、B 、C 、D 3 315.(2021·全国·九年级竞赛)任意凸四边形ABCD 中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.【答案】见解析【详解】四边形的4个内角中至少有一个90≥︒,不妨设90A ∠≥︒,以对角BD 为直径的圆O 必覆盖ABD △.若90C ∠≥︒,圆O 覆盖四边形ABCD 结论成立,若90C ∠>︒,则C 在圆外,圆O 与CD 、CB 中至少一条线段相交,不妨设圆O 与CD 交于E ,于点分别以BD 、BC 为直径的两个圆覆盖四边形ABCD .16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.【答案】(1)见解析;(2)见解析【详解】(1)因为对于半径为1的圆,边长为1的正三角形至多盖住60︒的弧,边长为1的正方形至多盖住90︒的弧,边长为1的正五边形至多盖住120︒的弧(因边长为1的正五边形对角线的长<边长为1的正六边形对角线的长3=,而6090120360︒+︒+︒<︒,所以甲、乙、丙合起来不得盖住半径为1的圆.(2)如图所示,用甲、乙、丙、丁合起来可盖住半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.【答案】见解析【详解】分析 与证明设半径为6的大圆O 内任意放入6个半径为1的小圆,则小圆圆心都在以O 为中心,615-=为半径的圆内.如果大圆内无论怎样再放入一个半径为1的小圆7O ,都要与6个小圆中某个(16)i O i ≤≤重叠,那么7112i O O ≤+≤,即半径为5的圆将被6个半径为2的圆所覆盖.由图形重叠原理知6个小圆的总面积将不小于半径为5的圆的面积.但实际上226224255ππππ⋅=<=⋅,得到矛盾,于是命题得证.注:本例的证题关键是将外圆缩小,而将里圆扩大,这是解决嵌入问题的一种技巧,即收缩与膨胀技巧或裁边与镶边技巧.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.【答案】见解析.【解析】【分析】【详解】设4张圆形纸片是(1,2,3,4)k O k ,其中1O ,2O ,3O 有公共点1A ,1O ,2O ,4O 有公共点2A ,1O ,3O ,4O 有公共点3A ,2O ,3O ,4O 公共点4A .(1)若1A ,2A ,3A ,4A 共线(如图顺序),因为1A ,3A 都是圆形纸片1O 与3O 的公共点,故线段13A A 在圆形纸片1O 与2O 的公共部分内,又24A A 都是圆形纸片2O 与4O 的公共点,故线段24A A 在圆形纸片2O 与4O 的公共部分内,所以线段23A A 上任意一点都是这4张圆形纸片的公共点.(2)若1A ,2A ,3A ,4A 中有一点在以其余3点为顶点的三角形的边界上或内部(如图).因为1A ,2A ,3A 都在1O 内,故123A A A △被圆形纸片1O 所覆盖,从而4A 在圆形纸片1O 内,而4A 是圆形纸片2O ,3O ,4O 的公共点,所以4A 是这张圆形纸片的公共点.(3)若1A ,2A ,3A ,4A 是一个凸四边形的4个顶点(如图),同上可知线段13A A 在圆形纸片1O 与3O 的公共部分内,线段24A A 在圆形纸片2O 与4O 的公共部分内,所以13A A 与24A A 的交点是这4张圆形纸片的公共点.总之,这4张圆形纸片一定有公共点.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19. 【答案】见解析.【解析】【分析】【详解】从给定圆中选出半径最大的圆1O ,其半径为1r ,面积为1S ,则与圆1O 有重叠的圆连同圆1O 一起覆盖的面积()211139M r S π≤=,即1119S M ≥.然后去掉与圆1O 重叠的圆,再从剩下的圆(圆1O 除外)选出半径最大的圆2O ,其半径为2r ,并将与圆2O 有重叠的圆去掉.这样经过有限步可得有限个两两不重叠的圆1O ,2O ,…k O ,它们覆盖的面积为()12121199k k S S S M M M ++⋅⋅⋅+≥++⋅⋅⋅+=. 20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.【答案】见解析.【解析】【分析】【详解】设正方形ABCD 的边长为5,先放置一个边长为4的正方形CEFG ,其中C 为原正方形ABCD 的一个顶点,E 在边CD 上,F 在正方形ABCD 内,G 在边CB 上.连AF ,再放置第二个边长为4的正方形111AB C D ,其中A 是原正方形的一个顶点,且使D 在射线11D C 上(如图),由勾股定理有:2211D D AD AD =-2211543D C =-=<.故D 在线段11D C 内,且1111431C D D C D D =-=-=.设11B C 与CD 交于H ,则1541DE CD CE DC DH =-=-==<,故E 在线段DH 内,从而E 被正方形111AB C D 覆盖.又11145B AD B AC FAD ∠>∠=︒=∠,即AF 在1B AD 内,且1224AF DE AB ==,故F 也被正方形111AB C D 覆盖,这就证明了梯形AFED 可以被一个边长为4的正方形111AB C D 所覆盖.同理,梯形AFGB 也可以被一个边长为4的正方形222AB C D 所覆盖,于是正方形ABCD 可被3个边长为4的正方形所覆盖. 21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm 的正方形,高为30cm ,内有20cm 深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm 的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.【答案】(1)不会溢出,理由见解析;(2)不能实现要求,见解析.【解析】【分析】【详解】(1)当30α=︒时,如图a ,过C 作//CF BP 交AD 所在直线于F .在Rt CDF △中,20330,20cm,30cm FCD CD DF ∠=︒==<,所以点F 在线段AD 上,20330AF =此时容器内能容纳的溶液量为()3 ()203320203030201040003cm 2ABCF AF BC AB S ⎛⎫⎛+⋅=⋅=⋅⋅= ⎪ ⎪ ⎝⎭⎝⎭梯形.而容器中原有溶液量为()32020208000cm ⨯⨯=.因为3400038000⎛> ⎝⎭,所以当30α=︒时溶液不会溢出. (2)如图b ,当60α=︒时,过C 作//CF BP 交AB 所在直线于F .在Rt CBF △中,30cm 30BC BCF =∠=︒,,10320cm BF =<,所以点F 在线段AB 上,故溶液纵截面为Rt BFC △.因211503cm 2BFC S BC BF =⨯⨯=,容器内溶液量为315032030003cm =,倒出的溶液量为3(80003)3000cm -<,所以不能实现要求. 22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).【答案】0.879.【解析】【分析】【详解】设自当天零时算起,甲、乙两船到达码头的时刻分别是x 和y ,则必须024,024x y ≤≤≤≤.我们视(),x y 为平面直角坐标系内的点,于是点(),x y 落在一个面积为224S =的正方形OABC 的内部或边界上(如下图).如果轮船不需要等候码头空出,那么当船甲先到时,船乙应迟来1个小时以上,即1y x -≥,即1y x ≥+;当船乙先到时,船甲应迟来2个小时以上,即2x y -≥,即2y x ≤-,即点(),x y 应在直线1y x =+的上方且在直线2y x =-的下方,也就是点(),x y 应在如图所示的两个三角形ADE 和CFG △中某一个的内部或边界上,故所求概率ADE CFGABCD S S p S +=四边形.而24123,24222CG CF AD AE ==-===-=,所以211222223231103220.879241152p ⨯⨯+⨯⨯===. 答:两船中任何一艘都不需要等候码头空出的概率为0.879.23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.【答案】14【解析】【分析】【详解】解 设其中两条线段的长为,x y ,则第3条线段的长为()a x y -+,于是,x y 的取值范围是0,0,0,0,0()0.x a x a y a y a a x y a x y a ⎧<<<<⎧⎪⎪<<⇔<<⎨⎨⎪⎪<-+<<+<⎩⎩ ① 要使3条线段构成一个三角形的3条边,其充要条件是其中任意一条线段的长度小于其余两条线段的长度之和.这等价于每条线段的长度都小于2a ,即 0,0,220,0,220().22a a x x a a y y a a a x y x y a ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇔<<⎨⎨⎪⎪⎪⎪<-+<<+<⎪⎪⎩⎩ ②将(),x y 视为平面直角坐标系的坐标,则满足条件①的点(),x y 在以()()()0,0,,0,0,O A a B a 为顶点的OAB 内.而满足条件②的点(),x y 在以(,),(0,),,0()2222a a a a C D E 为顶点的CDE △内,故所求概率为11222142CDE OAB a a CD DE Sp S a a OA OB ⨯⨯⨯====⨯⨯⨯.答:3条线段能构成一个三角形的三边的概率为14. 24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.【答案】见解析【解析】【分析】如图:证明P ,A ,B ,C 四点共圆.可得CBE APC ∠=∠.①,证明C ,E ,B ,H 四点共圆,可得CHE CBE ∠=∠.②,证明C ,H ,F ,P 四点共圆,可得180APC CHF ∠=︒-∠.③,由①②③代换可得180CHE CHF ∠+∠=︒.可得结论;【详解】如图,延长BH 与直线AD 相交于点P ,连接CP .因为45DAC ∠=︒,BP AC ⊥,所以45BPA ∠=︒.又45BCADAC∠=∠=︒,所以BPA BCA ∠=∠,于是P ,A ,B ,C 四点共圆.所以CBE APC ∠=∠.①连接CE ,由AC 为圆直径,得90CEA CHB ∠=︒=∠,所以C ,E ,B ,H 四点共圆,于是CHE CBE ∠=∠.②连接CF ,由AC 为圆直径,得90CFP CHP ∠=︒=∠,所以C ,H ,F ,P 四点共圆,于是180APC CHF ∠=︒-∠.③由②,①,③,得180CHE CBE APC CHF ∠=∠=∠=︒-∠,所以180CHE CHF ∠+∠=︒.所以E ,H ,F 三点共线.【点睛】本题考查了圆内接罩边形的判断及性质,难度较大,解题的关键是构造圆内接四边形.。
2024全国初中数学竞赛试题
1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
初中联赛难度经典几何题(精编版,精选10年初中数学联赛,各地竞赛,中考压轴的高难度几何经典题)
初中几何经典难题1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150.求证:△PBC 是正三角形.3、如图,已知四边形ABCD、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.APCDB AFGCEBODD 2C 2B 2A 2D 1C 1B 1C BDAA 14、已知:如图,在四边形ABCD 中,AD=BC,M、N 分别是AB、CD 的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.6、设MN 是圆O 外一直线,过O 作OA⊥MN 于A,自A 引圆的两条直线,交圆于B、C 及D、E,直线EB 及CD 分别交MN 于P、Q.求证:AP=AQ.ANF ECD MB·ADHE M CBO·GA O DB ECQP NMPCGFBQADE7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC、DE,设CD、EB 分别交MN 于P、Q.求证:AP=AQ.8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.9、如图,四边形ABCD 为正方形,DE∥AC,AE=AC,AE 与CD 相交于F.求证:CE=CF.·O QPBDECN M·A AF DECB10、如图,四边形ABCD 为正方形,DE∥AC,且CE=CA,直线EC 交DA 延长线于F.求证:AE=AF.11、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP,CF 平分∠DCE.求证:PA=PF.12、如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线PO 相交于B、D.求证:AB=DC,BC=AD.DEDACBFFEP C BAOD BFA EC P13、已知:△ABC 是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB 的度数.14、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.15、设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.APCB PADCBCBDA16、平行四边形ABCD 中,设E、F 分别是BC、AB 上的一点,AE 与CF 相交于P,且AE=CF.求证:∠DPA=∠DPC.17、设P 是边长为1的正△ABC 内任一点,L=PA+PB+PC,求证:3L<218、已知:P 是边长为1的正方形ABCD 内的一点,求PA+PB+PC 的最小值.FPDE CBA APCB A CBPD19、P 为正方形ABCD 内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.20、如图,△ABC 中,∠ABC=∠ACB=800,D、E 分别是AB、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.ACBPDEDCB A。
初一几何竞赛试题及答案
初一几何竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个图形不是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 五角星2. 一个正方形的边长为4厘米,它的周长是多少厘米?A. 8厘米B. 12厘米C. 16厘米D. 20厘米3. 如果一个直角三角形的两条直角边分别为3厘米和4厘米,那么它的斜边长度是多少?A. 5厘米B. 6厘米C. 7厘米D. 8厘米4. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米5. 在一个平面直角坐标系中,点A(-3, 4)关于y轴的对称点是什么?A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)答案:1-5:D C A B C二、填空题(每题2分,共10分)6. 一个等腰三角形的两边长分别为5厘米和10厘米,它的周长是________厘米。
7. 一个长方形的长是8厘米,宽是4厘米,它的面积是________平方厘米。
8. 如果一个平行四边形的对角线互相垂直,那么它是一个________。
9. 在直角坐标系中,点P(1, 2)到x轴的距离是________厘米。
10. 一个正六边形的内角是________度。
答案:6-10:20 32 菱形 2 120三、简答题(每题5分,共20分)11. 如何证明一个三角形是直角三角形?12. 什么是相似三角形的性质?13. 什么是圆的切线?它有哪些特点?14. 什么是正多边形?请列举至少三种正多边形。
答案:11. 一个三角形是直角三角形,如果它有一个内角等于90度。
12. 相似三角形的性质包括:对应角相等,对应边成比例。
13. 圆的切线是与圆相切且只在一个点上接触圆的直线。
特点包括:切线与过切点的半径垂直。
14. 正多边形是所有边长相等,所有内角也相等的多边形。
例如:正方形、正五边形、正六边形。
四、计算题(每题10分,共20分)15. 一个圆的直径是14厘米,求它的半径和面积。
江苏数学竞赛初中试题及答案
江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
初中数学竞赛:几何的定值与最值(附练习题及答案)
初中数学竞赛:几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变⌒思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.⌒注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.专题训练1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 . 4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案。
初一年级数学竞赛几何练习题
初一年级数学竞赛几何练习题(总22页)页内文档均可自由编辑,此页仅为封面截长补短练习1直角三角形ABC 中,∠C=90,CD 是高,AD=1,BD=3.求∠A2在△ABC 中, AB+BD=CD , AD 是高。
求证∠B=2 ∠C3如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:EO=OD4如图,在△ABC 中,EO=OD ,AD 、CE 分别平分∠BAC 、∠ACB ,且AB 不等于BC求 ∠ABC ,求证AE+CD=AC5已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,E 在BC 上且CT=BE. 求证:DE//ABDABMTE6如图,△ABC为等边三角形,延长BC到D,延长BA到E,CE=DE,CE=DE。
连结EC、ED,求证:AE=BD7三角形ABC中,I为形内一点,AI平分∠BAC,满足ID⊥AB于D,IE⊥AC 于E,连BI,IC∠BIC=90+12∠BAC求证:BD+CE=BC8等边三角形ABC中,P在三角形外若BP+CP=AP则∠BPC=120°9三角形ABC中,I为形外一点,AI平分∠BAC,满足ID⊥AB于D,IE⊥AC 于E,连BI,IC∠BIC=90—12∠BAC求证:BD+CE=BC面积法与传统几何1如图2-82所示.在△ABC中,AD是∠BAC的外角∠CAE的平分线.求证:AB∶AC=BD∶DC.2在三角形ABC中,D在线段BC上满足AB∶AC=BD∶DC。
.求证:AD平分∠BAC3 O 为正三角形ABC 内任意一点,过O 向AB,BC,CA 作垂线段OD,OE,OF 求证0D+0E+0F 的值是定值4平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且∠DPA =∠DPC .求证:AE =CF .5在△ABC 中,DF=EF 。
数学初中竞赛几何专题训练(包含答案)
数学初中竞赛几何专题训练1.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM ⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4 B.3 C.2 D.1解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴,∵△PAM∽△PBC,∴,∴,∵AB=BC,∴AM=AN,故④正确;故选:A.2.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2 B.3 C.4 D.6解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.3.如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有()(1)A、O、B、C四点共圆(2)AC=BC(3)cos∠1==(4)S四边形AOBCA.1个B.2个C.3个D.4个解:∵∠3+∠4=180°,∴A、O、B、C四点共圆,(1)正确;作CD⊥OA于D,CE⊥OB于E,如图所示:则∠CDA=∠CEB=90°,∵∠1=∠2,∴CD=CE,∵∠3+∠4=180°,∠3+∠CAD=180°,∴∠CAD=∠4,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴AD=BE,AC=BC,(2)正确;∵cos∠1==,cos∠2==,∴cos∠1+cos∠2=+==,∵∠1=∠2,∴cos∠1=cos∠2,∴2cos∠1=,∴cos∠1=,(3)正确;∵CD=CE,sin∠1=,∴CD=c×sin∠1,∴S四边形AOBC =S△OAC+S△BOC=a×CD+b×CE=(a+b)CD=(a+b)×c×sin∠1=,(4)正确;正确的结论有4个,故选:D.4.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.解:易知D、C、E三点共线,点C是半径为1的半圆弧AB的一个三等分点,∴对的圆心角为=60°,∴∠ABC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB=1,BC=AB•COS30°=,BE=BC•COS30°=,CE=DC=,AD=,且四边形ABED为直角梯形,外层4个半圆无重叠.从而,S阴影=S梯形ABED+S△ABC﹣,=S△ADC +S△BCE,=.故选:B.5.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、M C交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ <S△ABC解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.6.已知,在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连结AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ 交DQ于F.则△PEF面积的最大值是()A.B.C.D.解:设PD =x ,S △PEF =y ,S △AQD =z ,梯形ABCD 的高为h ,∵AD =3,BC =4,梯形ABCD 面积为7, ∴, 解得:,∵PE ∥DQ , ∴∠PEF =∠QFE ,∠EPF =∠PFD ,又∵PF ∥AQ ,∴∠PFD =∠EQF ,∴∠EPF =∠EQF ,∵EF =FE ,∴△PEF ≌△QFE (AAS ),∵PE ∥DQ ,∴△AEP ∽△AQD ,同理,△DPF ∽△DAQ , ∴=()2,=()2,∵S △AQD =3,∴S △DPF =x 2,S △APE =(3﹣x )2,∴S △PEF =(S △AQD ﹣S △DPF ﹣S △APE )÷2,∴y =[3﹣x 2﹣(3﹣x )2]×=﹣x 2+x ,∵y 最大值==,即y 最大值=.∴△PEF 面积最大值是,故选:D .7.如图,正ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC 、PE ⊥AB ,PF ⊥AC ,连AP 、BP 、CP ,如果S △AFP +S △PCD +S △BPE =,那么△ABC 的内切圆半径为( )A .1B .C .2D .解:过P 点作正三角形的三边的平行线,于是可得△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCDP ,平行四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =, 故知S △ABC =3,S △ABC =AB 2sin60°=3, 故AB =2,三角形ABC 的高h =3,△ABC 的内切圆半径r =h =1.故选:A .8.如图所示,已知△ABC 面积为l ,点D 、E 、F 分别在BC 、CA 、AB 上,且BD =2DC ,CE =2EA ,AF =2FB ,AD 、BE 、CF 两两相交于P 、Q 、R ,则△PQR 的面积为( )A .B .C .D .解:连接BR ,设△CDR 的面积为a ,△BRF 的面积为b ,∵BD =2DC ,AF =2FB ,∴△BDR 的面积为2a ,△ARF 的面积为2b ,∵已知△ABC 面积为l ,∴S △CDR +S △B DR +S △BRF =,S △BDR +S △BRF +S △ARF = ∴,解得,∴△CDR 的面积为,同理可得S △APE =S △BFQ =, S △PQR =S △BCE ﹣(S △BCF ﹣S △BFQ )﹣(S △ACD ﹣S △APE ﹣S △CDR )=﹣+S △BFQ ﹣+S △APE +S △CDR =S △BFQ +S △APE +S △CDR =×3=.故选:C .9.观察图(1),容易发现图(2)中的∠1=∠2+∠3.把图(2)推广到图(3),其中有8个角:∠1,∠2,…,∠8.可以验证∠1=∠2+∠5+∠8成立.除此之外,恰好还有一组正整数x ,y ,z ,满足2≤x ≤y ≤z ≤8,使得∠1=∠x +∠y +∠z ,那么这组正整数(x ,y ,z )=( )A .(3,4,7)B .(3,5,7)C .(3,3,7)D .(4,6,7) 解:∵小正方形的边长为1,∴∠1=45°,∵∠1=∠x +∠y +∠z ,∴∠x +∠y +∠z =45,∵一组正整数x ,y ,z ,满足2≤x ≤y ≤z ≤8,“第二条对角线和第三条对角线形成的三角形”与“第二条对角线和第七条对角线形成的三角形”相似,∠2是“第二条对角线和第七条对角线形成的三角形”的外角,∠2=∠7+∠α(∠α是∠3的对应角),而∠1=∠2+∠3,∴∠1=∠2+∠3=∠3+∠3+∠7.∴这组正整数(x ,y ,z )=3,3,7;故选:C .10.如图,在Rt △ABC 中,∠ACB =90°,内切圆⊙I 切AC 、BC 于E 、F ,射线BI 、AI 交直线EF 于点M 、N ,设S △AIB =S 1,S △MIN =S 2,则的值为( )A .B .2C .D .3解:连接IE 、IF 、IG ,IC 与EF 交于H ,设内切圆⊙I 的半径为r ,∵∠C =90°,它的内切圆⊙I 分别与边AC 、BC 相切于点E 、F ,∴四边形CEIF 是正方形,HI =IC =r , ∴△CEF 是等腰直角三角形,∴∠CEF =∠CFE =45°,∴∠NFB =∠CFE =45°,∠MEA =∠CEF =45°,∴∠NIB =∠AIM =∠IAB +∠IBA =(∠CAB +∠CBA )=45°,∴∠M =∠CAN =∠IAB ,∠N =∠CBM =∠IBA ,∴△NIM ∽△BIA , ∴=()2=()2=2,故选:B .11.如图,若干个正三角形的一边在同一条直线a 上,这边对的顶点也在同一条直线b 上,它们的面积依次为S 1,S 2,S 3,S 4…若S 1=1,S 2=2,则S 6等于( )A .16B .24C .32D .不能确定解:∵△AEF 、△BFG 、△CGH 都是等边三角形, ∴∠AFE =∠BGF =60°,∠BFG =∠CGH =60°, ∴AF ∥BG ,BF ∥CG ,∴∠BAF =∠CBG ,∠ABF =∠BCG , ∴△ABF ∽△BCG , ∴=.∵△AEF 、△BFG 、△CGH 都是等边三角形, ∴△AEF ∽△BFG ∽△CGH , ∴=()2,=()2,∴=,∴=,∴S22=S1•S3.∵S1=1,S2=2,∴S3=4.同理S32=S2•S4,则有S4=8;S 42=S3•S5,则有S5=16;S 52=S4•S6,则有S6=32.故选:C.12.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.13.如图,已知△ABC的面积是1,D、E、F和G、H、I分别是BC和AC边上的4等分点,则图中阴影部分的面积是()A.B.C.D.解:连结IF,如图,设S△IFK的面积为S,∵D、E、F和G、H、I分别是BC和AC边上的4等分点,∴==,而∠ICF=∠ACB,∴△CIF∽△CAB,∴=()2,∴S△CIF=,∵△CIF∽△CAB,∴∠CIF=∠CAB,==,∴IF∥AB,∴△IFK∽△BKA,∴=,∴S△ABK=16S,∵BF=3CF,∴S△IBF =3S△ICF,即S+S△KBF=3×,∴S△KBF=﹣S,∴S△ABF =S△ABK+S△KBF=16S+﹣S,∵BF=BC,∴S △ABF =S △ABC =, ∴16S +﹣S =, ∴S =,∴图中阴影部分的面积=S △IFK +S △CIF =+=.故选:A .14.如图,正方形ABCD 中线段A 1A 、AA 2、B 1B 、BB 2、C 1C 、CC 2、D 1D 、DD 2的长度分别等于边长的、、、、、、、,则正方形面积是阴影面积的多少倍( )A .B .C .D .2解:设正方形的边长为a ,则线段A 1A 、AA 2、B 1B 、BB 2、C 1C 、CC 2、D 1D 、DD 2的长度分别为a 、a 、a 、a 、a 、a 、a 、a ,正方形面积的面积为a 2,直角三角形的面积之和为a 2(×+×+×+×)=a 2, 阴影面积为a 2,则正方形面积是阴影面积倍.故选:C.15.如图,直角△ABC的直角边BC=6,AC=5.把BC六等分,等分点是D1,D2,D3,D4,D 5;把AC五等分,等分点是E1,E2,E3,E4.连AD1,AD2,AD3,AD4,AD5.过E1,E2,E3,E 4作BC边的平行线E1F1,E2F2,E3F3,E4F4,交AB边于F1,F2,F3,F4.那么图中所有可以数得出来的三角形的面积的总和为()A.115.5 B.462 C.420 D.231解:由底边一格组成的三角形的个数为5×5=25,面积为33,由底边两格组成的三角形的个数为4×5=20,面积为48+,由底边三格组成的三角形的个数为3×5=15,面积为54+,由底边四格组成的三角形的个数为2×5=10,面积为48+,由底边五格组成的三角形的个数为1×5=5,面积为33,图中所有可以数得出来的三角形的面积的总和为33×2+48×2+54+×2+=231,故选:D.16.有一塔形几何体由若干个正方体构成,构成方式如图所示:上层正方体底面的四个顶点恰好是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形几何体的全面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是()A.4 B.5 C.6 D.7解:设有n个正方体构成,其表面积由两部分组成:(1)俯视图、表面只有一个正方形,其边长为2.(2)侧面则由4n个正方形构成,且各层(从下往上看)正方形面积构成一个首项为4,公比为的等比数列.∴表面积为:4+4+4×[4+4×+4×+…+4×]>39,∴8+4×>39,∴n的最小值为6.故选:C.17.如图,正方形ABCD的面积为2,现进行如下操作:第1次:分别延长AB、BC、CD、DA至点E、F、G、H,使得BE=AB,CF=BC,DG=CD,AH=DA,顺次连接E、F、G、H四点得四边形EFGH;第2次:分别延长EF、FG、GH、HE至点J、K、L、M,使得JF=EF,KG=GF,LH=HG,EM=EH,顺次连接J、K、L、M四点得四边形JKLM,…按此方法操作,要使所得到的四边形面积超过2007,则这样的操作至少需要()A.7次B.6次C.5次D.4次解:设正方形ABCD的边长为a,第一次操作后得到正方形的边长为a,第二次操作后得到正方形的边长为5a,故第n次操作后正方形的边长为a,故知第n次操作后正方形的面积S=5n a2,若要使所得到的四边形面积超过2007,即5n a2>2007,a2=2,解得n>4,这样的操作至少需要5步,故选:C .18.某住宅小区的圆形花坛如图所示,圆中阴影部分种了两种不同的花,O 1,O 2,O 3,O 4分别是小圆的圆心,且小圆的直径等于大圆的半径.设小圆的交叉部分所种花的面积和为S 1.在小圆外、大圆内所种花的面积和为S 2,则S 1和S 2的大小关系是( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定解:设大圆的半径为2,则小圆半径是1,S 2=4π﹣(π+π+π+π﹣S 1)即S 1=S 2. 故选:C .19.在一堂“探索与实践”活动课上,小明借助学过的数学知识,利用三角形和长方形为班里的班报设计了一个报徽,设计图案如下:如图,两条线段EF 、MN 将大长方形ABCD 分成四个小长方形,已知DE =a ,AE =b ,AN =c ,BN =d ,且S 1的面积为8,S 2的面积为6,S 3的面积为5,则阴影三角形的面积为( )A .B .3C .4D .解:根据题意:DE =a ,AE =b ,AN =c ,BN =d ,且S 1的面积为8,S 2的面积为6,S 3的面积为5, 故知ac =8…①ad =6…② bd =5…③,②÷③得:a =b …④,把④代入①可得bc =,∵阴影三角形的面积=bc =.故选:A .20.如图,已知凸四边形ABCD 的面积为S ,四边AB ,BC ,CD ,DA 的第1个三等分点是E 、F 、G 、H ,连AF 、BG 、CH 、DE ,相邻两连线交于I 、J 、K 、L ,又△AEL 、△BFI 、△CGJ 、△DHK 的面积分别为a 、b 、c 、d ,S 1=a +b +c +d ,则四边形IJKL 的面积为( )A .B .C .D .解:如图,连接EF 、FG 、GH 、HE ,设△EFL 、△FGI 、△GKJ 、△HLK 的面积分别为a ′、b ′、c ′、d ′则 a ′=S △AEF ﹣a=S △ABF ﹣a =S △ABC ﹣a同理,b ′=S △BCD ﹣b 、c ′=S △CDA ﹣c 、d ′=S △DAB ﹣d . 四式相加得:a ′+b ′+c ′+d ′=S ﹣(a +b +c +d ) 又S 四边形EFGH =S ﹣(S △AHE +S △BEF +S △CGF +S △DGH )=S ﹣(×S △ABD +×S △ABD +×S △BCD +×S △BCD ) =S ﹣S =S∴S 四边形IJIKL =S 四边形EFGH ﹣(a ′+b ′+c ′+d ′) =S ﹣[S ﹣(a +b +c +d )] =S +a +b +c +d=S+S1故选:D.。
初一几何竞赛试题及答案
初一几何竞赛试题及答案1. 选择题:下列哪个选项是正方形的对角线长度的两倍?A. 边长B. 边长的平方C. 边长的根号2倍D. 边长的根号3倍答案:C2. 填空题:在一个等边三角形中,如果边长为a,那么该三角形的高是______。
答案:\(\frac{\sqrt{3}}{2}a\)3. 判断题:如果一个四边形的对角线互相平分,那么这个四边形一定是矩形。
正确错误答案:错误4. 计算题:一个圆的直径是14cm,求这个圆的周长和面积。
答案:周长为\(\pi \times 14\)cm,面积为\(\frac{\pi \times14^2}{4}\)平方厘米。
5. 简答题:请说明如何证明一个三角形是等边三角形。
答案:要证明一个三角形是等边三角形,需要证明其三边相等。
可以通过测量每条边的长度,或者证明其中两个角相等(因为等边三角形的三个角都是60度),从而得出结论。
6. 作图题:给定一个点O,画出一个以O为圆心,半径为5cm的圆。
答案:使用圆规,以O为圆心,将圆规的两脚张开到5cm的距离,旋转一周即可画出圆。
7. 应用题:一个长方形的长是宽的两倍,如果宽为3cm,求长方形的周长。
答案:长方形的长为6cm,周长为\(2 \times (3 + 6) = 18\)cm。
8. 证明题:证明在一个直角三角形中,斜边的中点到直角顶点的距离等于两直角边中点连线的长度。
答案:设直角三角形ABC中,∠C为直角,D为斜边AB的中点。
连接CD,根据直角三角形的性质,CD是斜边AB的中线,因此CD等于AB的一半。
又因为D是AB的中点,所以AD等于BD。
根据中线定理,CD等于AD,因此CD等于两直角边中点连线的长度。
2024学年初中数学几何(阿氏圆模型)模型专项练习(附答案)
12024学年初中数学几何(阿氏圆模型)模型专项练习1.阅读以下材料,并按要求完成相应的任务.已知平面上两点A 、B,则所有符合=k(k >0且k ≠1)的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x 轴,y 轴上分别有点C (m ,0),D (0,n ),点P 是平面内一动点,且OP =r ,设=k ,求PC +kPD 的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得OM :OP =OP :OD =k ;第二步:证明kPD =PM ;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得OM :OP =OP :OD =k , 又∵∠POD =∠MOP ,∴△POM ∽△DOP . 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为△ABC 内一动点,满足CD =2,利用(1)中的结论,请直接写出AD+BD 的最小值.2.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+的最小值和PD ﹣的最大值;2的一个动点,那么PD +的最小值为 ,PD ﹣的最大值为 .(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD +的最小值为 ,PD ﹣的最大值为 .3.【问题背景】如图1,△ABC中,∠BAC>∠B,点D在边BC上,若∠CAD=∠B,则可得△CAB∽△CAD ,进而可得,进一步变形有AC2=CD•CB.【简单运用】(1)如图1,若AC=2,BC=4,则BD长为;= .(2)如图2,⊙O中,弦AD、BC相交于点E,已知AB=2AE,BE=15,且C是劣弧AD的中点,求CD的长.【灵活运用】如图3,平面直角坐标系中,直线y=﹣x+9交于坐标轴于A、B两点,点P坐标为(m,n),且m2+n2=36,连接P A,PB,则3PB+2P A的最小值为.3动点,则PD ﹣PC 的最大值为 .5.【新知探究】新定义:平面内两定点A ,B ,所有满足=k (k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC 中,CB =4,AB =2AC ,则△ABC 面积的最大值为 .参考答案1.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的过程解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上过程解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.【过程解答】解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.2.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为 ,PD﹣的最大值为 .(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为 ,PD﹣的最大值为 .【过程解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==. ∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=. 故答案为,.3.【问题背景】如图1,△ABC中,∠BAC>∠B,点D在边BC上,若∠CAD=∠B,则可得△CAB∽△CAD,进而可得,进一步变形有AC2=CD•CB.【简单运用】(1)如图1,若AC=2,BC=4,则BD长为3;= . (2)如图2,⊙O中,弦AD、BC相交于点E,已知AB=2AE,BE=15,且C是劣弧AD的中点,求CD的长.【灵活运用】如图3,平面直角坐标系中,直线y=﹣x+9交于坐标轴于A、B两点,点P 坐标为(m,n),且m2+n2=36,连接P A,PB,则3PB+2P A的最小值为3. 【过程解答】解:(1)∵AC2=CD•BD,∴4CD=4,∴BD=BC﹣CD=3,∵△CAB∽△CAD,∴===,故答案是3,;(2)如图1,∵=,∴∠B=∠CAE,由上知,∴△ACE∽△BCA,∴====, AC2=CE•BC,∴AC=2CE,∴4CE2=CE•(CE+15),∴CE=5,∴CD=AC=2CE=10;【灵活运用】如图2,由题意得,∵且m2+n2=36,∴OP=6,在OA上截取OC=4,∴=,又∵∠AOP是公共角,∴△AOP∽△POC,∴=,∴P A=PC,∴PB+P A=PB+PC≥BC,当B、P、C共线时,(PB+PC)最小=BC==,∵3PB+2P A=3(PB+P A),∴(3PB+2P A)最小=3,故答案是3.4.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为 5.【过程解答】解:在BC上取一点G,使得BG=1,如图,∵=2,=2,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG==5. 故答案为:55.【新知探究】新定义:平面内两定点A,B,所有满足=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.【过程解答】解:以A为顶点,AC为边,在△ABC外部作∠CAP=∠ABC,AP与BC 的延长线交于点P,∵∠CAP=∠ABC,∠BP A=∠APC,AB=2AC,∴△APC∽△BP A,,∴BP=2AP,CP=AP,∵BP﹣CP=BC=4,∴2AP﹣AP=4,解得:AP=,∴BP=,CP=,即点P为定点,∴点A的轨迹为以点P为圆心,为半径的圆上,如图,过点P作BC的垂线,交圆P 与点A1,此时点A1到BC的距离最大,即△ABC的面积最大,S△ABC=BC•A1P=×4×=.故答案为:.1.(2021•黔西南州中考真题)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【过程解答】解:(1)如图1中,连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO,OE=BE.解法一:∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;解法二:∵BC=OB,OB=OD,∴===,又∵∠DOE=∠COD,∴△EOD∽△DOC,∴∠CDO=∠DEO=90°,∴CD为圆O的切线;(2)答:这个确定的值是.连接OP,如图2中:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==。
七年级数学竞赛几何试题
七年级数学竞赛几何试题在七年级数学竞赛中,几何题目通常涉及平面几何的基本定理和性质,包括但不限于角度、线段、三角形、四边形和圆的性质。
以下是一些可能的几何试题:1. 角度问题:在一个三角形ABC中,如果∠A = 50°,∠B = 70°,求∠C的度数。
2. 线段问题:在直线上给定两点A和B,点C是AB的中点,点D是BC的中点。
如果AB的长度是10厘米,求CD的长度。
3. 三角形问题:已知三角形ABC是等边三角形,且AB = AC = BC = 6厘米。
求三角形ABC的面积。
4. 四边形问题:在平行四边形ABCD中,对角线AC和BD相交于点E。
如果AB = 8厘米,BC = 6厘米,且AC = 10厘米,求BD的长度。
5. 圆的问题:圆的半径为7厘米,圆心为O点。
点A在圆上,OA的长度为7厘米。
求圆的周长和面积。
6. 相似三角形问题:三角形ABC和三角形DEF是相似的,且AB/DE =2/3,BC/EF = 4/5。
如果AC = 12厘米,求DF的长度。
7. 几何构造问题:在给定的三角形ABC中,构造一个点P,使得PA = PB + PC。
8. 几何证明问题:证明在一个直角三角形中,斜边的中线等于斜边的一半。
9. 坐标几何问题:在坐标平面上,点A(-3, 2),点B(1, -1),点C(4, 5)。
求三角形ABC的面积。
10. 几何变换问题:一个正方形在平面直角坐标系中,其顶点坐标为(0,0),(1,0),(1,1),(0,1)。
求将此正方形绕原点顺时针旋转90度后的顶点坐标。
这些问题覆盖了七年级学生在几何学中应该掌握的基本概念和技能。
在解答这些问题时,学生需要运用几何定理、性质以及逻辑推理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学竞赛基本几何题
1、如图1,在△ABC中,AD⊥BC 于D,AB+BD=CD。
证明∠B=2∠C。
C
2、如图2,在△ABC中,AB=AC。
D,E分别是BC,AC 上的点。
问∠BAD与∠CDE满足什么条件时,AD=AE。
B
3、如图3,六边形ABCDEF 中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA-CD=3。
求BC+DE 的值。
A
D
4. 如图4,在凸四边形ABCD中,∠ABC=300,∠ADC=600 ,AD=DC。
证明BD2 =AB2 +BC 2
5、如图5,P是△ABC边BC上一点,PC=2PB。
已知∠ABC=450 ,∠APC=600 。
求∠ACB 的度数。
B
6、如图6中,在△ABC中,BC=a,AC=b,以AB为边向外作等边三角形△ABD。
问∠ACB为多少度时,点C与点D的距离最大?
A B
7、如图7,在等腰△ABC中,AB=AC,延长AB到D,延长CA到E,连DE,有AD=BC=CE=DE。
证明:∠BAC=100°。
第七题
C
8、如图8,在△ABC 中,AD 是边BC 上的中线,AB=√2,AD=√6,AC=√26。
求∠ABC 的度数。
C
9、如图9,在△ABC的外面作正方形ABEF和ACGH,AD⊥BC于D。
延长DA 交FH于M。
证明:FM=HM。
10、如图10,P,Q,R分别是等边△ABC三条边的中点。
M是BC上一点。
以MP为一边在BC同侧作等边△PMS。
连SQ。
证明RM=SQ.
C
B
11、如图11,在四边形ABCD 中,AB=a ,AD=b ,BC=CD. 对角线AC 平分∠BAD 。
问a 与b 符合什么条件时,有∠
D+∠B=180°
A
12、如图12,在等腰△ABC中,AD是边BC 上的中线,E 是△ADB内任一点,连AE,BE,CE。
证明:∠AEB>∠AEC。
A
13、如图,在凸四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°证明:BC+CD=AC。
C
B
D
14、如图14,在△ABC 中,AD 是边BC 上的中线,点M 在AB 上,点N 在AC 上。
已知∠MDN=90°,BM 2+CN 2=DM 2+DN 2。
证明:AD 2= 1/4(AB 2+AC 2)
15、如图,在△ABC中,∠A=90°AD垂直BC交于D,∠BCA 的平分线交AD于F,交AB于E,FG∥BC,交AB于G,AE=4,AB=14,求BG的长。
B
16.如图Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC 交AC于D,作CE垂直BD交BD延长线于E,过A作AH⊥BC 交BD于M,试猜想BM与CE的大小关系,并证明你的结论。
收集于网络,如有侵权请联系管理员删除
H
M
E D
C
A B
综合数学练习题一年(下) 1.单数双数(一)
一、按
àn
照zhào例lì子,2个2个圈起来数,判断物体的个数是单数还是双数。
例
单数/ 双数单数/ 双数单数/ 双数
单数/ 双数单数/ 双数单数/ 双数
收集于网络,如有侵权请联系管理员删除
二、圈一圈
1.把单数圈出来: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,10
2.把双数圈出来:11 , 22 , 23 ,34 , 45 , 56 , 57 ,68 , 79 ,80
三、填空
1.有一些苹果,2个2个数,数了5次,正好数完,这些苹果的数量是单数还是双数?( )
2.有一箱xiāng 苹果,2个2个拿,拿了4次,还剩1个,这箱苹果的数量是单数还是双数?( )
四、奶奶今年54岁,爷爷的年龄比奶奶大,但不到60岁,而且是双数,爷爷可能是( )或huo 者zhe ( )岁。
五、6张卡片,最少移动( )张卡片就可以把单数和双数完全分开。
六、小志家住在四平路,路的左边门牌号是单数,右边门牌号是双数,小志家住在路的右边。
我们从2号开始数,数到第4家时,就是小志家了。
小志家的门牌号是( )号。