动力气象学
动力气象学笔记
动力气象学笔记一、绪论。
1. 动力气象学的定义与研究范畴。
- 动力气象学是应用物理学定律研究大气运动的动力过程和热力过程,以及它们相互关系的学科。
- 研究范畴包括大气环流、天气系统的发展演变、大气波动等。
2. 动力气象学在气象学中的地位。
- 是现代气象学的理论基础。
它为天气预报、气候研究等提供了理论依据。
例如,数值天气预报就是建立在动力气象学的基础上,通过求解大气运动方程组来预测未来的天气状况。
二、大气运动方程组。
1. 运动方程。
- 牛顿第二定律在大气中的应用。
- 在笛卡尔坐标系下,水平方向(x方向)的运动方程为:- (du)/(dt)=-(1)/(ρ)(∂ p)/(∂ x)+fv + F_x- 其中u是x方向的风速,(du)/(dt)是x方向的加速度,ρ是空气密度,p是气压,f = 2Ωsinφ是科里奥利参数(Ω是地球自转角速度,φ是纬度),v是y方向的风速,F_x是x方向的摩擦力。
- 同理,y方向的运动方程为:(dv)/(dt)=-(1)/(ρ)(∂ p)/(∂ y)-fu+F_y。
- 垂直方向(z方向)的运动方程由于垂直加速度相对较小,考虑静力平衡近似时为:(∂ p)/(∂ z)=-ρ g。
2. 连续方程。
- 质量守恒定律在大气中的体现。
- 其表达式为:(∂ρ)/(∂ t)+(∂(ρ u))/(∂ x)+(∂(ρ v))/(∂ y)+(∂(ρ w))/(∂ z)=0。
- 在不可压缩流体(ρ = const)的情况下,简化为:(∂ u)/(∂ x)+(∂ v)/(∂ y)+(∂ w)/(∂ z)=0。
3. 热力学方程。
- 能量守恒定律在大气中的表现形式。
- 对于干空气,常用的形式为:c_p(dT)/(dt)-(1)/(ρ)(d p)/(dt)=Q。
- 其中c_p是定压比热,T是温度,Q是单位质量空气的非绝热加热率。
三、尺度分析。
1. 尺度分析的概念与意义。
- 尺度分析是根据大气运动中各物理量的特征尺度,对大气运动方程组进行简化的方法。
动力气象课后习题标准答案doc
动力气象课后习题标准答案.doc 动力气象课后习题标准答案1. 什么是动力气象学?动力气象学是研究大气运动和气象现象的科学。
它主要涉及大气力学、热力学和动力学等方面的知识,通过数学模型和物理规律来描述和预测大气中的各种运动和现象。
2. 什么是大气力学?大气力学是研究大气运动的科学。
它主要研究大气中的气体运动、气压分布、风场形成和演变等现象,以及它们与天气和气候的关系。
3. 什么是热力学?热力学是研究能量转化和热力传递的科学。
在动力气象学中,热力学主要研究大气中的能量转化和热力传递过程,包括辐射、传导和对流等,以及它们对大气运动和气象现象的影响。
4. 什么是动力学?动力学是研究物体运动的科学。
在动力气象学中,动力学主要研究大气中的运动方程和运动规律,包括质量、动量和能量守恒定律等,以及它们对大气运动和气象现象的影响。
5. 什么是大气稳定度?大气稳定度是指大气中的气块上升或下沉时,受到的抵抗力和推动力之间的平衡状态。
当气块受到的抵抗力大于推动力时,大气稳定,气块下沉;当推动力大于抵抗力时,大气不稳定,气块上升。
6. 什么是大气边界层?大气边界层是指大气中与地表直接接触并受地表摩擦影响的一层大气。
它的高度一般在几百米到几千米之间,对大气中的能量和物质交换具有重要影响。
7. 什么是风?风是指大气中的气体运动。
它的产生和变化与大气压力差、地转偏向力和摩擦力等因素有关,是大气环流和气象现象的重要组成部分。
8. 什么是气压场?气压场是指大气中不同地点的气压分布。
它是由大气中的气块运动和密度变化等因素引起的,对大气运动和天气变化具有重要影响。
9. 什么是风场?风场是指大气中不同地点的风速和风向分布。
它是由大气压力差和地转偏向力等因素引起的,是描述大气运动和气象现象的重要参数。
10. 什么是气象现象?气象现象是指大气中的各种现象,如降水、云层、气温和湿度等的变化。
它们是由大气运动和能量交换等因素引起的,对天气和气候的形成和演变具有重要影响。
动力气象学
动力气象学总学时:128(其中自学96,面授24,实习8)教材版本:动力气象学教程(吕美仲、彭永清编著)教学目的和要求:动力气象学是在热力学和流体力学的基础上,系统地讲述大气的热力过程和大气运动的基本规律,并指出这些规律的实践意义的一门专业基础课。
具体地说,它是应用物理学定律研究大气运动的动力过程、热力过程以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气动力过程,因而,它是天气学、数值天气预报及大气环流等专业课程的理论基础。
本课程,通过教学,目的在于使学生能深入地理解大气动力学的基本理论,了解近代动力气象学的主要进展,掌握用动力学方法分析和预报天气的基本原理和技术,从而使学生具有一定的理论水平和科学研究的能力。
为将来从事天气预报的业务及研究工作打下基础。
为达到上述目的,在教学中要求:⑴努力贯彻理论联系实际的原则。
在教学内容和取材上,从现今国内外气象业务部门及科研单位所使用的有代表性的方法和理论为主体,讲课中以讲授基本原理为重点,在讲深讲透基本理论的基础上,让学生进行必要的课堂讨论和作练习,使学生既能掌握基本原理,又能利用基本原理去探讨和解决实际问题。
⑵注重理论的系统性。
本课程是一门理论性较强的课程,在努力贯彻理论联系实际的原则下,要突出本课程的特点,在教学中应该注意有系统、有条理地介绍它的内容,强调各部分内容之间的有机联系,以使学生能掌握得深透。
教学的主要内容及学时分配:总学时:128课时,其中面授24课时,课堂练习8学时,自学96课时。
每章自学10学时,5~10章每章讲授4学时,其余4学时供课堂练习和答疑。
第一章大气运动的基本方程组§1.1全导数和局地导数§1.2旋转参考系中运动方程的矢量形式§1.3质量守恒定律--连续方程§1.4状态方程、热力学方程、水汽方程§1.5球坐标系中基本方程组§1.6局地直角坐标系中基本方程组§1.7闭合运动方程组、初始条件和边界条件第二章尺度分析与基本方程组的简化§2.1尺度概念、大气运动的尺度分类§2.2基本方程组的尺度分析§2.3无量纲方程、动力学参数§2.4 平面近似§2.5静力平衡大气、P坐标系第三章自由大气中平衡流畅§3.1自然坐标系§3.2平衡流场的基本形式与性质§3.3地转风随高度的变化、热成风§3.4地转偏差第四章环流定理、涡度方程和散度方程§4.1环流与环流定理§4.2涡度与涡度矢量方程§4.3泰勒——普劳德曼定理§4.4铅直涡度方程§4.5P坐标系中的涡度方程和散度方程§4.6位势涡度方程第五章大气行星边界层§5.1大气运动的湍流特性和平均运动方程组§5.2大气行星边界层及其特征§5.3属性的湍流输送通量及其参数化§5.4湍流运动发展的判据§5.5近地面层风随高度的分布§5.6埃克曼层风随高度的分布§5.7埃克曼抽吸与旋转减弱第六章大气能量学§6.1大气能量的主要形式§6.2大气能量方程§6.3静力平衡条件下大气中的能量转换§6.4有效位能§6.5大气中动能的消耗§6.6实际大气中的能量循环§6.7能量的转换过程第七章大气中的基本波动§7.1波动的基本概念§7.2微扰动法、基本方程组的线性化§7.3声波和LAMB波§7.4重力外波、重力慣性外波§7.5重力内波、性内波、重力慣性内波§7.6 波§7.7噪音与滤波第八章地转适应过程与准地转演变过程§8.1大尺度运动过程的阶段性§8.2正压大气中的地转适应过程§8.3斜压大气中的地转适应过程§8.4准地转运动的分类§8.5准地转运动方程组§8.6准地转位势倾向方程组与方程§8.7Q矢量、非热成风产生的二级环流的诊断第九章大气运动的稳定性理论§9.1流体动力学稳定性概念§9.2慣性不稳定§9.3开尔文——赫姆霍茨不稳定§9.4正压不稳定§9.5斜压不稳定第十章低纬度热带大气动力学§10.1热带运动系统概述§10.2热带大气运动的尺度分析§10.3热带扰动的生成与发展§10.4台风的结构与发展§10.5热带行星尺度波动。
动力气象学第二章习题答案
动力气象学第二章习题答案动力气象学第二章习题答案动力气象学是研究大气运动的科学,它探讨了大气中的力学过程和气象现象之间的相互关系。
在学习动力气象学的过程中,习题是检验我们对知识理解和应用的重要方式。
下面是对动力气象学第二章习题的详细解答。
问题1:什么是大气的垂直平衡?答:大气的垂直平衡是指在垂直方向上,大气中的各种力量之间达到平衡状态。
这种平衡是由重力、压强梯度力、离心力和科里奥利力等因素共同作用所形成的。
当这些力量之间的平衡达到一定状态时,大气就呈现出稳定或不稳定的状态。
问题2:什么是静力平衡?答:静力平衡是指在水平方向上,大气中的压强梯度力与离心力之间达到平衡状态。
在静力平衡下,气体分子受到重力的作用而向下运动,同时受到压强梯度力的作用而向上运动,最终形成一个平衡状态。
问题3:为什么大气的垂直平衡是稳定的?答:大气的垂直平衡是稳定的,因为当大气中出现扰动时,系统会自动调整以恢复平衡状态。
例如,当大气中某一区域的压强较高时,周围的气体会受到压强梯度力的作用而向该区域流动,从而减小压强差。
这种调整过程会持续进行,直到压强差减小到一定程度,大气再次达到平衡状态。
问题4:什么是大气的不稳定?答:大气的不稳定是指当大气中出现扰动时,系统无法自动调整以恢复平衡状态。
在不稳定的情况下,扰动会导致气体产生剧烈的运动,从而形成对流现象和气象灾害。
例如,当大气中某一区域的温度较高时,周围的气体会受到浮力的作用而向上升腾,形成对流运动。
问题5:什么是绝热过程?答:绝热过程是指在没有热量交换的情况下,气体的温度和压强发生变化。
在绝热过程中,气体的内部能量发生改变,但没有热量的输入或输出。
绝热过程可以用来描述大气中的垂直运动和气象现象,例如对流运动和气旋的形成。
问题6:什么是绝热抬升?答:绝热抬升是指当气体上升时,由于没有热量的输入或输出,气体的温度和压强发生变化。
在绝热抬升过程中,气体上升时受到外界压强的减小而膨胀,从而导致温度的降低。
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)2
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)1500字南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)动力气象学是气象学的重要分支之一,主要研究大气运动的基本规律以及大气运动对气象现象的影响。
本课程主要包括动力气象学基本概念、大气平衡及运动的基本方程、大气边界层、大气波动等内容。
同时,还会包含数值预报的相关知识,将动力气象学理论与实际应用相结合。
以下是该课程的详细内容。
一、动力气象学基本概念1. 动力气象学的概念和发展历程2. 大气的基本性质和运动规律3. 动力气象学的研究方法和技术手段二、大气平衡及运动的基本方程1. 大气的水平平衡方程2. 大气的垂直平衡方程3. 大气的热力平衡方程4. 物质守恒方程和能量守恒方程三、大气边界层1. 大气边界层的概念和特征2. 大气边界层的发展和结构3. 大气边界层的运动和湍流4. 大气边界层的边界条件和变化规律四、大气波动1. 大气波动的基本类型和特征2. 大气波动的发生机制和扩散规律3. 大气波动的传播和变化规律4. 大气波动对气象现象的影响五、数值预报1. 数值预报的基本原理和方法2. 数值预报的模式和参数化方案3. 数值预报的数据来源和处理方法4. 数值预报的评估和检验方法以上是南京信息工程大学2023考研《动力气象学(含数值预报)》的大纲内容,总共约1500字。
本课程的学习将使学生掌握动力气象学的基本理论和数值预报的基本技术,能够理解大气运动的基本规律和模拟未来天气变化,为气象预报、气候变化等相关领域的研究提供基础支撑。
动力气象学概要课件
数值模式是大规模数值计算中用来描述和预测大气系统的软解方案、数据输入和输出等模
块。
数值模式广泛应用于天气预报、气候模拟和环境评估等领域。
03
数值模式的误差和不确定性
数值模式的误差主要来源于模式分辨率、物理过 程参数化和初始条件等方面。
不确定性主要表现在模式输入数据的误差、模式 本身的不完善以及计算误差等方面。
为了减小误差和不确定性,需要不断提高数值模 式的精度和可信度。
数值模式的未来发展和挑战
随着计算机技术的不断发展,数值模式的分辨率和计算能力将得到进一步 提高。
未来数值模式将更加注重物理过程参数化的改进和精细化,以更准确地模 拟和预测大气系统的行为。
同时,随着大数据和人工智能技术的发展,如何利用这些技术提高数值模 式的精度和效率也是未来发展的重要方向。
航空气象服务
提供航空气象预报、机场天气预报、航空气象观测和报 告等服务,保障航空安全。
航海气象服务
提供航海气象预报、海洋气象观测和报告等服务,保障 航海安全。
THANK YOU
感谢各位观看
03
大气的运动和变化
大气的热力和动力学过程
总结词
描述大气中热力和动力学过程对大气的运动和变化的影响。
详细描述
大气的热力和动力学过程是大气运动和变化的主要驱动力。这些过程包括温度 差异引起的对流、风速差异引起的湍流等。这些过程通过能量传递和物质迁移 等方式,影响大气的运动和变化。
大气中的波动和涡旋
动力气象学概要课件
目录
• 动力气象学简介 • 大气的基本结构和特性 • 大气的运动和变化 • 动力气象学的数值模拟和预测 • 动力气象学的应用和实践
01
动力气象学简介
《动力气象》课件
动力气象的应用案例
航空航天
动力气象在航空航天领域的天 气预报和飞行安全中发挥着重 要作用。
能源
动力气象用于可再生能源的规 划、风能、太阳能等的资源评 估和利用。
气候研究
动力气象帮助科学家了解和预 测气候变化,为应对气候变化 提供依据。
动力气象的基本原理
1 气象要素与动力学关系
了解气象要素与动力过程的基本概念,掌握气象要素对动力过程的影响。
常用的动力气象指标
1 风场和涡度指标
通过分析风场和涡度数 据,可以了解大气的运 动和湍流现象。
2 温度和湿度指标
温度和湿度是描述大气 状态的重要指标,对动 力气象有着重要影响。
3 大气层结指标
大气层结的变化对于气 象现象的发生和发展具 有重要意义。
动力气象预报技术
1
数值模式和动力模拟
运用数值模式和动力模拟进行天气的预测和模拟,提高预报准确性。
2
数据分析和观测技术
通过数据分析和观测技术获取气象数据,为预报提供可靠的基础。
3
预报系统的评估和改进
对预报系统进行评估和改进,不断提高预报技术和准确性。
《动力气象》PPT课件
动力气象是研究大气运动和天气现象相互关系的跨学科领域。本课件将深入 探讨动力气象的概念、原理、指标、预报技术与应用案例,帮助您全面了解 这一重要领域。
主题背景介绍
概念与重要性
动力气象研究大气运动和天气现象之间的关 系,对于天气预报、气候变化等具有重要意 义。
应用领域
动力气象在航空航天、能源、气候研究等领 域有广泛应用,对社会经济发展具有重要影 响。
动力气象学总复习
动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。
动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。
动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。
动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。
主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。
一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。
大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。
大气中含有水份:水份的相变过程使大气得到(失去)热量。
大气下垫面的不均匀性:海陆分布和大地形的影响。
大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。
支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。
本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。
an introduction to dynamical meteorology
an introduction to dynamical meteorology摘要:1.动力气象学的定义和背景2.动力气象学的基本原理3.动力气象学的应用领域4.动力气象学的发展趋势正文:【动力气象学的定义和背景】动力气象学,作为气象学的一个重要分支,主要研究大气运动和天气系统形成的物理原理。
动力气象学对于预测和解释气象现象具有重要意义,它为我们提供了理解和预测天气的科学依据。
【动力气象学的基本原理】动力气象学主要依据以下几个基本原理进行研究:1.质量守恒和动量守恒原理:大气运动遵循质量守恒和动量守恒原理,即系统中的质量不会凭空消失或增加,而系统所受的合力会导致动量的改变。
2.能量守恒原理:大气运动过程中,各种能量之间会发生转换,但总能量保持守恒。
例如,热带气旋的形成过程中,海洋中的热能会转化为气旋的动能。
3.热力学原理:大气运动过程中的温度、湿度等热力学量遵循热力学原理。
例如,大气中的水汽在上升过程中会冷却凝结,形成云和降水。
【动力气象学的应用领域】动力气象学在多个领域具有广泛的应用,包括:1.天气预报:动力气象学为天气预报提供了理论基础,通过对大气运动的研究,可以预测未来一段时间内的天气变化。
2.气候研究:动力气象学有助于我们理解气候系统的演变过程,从而为气候变化研究提供依据。
3.航空航天和军事领域:动力气象学为航空航天和军事领域提供大气数据,帮助飞行器设计和飞行计划制定,以及军事行动的策划和实施。
【动力气象学的发展趋势】随着科学技术的发展,动力气象学也在不断发展和完善。
未来的发展趋势包括:1.数值模拟技术的发展:数值模拟是动力气象学的重要研究方法,随着计算机技术的进步,数值模拟的精度和效率将得到进一步提高。
2.观测技术的进步:新型观测技术的发展,如遥感、雷达等,将为动力气象学提供更多、更准确的观测数据。
3.跨学科研究:动力气象学将与其他学科,如大气化学、生物学等,进行交叉研究,拓展研究领域和应用范围。
气象学中的动力学和热力学
气象学中的动力学和热力学气象学是研究大气现象和气象现象的科学,主要包括气象动力学和气象热力学两个部分。
动力学是研究空气运动规律的学科,而热力学则主要关注空气中的热传递和热平衡问题。
在气象学中,动力学和热力学是相互联系的,它们共同构成了气象学这一宏大的学科。
下面我将从动力学和热力学两个方面来展开对气象学的介绍。
一、气象动力学气象动力学主要研究空气在大气中不同位置、不同高度以及不同气压下的运动规律。
在气象动力学中,主要包括风的形成、风的分类以及地球自转对大气运动的影响等方面。
首先,风的形成是许多人感到困惑的问题。
实际上,风的形成与气压的分布有密切关系。
通常情况下,空气从高气压地区流向低气压地区,从而形成了风。
这就是常说的“高压迎风,低压背风”。
其次,根据风的运动速度和方向的不同,可以将其分为不同类型。
比如常见的东北季风、东南季风等等。
不同的风会对当地的气温、降水等气象现象产生不同的影响。
另外,地球的自转对大气运动也有着重要的影响。
在赤道地区,由于地球自转速度较快,空气的运动速度也相应增加,形成了赤道低压带。
而在两极地区,由于地球自转速度缓慢,空气的运动速度也较慢,形成了极地高压带。
这些都是气象动力学的重要内容。
二、气象热力学气象热力学主要研究空气中的热传递规律、热平衡问题等。
在气象热力学中,主要包括大气的垂直稳定性、大气中的水汽和云的形成等方面。
首先,大气的垂直稳定性是气象热力学中的一个重要概念。
它主要是指空气受到的上升和下沉力的平衡情况。
一般来说,如果上升气流遇到的温度变化率大于下降气流的温度变化率,那么空气就是不稳定的。
反之,如果上升气流遇到的温度变化率小于下降气流的温度变化率,那么空气就是稳定的。
这种垂直稳定性的变化与天气现象的变化有着密切的联系。
其次,大气中的水汽和云是气象热力学的重要研究对象。
雨水的形成主要是通过水蒸气向高空升华以及水蒸气凝结而形成的。
云也是由水蒸气凝结而形成的,不同的云形成和云降水类型也具有一定的规律性。
动力气象学第一章
平流层大气动力学 平流层爆发性增温、准两年振荡。 20世纪50年代,短期大尺度数值预报取得成功 80年代,中期预报取得突破性进展。 欧洲数值预报中心的业务预报的有用的预报时效已达 到10天左右。 大气环流模式进行模拟试验是近代气象科学最重要的 成就之一。
经济发展战略制订的需求 20世纪70年代以来,全球范围的气候异常,世界面 临着日益严重的粮食、能源、水资源危机,和生态 环境恶化问题,分析气候异常原因,预测气候异常 的出现。 大气的“低频变化”;大气环流的遥相关。 球面大气中罗斯贝波的经向频散并建立了大圆定理 (霍斯金斯等,1981年);罗斯贝波铅直传播(恰尼等, 1961年);提出了E-P通量概念;研究了大气对外源 强迫的响应,分析了低频变化的各种可能的起因等 等,从而促进行星波理论的新发展,为月、季度和 短期气候预报提供了理论基础。
动力气象学
吕美仲等编著
2005年10月出版
第一章 绪论 动力气象学是气象科学的一个分支,是应用物理学 定律和数学方法研究大气运动的动力过程、热力过 程,以及它们之间的相互关系,从理论上探讨大气 环流、天气系统演变和其它大气运动过程的学科。 动力气象学又是流体力学的一个分支——地球流体 力学的主要组成部分。 动力气象学是大气科学的基础理论。
§1.1 基本假设 连续流体介质假设——质点力学的应用。 大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数; 理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体
§1.2 地球大气的运动学和热力学特性 大气是重力场中的旋转流体。 大气运动一定是准水平的;静力平衡是大气运动的重 要性质之一;科里奥利力的作用。 大尺度运动中科里奥利力作用很重要。中纬度大尺度 运动中,科里奥利力与水平气压梯度力基本上相平 衡——地转平衡。 地球旋转角速度随纬度的变化,与每日天气图上的西 风带中的波动有关。 稳定性作用——位能、动能的转换——锋面。
动力气象学
研究成果
研究成果
过去动力气象学研究的主要对象以及所取得的重要成果,着重在中、高纬度的大尺度运动方面。随着观测工 具的进步(如气象雷达、气象卫星和观测资料的丰富,天气学又对中小尺度天气系统和热带大气运动等揭露了很 多新的现象。相应地,动力气象学在研究中小尺度运动、热带大尺度运动以及平流层大气运动等方面也取得了新 的成果(见热带气象学),其中如台风发展的动力学研究,热带罗斯比-重力混合波的动力学研究等。当前,随着 对全球大气环流和气候的形成及其变化的研究,动力气象学研究的对象已不只局限于大气本身,而需要把发生在 海洋和陆地中的过程统一起来考虑了。
动力气象学
气象学分支
01
03 发展简史
目录
02 简介 04 学科分支
05 研究特点
07 相关学科
目录
06 用物理学定律研究大气运动的动力和热力过程,以及它们相互关系,从理论上探讨大气环流、 天气系统和其他大气运动演变规律的学科。它是大气科学的一个分支。空气是一种流体,如果说流体力学研究的 是流体运动的一般规律,那么动力气象学研究的则是发生在自转地球上、并且密度随高度递减的空气流体运动的 特殊规律。从这个意义上说,它又是流体力学的一个分支。
相关学科
相关学科
大气科学、气候学、物候学、古气候学、年轮气候学、大气化学、动力气象学、大气物理学、大气边界层物 理、云和降水物理学、云和降水微物理学、云动力学、雷达气象学、无线电气象学、大气辐射学、大气光学、大 气电学、平流层大气物理学、大气声学、天气学、热带气象学、极地气象学、卫星气象学、生物气象学、农业气 象学、森林气象学、医疗气象学、水文气象学、建筑气象学、航海气象学、航空气象学、军事气象学、空气污染 气象学
相关书籍如果研究的是大尺度的大气运动,则需要引进一个与地球自转有关的科里奥利力,在这个力的作用 下,使一般流体力学中的,在梯度压力作用下,流体自高压向低压运动的现象,发生了根本的改变:在北半球使 原来从高气压向低气压运动的空气向右偏转到接近与等压线平行的方向,若观察者顺风而立,高压在其右侧,低 压在其左侧,在南半球则相反。
动力气象知识点总结
动力气象知识点总结气象学是一门研究大气的学科,它研究大气的物理和化学过程,特别是力学和气象学。
气象学已经成为一门重要的学科,人们也越来越依赖气象学来规划和预测天气。
动力气象学是气象学的一个重要分支,它研究大气的动力学过程,特别是大气运动和大气现象的形成。
1. 大气运动大气运动是大气动力学的重要研究对象,它是指大气中空气的运动。
大气运动包括水平风和垂直风两种类型。
水平风是指大气中水平方向的空气运动,垂直风是指大气中垂直方向的空气运动。
大气运动的产生是由于地球的自转和太阳的辐射,因此大气运动与地球的地理位置、地形和气温分布有关。
大气运动对天气和气候有着重要的影响。
例如,水平风的方向和强度影响着气候的分布和形成,垂直风的运动则对大气中水汽和云的分布有重要影响。
同时,大气运动也是天气系统形成和发展的基础,气旋、锋面和高空急流等现象都与大气运动有关。
2. 气压和气流气压是指空气对地面单位面积的压力,是大气动力学的重要参量之一。
气压的分布和变化是天气系统形成和发展的基础,也是气象预报的重要依据。
一般来说,气压高的地方大气下沉、空气比较干燥,天气晴朗;气压低的地方大气上升、空气比较潮湿,天气多云或有降水。
气压分布和变化还与地形和季节有关,例如,在山地和海洋上空气压的分布和变化与平原地区有较大差异;夏季高温天气时气压分布的变化也与冬季不同。
气流是指大气中空气运动的流线,它是由气压差驱动的。
气流有着不同的类型,例如,副热带高压区的气流呈辐散状,中纬度地区的气流则呈螺旋状。
气流还可以分为地面风和高空急流两种,地面风是指地面上的水平风,它是天气系统和气象现象的重要参量,也是天气预报的主要依据;高空急流是指高空大气中的强风,它对飞行、气象预报和气候研究有着重要的影响。
3. 热带气旋热带气旋是指在热带地区形成的强烈的风暴系统,它包括台风、飓风和龙卷风等多种类型。
热带气旋的形成需要一定的条件,例如,暖海水和强热带动力,正是这些条件使得热带气旋成为了最强烈的风暴系统。
第一章绪论
四、主要参考书
杨大、刘金滨:《动力气象学》,1980,气象出版社; 刘式适、刘式达:《大气动力学》(上、下),1991,
北京大学出版社; 伍荣生等:《动力气象学》,1983,上海科学技术出
版社;1990,大气动力学,气象出版社; 吕克利等:《动力气象学》,1996,南京大学出版社; 霍尔硕,《动力气象学引论》,1980,科学出版社; 缪锦海等,《动力气象学》,1992,气象出版社。
例如:西风带中的长波具有准水平、准地 转平衡性质,它对天气影响的范围较广; 而强烈的局地风暴是一种小尺度强对流运 动,它是非静力平衡的,垂直上升运动很 强,虽然影响范围不大,但是造成的天气 灾害严重。
不同尺度的运动系统之间存在着相互 作用。
小尺度运动系统往往是在大尺度运 动系统的背景下发生发展起来的;反过 来它又对大尺度运动系统的发展和变化 产生反馈作用。
例如,在低纬的条件不稳定大气中,热 带扰动促使了有组织的中小尺度积云对 流的发展,这种有组织的积云对流释放 的潜热又反过来促进了热带扰动的发展。
本课程研究的对象:大尺度大气运动
大尺度运动的两个重要特点: 要考虑地球的自转运动——考虑柯氏力作用 考虑地球大气受到重力场的作用——准水平运
动
总结:研究对象是,考虑地球自转的,准水 平运动的大气中发生的,大尺度的大气运动 过程。
对气象学涉及的运动系统来讲,按水平尺度 的大小可以划分为几类尺度的运动系统。
经验划分: 大尺度:106m;105s 例如:气旋,反气旋 中尺度:105m;104s 例如:暴雨系统 小尺度:104m;103s 例如:雷暴单体,龙卷 微尺度: 小于40m 例如:抽吸性的涡旋
不同尺度的运动系统具有不同的动力 学特性。不同尺度运动系统性质差异,对 天气的影响也不同。
《动力气象学》课程笔记
《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。
19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。
这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。
- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。
- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。
1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。
科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。
数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。
1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。
科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。
此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。
2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。
这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。
2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。
涡旋运动包括环流、涡度和螺旋度等概念。
了解涡旋运动有助于我们预测天气变化和气候趋势。
2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。
在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。
准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。
2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。
这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。
动力气象学教材笔记
动力气象学教材笔记第一章引言1.1 研究背景与目的动力气象学,作为气象科学领域的一个重要分支,专注于探索大气运动的基本规律以及这些规律如何与天气和气候变化相互联系。
在全球气候变化日益严峻的背景下,动力气象学的研究不仅具有深远的科学意义,更对实际应用领域,如天气预报和气候预测,具有不可替代的指导价值。
随着全球气候变暖趋势的加剧,极端天气事件频繁发生,给人类社会和经济发展带来了巨大挑战。
这些极端天气事件背后的大气动力过程复杂多变,亟需通过深入的动力气象学研究来揭示其内在机制。
此外,提高天气预报和气候预测的准确性也离不开对动力气象学基本理论的深入理解和应用。
因此,本文旨在系统梳理和总结动力气象学的核心理论,以期为更好地理解和预测大气运动提供坚实的理论基础。
在动力气象学的研究中,大气运动的基本规律是核心内容。
这些规律包括了大气中的能量守恒、动量守恒、质量守恒等基本物理定律,以及由此衍生出的一系列重要理论,如大气动力学方程、大气稳定性理论等。
这些理论和规律为我们理解和解释大气中的各种现象提供了有力的工具。
例如,通过对大气动力学方程的研究,我们可以了解大气中能量的转换和传递过程,从而揭示出风暴、气旋等天气系统的发展演变机制。
动力气象学还关注大气运动与天气、气候变化的内在联系。
天气和气候是大气运动在不同时间和空间尺度上的表现,二者之间存在着密切的相互作用和反馈机制。
动力气象学通过研究这些相互作用和反馈机制,不仅有助于我们更全面地认识大气系统的复杂性,还能为改进天气预报和气候预测模型提供科学依据。
例如,近年来发展起来的基于动力气象学原理的数值天气预报模型,已经在实际应用中取得了显著的成效,大大提高了天气预报的准确性和时效性。
动力气象学的研究还涉及大气与地球其他圈层(如水圈、生物圈、岩石圈)的相互作用。
这些相互作用对全球气候系统的稳定和发展具有重要影响。
例如,海洋与大气之间的热量和水分交换是影响全球气候的重要因素之一;而地表植被的变化则可能通过改变地表的反射率和粗糙度来影响大气的温度和风速等。
成信工动力气象学专题讲座:动力气象ABC
大气科学迅速发展的时期
20世纪50年代以来
• 第二次世界大战之后,以遥感技术和计算机技术为代表的 新技术迅速发展。
• 从对观测资料的描述分析到进行实验。50年代以来,大气 科学研究逐渐进入了实验阶段。大气科学的实验一般有三 种形式:实验室实验(或模型实验)、数值试验 (计算机模 型试验) 、大气外场观测试验。
• 布兰德斯绘制了人类历史 上第一张天气图,开创了 近代天气分析和天气预报 方法,为大气科学向理论
研究发展开辟了途径。
• 1835年科里奥利力的概念和1857年白贝 罗提出的风和气压的关系,成为地球大 气动力学和天气分析的基石。
大气动力方程组的奠基
• 17世纪~19世纪初,流体的概念及牛顿的力学三大定律和 微积分学,为1743年法国数学家达朗贝尔把数学方法引入 了气象学的研究中,这对用数学方程式来表示大气运动具 有启发作用 。
古代气象知识的积累时期
自人类文明开始至16世纪
• 大气科学是一门古老的学科。有关天 气、气候知识起源于长期的生产实践
的经验之中,可上溯到渔猎时代。
• 有重要贡献的学者:希波克拉底、亚 里士多德 、培根 。
• 特征:知识还是零碎的、片面的,有 许多仅是推测性的,有的甚至是迷信、
错误的。
大气科学的建立时期
动力气象学ABC
何谓动力气象学?
• 一门应用物理学和流体力学定律及数学方法,研究大 气运动动力和热力过程及其相互关系的重要分支学科 。
• 传统的动力气象学=大气热力学、大气动力学、大气 环流、大气湍流、数值天气预报和大气数值模拟等
• 动力气象学 (气象力学) =大气热力学+大气动力学 • 动力气象学的发展对更深刻地认识大气运动的机理、
• 理查逊明白到这项任务牵涉异常大量的运算工作,他设想, 在遥远的将来,有朝一 日或许有可能发展出比天气变化还要 快的计算手段,从而使天气预报梦想成真。
动力气象学-第一章(绪论)
1835年提出科里奥利力的概念, 1857年白贝罗建 立了风压场关系的经验定律,成为地球大气动力 学和天气分析的基石。
动力气象学起源于北欧。
1897年,V. 皮耶克尼斯建立了旋转地球大气中的 环流理论;1904年V. 皮耶克尼斯以力学和物理学 的观点,建立了描写旋转地球大气运动方程组。
在1920年前后,V. 皮耶克尼斯和J. 皮耶克尼斯概 括了温带气旋生命史,提出了极锋气旋学说,形 成了挪威(卑尔根)学派。
对热带大气运动的研究,提出了第二类条件不稳定 理论(恰尼,1964年)和波动型第二类条件不稳定理论 (斯蒂文斯和林赞,1978年);提出了赤道波动理论
(松野,1966年)和积云对流参数化(郭晓岚,1965年)。 低纬大气行星波的活动,积云对流反馈,中低纬度 相互作用和海气相互作用,热带地区数值预报研究。
理想流体、可压流体——将大气视为可压
缩的连续流体,作为研究大气运动的基本 出发点,广泛运用流体力学和热力学原理 探讨大气运动的基本规律。
动力气象学与流体力学的关系
流体(Fluid) 流体力学(Fluid Mechanics)
地球物理流体动力学(Geophysical Fluid
Dynamics)
大气流体力学(Fluid Mechanics
动力气象
of Atomosphere)
动力气象学的研究步骤
数学基础:微积分、矢量分析、场论(欧拉
观点)、计算数学。 步骤:气象问题 模型 求解 物理模型 解释原问题。 数学
侧重于首尾两步。
2、动力气象学与其他课程的关系
与天气学的不同之处:
天气学:从观测资料出发,检验性的、总结天 气过程的发生、发展规律(主观) 动力学:从物理定理出发,从理论上揭示天气 过程的发生、发展规律和机理(客观) 关系:理论联系实际,相互渗透和交叉-天气 动力学。
气象动力学研究
气象动力学研究气象动力学是气象学中的一个重要分支,主要研究大气运动的本质和规律。
气象动力学包含了很多子领域,例如大气稳定性、风场、辐射、降水等等。
本文将简要介绍气象动力学领域的研究方向、发展历程以及当前的研究热点。
研究方向气象动力学的研究方向非常广泛,在此仅列举部分。
首先是大气稳定性,它是描述大气纵向稳定状态的重要因素。
稳定性强的大气一般不太容易产生气旋和涡旋运动,所以降水也较为稀少。
其次是风力场的研究,风向、风速变化对大气中污染物的扩散和输送产生了巨大的影响。
此外,气象动力学研究还包括大气辐射、云微物理、降水机制等问题。
发展历程气象学是人类认识自然环境的过程中发展较为成熟的学科之一,而气象动力学是其中的一大支。
气象动力学研究的历史可以追溯到19世纪初的德国天文学家布呂克纳(G. L. B. von Helmholtz),他首次提出了“气体动力学定律”。
但是,真正建立起气象动力学这一科学分支的是19世纪末和20世纪初的诺韦瑟(V. E. N. Bjerknes)和他的学生。
20世纪50年代,随着计算机技术的不断发展,数值模拟成为气象动力学研究的重要手段。
此外,微波辐射计、风速计、探空仪等气象仪器的发明和应用,也使气象动力学的研究更加深入。
当前研究热点气象动力学的研究非常广泛,当前的研究热点也非常多。
这里只介绍其中的一部分。
一是大气边界层的研究。
大气边界层是大气运动的重要区域,涉及大气运动、能量转换、湍流、污染物扩散等多个方面。
通过对大气边界层的研究,可以更好地理解气象现象,并为气象预报提供依据。
二是中尺度天气系统的研究。
中尺度天气系统是介于小尺度和大尺度天气系统之间的天气系统,通常具有普遍性和重要性。
例如,台风、大风暴、暴雪等都是中尺度天气系统的典型表现。
对中尺度天气系统的研究可以为气象灾害预警提供科学依据。
三是气候变化对大气运动的影响。
近年来,气候变化引起了人们的高度关注,气象动力学的研究也逐渐转向了这个方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参 考 书 目: 1 、叶笃正,李崇银,大气运动中的适应问题, 科学出版社,1965 2 、 Lorenz ,大气环流的性质和理论,科学出版 社,1976。 3 、 Haltiner, G, Numerical Prediction and Dynamical Meteorology, 1980(有中译本) 4、小仓义光,大气动力学原理,科学出版社, 1980 5 、 Holton , 动 力 气 象 学 引 论 , 科 学 出 版 社 , 1980 6、郭晓岚,大气动力学,江苏科技出版社, 1981
大 气 科 学 学 院 王 文
动 力 气 象 学
教材: 吕美仲等,动力象学,南京大学出版社,1996 2.HOLTON J. R. AN INTRODUCTION TO DYNAMIC METEOROLOGY, Academic Press, Fourth Version, 2004 3.刘式适等,大气动力学(第二版),北京大学出 版社,2011
参 考 书 目: 7、Pedlosky,地球物理流体动力学导论,海洋出 版社,1981 8、伍荣生等,动力气象学,上海科技出版社, 1983。 9、杨大升,刘余滨,刘式适,动力气象学,气 象出版社(修订本),1983 10、栗原宜夫,大气动力学入门,气象出版社, 1984 11、李崇银等,动力气象学概论,气象出版社, 1985 12、Pedlosky, J., Geophysical Fluid Dynamics, Springer-Verlag, 2nd ed, 1987
§1.1 基本假设 连续流体介质假设——质点力学的应用。
大气运动的速度、气压、密度和温度等物理量以及这 些场变量都是时间和空间的连续函数;
理想气体(无凝结); 动力过程和热力过程相互作用; 大气为可压缩连续流体
§1.2 地球大气的运动学和热力学特性 大气是重力场中的旋转流体。
大气运动一定是准水平的;静力平衡是大气运动的重 要性质之一;科里奥利力的作用。
大尺度运动中科里奥利力作用很重要。中纬度大尺度 运动中,科里奥利力与水平气压梯度力基本上相平 衡——地转平衡。
地球旋转角速度随纬度的变化,与每日天气图上的西 风带中的波动有关。
稳定性作用——位能、动能的转换——锋面。
大气是层结流体。 大气的密度随高度是改变的——层结稳定度。
不稳定层结大气中积云对流;稳定层结大气中重力内 波。
第一章 绪论
动力气象学是气象科学的一个分支,是应用物理学 定律和数学方法研究大气运动的动力过程、热力过 程,以及它们之间的相互关系,从理论上探讨大气 环流、天气系统演变和其它大气运动过程的学科。
动力气象学又是流体力学的一个分支——地球流体 力学的主要组成部分。 动力气象学是大气科学的基础理论。
大气科学的目的: 天气预报;气候预测
大气中含有水份。 相变潜热——低纬度扰动和台风的发展 大气的下边界是不均匀的。 湍流性;海陆分布和大气环流。
§1.3 大气运动的多尺度性 空间尺度——空间范围
积雨云、飑线、背风波、热带云团;温带气旋、西风 带中的长波;超长波、热带辐合带。
相互作用——反馈——CISK 非线性 尺度分析
§1.4 动力气象学的发展简史与发展动向
在这个时期 ,v. 皮耶克尼斯和 J. 皮耶克尼斯等人撰著的 三卷巨著《动力气象学和水文学》 ( 《静力学》 , 《运 动学》,《物理流体力学及其在动力气象学上的应 用》),是对他们本人和本学派研究成果的系统总结。
18世纪,力学、物理学、化学和数学等基础科学的发 展,观测仪器地陆续发明,气象科学由纯定性的描述 进入了可定量分析的阶段,这是气象科学发展过程中 的一次飞跃。
1820年,布兰德斯绘制了气象历史上第一张天气图, 创立了近代天气分析和天气预报的方法。这是气象科 学发展过程中又一次飞跃。
1835年提出科里奥利力的概念,1857年白贝罗建立了 风压场关系的经验定律,成为地球大气动力学和天气 分析的基石。 动力气象学起源于北欧。 1897年,V.皮耶克尼斯建立了旋转地球大气中的环流 理论;1904年V.皮耶克尼斯以力学和物理学的观点, 建立了描写旋转地球大气运动方程组. 在1920年前后, V.皮耶克尼斯和J.皮耶克尼斯概括了 温带气旋生命史,提出了极锋气旋学说,形成了挪威 (卑尔根)学派。
大气科学的研究方法:
观测(诊断)分析;理论研究;数值模拟
大气科学的特点:
已观测事实为基础
大气科学的分支:
大气动力学、大气物理学、天气学、气候学,…
动力气象学的基础知识: 高等数学;流体力学;天气气候学
学科特点和学习方法:
物理学为基础,数学为工具,观测事实为依据
知识的延拓和提升:
同一教材前后的贯通,不同教材的横向连接,不同分 支之间的联系,重大天气气候的联想。
参 考 书 目: 20、吕克利等,动力气象学,南京大学出版社, 1996 21、伍荣生,大气动力学(修订版),高等教育 出版社,2002 22、HOLTON J. R. AN INTRODUCTION TO DYNAMIC METEOROLOGY, Academic Press, Fourth Version, 2004 23、李国平,新编动力气象学,气象出版社, 2006 24、贺海晏,简茂秋,乔云亭,动力气象学,气 象出版社,2010 25、刘式适,刘式达,大气动力学(第二版), 北京大学出版社,2011
参 考 书 目: 13、陈秋士,天气和次天气尺度系统动力学,科 学出版社,1987 14 、 Hoskins 等,大气中大尺度动力过程,气象 出版社,1987 15、Gill,大气-海洋动力学,海洋出版社,1988 16、叶笃正,李崇银,王必魁,动力气象学,科 学出版社,1988。 17、吕美仲,彭永清,动力气象学教程,气象出 版社,1990 18、巢纪平,厄尔尼诺和南方涛动动力学,气象 出版社,1993 19、余志豪,杨大升等,地球物理流体动力学, 气象出版社,1996